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the European sovereign debt crisis in 2011 have caused negative values of 

government bond yields both in the U.S.A. and in the EURO area. This paper 

investigates whether the use of models which allow for negative interest rates can 

improve option pricing and implied volatility forecasting. This is done with 

special attention to foreign exchange and index options. To this end, we carried 

out an empirical analysis on the prices of call and put options on the U.S. S&P 

500 index and Eurodollar futures using a generalization of the Heston model in 

the stochastic interest rate framework. Specifically, the dynamics of the option’s 

underlying asset is described by two factors: a stochastic variance and a stochastic 

interest rate. The volatility is not allowed to be negative but the interest rate is. 

Explicit formulas for the transition probability density function and moments are 

derived. These formulas are used to estimate the model parameters efficiently. 

Three empirical analyses are illustrated. The first two show that the use of models 

which allow for negative interest rates can efficiently reproduce implied volatility 

and forecast option prices (i.e., S&P index and foreign exchange options). The last 

studies how the U.S. three-month government bond yield affects the U.S. S&P 
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E-mail:m.c.recchioni@univpm.it

Yu Sun

Dipartimento di Scienze Economiche e Sociali, Università Politecnica delle Marche
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Abstract

The profound financial crisis generated by the collapse of Lehman Brothers and the European

sovereign debt crisis in 2011 have caused negative values of government bond yields both in the

U.S.A. and in the EURO area. This paper investigates whether the use of models which allow

for negative interest rates can improve option pricing and implied volatility forecasting. This

is done with special attention to foreign exchange and index options. To this end, we carried

out an empirical analysis on the prices of call and put options on the U.S. S&P 500 index

and Eurodollar futures using a generalization of the Heston model in the stochastic interest rate

framework. Specifically, the dynamics of the option’s underlying asset is described by two factors:

a stochastic variance and a stochastic interest rate. The volatility is not allowed to be negative

but the interest rate is. Explicit formulas for the transition probability density function and

moments are derived. These formulas are used to estimate the model parameters efficiently.

Three empirical analyses are illustrated. The first two show that the use of models which

allow for negative interest rates can efficiently reproduce implied volatility and forecast option

prices (i.e., S&P index and foreign exchange options). The last studies how the U.S. three-month

government bond yield affects the U.S. S&P 500 index.
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1 Introduction

This paper investigates the effect of negative short-term government bond yields on the pricing

and forecasting of index options as well as foreign exchange (FX) options. Pricing and forecasting

derivative products are one of the most challenging topics due to their wide use in hedging risk.

The well-known stochastic models of Black Scholes 1973, Hull and White 1988, Stein and Stein

1991, and Heston 1993 assume a constant (usually positive) risk-free interest rate. However,

empirical evidence has shown that time series of the U.S. and EURO short-term government

bond yields have fluctuated significantly in the last fifteen years and negative values have also

been seen see, for example, Jackson 2015). These facts highlight the need for two modifications.

First, option pricing models with stochastic interest rate should be considered. Second, the

stochastic interest rate process should allow for negative values.

We address these two points by investigating the potential of a modified version of the Heston

model illustrated in Grzelak and Oosterlee 2011. Specifically, we focus on a model combining the

Heston model for equity and its volatility with the Vasicek 1977 model for interest rate. Roughly

speaking, the proposed model can be interpreted as the Heston multi-factor model introduced by

Christoffersen, Heston, and Jacobs 2009, where one of the factors driving the option underling

asset is the stochastic interest rate. The relevance of multi-factor Heston-like stochastic volatility

models in efficiently describing bond yields with different maturities was highlighted in Trolle and

Schwartz 2009 and Cieslak and Povala 2014. The latter propose the combined use of a short-term

yield with another stochastic factor as an efficient tool to explain the yield volatility.

The model proposed here is used to investigate whether it is really necessary to use a stochastic

interest rate to efficiently price and forecast options and whether these forecasts improve by

allowing for negative interest rates. The benchmark models used in the empirical analysis is the

Heston model with a constant risk-free interest rate and the Heston-Cox-Ingersoll-Ross (HCIR)

model illustrated in Recchioni and Sun 2016. The reasons why this model outperforms the Heston

model in pricing options are evident when we compare the analytical formulas for the moments

of the price variable in the Heston and the modified version proposed here.

1.1 Literature review

Recent studies confirm the suitability of models defined by a system of stochastic differential

equations (i.e., SDE models) to describe state variables such as stock, volatility and interest rate,

given empirical evidence that the asset volatility and interest rate are not constant over time.

The Heston model is one of the most celebrated models. In fact, thanks to the use of a stochastic

volatility, it provides accurate prices of European vanilla call and put options as well as more
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complex path-dependent options when it is assumed that the constant interest rate is realistic

and that the volatility does not undergo abrupt oscillations. Indeed, local volatility models (see,

for example, Dupire 1994) are also able to perfectly replicate all vanilla option prices, but this

implies unrealistic spot volatility dynamics as observed by Hagan et al. 2002 and Ayache et al.

2007. Several extensions of the Heston and Dupire model, also including jumps, can be found.

We mention Homescu 2014 and Itkin 2016 for an extensive overview of the literature. These

extensions do not always allow for analytical treatment, but they satisfactorily replicate market

data by using specific numerical approaches.

Here, we focus on models that, roughly speaking, are obtained by adding further stochastic

factors to the Heston price dynamics and which allow for some analytical treatment. Examples

include the models of Christoffersen et al. 2009, Fatone et al. 2009, 2013, Wong and Lo 2009,

Recchioni and Sun 2016, Pacati et al. 2016, Islyaev and Date 2015, and Pun et al. 2015.

Due to the combined action of these factors, these models are able to describe the option prices

and the implied volatility efficiently, even when the underlying asset is highly volatile. However,

the choice of the risk-free interest rate as one of the factors driving the underlying asset is crucial

when pricing options with very long maturity (i.e., maturity longer than five years such as those

of some insurance contracts; see Recchioni and Sun 2016) or options in a time period where highly

fluctuating short-term yields are experienced (see, for example, Jackson 2015).

Indeed, several hybrid SDE models (i.e. models obtained by correlating stochastic differential

equations from different classes) have been introduced since 2000 in order to extend well-known

stochastic volatility models such as the Heston model. We cite some models similar to the

model proposed here. The model by Andreasen 2007 generalizes the model introduced by Zhu

2000. This generalization is obtained by using the Heston stochastic volatility model and an

indirect correlation between the equity and the interest rate process. The model by Ahlip 2008

describes the spot FX rate with stochastic volatility and stochastic domestic and foreign rates.

More recently, we have the so-called Schöbel-Zhu-Hull-White hybrid model illustrated by Grzelak,

Oosterlee and Weeren 2012, who follow the approach proposed by Duffie, Pan and Singleton 2000

for the analytical treatment of this affine model. However, as highlighted in Grzelak and Oosterlee

2011, the model allows for negative volatility. In order to overcome this problem, they propose

the use of a Cox-Ingersoll-Ross (CIR) process to describe the variance process. Finally, it is worth

noting that local volatility models have also been extended to deal with stochastic interest rates

(see, for example, Deelstra and Rayee 2012 and Benhamou, Gobet and Miri 2012).

The hybrid Heston model proposed here can be interpreted as a hybrid SDE model. Specifi-

cally, it is a modified version of the Heston-Hull-White (HHW) model illustrated by Grzelak and

Oosterlee 2011. However, we continue to refer to this modified version as an HHW model.
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1.2 Description of the results

The contribution of this paper is twofold. First, we modify the multi-factor Heston model pro-

posed in Recchioni and Sun 2016 (HCIR hereinafter) in that we use the Vasicek model (see

Vasicek 1977, Mamon 2004) for the stochastic interest rate instead of the CIR model. This choice

preserves the affine structure while allowing for negative values of the interest rate. As a partic-

ular case of the Hull and White model, the Vasicek model allows us to refer to it as an HHW

model. This HHW model preserves the main features of the model illustrated by Grzelak and

Oosterlee 2011 and is analytically tractable, an aspect that allows us to derive the probability

density function of the stochastic process by solving the backward Kolmogorov equation through

the same approach introduced in Recchioni and Sun 2016. The approach is based on a suitable

parametrization of the probability density function, which allows us to derive elementary formulas

for the moments of the asset price variable and to express the prices of European call and put

options as one-dimensional integrals through an efficient approximation of the discount factor.

The performance of this approximation is measured using the explicit formula (30) for the zero

coupon bond in the Vasicek model.

Second, we calibrate the model in order to measure its performance in interpreting and fore-

casting European call and put option prices (see the empirical analysis on the U.S. S&P 500 index

options in Subsection 4.1 and on FX options on the EUR/USD exchange rate in Subsection 4.2).

The calibration procedure in the empirical analysis illustrated in Subsections 4.1 and 4.2 is based

on the solution to a nonlinear constrained optimization problem, whose objective function mea-

sures the relative squared difference between the observed and theoretical implied volatilities

associated with call and put options. The results show that the hybrid model is able to reproduce

European call and put in-sample and out-of-sample option prices with only one set of model pa-

rameters. Satisfactory out-of-sample approximations for the implied volatility for both call and

put options are obtained.

Finally, we investigate the model’s ability to capture the relationship between the S&P 500

index and the U.S. three-month government bond yield and to forecast the index via the expected

value conditioned on the last observation of the index itself and the bond yield. The results of

this empirical analysis are preliminary and deserve further investigation.

1.3 Outline of the paper

The paper is organized as follows. In Section 2, we illustrate the hybrid Heston-Hull-White model

and some relevant formulas. In Section 3, we propose formulas to approximate the European

vanilla call and put option prices as one-dimensional integrals of explicitly known functions based
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on a simple approach to approximate the stochastic discount factor. In Section 4, we illustrate

three empirical analyses. Specifically, in the first two cases we use call and put option prices

as data. Consequently, we estimate the model parameters by solving constrained optimization

problems whose objective functions involve the implied volatility associated with these option

prices. The first empirical analysis uses the U.S. S&P 500 index from April 2, 2012 to July

2, 2012 and the prices of the corresponding European call and put options with expiry date

March 16, 2013. The second deals with the EUR/USD futures prices with maturity September

16, 2011, and the daily prices of the corresponding European call and put options with expiry

date September 9, 2011. These data are observed in the time period September 27, 2010 to July

19, 2011. The performance of the model is tested by comparing the observed option prices and

the out-of-sample option prices obtained using the calibrated model. The last empirical analysis

investigates the dependence of the U.S. index on the U.S. three-month government bond yield.

The model parameters are estimated using a pseudo-likelihood approach. The results obtained

are validated by forecasting the U.S. S&P 500 index using the explicit formula for the first-order

moment of the price variable and employing the estimated parameters. Some conclusions are

drawn in Section 5. The Appendix is reserved for derivations of the formula for the probability

density function and the explicit formulas of the moments.

2 Multi-factor Heston-Hull-White Model

In this section, we present some results of the analytical treatment of the generalized version of

the Heston model with a stochastic interest-free rate described by the Vasicek model as illustrated

in Grzelak et.al 2011, 2012, and Guo et.al, 2013. As mentioned in the previous section, this model

can also be interpreted as a multi-factor Heston model where one of the stochastic factors is the

interest rate. As shown in the empirical analysis, the use of the one-factor Vasicek model makes

the proposed multi-factor model more appropriate in interpreting market prices in a period where

negative interest rates are seen.

In fact, the Vasicek model allows for negative values of the interest rate, which has, until now,

been considered a weakness of this model. However, the negative values of the U.S. short-term

government bond yields (see Figure 3 (b)) and those of German government bond yields observed

in recent years give this model new appeal. We therefore consider the following generalization of

the Heston model (i.e. the HHW model):

dSt = St rtdt+ St
√
vtdW

v
t + St∆

√
vtdZ

v
t + St Ω dW r

t , t > 0, (1)

dvt = χ(v∗ − vt)dt+ γ
√
vtdZ

v
t , t > 0, (2)

drt = λ(θ − rt)dt+ η dZr
t , t > 0 (3)
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where ∆ and Ω are non-negative constants and χ, v∗, γ, λ, θ, η are positive constants, while W v
t ,

W r
t , Zv

t , Zr
t are standard Wiener processes. All correlations among the Wiener processes are zero

except for the following:

E(dW v
t dZ

v
t ) = ρv dt, t > 0, (4)

E(dW r
t dZ

r
t ) = ρr dt, t > 0, (5)

where the quantities ρv, ρr ∈ (−1, 1) are constant correlation coefficients. Furthermore, we

assume that the Feller condition, 2χ v∗/γ2 > 1, holds.

The HHW model (1)-(3) is inspired by the reformulated Heston model illustrated in Grzelak

et al. 2011 (see, Eqs. (2.9)-(2.10) in Section 2.2 of that paper). The main difference is the choice

of the term StΩdW
r
t . In fact, the model (1)-(3) is a multi-factor model where one factor is the

stochastic interest rate and the other is the stochastic volatility. This results from the fact that

Ω is constant (independent of vt) and that Eq. (5) holds with a constant correlation coefficient.

In contrast, Grzelak et al. 2011 choose Ω dependent on
√
vt in order to reduce their model to

the Heston model (i.e., only the stochastic factor vt drives the asset price) with a stochastic

interest rate (see Eq. (2.1) and Lemma 2.1 in Grzelak et al. 2011). In Grzelak et al. 2011, the

choice of Ω makes the extension not analytical tractable and two suitable approximations of the

covariance term are therefore proposed in order to derive an explicit formula for the corresponding

characteristic function. As mentioned in the Introduction, the HHW model (1)-(3) differs from

the HCIR model in Recchioni and Sun 2016 due to the different dynamics of the interest rate:

Vasicek dynamics in this model and CIR in the other.

The system of equations (1)-(3) is equipped with the following initial conditions:

S0 = S∗0 , v0 = v∗0, r0 = r∗0, (6)

where S∗0 and v∗0, r∗0 are random variables concentrated in a point with probability one and for

simplicity, these random variables are denoted by the points where they are concentrated. As

specified in Heston 1991, the quantity χ is the speed of mean reversion, v∗ is the long-term mean,

and γ is the so-called volatility of volatility (vol of vol for short).

It is worth noting that the variance vt remains positive for any t > 0 with probability one

given that 2χ v∗/γ2 > 1 and v0 = v∗0 > 0 (see Heston, 1991). As a consequence, the equity price

St remains positive for any t > 0 with probability one given that S∗0 > 0 with probability one.

The HHW model allows for negative values of the interest rate, rt, and this is a positive feature

since negative short-term bond yields have recently been experienced in the U.S. and European

financial markets.
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In order to deduce analytical formulas for this model, we use Ito’s lemma and Eq. (1) to

derive the stochastic differential equation satisfied by the log-price process, xt = ln (St/S0), t > 0:

dxt=

[
rt −

1

2

(
ψ̃vt + Ω2

)]
dt+
√
vtdW

v
t + ∆

√
vtdZ

v
t + ΩdW r

t , (7)

dvt = χ(v∗ − vt)dt+ γ
√
vtdZ

v
t , (8)

drt = λ(θ − rt)dt+ η dZr
t , (9)

where ψ̃ in (7) is given by

ψ̃ := 1 + ∆2 + 2ρv ∆ . (10)

Eq. (6) implies that the process (xt, vt, rt) satisfies the following initial conditions:

x0 = x∗0 = 0, v0 = v∗0, r0 = r∗0 , (11)

where x∗0 is a random variable that we assume to be concentrated in a point with probability one.

We now illustrate the main formulas used in the empirical analysis; their derivation can be

found in the Appendix. It is worth noting that the analytical formulas deduced for the HHW

model can also provide analytical formulas for the Heston model with a suitable choice of the

HHW parameters. Furthermore, a comparison of the Heston and HHW formulas allows us to

identify which HHW model parameters play a crucial role in interpreting option prices.

2.1 Transition probability density function in the HHW and Heston

models

Let us start by denoting the set of real numbers by R, the set of positive real numbers by R+, and

the n-dimensional Euclidean vector space by Rn. We now illustrate the formula for the transition

probability density function (pdf for short) associated with the stochastic differential system (7),

(8), (9) (i.e., the HHW model) and the pdf of the Heston model. The pdf of the HHW model has

two main advantages.

The first is that it evaluates the pdf as a one-dimensional integral of a smooth, explicitly known

integrand given by the product of two functions. One function depends only on the parameters

Θv = (γ, χ, v∗, ρv,∆) ∈ R5 of the volatility process and the other depends only on the parameters

Θr = (η, λ, θ, ρr,Ω) ∈ R5 of the interest rate process.

The second advantage is that the specific parametrization used to derive the formula (i.e.,

the parameter q appearing in the pdf given in Eq. (12)) allows some integrals appearing in the

option price formulas and in the formulas for the moments of the price variable to be computed

explicitly.
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Specifically, let pf denote the pdf associated with the stochastic differential system (7), (8),

(9). The following formula then holds (see the Appendix for the proof):

pf (x, v, r, t, x
′, v′, r′, t′) =

eq(x−x
′)

2π

∫ +∞

−∞
eık(x′−x)Lv,q(t

′ − t, v, v′, k; Θv)Lr,q(t
′ − t, r, r′, k; Θr)dk ,

(x, v, r), (x′, v′, r′) ∈ R×R+ ×R, t, t′ ≥ 0, q ∈ R, t′ − t > 0, (12)

where ı is the imaginary unit and Lv,q and Lr,q are explicitly known functions given in Eqs.

(69) and (71). The specific form of the transition probability density function in Eq. (12) is a

consequence of the correlation structure (4)-(5). In Recchioni and Sun 2016, a formula for the pdf

of the Heston model with a stochastic interest rate described by the CIR model, i.e., the HCIR

model, was deduced. Specifically, the function Lv,q appearing in (12) is the same one used in the

HCIR model since it depends only on the volatility process, whose dynamics is the same for the

HCIR and HHW models. In contrast, the function Lr,q in the HHW model differs from the one

in the HCIR model since it only depends on the specific stochastic model used to describe the

interest rate process.

Formula (12) shows how the introduction of a stochastic interest rate as a factor driving the

asset price dynamics can affect the corresponding option prices. That is, we use formula (12) to

compare the probability density functions of the Heston and HHW models. In fact, the pdf, pHf ,

of the Heston model is given by

pHf (x, v, t, x′, v′, t′) =
eq(x−x

′)

2π

∫ +∞

−∞
eık(x′−x)Lv,q(t

′ − t, v, v′, k; Θv) e
QHr,q(t

′−t,r,k)dk,

(x, v, r), (x′, v′, r′) ∈ R×R+ ×R, t′ > t ≥ 0, q ∈ R, (13)

where Lv,q is the same function appearing in (12) and whose expression is given in Appendix Eq.

(69), while the function QH
r,q is given by

QH
r,q(t

′ − t, r, k) = −r(ı k − q)(t′ − t), t′ > t, r, k ∈ R . (14)

A comparison of formulas (12) and (13) shows that the main difference between the Heston

and the HHW models lies in the two terms Lr,q and eQ
H
r,q , respectively, and that Lr,q reduces to

eQ
H
r,q in the limit Ω→ 0+, η → 0+ and λ→ 0+. We investigate this difference further in Section

2.2.

We conclude this section by noting that the initial stochastic volatility is not observable in the

financial market and is usually estimated by an appropriate calibration (see, for example, Bühler,

2002). The choice of the initial stochastic interest rate has no well-established procedure. In fact,

the best proxy for the short-term rate under the risk-neutral measure has not been identified yet.

Given this, we estimate the initial stochastic interest rate in the empirical analyses illustrated

in Sections 4.1 and 4.2 but we do not estimate the initial stochastic rate in Section 4.3 where we
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calibrate the model under the physical measure by using only the index values and the short-term

government bond yields as data.

2.2 Moments of the price variable in the HHW model

As shown in Eqs. (83), (84) (see the Appendix), the explicit formulas for the expected values

Mm and MH
m of the integer powers of the asset price conditioned on the observations at time

t = 0 in the HHW and Heston models are, respectively:

Mm(t′) = E(Smt′ ) = Sm0 eQv,m(t′,v0,0;Θv) eQr,m(t′,r0,0;Θr) (15)

and

MH
m(t′) = E(Smt′ ) = Sm0 eQv,m(t′,v0,0;Θv) emr0 t′ , (16)

where Qv,m and Qr,m are given by formulas (74) and (75) evaluated at k = 0 (see the Appendix).

Specifically, we have:

Qv,m(t′, v0, 0; Θv) = −2
χv∗

γ2
ln(sm,v,b/(2ζm,v))−2

χv∗

γ2
(ζm,v + µm,v)t

′−2
v0

γ2
(ζ2
q,v − µ2

m,v)
sm,v,g
sm,v,b

,

(17)

where sm,v,b, ζm,v, µm,v, sm,v,g are obtained by evaluating Eqs. (53)–(56) (see the Appendix) at

k = 0, while Qr,m(t′, r0, 0; Θr) has the following elementary expression:

Qr,m(t′, r0, 0; Θr) =
1

2
(m2 −m)Ω2t′ +m (t′ −Ψ1,λ(t

′))

(
λθ +mηΩ ρr

λ

)
+

η2

2

m2

λ2
(t′ + Ψ2,λ(t

′)− 2Ψ1,λ(t
′)) + r0mΨ1,λ(t

′), (18)

where Ψj,λ(τ), j = 1, 2, λ > 0, τ > 0 is

Ψj,λ(τ) =
1− e−j λ τ

j λ
, τ > 0 . (19)

When negative values of the interest rate (i.e., r0 < 0) are allowed, the moments of the Heston

model (see Eq. (16)) approach zero as t′ goes to +∞. In other words, negative values of the

interest rate, r0, imply, on average, a fall in the price. However, this finding is not coherent with

the empirical evidence (see Figure 2). The HHW model behaves in a very different way. In fact,

negative values of r0 do not necessarily imply decreasing price moments, especially for long time

horizons. This is due to the fact that the long-term behavior ofMm(t′) is independent of r0 while

it does depend on the following quantity:

m

(
λθ +mηΩ ρr

λ

)
+

1

2
(m2 −m)Ω2 +

η2

2

m2

λ2
= mθ − Ω2

2
m+

m2

2
(1− ρ2

r)Ω
2 +

m2

2

(
Ωρr +

η

λ

)2

.
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The sign of this quantity depends on the correlation coefficient ρr. That is, nonnegative values

of ρr guarantee positive values of price moments for sufficiently large values of t′, while negative

values of ρr with small values of θ may anticipate a decrease in the price.

A nice feature of this model is that negative values of r0 play a crucial role only in short

and medium time horizons. This behavior is plausible since the market expectation on long-term

interest rates is expected to be positive in a “calm” financial climate.

Let us further analyze this issue by focusing on the first order moment of the price in the

two models. Using formula (16) and setting m = 1 in the Heston model, we obtain the following

formula for the expected value of the asset price conditioned on the observations at t = 0 of price,

variance and interest rate:

EH(St′) = S0e
r0t′ . (20)

Similarly, using formula (15), we obtain the following formula for the expected value in the HHW

model:

E(St′) = S0e
r0Ψ1,λ(t′)+θ(t′−Ψ1,λ(t′)e(t′−Ψ1,λ(t′)) η

2

2λ2 e−
η2

4λ
Ψ2

1,λ(t′)e(t′−Ψ1,λ(t′)) η
λ

Ωρr . (21)

Some comments on formulas (20) and (21) are warranted. Following the approaches illustrated

in Mamon 2004 to derive the bond price in the Vasicek model, we obtain:

E
(
e
∫ t′
0 rudu |rt=0 = r0

)
= er0 Ψ1,λ(t′)+θ(t′−Ψ1,λ(t′)) e−

η2

4λ
Ψ2

1,λ(t′)+ η2

2λ2 (t′−Ψ1,λ(t′)), (22)

so formula (21) can be rewritten as follows:

E(St′) = S0e
(t′−Ψ1,λ(t′))( η

λ
Ωρr)er0Ψ1,λ(t′)+θ(t′−Ψ1,λ(t′))e(t′−Ψ1,λ(t′)) η

2

2λ2 e−
η2

4λ
Ψ2

1,λ(t′)

= S0 e
η
λ

Ωρr(t′−Ψ1,λ(t′)) E
(
e
∫ t′
0 rudu |rt=0 = r0

)
. (23)

Formula (23) shows how the direct correlation, ρr, between asset price and interest rate affects

the expected value. In the empirical analysis of Section 4.3, we analyze the potential of formula

(23) in forecasting the U.S. S&P 500 index.

3 Integral formulas to price European vanilla call and put

options in the HHW model

In this section, we deduce option pricing formulas for European vanilla call and put options with

strike price, E, and maturity, T . We start with

C(S0, T, E, r0, v0) = EQ
(
e−

∫ T
0 rt dt(S0e

xT − E)+

)
, S0, T, v0 > 0, r0 ∈ R (24)
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and

P (S0, T, E, r0, v0) = EQ
(
e−

∫ T
0 rt dt(E − S0e

xT )+

)
, S0, T, E, v0 > 0, r0 ∈ R, (25)

where ( · )+ = max{ · , 0}, and the expectation is taken under the risk-neutral measure Q (see, for

example, Duffie, 2001, Schoutens, 2003) in the model (1), (2), (3). In the two empirical analyses

involving option prices, we calibrate the model only with option price data. In this way we

avoid the introduction of risk premia because only the risk-neutral measure and not the physical

measure is involved.

The option prices in formulas (24) and (25) require the evaluation of a three-dimensional

integral whose accurate numerical evaluation is very time consuming. However, features in the

HHW model allow the computation of these three-dimensional integrals to be reduced to the

numerical evaluation of one-dimensional integrals.

A challenging task in evaluating European call and put option prices is the approximation

of the stochastic integral defining the discount factor (see Eqs. (24), (25)). We approximate

the integral using a quadrature rule where the weights are chosen considering the features of the

stochastic interest rate model used. This approach is inspired by the work of Choi and Wirjanto

2007 and suggests the following approximation:

e−
∫ T
0 r(t)dt ≈ e−r0 (1−ω)T e−rT ωT , (26)

where ω is chosen in order to obtain a satisfactory approximation of the bond price. Specifically,

we choose

ω =
1

T

(T −Ψ1,λ(T ))

λΨ1,λ(T )
, (27)

where Ψ1,λ is given in (19). This guarantees that ω is positive and less than or equal to one (i.e.,

0 ≤ ω ≤ 1) for any T > 0. Using formulas (26) and (27), we obtain the following approximation

of the bond price:

EQ
(
e−

∫ T
0 rudu |rt=0 = r0

)
≈ BA(r0, T ), (28)

with

BA(r0, T ) = e−r0Ψ1,λ(T )−θ(T−Ψ1,λ(T )) e
η2

2λ2 Ψ2,λ(T )e
η2

2λ2

(
T−2Ψ1,λ(T )

(
TΨ2,λ(T )

Ψ2
1,λ

(T )

))
, (29)

which favorably compares with the expression of the bond price, B(r0, T ), in the Vasicek model

(see, for example, Mamon 2004):

B(r0, T ) = E
(
e−

∫ T
0 rudu |rt=0 = r0

)
= e−r0 Ψ1,λ(T )−θ(T−Ψ1,λ(T )) e

η2

2λ2 Ψ2,λ(T )e
η2

2λ2 (T−2Ψ1,λ(T )).

(30)

11



It is worth noting that formula (29) reduces (30) when the term
TΨ2,λ(T )

Ψ2
1,λ(T )

is equal to one. This

happens when λT → 0 since
TΨ2,λ(T )

Ψ2
1,λ(T )

= Tλ
2

1
tanh(Tλ/2)

. In addition, the relative error of the bond

approximation is given by the following simple formula:

EBond =
|B(r0, T )−BA(r0, T )|

B(r0, T )
=

∣∣∣∣1− e− η2

λ2 Ψ1,λ(T )( Tλ/2
tanh(Tλ/2)

−1)
∣∣∣∣ .

Figure 1 shows the true and approximated bond price (left panel) and the relative error (right

panel) as a function of the maturity, T , when η = 0.005, λ = 2.88, θ = 0.4, r0 = −0.7 (dotted line)

and η = 0.01, λ = 3.8, θ = 0.02, r0 = −0.1 (solid line). The choice of these model parameters

is related to the results of the empirical analyses illustrated in Sections 4.1 and 4.2. The relative

errors, shown in the right panel of Figure 1, guarantee that the bond approximation has at least

four correct significant digits.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

maturity T

B
on

d 
V

al
ue

η=0.01, λ=3.8 True Value
η=0.01, λ=3.8 Approx Value
η=0.005, λ=2.88 True Value
η=0.005, λ=2.88 Approx Value

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

−5

maturity T

B
on

d 
R

el
at

iv
e 

E
rr

or

η=0.01, λ=3.8
η=0.005, λ=2.88

Figure 1: True and approximated bond price (left panel) and relative error of bond approximation (right panel)

as a function of maturity when η = 0.005, λ = 2.88, θ = 0.4, r0 = −0.7 (dotted line) and η = 0.01, λ = 3.8,

θ = 0.02, r0 = −0.1 (solid line).

From Equations (24), (25), (26), and (76) in the Appendix, we obtain the following approxi-

mation, VA, for European vanilla call and put options:

VA(S0, T, E, r0, v0) = e−(θT+(r0−θ)Ψ1,λ(T ))e(ω T )2 η
2

2
Ψ2,λ(T ) ×

S0

2π

∫ +∞

−∞

(
S0

E

)(q−1−ık)

eQv,q(T,v0,k;Θv)eQr,q(T,r0,k;Θr)

−k2 − (2q − 1)ık + q(q − 1)
e

(ı k−q)ω T
(

ΩρrηΨ1,λ(T )+ η2

λ
(Ψ1,λ(T )−Ψ2,λ(T ))

)
dk,

T > 0, S0, v0 > 0, q > 1 (call), q < −1 (put), (31)

where functions Qv,q and Qr,q are those given in (74), (75) (see the Appendix). Formula (31)

implies that the call option price differs from the put option price only in the choice of q, that is,

VA = CA for q > 1 while VA = PA for q < −1. This is a consequence of the parametrization used

for the pdf (see Eq. (12)), which allows the integral in the x′ variable to be computed explicitly

for suitable values of q.

12



Let us illustrate this for the call options. Using (26) and (76) in (24) we obtain:

CA(S0, T, E, r0, v0) =e−r0 (T−ω T )

∫ +∞

−∞
(S0e

x′ − E)+

∫ +∞

−∞
e−r

′ ω T Dv,q(0, v0, r0, 0, x
′, r′, T )dr′dx′

= e−r0 (T−ω T )

∫ +∞

−∞
eQv,q(T,v,k;Θv)Gq(k, S0, E)

[∫ +∞

−∞
e−ω Tr

′
Lr,q(τ, r, r

′, k; Θr)dr
′
]
dk,

(32)

where Gq is given by:

Gq(k, S0, E) =

∫ +∞

ln(E/S0)

dx′(S0e
x′ − E)e(−q+ı k)x′dx′ =

S0

(
S0

E

)q−1−ı k

−k2 − (2q − 1)ı k + q(q − 1)
. (33)

The integral in Eq. (33) is convergent when 1 − q < 0 and is independent of r′. Thus, the

integrals over x′ and r′ appearing in formula (32) are independent of each other and Eqs. (33)

and (73) are their explicit formulas. Formula (32) shows that for the put option price, the integral

appearing in (33) must be replaced with the integral
[∫ ln(E/S0)

−∞ dx′(E − S0e
x′)e(−q+ı k)x′dx′

]
. This

is convergent when q < −1 and has the same explicit formula as in (33).

Taking the limit Ω→ 0+, λ→ 0+, η → 0+ in Eq (31), we derive the following exact formula

for the price of the European call and put options in the Heston model (see also Recchioni and

Sun 2016):

VH(S0, T, E, r0, v0) = e−r0T
S0

2π

∫ +∞

−∞

(
S0

E

)(q−1−ı k)

eQv,q(T,v0,k;Θv)e−(ı k−q)r0 T

−k2 − (2q − 1)ık + q(q − 1)
dk

S0, T, E, r0, v0 > 0, q > 1 (call), q < −1 (put). (34)

In Section 4, we use formula (34) with q > 1 (q < −1) for vanilla European call (put) options

in order to compare the performance of the Heston model and the HHW model proposed here in

interpreting real data. It is worth noting that the integrands appearing in formulas (31) and (34)

are smooth functions whose numerical integration can be carried out efficiently using a simple

quadrature rule. The smoothness of the integrands is due to the specific approach used to derive

them.

4 Empirical Analysis

In this section, we propose three empirical analyses. The first two only involve option prices so we

can work under the risk-neutral measure associated with the HHW model. In the third analysis,

we investigate the dependence of the asset on the short-term rate and so here we work under the

physical measure. Specifically, the first two empirical analyses involve the U.S. S&P 500 index

13



as well as the Eurodollar futures prices and the corresponding European option prices. The U.S.

three-month government bond index has been used as a proxy for the initial stochastic interest

rate in both analyses.

We estimate the model parameters by solving an appropriate nonlinear constrained least

squares problem. In detail, let R12 denote the 12-dimensional Euclidean real space. We define

the set of the constraints, V , as follows:

V=
{

Θ= (∆, γ, v∗, χ, ρp,v, v0, η, λ, θ, ρr, r0,Ω) ∈ R12 |

∆, γ, v∗, χ, v0, η, λ, θ > 0,
2χv∗

γ2
> 1, −1 < ρv, ρr < 1

}
. (35)

It is worth noting that the initial values v0, r0, of the variance and interest rate process are

parameters to be estimated through the calibration procedure. This is motivated by the fact that

v0 and r0 are latent variables not really observable in the market. In fact, both v0 and r0 refer

to a risk-neutral measure and, subsequently, their values have not yet been clearly identified by

the financial market. Estimation of these parameters is not new; it can be found, for example, in

Bühler 2002, Fatone et al. 2009, 2013, Grzelak and Oosterlee 2011, and Recchioni and Sun 2016.

We now formulate the calibration problem necessary to carry out the empirical analysis il-

lustrated in Sections 4.1 and 4.2. To this end we introduce some notation. Where nT and nD

are two nonnegative integers, CA
Θ(Stj , Ti, Ei), P

A
Θ (Stj , Ti, Ei) and Co(Stj , Ti, Ei), P

o(Stj , Ti, Ei),

i = 1, 2, . . . , nD, j = 1, 2, . . . , nT , represent the prices of the European call and put options with

maturity Ti and strike price Ei in the HHW model and the observed option prices at time t = tj.

In the empirical analyses, we choose T1 = T2 = . . . = TnD , while E1 < E2 < . . . < EnD . We denote

the observed and theoretical implied volatilities associated with the call and put option prices

with Σo,C(Stj , r, Ti, Ei), Σo,P (Stj , r, Ti, Ei) and ΣC
Θ(Stj , Ti, Ei), ΣP

Θ(Stj , Ti, Ei), j = 1, 2, . . . , nT ,

i = 1, 2, . . . , nD, respectively. We recall that the implied volatility Σo,C(S, rF , T, E) is defined as

the solution to the following equation:

CBS(T − t, E, St,Σo,C) = Co(T,E, St) , (36)

where Co is the observed call option price and CBS is the Black Scholes price at time t of the

European call option with strike price, E, and maturity, T , T > t (see Black and Scholes 1973,

Eq. (13)) while rF denotes the risk-free interest rate. We choose rF to be the U.S. three-month

government bond yield. We estimate the model parameters using the implied volatilities. This

approach works satisfactorily when very deep out-of-the-money option are excluded.

Following this approach, we estimate the model parameters by solving the following nonlinear

constrained optimization problem

min
Θ∈V

F (Θ), (37)
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(a) (b)
Figure 2: U.S. S&P 500 index (a) and U.S. three-month government bond yield (in percent) (b) versus time

(July 1, 2011–July 31, 2012).

where the objective function, FnT , is

F (Θ) =
1

nD nT

nT∑
j=1

nD∑
i=1

[
Σo,C(Stj , rF , Ti, Ei)− ΣC

Θ(Stj , Ti, Ei)

Σo,C(Stj , rF , Ti, Ei)

]2

+
1

nD nT

nT∑
j=1

nD∑
i=1

[
Σo,P (Stj , r, Ti, Ei)− ΣP

Θ(Stj , Ti, Ei)

Σo,P (Stj , rF , Ti, Ei)

]2

.

(38)

In order to show empirical evidence that the use of stochastic interest rates is crucial, we compare

the proposed model with the Heston model (Heston 1993). The latter is calibrated by solving

problem (37) in a feasible set that does not contain the parameters of the stochastic interest rate

model except for the parameter r0, which allows for negative values.

We use formulas (31) and (34) to evaluate option prices in the HHW and Heston model (see

Recchioni and Sun 2016 for further details on the Heston pricing formulas). The one-dimensional

integrals appearing in these formulas are computed using the composite midpoint quadrature

rule with 214 nodes. This quadrature rule gives satisfactory approximations since the integrands

appearing in Eqs. (31) and (34) are smooth functions, which means the numerical integration

does not require special care. Moreover, problem (37) is solved using a steepest descent algorithm

with a variable metric (see, for example, Recchioni and Scoccia 2000, Recchioni and Sun 2016).

4.1 U.S. S&P 500 index options

The empirical analysis presented in this subsection concerns the daily closing values of the U.S.

S&P 500 index and the daily closing prices of the European call and put options on this index.

The expiry date of these options is March 16, 2013 and their strike prices are Ei = 1075+25(i−1),

i = 1, 2, . . . , 4, E5 = 1170.

Figure 2(a) shows the U.S. S&P 500 index (July 1, 2011–July 27, 2012) while Figures 3(a) and

3(b) show the corresponding call and put option prices as a function of time (April 2, 2012–July

15



(a) (b)

Figure 3: Prices of call (a) and put (b) options on the U.S. S&P 500 index with strike prices Ei = 1075+25(i−1),

i = 1, 2, . . . , 4 and E5 = 1170, and with expiry date T= March 16, 2013, versus time.
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Figure 4: Estimated parameters γ, v0, χ, v∗, ρv, and ∆ versus window index (six-day window) resulting from

calibration of the HHW model (solid line) and the Heston model (dotted line).
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Figure 5: Estimated parameters η, r0, λ, θ, ρr, and Ω versus window index (six-day window) resulting from

calibration of the HHW model (solid line). Note that the dotted line in the upper right panel shows the estimated

values of the parameter r0 resulting from calibration of the Heston model.
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27, 2012). Figure 2(b) shows the U.S. three-month government yields (in percent) as a function

of time. These short-term bond yields are used as values of the risk-free interest rate in the Black

Scholes formula in (36).
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Figure 6: Observed (solid line) and in-sample call option prices (in USD) versus time to maturity (days) obtained

using the HHW (dotted line) and the Heston (dashed line) models for five different strike prices: (a) E1 = 1075,

(b) E2 = 1100, (c) E3 = 1125, (d) E4 = 1150, and (e) E5 = 1170.
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Figure 7: Observed (solid line) and in-sample put option price (in USD) versus time to maturity (days) obtained

using the HHW (dotted line) and the Heston (dashed line) models for five different strike prices: (a) E1 = 1075,

(b) E2 = 1100, (c) E3 = 1125, (d) E4 = 1150, and (e) E5 = 1170.

We analyze the option data using a rolling window of six consecutive trading days (i.e.,

nT = 6). As a consequence, in each window, sixty option values are used to calibrate the twelve
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parameters of the model (i.e., nP = 5 put option prices and nC = 5 call option prices for nT = 6

days). This window is moved by one day along the historical series covering the period April 2

to July 2, 2012. The calibration problems (37) solved by moving the window are 66 − nT . In

this way, we obtain a historical series of daily observations for each parameter. The values of the

parameters obtained in the j-th window are representative of the last day of the j-th window.

We highlight the fact that when the values of the estimated parameters are constant in time, the

model reproduces the asset price dynamics in the period analyzed by using only one set of model

parameters.

Figures 4 and 5 show the parameter values as a function of the index j, j = 1, 2, . . . , 66− nT .

We observe that these values are relatively constant as a function of time.
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Figure 8: Observed (solid line) and out-of-sample call option price forecast (in USD) versus time to maturity

(days) obtained using the HHW (dotted line) and the Heston (dashed line) models for five different strike prices:

(a) E1 = 1075, (b) E2 = 1100, (c) E3 = 1125, (d) E4 = 1150, and (e) E5 = 1170.

Figures 6 and 7 show the in-sample values of the European call and put options obtained

using the Heston (dashed line) and the HHW (dotted line) models with the parameters estimated

in the period April 2, 2012 to July 2, 2012. These figures show that the theoretical option prices

of the HHW model provide satisfactory approximations of observed put prices for all strike-price

values and time to maturity. These values outperform those obtained with the Heston model.

In fact, the sample mean of the relative errors of the call and put options respectively are 4.1%

and 6.7% for the HHW model compared to 21.2% and 11.2% for the Heston model. The HHW

relative errors outperform those for the hybrid Heston-CIR model (see Recchioni and Sun 2016),

which are 9.6% and 6.9% for call and put options, respectively. This is probably a consequence

of the fact that in the Heston-CIR model the interest rate cannot assume negative values. This
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Figure 9: Observed (solid line) and out-of-sample put option price forecast (in USD) versus time to maturity

(days) obtained using the HHW (dotted line) and the Heston (dashed line) models for five different strike prices:

(a) E1 = 1075, (b) E2 = 1100, (c) E3 = 1125, (d) E4 = 1150, and (e) E5 = 1170.

finding is confirmed by the fact that the estimated values of r0 is on average equal to 0.0398 in

the Heston model and 0.00022 in the Heston-CIR model, while it is −0.0946 in the HHW model.

Figures 6 and 7 show that the HHW model is capable of matching both call and put option

prices with sufficient accuracy for several strike prices and expiry dates using only one set of

parameters. This good performance is achieved through the use of a stochastic interest rate that

allows for a negative rate.

We use the value of the model parameters estimated in the last window, June 25, 2012–July

2, 2012, to evaluate the out-of-sample European call and put option prices. The out-of-sample

period is July 3 to July 27, 2012. The time to maturity for this period ranges from 176 to 160

days. We measure the performance of the proposed stochastic model and its parameter estimation

procedure with an a posteriori validation. That is, we compare the observed out-of-sample option

prices with those obtained using formulas (34), (31), which use estimated parameters and observed

spot prices.

Figures 8 and 9 show the out-of-sample option prices for the HHW model (dotted line) and the

Heston model (dashed line). The out-of-sample put option prices in the Heston model are very

accurate while the call option prices are not. The HHW model provides accurate approximations

of put option prices and outperforms the Heston model in approximating the call options. In

fact, the sample mean of the relative errors on the call and put options obtained using the HHW

model are 2.3% and 9.1% respectively, compared to 17.9% and 9.6% for the Heston model. The

HHW relative errors outperform those for the hybrid HCIR model illustrated in Recchioni and
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Yu 2016, which are 7.8% and 9.5% for call and put options respectively.

In conclusion, the empirical analysis shows that the hybrid model interprets the real data

considered in the period April 2 to July 27, 2012 satisfactorily using only one set of model

parameters.

4.2 FX options on EUR/USD

In the second experiment we consider the daily values of the futures price on the EUR/USD

currency exchange rate with maturity on September 16, 2011, (the third Friday of September

2011) and the daily prices of the corresponding European call and put options with expiry date

September 9, 2011 and strike prices Ei = 1.375 + 0.005(i− 1), i = 1, 2, . . . , 18. The strike prices

Ei, i = 1, 2, . . . , 18, are expressed in USD. These prices are observed in the period from September

27, 2010 to July 19, 2011. The observations are made daily and the prices considered are the

closing prices of the day. Recall that a year has about 250-260 trading days and a month has

about 21 trading days. Figure 10 shows the futures price EUR/USD (ticker YTU1 Currency)

Figure 10: YTU1 (blue line) and EUR/USD currency exchange rate (pink line) versus time.

Figure 11: Call option prices on YTU1 with strike price Ei = 1.375 + 0.005(i − 1), i = 1, 2, . . . , 18, and expiry

date T = September 9, 2011 versus time.

(blue line) and the EUR/USD currency exchange rate (pink line) as a function of time. Figures
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Figure 12: Put option prices on YTU1 with strike price Ei = 1.375 + 0.005(i − 1), i = 1, 2, . . . , 18, and expiry

date T = September 9, 2011 versus time.

11 and 12 show, respectively, the prices (in USD) of the corresponding call and put options with

maturity time September 9, 2011 and strike price Ei, i = 1, 2, . . . , 18, as a function of time.
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Figure 13: In-sample observed and theoretical call (a) and put (b) option prices on YTU1 with strike price

Ei = 1.375 + 0.005(i − 1), i = 1, 2, . . . , 18, and expiry date T = September 9, 2011 versus time to maturity

(September 27, 2010–December 17, 2010).

We define the moneyness of an option on a given day as the ratio between the strike price of

the option and the futures price on the EUR/USD exchange rate of that day.

As in the previous subsection, we consider a rolling window containing the prices of one

trading day (i.e., nT = 1). This window is moved by one day along the historical series. The time

window covers the period September 27 to December 17, 2010 and 61− nT calibration problems

are solved (see Eq. (37)). As a consequence, in each time window, thirty-six option values are

used to estimate the twelve model parameters (i.e., nP = 18 put option prices and nC = 18 call

option prices). In this way we generate a historical series of daily observations for each parameter.

The date associated with the value of the parameters obtained in the j-th window is the date

corresponding to the observed call and put option prices of the j-th window.

Figures 13 and 14 show the in-sample and out-of-sample option prices as a function of time to
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Figure 14: Out-of-sample observed and theoretical call (a) and put (b) option prices on YTU1 with strike price

Ei = 1.375 + 0.005(i − 1), i = 1, 2, . . . , 18, and expiry date T = September 9, 2011 versus time to maturity

(December 20, 2010–January 14, 2011).
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Figure 15: Left panel: time averaged out-of-sample implied volatility associated with observed and theoretical

call (left upper panel) and put (left lower panel) option prices on YTU1 versus average moneyness St/E, E =

Ei = 1.375 + 0.005(i − 1), i = 1, 2, . . . , 18 (expiry date T = September 9, 2011). Right panel: strike average

out-of-sample implied volatility associated with observed and theoretical call (right upper panel) and put (right

lower panel) versus time to maturity (December 20, 2010 (184 days) – January 14, 2011 (163 days)).

maturity. We observe that the quality of the out-of-sample call option prices slightly outperforms

that of the put option prices while the in-sample put option prices are more accurate than the

in-sample call option prices. In fact, the sample means of the relative errors of the in-sample call

and put options for the HW-Heston model are 3.21% and 1.49% respectively, while the sample

mean of the relative errors of the out-of-sample call and put options are 5.01% and 5.76%.

The left panels of Figure 15 show the time average out-of-sample implied volatility of call

(upper panel) and put (lower panel) options as a function of the strike price. The right panels

show the strike average out-of-sample implied volatility of call (upper panel) and put (lower

panel) options as a function of time to maturity. Specifically, the x-axis value 183 (i.e., 183 days

to maturity) corresponds to December 20, 2010 and the value 163 corresponds to January 14,

2011. We observe that the forecast values of the implied volatility are satisfactory up to ten days
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Figure 16: Estimated parameters γ, v0, χ, v∗, ρv, and ∆ (panel (a)) and estimated parameters η, r0, λ, θ, ρr,

and Ω (panel (b)) versus window index resulting from calibration of the HHW model to FX data.

from the last calibration, which was carried out on December 17, 2010.

Figure 16 shows the model parameters estimated using the FX data. We observe that r0 is

negative, while the long-term mean θ is a positive increasing function of time. The time series of

the parameters related to the stochastic interest rate shows that in the last period corresponding

to November–December 2010, there is turbulence in the time series of r0, θ. Finally, comparing the

estimated values of r0 obtained in the empirical analysis in Section 4.1 with those in this section

(i.e., Figs. 5 and 16), we observe negative values of r0. However, the values of r0 corresponding to

the period April–July 2012 are significantly less negative than those corresponding to the period

January–July 2011. This agrees with the observed behavior of the short-term government bond

yields (see Fig. 2), but the persistence of the negative sign may anticipate fluctuation and a new

decrease in the yields.

4.3 An empirical analysis of the U.S. three-month government bond

yield against the S&P 500 index

In this section we use the HHW model to explore the dependence, if any, of the S&P 500 index

on the U.S. three-month government bond yield. In this analysis, the measure associated with

the HHW model is the physical measure and the stochastic interest rate in Eq. (1) must be

interpreted as the drift of the S&P 500 index, which is assumed to be related to the U.S. three-

month government bond yield.

In this experiment, we calibrate the model parameters by solving

max
Θ∈V
FnT (Θ), (39)
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where V is given in (35), nT is the number of daily observations used, and FnT is the objective

function (see Varin et al. 2011)

Fnt =

nT∑
j=1

Dv,q(xt1 , v0, rt1 , t1, xj+1, rj+1, tj+1). (40)

Here, the function Dv,q is given by (76), where q is equal to zero, and xj, rj are the observations

of the S&P 500 index and the U.S. three-month government bond yield respectively at t = tj,

j = 1, 2, . . . , nT . Note that in this experiment, r0 is not estimated but is equal to rt1 , that is,

the observed value of the three-month government bond on the first day of the time window

(i.e., t = t1). We associate the last day of the time window, t = tnT , with each parameter value

obtained by solving problem (39). In this way, we have a time series for each model parameter

except for the initial stochastic interest rate, r0, which is chosen to be the value of the three-month

bond yield on the first day of the time window used in the calibration.

More specifically, we analyze the time series of daily observations of the U.S. S&P 500 index

and the U.S. three-month government bond yield in the period July 1, 2011–July 31, 2012 (see

Figure 2). We estimate the model parameters (i.e., we solve 12 problems) by maximizing function

(40) using nT = 22 daily data sets for the U.S. S&P 500 index and the U.S. bond yield. After

estimating the model parameters, we move this window along the time series, discarding the

nT observations already used and inserting new nT observations. This procedure allows us to

obtain a time series of monthly observations for each parameter, and the date associated with

each estimated parameter is the last day of the time window, t = tnT , used in the estimation

procedure. The historical series of the model parameters are indexed by integer values; the first

one (i.e., i = 1) corresponds to July 31, 2011 and the last one (i.e., i = 12) corresponds to July

31, 2012.
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Figure 17: Estimated parameters of the volatility (left panels) and interest rate processes (right panels) using

a time window of one month. The data used for calibration are daily observations of the U.S. three-month

government bond yield (upper right panel) and the U.S. S&P 500 index.
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Figure 17 shows the model parameters versus the window index. The values of the parameters

related to the variance process behave like those in the experiment illustrated in Section 4.1 (see

Figure 4), while the behavior of the estimated parameters, η, λ, ρr, Ω, of the interest rate process

differ from those shown in Figure 5. Specifically, the correlation coefficient, ρv, and the interest

rate price volatility, Ω, display strong fluctuations when the value of short-term bond yield is

approximately zero. Comparing the right panel of Figure 2 and the behavior of Ω in the lower

right panel of Figure 17, we see that the oscillations disappear when the window index is larger

than i = 4. In fact, Ω rapidly decreases in November and December 2011 and is practically

constant in the period January 2012 to July 2012. The results of this experiment suggest that
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Figure 18: One-month ahead forecast of the S&P 500 index. True values of the index (solid line) and model

forecasts (dotted line) versus time index, i = 1: August, 30, 2011, i = 2: September 30, 2011,. . ., i = 11: August

30, 2012. The true values are monthly data freely downloadable from http://data.okfn.org/data/core/s-and-p-

500#data.

when the short-term government bond yields are around zero, the behavior of the market index is

strongly affected by the bond yield, while this effect decreases when the yields are around 0.1%.

These are only preliminary results which deserve further investigation. However, in order to assess

the performance of this estimation, we use the estimated values of the parameters obtained at

time t to forecast the U.S. S&P 500 index at time t+ ∆ t, where ∆ t =1 month.

The forecast values of the S&P 500 index are obtained using the expected value in formula

(21) adapted to the current situation, that is:

E(St+∆t) = Ste
rtΨ1,λ(∆t)e(∆t−Ψ1,λ(∆t))(θ+ η2

2λ2 + η
λ

Ωρr)e
η2

2λ2 (Ψ2,λ(∆ t)−Ψ1,λ(∆ t)) . (41)

The parameter values used here are those estimated in the time window [t − ∆t, t]. Figure 18

displays the true values of the S&P 500 index (solid line and squares) and the one-month ahead

forecasts (dotted line and stars). The true data are monthly observations of the S&P 500 index

downloadable from the website http://data.okfn.org/data/core/s-and-p-500#data. The average
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relative error is 0.024 and the median is 0.017. As mentioned above, the results obtained are very

preliminary, but they are encouraging.

5 Conclusions

This paper proposes a multi-factor Heston model (HHW model) that allows for stochastic volatil-

ity and a negative interest rate while preserving its analytical tractability. We derive integral

representation formulas for the transition probability density function and for option pricing that

involve one-dimensional integrals and elementary integrand functions as well as explicit formulas

for the moments of the price variable. One of the main features of the model is that it allows for

negative interest rates, and the first-order moment of the price variable depends on the correla-

tion parameter between interest rate and asset price. The three empirical analyses illustrated in

Section 4 assess the performance of the HHW in interpreting and forecasting option prices (see

Sections 4.1 and 4.2) and asset prices (see Section 4.3) in a period where negative short-term

government bond yields were experienced.

The model seems to capture the implied volatility of call and put options with only one set of

estimated model parameters when we price both index and FX options. Furthermore, preliminary

results from analysis of the relation between the S&P 500 index and the short-term government

bond show that the correlation parameter, ρr, and the interest rate price volatility, Ω, strongly

fluctuate when negative yields occur, while they are roughly constant when the yield moves away

from zero. The construction of an early warning indicator of instability in short-term government

bond yields using these parameters will be the object of further research.
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Appendix: The analytical treatment of the HHW model

In this section, we derive an integral representation formula for the transition probability density

function, pf , of the process in Eqs. (7)–(9) via a straightforward modification of the results illus-
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trated in Recchioni and Sun 2016. To this end, we recall that the function pf (x, v, r, t, x
′, v′, r′, t′),

t < t′, as a function of the variables (x, v, r, t) (i.e., the past variables, since t < t′) satisfies the

following backward Kolmogorov equation:

−∂pf
∂t

=
1

2
(ψ̃v + Ω2)

∂2pf
∂x2

+
1

2
γ2v

∂2pf
∂v2

+
1

2
η2∂

2pf
∂r2 + γ(ρv + ∆)v

∂2pf
∂x∂v

+ηρrΩ
∂2pf
∂x∂r

+ χ(v∗ − v)
∂pf
∂v

+ λ(θ − r)∂pf
∂r

+

(
r − 1

2
(ψ̃v + Ω2)

)
∂pf
∂x

,

(x, v, r) ∈ R×R+ ×R, 0 ≤ t < t′, (42)

where ψ̃ is given in (10), with final condition

pf (x, v, r, t
′, x′, v′, r′, t′) = δ(x′ − x)δ(v′ − v)δ(r′ − r),

(x, v, r), (x′, v′, r′) ∈ R×R+ ×R, t′ ≥ 0, (43)

and appropriate boundary conditions. Since neither the coefficients (42) nor the final condition

(43) depend on translation in the log-price variable, we can proceed as in Recchioni and Sun 2016,

assuming the following representation formula for pf :

pf (x, v, r, t, x
′, v′, r′, t′) =

eq(x−x
′)

2π

∫
R

eık(x′−x) 1

(2π)2

∫
R

eıl v
′
∫
R

eı ξ r
′
eA(τ,k,l,ξ)e−v Bv(τ,k,l)e−r Br(τ,k,ξ)dl dξ dk, (44)

where τ = t′ − t. Substituting formula (44) into equation (42), functions A, Bv, and Br must

satisfy the following ordinary differential equations:

dA

dτ
(τ, k, l, ξ) =

−λ θ Br(τ, k, ξ)− χv∗Bv(τ, k, l) +

(
−ϕq(k)Ω2 + (ı k − q)Ω ρp,rηBr(τ, k, ξ) +

η2

2
B2
r (τ, k, ξ)

)
= −ϕq(k)Ω2 − [λθ − (ı k − q)Ω ρp,rη]Br(τ, k, ξ) +

η2

2
B2
r (τ, k, ξ)− χv∗Bv(τ, k, l), (45)

dBv

dτ
(τ, k, l) = ϕq(k)ψ̃ − (χ+ (ı k − q) γ(ρv + ∆))Bv(τ, k, l)−

γ2

2
B2
v(τ, k, l), (46)

dBr

dτ
(τ, k, ξ) = (ık − q)− λBr(τ, k, ξ), (47)

with initial conditions

A(0, k, l, ξ) = 0, Bv(0, k, l) = ı l, Br(0, k, ξ) = ı ξ, (48)
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where ϕq is the following quantity:

ϕq(k) =
k2

2
+ ı

k

2
(2q − 1)− 1

2
(q2 − q), k ∈ R. (49)

The solution to problem (46), (48), which is given in Recchioni and Sun 2016, is

Bv(τ, k, l) =
2

γ2

d
dτ
Cv

Cv
, (50)

where

Cv(τ, k, l) = e(µq,v+ζq,v)τ

[
sq,v,b + ı l γ

2

2
sq,v,g

2ζq,v

]
, (51)

so we have

Bv(τ, k, l) =
2

γ2

(
(ζ2
q,v − µ2

q,v)sq,v,g + γ2

2
ı l sq,v,d

)
sq,v,b + ı l γ

2

2
sq,v,g

, (52)

where

µq,v = −1

2
(χ+ (ı k − q) γ(ρv + ∆)) , (53)

ζq,v =
1

2

[
4µ2

v + 2γ2ϕq(k)ψ̃
]1/2

, (54)

sq,v,g = 1− e−2ζq,vτ , (55)

sq,v,b = (ζq,v + µq,v)e
−2ζq,vτ + (ζq,v − µq,v), (56)

and sq,v,d is given by

sq,v,d = (ζq,v − µq,v)e−2ζq,vτ + (ζq,v + µq,v). (57)

The solution of Eq. (47) is given by:

Br(τ, k, ξ) = ı ξ e−λτ + (ı k − q)ψ1,λ(τ), (58)

where Ψ1,λ is given by Eq. (19). Finally, integrating Eq. (45), we obtain:

A(τ, k, l, ξ) = −ξ2Q2(τ) + ıξQ1(τ, k) +Q0(τ, k)− 2
χ v∗

γ2
ln Cv , (59)

where Q0, Q1 and Q2 are given by

Q0(τ, k) = −ϕq(k)Ω2τ − aq,r(k)
(ı k − q)

λ
(τ −Ψ1,λ(τ)) +

η2

2

(ı k − q)2

λ2
(τ − 2Ψ1,λ(τ) + Ψ2,λ(τ)),

(60)

Q1(τ, k) = −aq,rΨ1,λ(τ) + η2

(
ık − q
λ

)
(Ψ1,λ(τ)−Ψ2,λ(τ)), (61)

Q2(τ) =
η2

2
Ψ2,λ(τ), (62)
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while functions Ψj,λ, j = 1, 2 are given in (19) and aq,r is given by

aq,r = λθ − (ık − q)Ωρrη . (63)

By using the specific form of functions A, Br, and Bv, we can rewrite the integrand appearing

in Eq. (44) as the product of two functions, one of which depends only on the parameters of the

volatility process and the other on the interest rate process:

eA(τ,k,l,ξ)e−v Bv(τ,k,l) e−r Br(τ,k,ξ) = eΨv(τ,k,l,v)eΨr(τ,k,ξ,r), (64)

where

Ψv(τ, k, l, v) = −2χv∗

γ2
lnCv(τ, k, l)−

2v

γ2

1

Cv

dCv
dτ

(τ, k, l) , (65)

Ψr(τ, k, ξ, r) = −ξ2Q2(τ) + ıξ
(
Q1(τ, k)− re−λτ

)
+Q0(τ, k)− r(ı k − q)Ψ1,λ .

(66)

In order to obtain an explicit expression for pf , we compute the following two inverse Fourier

transforms:

Lv,q(τ, v, v
′, k; Θv) =

1

2π

∫ +∞

−∞
eılv

′
eΨv(τ,k,l,v)dl , (67)

Lr,q(τ, r, r
′, k; Θr) =

1

2π

∫ +∞

−∞
eı ξ r

′
eΨr(τ,k,ξ,r)dξ . (68)

The first function, Lv,q, is given by (see Recchioni and Sun 2016 for further details)

Lv,q(τ, v, v
′, k; Θv) = e−(2χv∗/γ2)[ln(sq,v,b/2ζq,v)+(µq,v+ζq,v)τ ] e−(2v/γ2)(ζ2

q,v−µ2
q,v)sq,v,g/sq,v,b ×

Mq,v (Mq,vṽq)
−νv/2 (Mq,vv

′)
νv/2 e−Mq,v ṽqe−Mq,vv′Iνv(2Mq,v(ṽqv

′)1/2), (69)

with νv = (2χ v∗/γ2)− 1 and Mq,v, ṽq given by

Mq,v =
2

γ2

sq,v,b
sq,v,g

, ṽq =
4ζ2
q,vve

−2ζq,vτ

s2
q,v,b

, Mq,vṽq =
8

γ2

ζ2
q,vve

−2ζq,vτ

sq,v,gsq,v,b
. (70)

The quantities ζq,v, µq,v, sq,v,b, sq,v,g appearing in (69) and (70) are given in (53)–(56).

The second function, Lr,q, can be easily obtained by integrating the Gaussian integral:

Lr,q(τ, r, r
′, k; Θr) = e−r (ı k−q)Ψ1,λ(τ) eQ0(τ,k)

2
√
π Q2(τ)

e
− 1

4Q2(τ)(r′+Q1(τ,k)−re−λ τ)
2

. (71)

Moreover, we have: ∫ +∞

0

Lv,q(τ, v, v
′, k; Θv)dv

′ = eQv,q(τ,v,k;Θv), (72)
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and ∫ +∞

−∞
e−ω Tr

′
Lr,q(τ, r, r

′, k; Θr)dr
′ = eQr,q(τ,r,k;Θr)eω T (Q1(T,K)−re−λT )e(ω T )2Q2(T ), (73)

where Qv,q, Qr,q are given by

Qv,q(τ, v, k; Θv) =
−2χv∗

γ2
ln(sq,v,b/(2ζq,v))−

2χv∗

γ2
(ζq,v + µq,v)τ−

2v

γ2
(ζ2
q,v − µ2

q,v)
sq,v,g
sq,v,b

, (74)

Qr,q(τ, r, k; Θr) = −r(ı k − q)Ψ1,λ(τ) +Q0(τ, k), (75)

where ω is a positive constant and Q0, Q1, Q2 are the quantities given by (60)–(62), while ζq,v,

µq,v, sq,v,b, sq,v,g are given by (53)–(56) and Ψj,λ, j = 1, 2 is given by (19).

From (72) and (73) and the explicit formula (12) for pf , we obtain an integral representation

formula for the marginal probability density function, Dv,q(x, r, t, x
′, r′, t′), of the future variables

(x′, r′):

Dv,q(x, r, t, x
′, r′, t′) =

∫ +∞

0

pf (x, v, r, t, x
′, v′, r′, t′)dv′

=
eq(x−x

′)

2π

∫ +∞

−∞
eık(x′−x)eQv,q(t

′−t,v,k;Θv)Lr,q(t
′ − t, r, r′, k; Θr)dk, (76)

as well as for the marginal probability density function, Dv,r,q(x, t, x
′, t′), of the price variable x′:

Dv,r,q(x, t, x
′, t′) =

∫ +∞

−∞

∫ +∞

0

pf (x, v, r, t, x
′, v′, r′, t′)dr′dv′

=
eq(x−x

′)

2π

∫ +∞

−∞
eık(x′−x)eQv,q(t

′−t,v,k;Θv) eQr,q(t
′−t,r,k;Θr) dk , (77)

where the functions Qv,q, Qr,q are given in (74) and (75).

Let us show that the function pf , obtained by solving problem (42), (43), is a transition

probability density function. As shown in Craddock 2009, this is necessary since fundamental

solutions of Kolmogorov equations are not necessarily transition probability density functions.

To this end, we first compute the integral of pf with respect to the future variable x′. Using the

following formula for the Dirac delta function (see Jacquier and Lorig 2013 for further applications

of this formula):
1

2π

∫ +∞

−∞
eı(x

′−x)(k+ı q)dx′ = δ(k + ı q), (78)

we obtain∫ +∞

−∞
pf (x, v, r, t, x

′, v′, r′, t′)dx′ = Lv,q(t
′ − t, v, v′,−ı q; Θv)Lr,q(t

′ − t, r, r′,−ı q; Θr), (79)
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where Lv,q(t
′ − t, v, v′,−ı q,Θv) is the transition probability density function of the CIR model

(see Craddock 2009 Eq. (3.4)). In fact, by setting k = −ı q in Eqs. (69) and (53)–(55), we obtain

Lv,q(τ, v, v
′,−ı q; Θv) =

2

γ2

χ

1− e−χ τ
vνv/2

(ve−χ τ )ν/2
e
−2 χ

1−e−χτ
(ve−χτ+v′)

. (80)

Similarly, by setting k = −ıq in Eqs. (61), (60), and (71), Lr,q(t
′− t, r, r′;−ı q,Θr) is the following

Gaussian transition probability density function:

Lr,q(τ, r, r
′,−ı q; Θr) =

1

2
√
π Q2(τ)

e
− 1

4Q2(τ)(r′−re−λ τ−λθΨ1,λ(τ))
2

. (81)

Using Eqs. (79)–(81), we have∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

pf (x, v, r, t, x
′, v′, r′, t′)dx′dr′dv′ = 1, ∀x, v, r, t, t′ . (82)

We conclude this Appendix by deducing explicit formulas for the moments of the price variable;

specifically, we use formulas (76) and (77). In fact, the formula for the mth moment of the price

St′ = S0e
x′ conditioned to the observation at time t = 0 is given by the following integral:

Mm(S0, v0, r0) = E(Smt′ ) = Sm0

∫ +∞

−∞
emx

′
Dv,r,q(0, v0, r0, 0, x

′, t′)dx′

= Sm0
1

2π

∫ +∞

−∞

(∫ +∞

−∞
emx

′
e−qx

′
eık x

′
)
eQv,q(t

′,v0,k;Θv) eQr,q(t
′,r0,k;Θr)dk dx′. (83)

Setting q = m, the integral in the parentheses in Eq. (83) yields the Dirac delta function

concentrated at k = 0, which allows us to deduce the following formula for the moments:

Mm = E(Smt′ ) = Sm0 eQv,m(t′,v0,0;Θv) eQr,m(t′,r0,0;Θr), (84)

where Qv,m, Qr,m are the functions given in Eqs. (74) and (75) with q = m and k = 0. We

note that formula (84) is an elementary formula that does not involve integrals and it may be

useful for investigating the correlation between interest rates and market indices/assets. Finally,

by taking the limit Ω→ 0+, λ→ 0+, and η → 0+ in formula (84), we obtain the formula for the

mth moment, MH
m in the Heston framework.
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