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ABSTRACT
Neurodevelopmental disorders (NDs) encompass a
spectrum of neuropsychiatric manifestations.
Chromosomal regions 1q21.1, 3q29, 15q11.2, 15q13.3,
16p11.2, 16p13.1 and 22q11 harbour rare but recurrent
CNVs that have been uncovered as being important risk
factors for several of these disorders. These
rearrangements may underlie a broad phenotypical
spectrum, ranging from normal development, to learning
problems, intellectual disability (ID), epilepsy and
psychiatric diseases, such as autism spectrum disorders
(ASDs) and schizophrenia (SZ). The highly increased risk
of developing neurodevelopmental phenotypes
associated with some of these CNVs makes them an
unavoidable element in the clinical context in
paediatrics, neurology and psychiatry. However, and
although finding these risk loci has been the goal of
neuropsychiatric genetics for many years, the translation
of this recent knowledge into clinical practice has not
been trivial. In this article, we will: (1) review the state
of the art on recurrent CNVs associated with NDs,
namely ASD, ID, epilepsy and SZ; (2) discuss the models
used to dissect the underlying neurobiology of disease,
(3) discuss how this knowledge can be used in clinical
practice.

INTRODUCTION
Neurodevelopmental disorders (NDs) are a large
group of clinical entities encompassing a spectrum
of neuropsychiatric manifestations caused by dis-
ruption of brain development, including autism
spectrum disorders (ASD), intellectual disability
(ID), communication disorders, attention deficit
and hyperactivity disorder (ADHD), specific learn-
ing disorders and motor disorders.1 Schizophrenia
(SZ) has also been proposed to result from neuro-
developmental disturbances, usually manifesting
only in the adult stage.2 The majority of NDs do
not fit the Mendelian disease model where one
gene is responsible for a given trait.3 Most of them
are polygenic or multifactorial and their clustering
in families is believed to be influenced by genetic
and environmental factors.4

Two contrasting hypotheses have been advanced
to explain the nature of this complexity: the
common variant common disease (CVCD) and the
rare variant common disease (RVCD) models.5

According to the CVCD model, the genetic risk in
an individual is attributable to many high frequency
variants, each one having a modest effect on risk.
In contrast, the RVCD model states that genetic
risk in a given individual can be explained by rare
mutations that confer significant risk.5 6

Most likely, both types of contribution are
important; the narrow-sense heritability in autism
is ∼52.4%, most being due to common variants.7

Rare CNVs—DNA segments larger than 1 Kb that
present a copy number different from that of the
reference genome8—contribute to a substantial pro-
portion of the genetic variability in humans9 but
can also contribute for risk of developing a neuro-
developmental disturbance. Its association with a
range of NDs5 10 was only possible because
advancements in chromosomal microarray (CMA)
technology have allowed for CNV analysis in very
large case-control cohorts.11

A significant proportion of risk for ID, ASD, SZ,
epilepsy, bipolar disease (BD) and ADHD can be
explained by these rare variants.12–20 The estimated
risk, or OR, for most common disease-associated
single nucleotide polymorphisms will be of—at
most—up to 2 (with many between 1.1 and 1.4);
in contrast, many—if not most—rare variants have
been associated with ORs greater than 2, in some
cases considerably larger.6

Most of the experiments to study the impact of
CNVs in dosage-sensitive gene expression in
normal brain development have used lymphoblas-
toid cell lines, suggesting a functional impact of
CNVs via transcriptome alterations.21–23 Two
studies on postmortem brain samples have shown
that 1q21.1 and 22q11.2 CNVs influence gene
expression in the dorsolateral prefrontal
cortex;24 25 interestingly, a significant proportion
of CNVs influencing gene expression in the human
prefrontal cortex were located in chromosomal
regions implicated in psychiatric disorders, namely
those in 1q21.1, 3q29, 15q11.2, 16p11.2,
16p13.1, 17q12 and 22q11.2.25

Most recurrent pathogenic CNVs are large
(>400 kb), typically involving dozens of genes, and
are individually rare (frequency <0.1%).11 Their dis-
covery emphasised the importance of de novo and
essentially private mutations in NDs, and indicated
that the distinction between milder neuropsychiatric
conditions and severe developmental impairment
may be a consequence of increased mutational
burden affecting multiple genes in the latter case.3

Although finding such risk loci has been the goal
of neuropsychiatric genetics for many years, the
translation of this recent knowledge into clinical
practice has not been trivial. In this article, we will:
(1) review the state of the art on recurrent CNVs
associated with NDs, namely ASD, ID, epilepsy and
SZ; (2) discuss the models used to dissect the
underlying mechanism of disease, (3) discuss how
this knowledge can be used in clinical practice.

Torres F, et al. J Med Genet 2015;0:1–18. doi:10.1136/jmedgenet-2015-103366 1

Review
 JMG Online First, published on November 7, 2015 as 10.1136/jmedgenet-2015-103366

Copyright Article author (or their employer) 2015. Produced by BMJ Publishing Group Ltd under licence. 

 brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/80557075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jmg.bmj.com
http://jmg.bmj.com/
http://group.bmj.com


RECURRENT CNVS ASSOCIATED WITH INCREASED RISK
FOR NDS
The chromosomal regions 1q21.1, 3q29, 15q11.2, 15q13.3,
16p11.2, 16p13.1 and 22q11 harbour some of the rare recur-
rent CNVs that have been uncovered as being risk factors
for several NDs. Some of these studies are summarised in
tables 1–8 and their main aspects discussed below. Other CNVs
associated with risk of NDs are listed in table 9.

1q21.1 rearrangements
The distal 1q21.1 region includes 30 genes and is flanked by
segmental duplications that mediate recurrent rearrangements
with conserved break points (BP). Recurrent 1.35 Mb deletions/
duplications occur between BP3 and BP4 (figure 1) and confer a
risk for a variety of phenotypes (table 1): the deletions are
mainly associated with ID and epilepsy, being also enriched in
SZ or schizoaffective disorders,26–31 while the duplications are
associated with ID and ASD; other findings include seizures,
microcephaly/macrocephaly, mild dysmorphisms and congenital
abnormalities (CAs).58

Of note, there seems to exist a mirror effect on head circum-
ference: deletions cause microcephaly and duplications cause
macrocephaly.59 These differences might be partially explained
by the variable dosage of genes contained in the CNV region.
The 1q21.1 HYDIN paralog, which is dosage sensitive and
exclusively expressed in the brain, appears to be important in
determining head size: an atypical deletion that did not include
this gene was observed in a normocephalic patient.59 PRKAB2,
which encodes the protein kinase, AMP-activated, β-2 non-
catalytic subunit, has effects only when deleted;60 this finding is
in agreement with previous studies that have demonstrated pro-
found abnormalities in the central nervous system (CNS) in
AMP-activated protein kinase (AMPK)-b1−/− knockout mice.61

3q29 rearrangements
The 3q29 microdeletion (3q29del) is particularly rare (<1/
1000) and was first described in patients with mild-to-moderate
ID and slightly dysmorphic facial features.63 Since then, other
works have associated this deletion with ID, developmental
delay (DD), BD, learning disability, CAs12 27and especially with
SZ.30–32 The reciprocal microduplication is associated with
mild-to-moderate ID and CAs (table 2).12 27 63

3q29del encompasses 21 genes (figure 2), including DLG1,
PAK2 and FBX045, that are related to neuronal postsynaptic
membrane function and PTEN signalling, and have been pro-
posed as determinant for the psychiatric manifestations of
patients harbouring these deletions.64 Recently, rare single
nucleotide variants as well as small insertions and deletions in
FBXO45 were identified in patients with SZ.65

15q11.2 (BP1-BP2) deletions
The 15q11.2 (BP1-BP2) microdeletions (15q11.2del) range
from 253 Kb to 1.5 Mb and have been associated with ID, SZ,
DD and ASD, as well as with epilepsy (table 3).33 36 38 In fact,
the combined frequency of this CNV along with 15q13.3del
and 16p13.11del is approximately 3% in patients with genetic
generalised epilepsy (GGE),66 and these CNVs are particularly
enriched in patients with ID plus GGE when compared with
individuals with GGE or ID alone.14 67

In spite of its location in the Prader-Willi/Angelman syndrome
region, it does not contain the critical genes for these syndromes.
This CNV encompasses four non-imprinted genes (figure 3):
NIPA1, NIPA2, CYFIP1 and TUBGCP5.36 38 Three of them are
implicated in CNS development and/or function: NIPA1 and
NIPA2 are widely expressed in neuronal tissues and CNS and
mediate magnesium (Mg2+) transport;68 69 when mutated, they
cause autosomal dominant hereditary spastic paraplegia70 and
childhood absence epilepsy,71 respectively. CYFIP1 is expressed

Table 1 Studies describing association of 1q21.1 deletions and duplications with several NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

26 ID/DD/ASD del 5218 25 0.48 4737 0 0 1.1×10−7 >22.8
27 ID/DD/ASD/CAs del 15 749 55 0.35 10 118 3 0.03 5.4×10−9 12
12 ID/DD/CAs del 15 767 47 0.30 8329 2 0.024 3.3×10−7 12
28 SZ/RP del 4718 11 0.23 41 199 8 0.019 2.9×10−5* 12

14.83*
29
† SZ del 7918 17 0.21 46 502

14 060‡
11
3‡

0.024
0.021‡

2.5×10−8

9.6×10−6‡
9.1
10‡

30 SZ del 3945
11 392§

4
20§

0.10
0.18§

3611
47 321§

1
10§

0.028
0.021§

2.2×10−8§ 3.7
8.3§

31 SZ del 6882
19 056§

12
33§

0.17 0.17§ 6316
81 829 §

1
17§

0.016 0.021§ 2.7×10−3

4.1×10−13§
11
8.35§

26 ID/DD/ASD dup 5218 9 0.17 4737 1 0.021 2×10−2 8.2
27 ID/DD/ASD/CAs dup 15 749 28 0.18 10 118 3 0.03 4×10−4 6
12 ID/DD/CAs dup 15 767 25 0.16 8329 6 0.07 2×10−4 2.2
30 SZ dup 3945

8563‡
7
11‡

0.18
0.13‡

3611
39 809‡

0
14‡

0
0.035‡

2×10−3‡ 6.4
3.7‡

31 SZ dup 6882
16 247§

8
21d

0.12 0.13d 6316
64 046d

5
24d

0.079 0.037d 3.5×10−1

9.9×10−5d
1.47
3.45d

p Value: Fisher’s exact test, unless specified.
*Cochran-Mantel-Haenszel test.
†Data obtained from current and previous studies.
‡Without Icelandic controls.
§Meta-analysis values, combined data from previous studies and current data set.
ASD, autism spectrum disorder; CA, congenital anomaly (including cardiac, cataract and microcephaly); DD, developmental delay; ID, intellectual disability; ND, neurodevelopmental
disorder; SZ/RP, schizophrenia/related psychosis.
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in the brain and encodes a protein that interacts with fragile X
mental retardation protein (FMRP), the protein product of the
fragile X syndrome gene.72 FMRP and CYFIP1 play an important
role in the regulation of mRNAs in brain,73 and CYFIP1 is critical
for the maintenance of dendritic complexity and the stabilisation
of mature spines; dysregulation of CYFIP1 expression levels leads
to pathological changes in CNS maturation and neuronal con-
nectivity, which may contribute to the development of neuro-
psychiatric illness.74 Finally, TUBGCP5 encodes a widely
expressed core component of the gamma tubulin complex,
required for microtubule nucleation at the centrosome.75

15q13.3 (BP4-BP5) rearrangements
Sharp and colleagues first described patients with ID, epilepsy
and variable facial and digital dysmorphisms due to a 1.5-Mb
deletion at 15q13.3 (15q13.3del), comprising the BP4-BP5
region (figure 3).76 Patients with reciprocal duplications and a
patient with a homozygous deletion and a severe phenotype
including epileptic encephalopathy and autistic features were
also observed.77 78 This deletion is strongly associated with ID
(OR >29.6)27 and with SZ and related psychoses,28–31

while the reciprocal duplications seem to predispose to
ADHD (table 4).20 The 15q13.3del was also recognised as a

Table 2 Studies describing association of 3q29 deletions and duplications with SZ, schizoaffective disorders and other NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

32 SZ del 245 7545* 1
6*

0.41
0.08*

490
39 748*

0
1*

0
0.0025*

9.7×10−3*† 32*
17*†

30 SZ del 3945
7336*

5
7*

0.13
0.096*

3611
14 821*

0
0*

0
0*

4×10−2

4×10−4*
>4.6
>14*

31 SZ del 6882
17 005*

4
14*

0.058
0.082*

6316
69 965*

0
1*

0 0.0014* 7.4×10−2

1.5×10−9*
>3.7
57.65*

27 ID/DD/ASD/CAs del 15 749 9 0.057 10 118 0 0 1.47×10−2 >5.8
12 ID/DD/CAs del 15 767 6 0.038 8329 0 0 7.85×10−2 >3.2
27 ID/DD/ASD/CAs dup 15 749 8 0.050 10 118 1 0.0099 1×10−1 5.14
12 ID/DD/CAs dup 15 767 4 0.025 8329 0 0 1.83×10−1 >2.1

p Value: Fisher’s exact test, unless specified.
*Meta-analysis values, combined data from previous studies and current data set.
†Cochran-Mantel-Haenszel test.
ASD, autism spectrum disorder; CAs, congenital anomaly (including cardiac, cataract and microcephaly); DD, developmental delay; ID, intellectual disability; ND, neurodevelopmental
disorder; SZ: schizophrenia.

Table 3 Studies describing association of BP1-BP2 15q11.2 deletions with several NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

28 SZ/RP del
BP1-BP2

4718 26 0.55 41 194 79 0.19 6×10−4* 2.9
2.73*

29
† SZ del

BP1-BP2
7918 49 0.62 46 497

14 055‡
103
45‡

0.22
0.32‡

4.46×10−8

1.7×10−3‡
2.8
1.94‡

31 SZ del
BP1-BP2

6882
19 547§

44
116§

0.64
0.59§

6316
81 802§

26
227§

0.41
0.28§

4.6×10−2

2.5×10−10§
1.56
2.15§

33 IGE del
BP1-BP2

1234 12 0.97 3022 6 0.20 4.2×10−4 4.9

34 Unexplained ID del
BP1-BP2

1010 8 0.79 2493 3 0.12 3×10−3 6.6

12 ID/DD/CAs del
BP1-BP2

15 767 94 0.6 8329 19 0.23 2.1×10−5 2.6

35 DD/ID/ASD del
BP1-BP2

25 113 203 0.81 22 246 84 0.38 <1×10−4 2.15

36 DD/ASD ADD/ADHD del
BP1-BP2

17 000 69 0.41 6329 16 0.25 8.7×10−2 1.6

37 ASD del
BP1-BP2

1257 4 0.32 1577 4 0.25 7.4×10−1 1.26

38 ASD
ASD¶

del
BP1-BP2

636
448¶

7
6¶

1.1
1.3¶

1603 12 0.75 4.2×10−1

2.5×10−1¶
1.47
1.79¶

p Value: Fisher’s exact test, unless specified.
*Cochran-Mantel-Haenszel test.
†Data obtained from current and previous studies.
‡Without Icelandic controls.
§Meta-analysis values, combined data from previous studies and current data set.
¶ASD with normal intelligence.
ADD/ADHD, attention deficit/attention deficit hyperactivity disorder; ASD, autism spectrum disorder; BP, break point; CA, congenital anomaly; DD, developmental delay; ID, intellectual
disability; IGE, idiopathic generalised epilepsies; ND, neurodevelopmental disorder; SZ/RP, schizophrenia/related psychosis.
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major risk factor (OR >50) for idiopathic generalised epilep-
sies (IGE).39 In addition to this variable expressivity, incom-
plete penetrance (ie, healthy individuals presenting these
deletions) has been observed,33 40 probably due to additional

genetic abnormalities, epigenetic factors and/or modifier genes
and CNVs.79

The critical region of 15q13.3del harbours at least seven
genes (ARHGAP11B, FAN1/MTMR15, MTMR10, TRPM1,

Table 4 Studies describing association of 15q13.3 Bp4-BP5 deletions and duplications with several NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

39 IGE del
BP4-BP5

1223 12 0.99 3699 0 0 5.3×10−8 >36.6

40 IGE del
BP4-BP5

539 7 1.3 3777 0 0 4.6×10−7 >49.7

27 ID/DD/ASD/CAs del
BP4-BP5

15 749 46 0.29 10 118 0 0 1.44×10−10 >29.6

12 ID/DD/CAs del
BP4-BP5

15 767 42 0.27 8329 0 0 1.8×10−8 >22

28 SZ/RP del
BP4-BP5

4213 7 0.17 39 800 8 0.02 5.3×10−4* 8.3
11.54*

29
† SZ del

BP4-BP5
7413 15 0.20 45 103

12 661‡
8
1‡

0.018
0.008‡

2.8×10−8

3.34×10−6‡
11.4
25.7‡

30 SZ del
BP4-BP5

3945
10 887§

7
21§

0.18
0.19§

3611
45 922§

1
9§

0.028
0.018§

2.0×10−9§ 6.4
9.9§

31 SZ del
BP4-BP5

6882
18 571§

4
26§

0.058
0.14§

6316
80 422§

2
15§

0.032
0.019§

3.8×10−1

4.0×10−10§
1.84
7.52§

20 ADHD dup
BP4-BP5

3003 37 1.25 10 620 64 0.61 1.78×10−4 2

27 ID/DD/ASD/CAs dup
BP4-BP5

15 749 14 0.089 10 118 3 0.03 8.3×10−2 3

12 ID/DD/CAs dup
BP4-BP5

15 767 20 0.12 8329 3 0.036 2×10−2 3.5

p Value: Fisher’s exact test, unless specified.
*Cochran-Mantel-Haenszel test.
†Data obtained from current and previous studies.
‡Without Icelandic controls.
§Meta-analysis values, combined data from previous studies and current data set.
ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; BP, break point; CA, congenital anomaly (including cardiac, cataract and microcephaly); DD,
developmental delay; ID, intellectual disability; IGE, idiopathic generalised epilepsy; ND, neurodevelopmental disorder; SZ/RP, schizophrenia/related psychosis.

Table 5 Studies describing association of proximal 16p11.2 deletions and duplications with ASD, SZ and other NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

41 ASD proximal
del

712 4 0.56 837 0 0 4.4×10−2 >4.7

42 ASD proximal
del

2195 8 0.37 2519 4 0.16 2.5×10−1 2.3

27 ID/DD/ASD/CAs proximal
del

15 749 67 0.43 10 118 5 0.049 6.3×10−10 8.4

12 ID/DD/CAs proximal
del

15 767 64 0.41 8329 3 0.037 3.4×10−9 11.3

30 SZ proximal
del

3945
9890*

1
4*

0.025
0.04*

3611
29 597*

3
11*

0.08
0.037*

5.4×10−1* 0.91
1.09*

30 SZ proximal
dup

3945
9890*

13
31*

0.33
0.31*

3611
29 597*

1
8*

0.028
0.027*

1.5×10−12* 11.9
11.6*

31 SZ proximal
dup

6882
16 772*

27
58*

0.39
0.35*

6316
63 068*

0
19*

0 0.03* 2.3×10−8

2.9×10−24*
>24.9
11.5*

42 ASD proximal
dup

2195 9 0.41 2519 4 0.16 1.6×10−1 2.6

27 ID/DD/ASD/CAs proximal
dup

15 749 39 0.25 10 118 4 0.098 2.5×10−5 6.28

12 ID/DD/CAs proximal
dup

15 767 28 0,18 8329 2 0.024 4×10−4 7.4

p Value: Fisher’s exact test, unless specified.
*Meta-analysis values, combined data from previous studies and current data set.
ASD, autism spectrum disorder; CAs, congenital anomaly (including cardiac, cataract and microcephaly); DD, developmental delay; ID, intellectual disability; ND, neurodevelopmental
disorder; SZ, schizophrenia.
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KLF13, OTUD7A and CHRNA7), but CHRNA7 soon emerged
as a prime candidate gene responsible for some of the clinical
findings associated with these CNVs, such as seizures, because
of the identification of individuals with deletions containing
only this gene.80 CHRNA7 encodes the cholinergic receptor
alpha 7 (neuronal), which belongs to the nicotinic acetylcholine
receptor (nAChRs) superfamily of ligand-gated ion channels that
mediate signal transmission at synapses. It plays roles in central
and peripheral nervous system development, cognitive perform-
ance and inflammation;81 it is highly expressed in the reticular
thalamus, indicating a role in modulating thalamocortical path-
ways, which are central to the generation of primary generalised
seizures seen in IGE. Indirect evidence for its role in epilepto-
genesis comes from the fact that mutations in other nAChR
family members cause autosomal dominant nocturnal frontal
lobe epilepsy.39 40 Nevertheless, no patients with point muta-
tions in CHRNA7 gene were described until now:62 82 only
some non-coding variants associated with reduced gene

expression have been found in one patient with ASD83 as well
as in patients with SZ.81 The a7nAChR is also a relevant
pharmacological target, as agonists of nAChRs are currently
being considered in the treatment of NDs.84–86 In a maternal
immune activation (MIA) mouse model, a murine model of
environmental risk factors for autism and SZ, it was shown that
this receptor modulates the inflammatory response after MIA,
affecting the fetal brain development and offspring behaviour.
The a7nAChR suppresses inflammatory response in the fetal
brain by inhibiting interleukin (IL) 6 production and, conse-
quentially, the loss of Chrna7 in the offspring increases their
vulnerability to MIA-induced autistic and SZ-like symptoms.
Maternal choline supplementation triggers an anti-inflammatory
response in the fetal brain and thus decreases the MIA-induced
IL-6 elevation during embryonic stage and the autistic and
SZ-like behaviours in the adults.87

Whole-exome sequencing (WES) data combined with a statis-
tical method designed to identify the responsible gene(s) within

Table 6 Studies describing association of distal 16p11.2 deletions and duplications with ASD, SZ and other NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

43 SZ distal
del

13 850 13 0.094 19 954 3 0.015 1×10−3 6.25

31 SZ distal
del

6882
20 732*

0
13*

0
0.063*

6316
27 045*

2
5*

0.032
0.018*

1
1.7×10−2*

–

3.39*
12 ID/DD/CAs distal

del
15 767 15 0.095 8329 1 0.024 1.1×10−2 7.9

44 DD distal
del

23 084 31 0.13 7700 1 0.013 3×10−3 10.4

12 ID/DD/CAs distal
dup

15 767 14 0.089 8329 2 0.012 4.9×10−2 3.7

44 DD distal
dup

23 084 17 0.07 7700 3 0.04 4×10−1 1.9

p Value: Fisher’s exact test, unless specified.
*Meta-analysis values, combined data from previous studies and current data set.
ASD, autism spectrum disorder; CA, congenital anomaly (including cardiac, cataract and microcephaly); DD, developmental delay; ID, intellectual disability; ND, Neurodevelopmental
disorder; SZ, schizophrenia.

Table 7 Studies describing association of 16p13.11 deletions and duplications with several NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

45 ID/CAs del 1027 5 0.49 2014* 0 0 4.8×10−3 >9.85
27 ID/DD/ASD/CAs del 15 749 22 0.14 10 118 3 0.03 6.3×10−3 4.7
12 ID/DD/CAs del 15 767 18 0.11 8329 3 0.036 3.6×10−2 3.2
46 SZ del 4345 5 0.12 35 079 15 0.04 >5×10−2 2.7
33 IGE del 1234 6 0.49 3022 2 0.066 9×10−3 7.4
47 ES del 3812 23 0.60 1299 0 0 NA >7.88
45 ID/CAs dup 1027 7 0.68 2014* 5 0.25 1.27×10−1 2.8
27 ID/DD/ASD/CAs dup 15 749 45 0.29 10 118 20 0.2 2×10−1 1.4
12 ID/DD/CAs dup 15 767 24 0.15 8329 10 0.12 3.3×10−1 1.3
48 ADHD dup 366

825†
6
4†

1.67
0.49†

1047
35 243†

1
36†

0.096
0.1†

8×10−4

3.1×10−2†
17.4
4.76†

46 SZ dup 4345 13 0.30 35 079 32 0.09 7×10−3 3.3
31 SZ dup 6882

12 029‡
24
37‡

0.35
0.31‡

6316
69 289‡

12
93‡

0.19 0.13‡ 5.6×10−2

5.7×10−5‡
1.84

2.30‡

p Value: Fisher’s exact test, unless specified.
*Used their own controls with already described data.
†Replication Icelandic group.
‡Meta-analysis values, combined data from previous studies and current data set.
ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; CA, congenital anomaly (including cardiac, cataract and microcephaly); DD, developmental delay; ES,
epilepsy syndrome; ID, intellectual disability; IGE, idiopathic generalised epilepsy; NA, not available; ND, neurodevelopmental disorder; SZ, schizophrenia.
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regions affected by de novo CNVs, allowed the discovery of a
new gene containing rare risk variants for SZ and ASD located
in 15q13.3. Fanconi-associated nuclease 1 (FAN1) is relatively
widely expressed in brain and encodes a DNA repair enzyme.88

Individuals carrying a homozygous microdeletion spanning
FAN1 show severe neurodevelopmental abnormalities, including
microcephaly.89 It is likely that deleterious FAN1 mutations
increase risk for SZ and ASD by interfering with aspects of
early neuronal development, namely proliferation.88

16p11.2 rearrangements
The 593-Kb proximal deletions and duplications at 16p11.2
(figure 4), although observed in individuals with normal pheno-
types,90 have been associated with a broad range of NDs
(table 5). A detailed phenotypical analysis of the 16p11.2 CNV

has shown the existence of partially mirroring phenotypes: the
deletion is associated with ASD, ID, behavioural disorders, CAs,
diabetes-independent obesity and macrocephaly, while the recip-
rocal duplication is associated with autism and SZ, anorexia and
microcephaly.41 91–95 Jacquemont and colleagues have thus
speculated that head circumference and neuronal circuitry
abnormalities could be linked to cognitive function and energy
balance impairments in patients with 16p11.2 rearrangements,
and so the abnormal food intake could be a direct result of a
particular ND.95 Conceptually, this would make us add obesity
to the list of CNV-associated NDs, an intriguing shift to the
field, but one that fits the increasing knowledge on the biology
of food intake and metabolism regulation by the CNS.96

KCTD13 is one of the 29 annotated genes within this CNV,
among some transcription factors (eg, MAZ, TBX6), chromatin

Table 8 Studies describing association of 22q11.2 deletions and duplications with SZ and other NDs

References Phenotype del/dup

Case group Control group

p Value ORN CNVs, n Frequency (%) N CNVs, n Frequency (%)

32 SZ del 245
6107*

2
29*

0.82
0.48*

490
6502*

0
0*

0
0*

4.7×10−10*† >31*

30 SZ del 3945
11 400*

21
35*

0.54
0.31*

3611
45 361*

0
0*

0
0*

<1.0×10−16* >19
>139*

31 SZ del 6882
19 084*

20
56*

0.29
0.29*

6316
77 055*

0
0*

0
0*

2.2×10–6

4.4×10−40*
>18
>226*

27 ID/DD/ASD/CAs del 15 749 93 0.59 10 118 0 0 9.1×10−21 >60
12 ID/DD/CAs del 15 767 96 0.61 8329 0 0 <1×10−4 >51
42 ASD dup 2195 9 0.41 2519 0 0 1×10−3 >10
27 ID/DD/ASD/CAs dup 15 749 32 0.20 10 118 5 0.049 1.1×10−3 4.1
12 ID/DD/CAs dup 15 767 50 0.32 8329 5 0.06 1.3×10−5 5.3

p Value: Fisher’s exact test, unless specified.
*Meta-analysis values, combined data from previous studies and current data set.
†Cochran-Mantel-Haenszel test.
ASD, autism spectrum disorder; CAs, congenital anomaly (including cardiac, cataract and microcephaly); DD, developmental delay; ID, intellectual disability; ND, neurodevelopmental
disorder; SZ, schizophrenia.

Table 9 Selected studies describing association of other risk loci with NDs

Gene Associated CNV Location Phenotype References

NRXN1 del 2p16.3 ASD/SZ 31 49–52

CNTN4 del/dup 3p26 ASD 53 54

UBE3A; PARK2; RFWD2; FBXO40; NLGN1; ASTN2 del/dup within or
surrounding genes

15q11.2/6q25.2–q27
1q25.1–q25.2/3q13.33
3q26.31/9q33.1

ASD 42

SHANK2; SYNGAP1; DDX53-PTCHD1 DLGAP2 Del
dup

11q13.3/6p21.32/Xp22.1
8p23.3

ASD 16

SHANK1; SHANK2; SHANK3 del/dup, truncating
mutations

19q13.3/11q13.3/22q13.3 ASD/ID/SZ/
ADHD/BD

55

WBS region (38 genes) dup 7q11.23 ASD/SZ 18 31 56 57

USP7; C16orf72; CDH13 dup
del

16p13.2
16q23.3

ASD 18

COMMD1; CACNA2D4; CTNNA3; CTNND2 del 2p15/12p13.33
10q22.2/5p15.2

ASD 17

JAKMIP1; NLGN4Y; OXTR; ABAT del 4p16.1/Yq11.221
3p25/16p13.2

ASD 50

DRG1; GJA1; EPHA5; SPOCK3 dup
del

10q11.23/6q22.31/4q13.1
4q32.3

ASD 10

FMO; DNM; SATB2; PEX13 to AHSA2; JAGN1 to TATDN2; CHMP2B to
POU1F1; GAP43; FGF12; BMP3; MEF2C; SFTPD to GLUD1, including
NRG3; SCNN1A to PIANP

del/dup 1q24/2q33.1/2p15-16.1/3p25.3/3p11.2/
3q13/3q28–29/4q21/5q14/9p13/10q11/
10q23.1/12p13

DD 52

ADHD, attention deficit and hyperactivity disorder; ASD, autism spectrum disorder; BD, bipolar disease; DD, developmental delay; ID, intellectual disability; ND, neurodevelopmental
disorder; SZ, schizophrenia.
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modifiers (eg, HIRIP3, INO80E) and other genes with a wide
array of cellular functions. The use of zebra fish and mouse
models revealed that KCTD13 is a major driver of the head size
phenotypes associated with the 16p11.2-CNV through the regu-
lation of early neurogenesis. Moreover, KCTD13 dosage

changes were related with autism in a family with a reduced
16p11.2 deletion (encompassing only five genes, one of them
being KCTD13), and a patient with a narrow diagnosis of
autism and a complex 16p11.2 rearrangement involving de
novo structural alteration of KCTD13.97 RNA sequencing of

Figure 1 Distal 1q21.1 CNVs: recurrent 1.35 Mb deletions/duplications between break points BP3 and BP4 (chr1: 146.5–147.9 Mb). Protein-coding
genes are marked in colour, the remaining are marked in black. Within protein-coding, genes have been scored according to their predicted
probability of exhibiting haploinsufficiency: in red are the genes more likely to exhibit haploinsufficiency, in green the genes less likely to exhibit
haploinsufficiency (adapted from Firth and colleagues161).

Figure 2 3q29 CNVs: recurrent 1.6 Mb deletions/duplications (chr3: 195.7–197.3 Mb). Protein-coding genes are marked in colour, the remaining
are marked in black. Within protein-coding, genes have been scored according to their predicted probability of exhibiting haploinsufficiency: in red
are the genes more likely to exhibit haploinsufficiency, in green the genes less likely to exhibit haploinsufficiency (adapted from Firth and
colleagues161).
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Figure 3 Chromosome 15 CNVs: recurrent 15q11.2 (break points (BP)1-BP2) deletions, ranging from 253 Kb to 1.5 Mb and encompassing the four
non-imprinted genes NIPA1, NIPA2, CYFIP1, TUBGCP5 and 15q13.3 (BP4-BP5) deletions/duplications (chr15: 30.91–32.44 Mb). Protein-coding genes
are marked in colour, the remaining are marked in black. Within protein-coding, genes have been scored according to their predicted probability of
exhibiting haploinsufficiency: in red are the genes more likely to exhibit haploinsufficiency, in green the genes less likely to exhibit haploinsufficiency
(adapted from Firth and colleagues161).

Figure 4 Chromosome 16 CNVs: recurrent 16p11.2 deletions/duplications, proximal (chr16: 29.60–30.19 Mb) and distal (chr16: 28.73–28.95 Mb);
recurrent 16p13.11 deletions/duplications (chr16: 14.98–16.48 Mb). Protein-coding genes are marked in colour, the remaining are marked in black.
Within protein-coding, genes have been scored according to their predicted probability of exhibiting haploinsufficiency: in red are the genes more
likely to exhibit haploinsufficiency, in green the genes less likely to exhibit haploinsufficiency (adapted from Firth and colleagues161).
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cerebral cortex of mouse models with duplication/deletion and
cell lines derived from multiplex ASD families with the CNV
showed that expression of all genes in the CNV region corre-
lated well with their DNA copy number. Effects of 16p11.2
rearrangements on gene expression outside the CNV region
were also observed, including apparent positional effects in cis
and in trans and dysregulation of genes located in other
chromosomal regions. In conclusion, alteration of 16p11.2
genes seems to disrupt expression networks that involve other
genes and pathways known to contribute to ASD.98

The 220-kb 16p11.2 distal deletion (28.73–28.95 Mb) was first
described in association with severe early onset obesity alone.99

Soon after, it was also described in patients with DD, ID and
other variable phenotypical features in addition to obesity12 44

and, more recently, in association with SZ (table 6).31 43

The minimal deleted region contains nine genes, several of
which are implicated in neurological diseases (TUFM, ATP2A1),
immunity and glucose homoeostasis. The most likely obesity
candidate gene was postulated to be SH2B1, involved in leptin
and insulin signalling,100 and implicated in the regulation of
body weight and glucose homoeostasis in mice.101

16p13.11 rearrangements
Common features of the patients with the 1.5 Mb deletions at
16p13.11 (16p13.11del) include ID, microcephaly and epilepsy,
while patients carrying the reciprocal duplication have pro-
nounced behavioural problems in addition to ID and/or
CAs.45 102

A threefold excess of duplications and deletions has been
observed in SZ cases (table 7),31 46 and both rearrangements
have been implicated in ADHD.48 103

The 16p13.11del is significantly associated with GGE33 67 104

and appears to be the most prevalent single genetic risk factor

for overall seizure susceptibility (0.6% of patients with
epilepsy).47

The 16p13.11 consensus region spans seven genes (MPV17L,
C16orf45, KIAA0430, NDE1, MYH11, C16orf63, ABCC1)
(figure 4).48 103 Among them, the nuclear distribution gene E
homologue 1 (NDE1) is of particular interest, because the nudE
neurodevelopment protein 1 is essential for mitosis and neuro-
development, and interacts with the disrupted in SZ 1
protein,105 implicated in SZ and in other major psychiatric dis-
orders.106–108 NDE1 deficiency impairs neurogenesis, by
causing profound neuronal proliferation defects and a deficiency
in cortical lamination, as observed in Nde1-null mice and in
patients with NDE1 homozygous mutations, who present
extreme microcephaly with lissencephaly.106 107 Severe micro-
cephaly, including fetal brain disruption, can also be caused by
the combination of a 16p13.11del and a mutation on the non-
deleted NDE1 homologue.108 As the 16p13.11 region includes
other genes expressed during brain development, such as
ABCC1, NOMO1, NTAN1, PDXDC1, it has been suggested that
sequencing these candidate genes for second-hit mutations in
patients with 16p13.11del and severe neurodevelopmental phe-
notypes could give new insights into these disorders.108

22q11.2 rearrangements
DiGeorge syndrome, velocardiofacial syndrome or 22q11.2
deletion syndrome (22q11DS) results from 1.5–3 Mb heterozy-
gous microdeletions on 22q11.2 locus; these deletions
(22q11.2del) represent one of the most common disease-causing
CNVs. The associated phenotype is variable but frequently
includes cleft palate, hypocalcaemia, cardiac defects, immune
dysfunction and neuropsychiatric illness.109–111 About 85% of
patients with 22q11DS have the 3 Mb deletion (∼60 genes),
while the remainder have the smaller 1.5 Mb deletion (28

Figure 5 Recurrent 22q11.2 CNVs (chr22: 19.00–21.45 Mb). Protein-coding genes are marked in colour, the remaining are marked in black. Within
protein-coding, genes have been scored according to their predicted probability of exhibiting haploinsufficiency: in red are the genes more likely to
exhibit haploinsufficiency, in green the genes less likely to exhibit haploinsufficiency (adapted from Firth and colleagues161).
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genes), or atypical deletions, containing a small number of genes
(figure 5).111

Patients with 22q11DS have variable psychiatric and cognitive
presentations: children have a high prevalence of ASD, ADHD,
anxiety disorders and psychotic features112 while up to 30% of
adolescents and adults develop SZ or affective psychosis.113 114

The 22q11.2del was the first CNV implicated in SZ115 and is
now considered one of the greatest known risk factors for
psychotic illness, accounting for up to 1–2% of sporadic cases
of SZ (table 8).30 31 111 114

The reciprocal 3 Mb duplication is usually associated with
milder and more variable phenotypes: DD, speech delay
and cognitive deficits have been reported in 50–80% of the
patients, but asymptomatic carriers were also observed
(table 7).42 109 116–119

Data from genetic association studies in human patients and
control subjects, indicate that a substantial number of genes are
likely to contribute to 22q11DS key phenotypes.120

The TBX1 gene, although responsible for some major aspects
of the phenotype of 22q11.2DS (abnormal facies, cardiac
defects, thymic hypoplasia, velopharyngeal insufficiency of the
cleft palate and parathyroid dysfunction with hypocalcaemia),
does not seem to be responsible for the cognitive/neuropsychi-
atric features commonly seen in patients with 22q11DS.121

Two other genes within this CNV are COMT and PRODH.
The COMT gene encodes a postsynaptic enzyme that modulates
dopaminergic clearance122 and, given the association between
dopamine deficits and several psychiatric disorders such as SZ
and ADHD,123 has been widely investigated. The functional
polymorphism Val158Met (rs4680) affects enzyme activity and
dopamine availability in brain areas where this neurotransmitter
is released, such as the prefrontal cortex. The high-activity
COMT158Val allele has, therefore, been suggested as a small but
reliable risk factor for SZ, at least for people of European
ancestry.124

The PRODH gene encodes the enzyme that converts proline
to glutamate in mitochondria, dysfunction of which has been
linked to the development of psychiatric illness, including
SZ.125 There is also evidence for epistatic interaction between
COMT and PRODH: Prodh-deficient mice show Comt upregula-
tion in prefrontal cortex, which likely represent a homoeostatic
response to enhanced dopaminergic signalling resulting from
Prodh deficiency,126 and elevated plasma proline levels.127 If
COMT upregulation is indeed one of the mechanisms used to
control cortical dopaminergic hypersensitivity, then most
patients with 22q11DS who are haploinsufficient for both
genes, particularly those who have the low-activity
COMT158Met allele, may be at a particular disadvantage
because they are unable to compensate efficiently, through
COMT, for the cortical dopaminergic hyperactivity induced by
PRODH deficiency.114 126 127

Based on human and mouse model studies of 22q11.2 rare
CNVs, Hiroi proposed that alterations of a distinct set of mul-
tiple, non-contiguous genes encoded in this chromosomal
region, together with environmental factors and modulatory
impacts of the genetic background, could variably shift the
probabilities of phenotypes along a predetermined developmen-
tal trajectory.128

IMPACT OF CNVS
The predictive value of genetic variants depends, in part, on
their penetrance, defined as the probability of an individual
with a certain genotype to present a phenotype at all, whereas

the concept of variable expressivity pertains to the variability in
the spectrum of symptoms/phenotype.

Vassos and colleagues estimated the penetrance of CNVs asso-
ciated with SZ, at 15q13.3, 1q21.1, 15q11.2, 17p12, 2p16.3,
16p13.1 and 16p11.2 and concluded that the highest penetrance
was observed for 15q13.3del (6–9%) and the lowest for
15q11.2del (2%).129 Calculation of the frequencies of 70 impli-
cated CNVs in patients, controls and the general population led to
the conclusion that, except for 16p11.2dup, 3q29del,
16p13.11dup and the smaller 15q13.3 (CHRNA7) duplications,
the penetrance of CNVs is higher for the development of a dis-
order from the group of DD/ASD/CAs than for SZ. This observa-
tion has also strengthened the evidence of a genetic overlap, at
least for some CNVS, among DD, ASD and SZ; some CNVs are so
highly pathogenic and penetrant that they cause earlier-onset disor-
ders, such as DD/ASD/CAs, precluding the diagnosis of SZ.130

Studying the functional impact of CNVs and the
neurobiology of NDs
The identification of this unexpectedly abundant type of genetic
variation and the increasingly clear role of CNVs in NDs has
led to the need to develop appropriate models for the study of
disease pathogenesis, aiming at the development of therapeutic
strategies for these diseases.

Despite the difficulty of modelling all aspects of human psy-
chiatric and neurodevelopmental phenotypes in animals (eg, hal-
lucinations and delusions characteristic of SZ, hard to
characterise in other species), animal models may contribute to
the elucidation of brain anatomy, functional connectivity, cogni-
tive and behavioural features, and also molecular mechanisms
that reflect aspects of human phenotypes.131 Among the most
used are mouse models, which can be engineered in several
ways: some express multiple genes within the human chromo-
somal region that is being studied; others have the syntenic
region deleted or duplicated; finally, there are individual gene
knockout or overexpression models which allow us to dissect
the contribution of a particular gene to a given pheno-
type.131 132 Other models, like zebra fish or Caenorhabditis
elegans, are also used particularly to assess the function of
particular genes.133 134 More recently, the possibility of using
human induced pluripotent stem cells (hiPSCs) has opened a
wide range of experiment possibilities, including in drug
screening.135

Animal models
Animal models of CNV-related neurodevelopmental impairment
are not very numerous but some interesting examples exist that
illustrate the possibilities in this field.

Haploinsufficieny of Cyfip1, believed to be one of the key
aspects of the 15q11.2 (BP1-BP2) deletions, produces
fragile-X-like phenotypes in mice, which is consistent with a
role for the interaction of Cyfip1 and Fmrp in regulating
activity-dependent translation in neurons.136

A 15q13.3 microdeletion mouse model (Df(h15q13)/_), gen-
erated by hemizygous deletion of the orthologous region, dis-
plays key phenotypes including SZ, epilepsy and aggression, all
associated with the human syndrome.137

Mice with deletion (as well as reciprocal duplication) of the
chromosomal region corresponding to the human 16p11.2
locus, have provided functional evidence that 16p11.2-CNVs
cause brain and behavioural anomalies. Notably, the macroceph-
aly (with deletion) and microcephaly (with duplication)
observed in human subjects were replicated in mice. Regarding
behaviour, 16p11.2del mice showed hyperactivity, difficulty
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adapting to change, sleeping abnormalities, and repetitive or
restricted behaviours, while 16p11.2dup animals were hypoac-
tive.138 Half of the 16p11.2del mice died postnatally, suggesting
a potential link between 16p11.2-CNVs and infant mortality,
that remains to be explored in humans; those that survived to
adulthood were healthy and fertile, but exhibited behaviour
changes characteristic of rodents with lateral hypothalamic and
nigrostriatal lesions.138

Consistently with human postmortem studies showing that
neuronal migration abnormalities in the cerebral cortex are a
feature of 22qDS,139 diminished dosage of 22q11 genes disrupts
neurogenesis and cortical development in mice.140 The
22q11.2del disrupts an established molecular mechanism—

Cxcr4-mediated signalling—that regulates cortical interneuron
migration and placement.141 Deficits of various degrees across
hippocampus and alterations in synaptic plasticity and structural
connectivity within the prefrontal cortex, thought to be contri-
butors to the 22q11.2-related cognitive and psychiatric impair-
ments, were shown to occur in other 22q11.2del mouse
models.142 143 Altered brain microRNAs and abnormalities in
the formation of neuronal dendrites and spines, including those
in corticocerebellar, corticostriatal and corticolimbic circuits
were also observed in these models.144 145 Future studies with
these mouse models should allow an increased understanding of
pathogenic processes underlying NDs as well as the design and
testing of suitable therapeutic strategies for these disorders.

Human induced pluripotent stem cells
hiPSCs are adult pluripotent stem cells generated from somatic
cells that can be derived from adult humans, and represent a
potentially limitless source of human cells to study disease:
hiPSCs also make possible the study of human neurons, a previ-
ously inaccessible cell type, carrying the genetic information
from patients with a specific mutation or a neuropsychiatric
disease.146

Patient-derived cells (eg, dermal fibroblasts from a skin biopsy
or peripheral blood mononuclear cells) can be reprogrammed
into iPSCs by forced expression of four pluripotency-associated
transcription factors: OCT4, SOX2, KLF4 and c-MYC. These
cells are similar to human embryonic stem cells in morphology,
proliferation, surface antigens, gene expression, epigenetic status
of pluripotent cell-specific genes and telomerase activity.147

Although there are no publications to date describing the
CNVs described here, hiPSCs have been used to model NDs
that include autistic features: neurons differentiated from
hiPSCs of affected individuals or from genetically modified
hiPSCs exhibited disease-related phenotypes, such as fewer
synapses, smaller soma size, deficits in calcium signalling and in
spontaneous excitatory synaptic communication, when com-
pared with unaffected control neurons.148 hiPSC-derived
neurons in patients with SZ showed an aberrant migration,
increased oxidative stress,149 significantly reduced neuronal con-
nectivity, reduced neurite outgrowth, reduced dendritic levels of
PSD95 and altered gene expression profiles; interestingly, key
cellular and molecular elements of the SZ phenotype were ame-
liorated following treatment of SZ hiPSC neurons with the anti-
psychotic loxapine.150

The limitations of hiPSC-based approaches for studying psy-
chiatric disease are mainly neuron-to-neuron variability,
hiPSC-to-hiPSC variability and patient-to-patient variability and,
therefore, hiPSC-based studies will not replace MRI, post-
mortem and genetic studies of patients with psychiatric disor-
ders.151 Nevertheless, the development of these models opens
new avenues for the deeper understanding of pathogenic

mechanisms and—importantly—for the development of new
therapeutic strategies for these disorders, by means of large-scale
screening of chemical libraries with disease-specific hiPSCs.135

TRANSLATION OF THE RECENT KNOWLEDGE TO THE
CLINICAL CONTEXT—GENETIC COUNSELLING
Until recently, counselling of a patient/family with history of
neuropsychiatric disease too often meant discussion of empirical
risks since in the majority of cases the aetiology was not known.
A good deal of the counselling session would be dedicated to
clearly transmitting the value and limitations of these empirical
risks and what this would translate into in the patient’s and his/
her relatives’ life. In this context, unburdening the patient,
parents and extended family from stigma and guilt was—and
still is—paramount.

The technological advances in molecular genetics in the last
decade—namely CMA and WES—have, however, revolutio-
nised the field of medical genetics regarding diagnostic yield.

As a matter of fact, the 15–20% diagnostic yield of CMA led
multiple medical entities (such as the American College of
Medical Genetics, American Academy of Neurology and the
American Academy of Pediatrics) to recommend microarray as a
first-tier clinical diagnostic test for individuals with ASD, ID/DD
or multiple CAs.152 This contributed to: (A) a better under-
standing of the entire spectrum of fully penetrant genes and
regions that cause syndromic NDs, the current understanding
being that the spectrum fades into non-syndromic mild ID and
ASD; (B) detection of CNVs that are significantly enriched in
cases but also present in controls. In fact, the highly increased
risk of developing neurodevelopmental phenotypes associated
with some of these CNVs makes them an unavoidable element
in the clinical context in paediatrics, neurology and psychiatry
and should be addressed by a multidisciplinary clinical team,
ideally including a geneticist.

Both scenarios are challenging in terms of counselling. In the
case of a child with a significant disability (in the context of syn-
dromic or non-syndromic disease) due to a de novo CNV with
complete penetrance, genetic counselling has straightforward
medical benefits such as a tailored follow-up for the child, accur-
ate genetic counselling for the family and the possibility of pre-
natal diagnosis. Much greater challenge is faced when
counselling for a recurrent CNV with known incomplete pene-
trance and/or variable expressivity, or when there is a degree of
uncertainty on whether the CNV indeed poses risk for health:
in this case, the translation of this recent knowledge into clinical
practice has not been trivial. Even though it may be tempting to
postpone its use in the clinical context—until more solid data or
guidelines are developed—the complexity of these findings
should be embraced since some of these CNVs present ORs
above 5 that have been replicated in independent studies.
Interestingly, risk factors for cancer development or cardiovascu-
lar disease frequently have lower multivariate-adjusted ORs and
yet they are heavily used in a patient’s clinical management.
This is because many of these risk factors are preventable (eg,
obesity) or help us set a lower threshold for screening or inter-
vention. But the same applies for ND, where early intervention
(eg, stimulation and behavioural therapy) and identification of
other factors that could contribute to developmental difficulties
or arrest (eg, vision and hearing screening) should be
considered.

Incomplete penetrance and variable expressivity
It is known that deletions and duplications of the same locus
can present with identical and mirror features. Also, in general,
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the penetrance of deletions is higher than that of duplications.
For example, 16p11.2del are more penetrant and more fre-
quently de novo events than duplications.153

In addition to incomplete penetrance, many CNVs also
present variable expressivity. For example, the 15q13.3del may
be detected in individuals who are ascertained with different
NDs such as ID, SZ and BD. This may be viewed as interfamilial
variability. However, this can also translate into intrafamilial
variability in a scenario where, for example, a child with ASD
has an apparently healthy mother and maternal relatives with
SZ and BD. The recognition of the incomplete penetrance and
the variable expressivity is needed in order to assemble the rele-
vant information for counselling.

Penetrance and variable expressivity might be influenced by
other genetic, epigenetic and environmental factors. Different
risk elements might contribute to the preferential development
of one neurophenotype over another, as well as determine sever-
ity. Different models to explain variable expressivity have been
suggested: additive (two co-occurring CNVs affecting independ-
ent functional modules/pathways) and epistatic (two CNVs
affecting the same functional module/pathway).154 The study of
more than 20 000 cases and around 14 500 controls offered evi-
dence for the additive model in the case of 16p12.1del.155

Carriers, controls and general population
Neuropsychiatric profiling of patients with 22q11.2del has
shown that these patients present a wide IQ range, from normal
to moderate ID (ie, −3SD below the mean.156 A similar study
design was used to evaluate patients with 16p11.2del, which
showed that individuals with the deletion had an average IQ 1
SD below the population mean). However, when compared
with relatives without the deletion, individuals with the
16p11.2 deletion had a 1.8 standard deviation loss.157

Two conclusions can be inferred: (1) the very same damaging
CNV might impact differently in different individuals, depend-
ing on their genetic background; (2) one may be able to predict
the phenotypical severity of an individual with a deleterious
CNV by using parents as proxies. This knowledge could be
useful in postnatal diagnosis, for tailored follow-up and early
intervention, and in prenatal care.158

Complementary, detailed study of carriers of neuropsychiatric
CNVs revealed that they show cognitive abilities and brain struc-
ture changes situated between those of controls (ie, without a
neuropsychiatric CNV) and patients with NDs, even though
they often did not fulfil criteria for ASD, ID or SZ.159 One
could speculate that what is sometimes perceived as lack of
penetrance is actually variable expressivity, which could be
detectable provided more granular phenotyping had been
performed.

Prenatal diagnosis
Counselling in a prenatal diagnosis setting is a particularly deli-
cate task. This is true in the case of a de novo fully penetrant
pathogenic CNV, but even more so for CNVs with incomplete
penetrance and variable expressivity or for variants of uncertain
significance. The latter is a rare event (about 1%)160 but a
source of great anxiety and request of multiple/serial comple-
mentary exams in the hope of shedding some light on the deci-
sions need to be made within a narrow timeframe.

Parental testing can bring some solace when it is shown that
the variant is inherited, or escalating of anxiety if it is shown to
be de novo. And yet, inheritance of a variant from a healthy
parent is no guarantee of it being benign—and the other way
around. In case one of the parents is a carrier of a CNV with

incomplete penetrance, additional attention should be devoted
to not stigmatise the parent or distort the couple dynamics.

Rosenfeld and colleagues calculated empirical risks taking
into account frequencies of 13 recurrent CNVs in cases and
controls and confirmed an already known point: deletions are
usually more penetrant events than the reciprocal duplications.
The associated risk of an abnormal phenotype for distal
1q21.1del is ∼37% versus ∼29% for duplications; ∼62.4% for
distal 16p11.2del versus 11.2% for duplications; 46.8% for
proximal 16p11.2del versus 27.2% for duplications. The risk
associated with 16p13.11del is 13.1%; the risk associated with
22q11.2dup is 21.9%,35 whereas the risk associated with the
reciprocal deletion is ∼55%, at least for SZ.129 This is useful

Box 2 Translation into the clinical context

1. Microarrays are currently considered first-tier clinical
diagnostic test for individuals with autism spectrum
disorders (ASD), intellectual disability (ID)/developmental
delay (DD) or multiple congenital abnormalities (CAs).

2. Risk-associated recurrent CNVs are nowadays an unavoidable
element in the clinical context in paediatrics, neurology and
psychiatry and should be addressed by a multidisciplinary
clinical team, including a clinical geneticist.

3. The recognition of the incomplete penetrance and variable
expressivity is needed in order to assemble the relevant
information for counselling.

4. Penetrance and variable expressivity of CNVs might be
influenced by other genetic, epigenetic and environmental
factors. Taking relatives as proxies for predicting prognosis
may be useful.

5. Revisiting the literature on a regular basis is mandatory in a
field of exponentially growing knowledge.

6. Risk-associated CNVs in a prenatal diagnosis context should
be approached cautiously with a strategy that includes
parental testing and psychological profiling and takes into
account family history, pregnancy history, parental resilience,
capability of accepting increased risk, religious beliefs,
ethical orientations and socioeconomic support network.

Box 1 Summary points

1. CNVs contribute to a significant proportion of risk of
developing a neurodevelopmental disorder (ND), and
brought to the forefront the relevance of rare de novo and
essentially private mutations in this group of disorders.

2. CNVs may impact dosage-sensitive gene expression in
normal brain development or unmask recessive mutations in
the other allele of the same gene.

3. A broad phenotypical spectrum, ranging from normal
development, to cognitive impairment, is associated with
these rearrangements.

4. Genetic and environmental additional events are likely
necessary to push the neuropsychiatric phenotype beyond
threshold of disease.

5. Counselling for a CNV poses a great challenge, due to the
variability on penetrance and expressivity and to the
uncertainty on whether a given CNV poses risk for health.
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information as a ∼10% risk of neurodevelopmental problems
associated with a 15q11.2 deletion is more reassuring than the
∼50% risk associated with a 16p11.2 proximal deletion.35

Still, these numbers should be approached cautiously and take
into account family history, pregnancy history, parental resili-
ence, capability of accepting increased risk, religious beliefs,
ethical orientations and socioeconomical network of support
(boxes 1–3).

Care should be taken to avoid psychological harm to carriers
(feelings of blame and low self-esteem) and their families
(discrimination of an entire branch or community). Multiple
counselling sessions with several relatives are needed to evaluate
who is at risk and to reinforce the meaning of arid statistical
concepts. When emotional stress overpowers reasoning, psycho-
therapeutic follow-up may be beneficial.
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