A MYB transcription factor gene involved in sex determination in Asparagus

 officinalisShort title: Sex determination gene in asparagus

Authors:

Kohji Murase ${ }^{1 *}$, Shuji Shigenobu ${ }^{2}$, Sota Fujii ${ }^{1}$, Kazuki Ueda ${ }^{1}$, Takanori Murata ${ }^{1}$, Ai
Sakamoto ${ }^{1}$, Yuko Wada ${ }^{1}$, Katsushi Yamaguchi ${ }^{2}$, Yuriko Osakabe ${ }^{3}$, Keishi Osakabe ${ }^{3}$, Akira Kanno ${ }^{4}$, Yukio Ozaki ${ }^{5}$, Seiji Takayama ${ }^{1 *}{ }^{\text {a }}$

Affiliations:

${ }^{1}$ Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
${ }^{2}$ National Institute for Basic Biology (NIBB) Core Research Facilities, NIBB, Okazaki, Aichi 444-8585, Japan
${ }^{3}$ Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
${ }^{4}$ Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
${ }^{5}$ Faculty of Agriculture, Kyushu University, Kasuya, Fukuoka 811-2307, Japan
*Correspondence to: E-mail: kmurase@is.naist.jp or takayama@bs.naist.jp
${ }^{\text {a }}$ Present address: Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Key words: Plant, Dioecy, Sex determination gene, Asparagus

Abstract

: Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds revealed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development, and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis.

Introduction:

In order to preserve genetic variety within species, flowering plants have evolved various systems to prevent self-fertilization. In one such system, dioecy, individuals of a species are either male or female. In angiosperms, about 15,000 species ($\sim 6 \%$) of 160 families are dioecious, and the evolution of dioecy is thought to have occurred independently more than 800 times (Charlesworth 2002; Renner 2014). According to a current theoretical model, the transition from hermaphroditism to dioecy can proceed by two evolutionary pathways: gynodioecy, in which individual plants separate into females and hermaphrodites, and androdioecy, in which plants separate into males and hermaphrodites (Charlesworth \& Charlesworth 1978). The first step of the evolution of gynodioecy is a recessive male sterile mutation, followed by a dominant female sterile mutation (or gain of suppressor function) near the male mutation locus, thus creating a sex chromosome. Conversely, a female mutation is the first step in the evolution of androdioecy, but this pathway is not predominant because female mutations and androdioecious plants are very rare in nature. However, molecular mechanisms of sex determination and its evolution in flowering plants are largely unknown. The recent identification of sex-determination genes in persimmon is the only example that an autosomal homeobox transcription factor gene, MeGI, dominantly suppresses male organ development, whereas OGI on the Y chromosome encodes a small RNA that targets MeGI for gene silencing (Akagi et al. 2014).

Sex determination in the dioecious plant Asparagus officinalis is controlled by a single locus, the Mating- (M) locus, located on chromosome 5 (Löptien 1979; Telgmann-Rauber et al. 2007). The sex chromosome karyotypes of males and females are XY and XX,
respectively. Relatively large vestiges of organs corresponding to the opposite sex are observed in both male and female flowers in A. officinalis, suggesting that morphological sex differentiation occurs at a late stage of flower development (Fig. 1A,B). In fact, at early developmental stages, the male and female flowers look like those of hermaphrodites; the morphological differences between male and female flowers appear later when the stylar tube is formed on carpels in female flowers, and during or just before meiosis in male flowers (Caporali et al. 1994). To generate these morphological differences, sex-determination genes must be expressed in the appropriate tissues at the appropriate developmental stages. Genetic analysis suggested the involvement of two sex-determination genes, called "male activator" and "female suppressor", located in the M-locus of the Y chromosome (Marks 1973).

Results and Discussion:

To search for sex-determination genes, a transcriptome analysis was performed during early development of male and female flowers of A. officinalis cv. Super Welcome. De novo assembly of 10.5 Gb of male paired-end sequences by Trinity (Grabherr et al. 2011) yielded 104,937 contigs and 51,525 unigenes (Fig. S1, Table S1). Mapping of 52.8 and 56.6 million reads from males and females against the assembled contigs, respectively, revealed that 149 contigs (114 unigenes) are expressed in a male-biased manner. Because the previous transcriptome analysis of A. officinalis failed to identify Y-chromosome genes (Harkess et al. 2015), we performed further screening by mapping each of 316 million reads from the male and female genome sequencings against the 114 candidate genes. Ultimately, seven
contigs were obtained as candidates for male-specific genes (Table S2). To confirm that the candidate genes were male-specific, we amplified them by polymerase chain reaction (PCR) from bulked male and female genomes (Fig. S2). Only one gene, which we named Male Specific Expression 1 (MSE1), exhibited male-specific amplification. This result was unexpected because both female RNA and genome sequence reads mapped to the MSE1 contig, albeit at low levels (Table S2). Mapping of RNA sequence reads against the MSE1 contig revealed that female reads only mapped to the 5 ' end of the transcript, whereas male reads covered the whole transcript (Fig. S3). Reverse transcription (RT)-PCR using primers that amplified the full-length MSE1 transcript confirmed male-specific expression of MSE1 (Fig. 1C).

To determine whether MSE1 is on the Y chromosome, we PCR-amplified MSE1 from the genomes of male and female individuals of A. officinalis cv. Super Welcome. MSE1 specifically amplified from male individuals, but not from females (Fig. 1D). Subsequent PCR analysis of 112 independent plants confirmed male-specific amplification of MSE1 (Fig. 4S). These results suggest that MSE1 is on the Y chromosome gene, tightly linked to the M-locus.

MSE1 encodes a 276-amino acid protein containing two MYB domains at the N -terminus (Fig. 1E, Fig. S5). MSE1 belongs to the R2R3-MYB class of proteins, which includes MYB transcription factors involved in metabolism, cell fate and identity, development, and biotic and abiotic stress responses (Stracke et al. 2001; Dubos et al. 2010; Ambawat et al. 2013). To study the spatial and temporal pattern of MSE1 expression, we measured the levels of MSE1 mRNA in each tissue of male plants by quantitative RT-PCR. MSE1 mRNA
was specifically expressed in small buds, but not in other tissues (Fig. 1F). Detailed analysis of MSE1 expression in young buds revealed that MSE1 was predominantly expressed in anther (Fig. 1G). These results suggest that MSE1 acts in early stages of male organ development.

RNA and genome-sequence mapping data of MSE1 transcripts suggested that the vestige of MSE1 still exists on the X chromosome (Table S2). To test this hypothesis, whole-genome sequencing and assembly was performed on a male genome. BLAST searches against the assembly scaffolds revealed four scaffolds with high sequence similarity to MSE1 cDNA. One completely matched the genomic sequence of MSE1 in which male DNA sequence reads were specifically mapped, and was judged to represent the MSE1 sequence on the Y chromosome (Fig. 1H, Fig. S6). The other three scaffolds shared partial similarity with the MSE1 genome sequence on the Y chromosome (Fig. 1H). The high conservation of intergenic regions and introns of MSE1 between these scaffolds, and the fact that they could be amplified from both male and female genomes, suggested that these three scaffolds represented X chromosome sequences. We designated MSE1 on Y chromosome as MSE1 ${ }^{Y}$ and the putative MSE1 sequence on the X chromosome as MSE1 ${ }^{X}$. Two scaffolds of $M S E 1^{X}$ were assembled with a 19 kb PacBio sequence showing that MSE1 1^{X} is fragmented in at least 30 kb region of X chromosome rather than $M S E 1^{Y}$ is encoded within 2.5 kb (Fig. 1H). This result could explain the misamplification of MSE1 genome fragment by PCR from female individuals because the amplicon is too large (Fig. 1D). In A. officinalis cv. Super Welcome, three insertions, five deletions, and 16 point mutations are present in the coding region of $M S E 1^{X}$ relative to $M S E 1^{Y}$ (Fig. S7). Some of these are likely to be deleterious
mutations: a one-base deletion at tyrosine 28 of MSE1 ${ }^{\mathrm{Y}}$ induces a frame shift, resulting in a premature stop codon; a deletion at the end of the second exon causes the loss of 26 bases of protein-coding region and a splicing signal; and a large deletion at the end of third exon also causes a 200 bp deletion of protein-coding region (Fig. 1H, Figs. S7,8). Various mutations were observed among A. officinalis cultivars in MSE1 ${ }^{X}$, but no SNPs were detected in MSE1 ${ }^{Y}$, suggesting that $M S E 1^{X}$ is no longer under selection pressure to maintain its function (Fig. S7). These results suggest that loss of function of MSE1 has occurred on the X chromosome.

The Asparagus genus contains up to 300 species distributed widely around the world (Kubitzki \& Rudall 1998). Phylogenetic analysis of these species revealed that the dioecious species form a single clade, suggesting that the evolutionary event leading from hermaphroditism to dioecy in Asparagus occurred only once (Fig. S9) (Kubota et al. 2012). Therefore, if MSE1 acts as "male activator" in sex determination during male organ development, the system is likely to be conserved in dioecious Asparagus species. To test whether the MSE1 system is conserved in dioecious Asparagus species, PCR amplification and sequencing of $M S E 1^{Y}$ and $M S E 1^{X}$ from genomic DNA of the male and female individuals were performed. MSE1 genes could be amplified from the genomes of all male individuals, but not those from female individuals in three cultivars of A. officinalis, A. pseudoscaber, A. kiusianus, A. schoberioides, and A. verticillatus (Fig. 2A). Three conserved deleterious mutations, which are caused by the frameshift mutations, were observed in $M S E 1^{X}$ sequences from the female individuals of these related species (Fig. S7). Furthermore, MSE1 could also be amplified from all tested hermaphroditic species, and the
coding protein sequences were highly conserved among dioecious and hermaphroditic species (Fig. 2B, Fig. S10). These results suggest that the arrest of male organ development in female flowers in these Asparagus species is caused by loss of MSE1 function. Interestingly, A. acutifolius, A. stipularis, and A. cochinchinensis, which are phylogenetically most distant dioecious species from A. officinalis, have no deleterious mutation in MSE1 coding regions (Fig. 2A, Fig. S11). This result suggests that the origin of male mutation have occurred in outside of MSE1 coding region or these three species have evolved in independent pathway.

If MSE1 mutation is responsible for the transition from hermaphroditism to dioecy, artificial mutation of MSE1 orthologues in other plant species should convert hermaphrodites into female plants. Phylogenetic analysis of MSE1-like MYB transcription factors revealed that MSE1 orthologues are widely conserved in monocot and dicot species, including the model plant Arabidopsis thaliana (Fig. S12). The second most similar MYB protein in A. thaliana, AtMYB103, is outside the MSE1 clade, suggesting that ancestral MSE1 and AtMYB103 branched before the monocot-dicot divergence (Fig. S12). The conservation of MSE1 is assumed to reflect the functional importance of this gene in the life cycle of flowering plants. The MSE1 orthologue of A. thaliana is AtMYB35/TDF1 (Tapetal Development and Function 1), which is essential for normal anther development (Fig. S12) (Zhu et al. 2008). Because a T-DNA insertion line was not available, genome editing knockouts of TDF1 were produced using the CRISPR/Cas9 system targeting three sites in the TDF1 gene (Fig. 3A,B). Each transformant exhibited normal vegetative growth and flowering, but seedless siliques (Fig. 3C to F). No pollen grains were observed in the
transformants, suggesting that the sterility is caused by a defect in male organ development (Fig. 3G,H). These features are consistent with the previously reported phenotype of the tdf1 mutant (Zhu et al. 2008). These results support the idea that MSE1 functions in male organ development.

Charles Darwin considered male (or female) organ abortion to be the first step in the evolution of dioecy (Darwin 1877). Our results strongly suggest that MSE1 acts as the "male activator" in A. officinalis sex determination, and that the loss-of-function mutation in MSE1 ${ }^{X}$ was an important step in the evolution of dioecy in Asparagus. Although gynodioecious (or androdioecious) Asparagus species have not been identified to date, our data may provide the first molecular evidence that this species evolved via the gynodioecy (or androdioecy) by the mutation of gene involved in male organ development pathway (Charlesworth \& Charlesworth 1978). The MSE1 system is clearly distinct from the OGIMeGI system involved in persimmon sex determination, in which a small RNA acts as the sex determination factor (Akagi et al. 2014). Divergent molecular mechanisms have been described in the self-incompatibility system, which is also involved in preventing self-fertility in flowering plants (Takayama \& Isogai 2005). It will be interesting to compare the molecular mechanisms and evolution of these systems. Our results will contribute to the understanding of the molecular mechanisms of sex determination, as well as the evolution of dioecy from hermaphroditism in flowering plants.

Experimental procedures:

Plant materials

A. officinalis cv. Super Welcome and Pole Tom were purchased from SAKATA SEED (Yokohama), cv. Mary Washington from Takii Seed (Kyoto); cv. Niagara from Nitto Nousan (Yokohama); and A. pseudoscaber, A. verticillatus, A. densiflorus, and A. virgatus from B \& T World Seeds (Aigues-Vives). A. plumosus and A. asparagoides were purchased from public garden centers. A. kiusianus was collected from Keyakaigan (Fukuoka, Japan). A. schoberioides, A. acutifolius, A. stipularis, and A. cochinchinensis are described in Kubota et al. 2012.

Transcriptome analysis

Total RNAs were extracted from early developmental buds ($0.5-0.8 \mathrm{~mm}$) of male and female A. officinalis cv. Super Welcome using the RNeasy Plant Mini Kit (Qiagen). Library preparations and RNA sequencing by HiSeq 2000 (Illumina) were outsourced to Hokkaido System Science (Hokkaido). Adapter sequences were removed from raw sequence data using the cutadapt program (Martin 2011). Next, four bases of 3'-terminal sequences of the treated sequences were removed using FastX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). De novo assembly of RNA sequences from males was performed using Trinity with default parameters except that minimum k-mer coverage was set to 3 (Grabherr et al. 2011). Mapping of RNA and genome sequences from males and females were conducted using bowtie (Langmead et al. 2009). Mapping data were processed by SAMtools (Li et al. 2009) and visualized by the Integrative Genomics Viewer (IGV) software (Robinson et al. 2011). Gene functions were annotated by BLAST2GO (Conesa et al. 2005).

RT-PCR and real-time quantitative RT-PCR

Total RNA was extracted from each tissue as described above. Reverse transcription was performed using SuperScript III (Invitrogen). MSE1 cDNA was PCR amplified using Ex Taq (Takara) with primers 646
(5’-GATCGGATCCATGGGCAGGCCTCCATGCTGCGA-3') and 647
(5'-GATCGAATTCCTACAGCAAATCATAAAAAAACTCAGG-3'), which were designed to amplify full-length MSE1. Real-time quantitative RT-PCR was carried out on a LightCycler 96 system (Roche) using QuantiFast SYBR Green RT-PCR Kit (Qiagen). MSE1 and Actin were amplified by primers AoMSE1realtimeFw (5’-GCCCTAATTTGAAGCATGAGAG-3’)/AoMSE1realtimeRv (5'-GATTTGAGAGATGGGTTGTG-3') and AoActin1F (5’-GTTCCTGCTCATAATCTAGAGCAAC-3’)/AoActin1R (5’-CTTCTCACTGAGGCTCCACTCAAC-3’), respectively. MSE1 expression was normalized against expression of Actin.

Linkage analysis and amplification of MSE1 from genus Asparagus

For linkage analysis of MSE1, seeds of A. officinalis cv. Super Welcome were treated with n-propyl N-(3,4-dichlorophenyl) carbamate (NPC) to induce early flowering as described previously (Aneja et al. 1999). Genomes of each individual were extracted by Plant DNAzol Reagent (Invitrogen). MSE1 fragments were amplified using ExTaq with primers 706 (5’-TGGTCGGTAATCGCACATCACCTCC-3’) and 647. To sequence the coding
region of MSE1 from other A. officinalis cultivars and Asparagus species, primers U10 (5’-AATTGGTTTCATCATCATTGTACCTCAG-3’) and U21
(5’-CTAAGATCCCAACGCACAAAC-3') were used for PCR amplification. Sequencing was performed using BigDye Terminator v3.1 (Applied Biosystems). To amplify MSE1 fragments from genomes of each individual of A. officinalis and related species, we used primer sets 646-647 or 646-648
(5’-GATCGAATTCCTAGGCTAGAGTGGTGATGGTTTCCTTG-3’). For amplification of $M S E 1{ }^{Y}$ from A. kiusianus, 706 and 647 primers were used. For male-specific marker, the Asp1-T7 primer set was used as described previously (Jamsari et al. 2004). To check the sex genotypes of A. verticillatus individuals, newly developed male-specific marker, designated MSM1 (male-specific marker 1), was created from male-specific scaffold in the genome assembly. For amplification of MSM1, 814
(5’-CAACTCCAGGTGACAACATTCATAG-3') and 805 (5’-TCGTCAACGTCGACTGCAGGTAGGC-3’) primers were used. $M S E 1^{X}$ fragments were amplified by primers 752 (5’-ATTGGTTTCATCATCATTGTACCTC-3') and 754 (5'-TTGCCTGTCCATCTCACTTCTGGAT-3') for the first and second exons, and 755 (5'-CTAACCATGATCTACACACGATCAC-3') and 757
(5'-CCCTTCGACGTGGATTAATCGCTACC-3') for the third exon.

Phylogenetic analysis

Protein sequences of the MYB transcription factors were multiply aligned using Clustal Omega (Sievers et al. 2011), with the Myb_DNA-binding domain HMM matrix (accession

No. PF00249 under Pfam database (Finn et al. 2014) used as the external profile HMM. Conserved selection blocks from the alignment were selected using Gblocks (Talavera \& Castresana 2007) with default parameters. Phylogenetic tree was constructed based on Bayesian inference by using the MrBayes 3.2.2 program (Ronquist et al. 2012), using HsMYB as the outgroup sequence. Four chains of the Metropolis-coupled Markov Chain Monte Carlo processes were run for 1,000,000 generations, with trees sampled every 1,000 generations. The first 25% of trees were discarded, and the remaining trees were used to support the majority-rule consensus tree topology with posterior probabilities. For the Asparagus genus taxon phylogeny, five chloroplast intergenic sequences (Kubota et al. 2012) were aligned using MAFFT (Katoh \& Standley 2013) and concatenated. The alignment was cleaned by Gblocks and subjected to MrBayes 3.2.2 analysis as described above, using the C. stricta sequence as outgroup, to yield the consensus tree.

Genome sequencing and assembly

For whole-genome assembly, DNA from a single male asparagus was used for genome sequencing. For screening of male-specific genes in transcriptome analysis, the female genome was also used. Genome DNA was extracted using the DNeasy Plant Mini Kit (Qiagen). The purified DNA was fragmented on a Covaris S2 sonicator (Covaris, Woburn, MA), size-selected with Pippin Prep (Sage Science, Beverly, MA), and then used to create two libraries using the TruSeq DNA PCR-Free Sample Preparation Kit (Illumina, San Diego, CA) with insert sizes of ~ 180 and $\sim 800 \mathrm{bp}$. These libraries were sequenced on the Illumina HiSeq platform using a 2x 101-nt paired-end sequencing protocol. The reads were
cleaned up with cutadapt. Low-quality ends (<QV20) and adapter sequences were trimmed, and reads shorter than 50 bp were discarded. Total sequence of 105.3 Gb ($\sim 84 \times$ coverage of the genome, assuming a genome size of 1.26 Gb) was generated from the libraries, and then assembled using the ALLPATHS-LG assembler (Gnerre et al. 2011). The assembly yielded 146,894 scaffolds with an N50 length of 5.2 kb. For transcriptome analysis, 316 million reads of male and female genome sequences were used for mapping. Long read sequences were generated by PacBio RS II sequencer (Pacific Biosciences, Menlo Park, CA) with a 20 kb DNA library prepared from the female asparagus. Total sequence of 3.72 Gb in 372,292 reads was obtained from 8 SMRT cells. The N50 length was $13,054 \mathrm{bp}$. Sequences containing MSE1 locus were searched by BLAST program (Camacho et al. 2009).

Genome editing of MSE1 orthologue in A. thaliana

Genome editing of the MSE1 orthologue TDF1 was performed using the binary vector pEgP226-2A-gfbsd (Osakabe et al. 2016), which was designed for CRISPR/Cas9 and guide RNA-mediated genome editing. Three primer sets [735
(5'-GATTTTGGACTTGTCACAACAAGG-3') - 736
(5’-AAACCCTTGTTGTGACAAGTCCAA-3’) for GE1, 737
(5’-GATTTCCATTGCACGAAAGCTTCC-3') - 738
(5’-AAACGGAAGCTTTCGTGCAATGGA-3') for GE2, and 739
(5’-GATTTAATGTTTCTGAATTCTGCA-3’) - 740
(5'-AAACTGCAGAATTCAGAAACATTA-3') for GE3] were annealed to serve as guide RNA-targeting sequences. The annealed DNA fragments were subcloned into the BsaI site
of pEgP226-2A-gfbsd. Transformation of A. thaliana (Col-0) was performed by floral dip method (Clough \& Bent 1998) using Agrobacterium (pMP90) harboring these binary vectors. Transformants were screened in Murashige-Skoog (MS) medium containing 0.6\% agar and $60 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin (Murashige \& Skoog 1962), and then transferred into soil. Transformants were confirmed by genomic PCR with a primer set, GEF (5'-ACTTAAGACCTGACC-3') and GER (5'-GATGATTTGGATGGC-3').

Acknowledgments:

We thank A. Takahashi, F. Kodama, H. Asao, and A. Akita for technical assistance, and T. Nishimoto and H. Asao for a kind gift of 3-year-old A. officinalis cv. Super Welcome. Computational resources were provided by the Data Integration and Analysis Facility, NIBB. This work was supported by a Grant-in-Aid for Scientific Research (25252021 to S.T.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Takeda Science Foundation (to K.M.), and the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Technologies for creating next-generation agriculture, forestry and fisheries" (funding agency: Bio-oriented Technology Research Advancement Institution, NARO) to K.O. Science and technology research promotion program for agriculture, forestry, fisheries and food industry (to A.K. and Y.Ozaki). S.T. supervised this project. K.M. and S.T. designed the experiments. K.M., K.U., T.M., and A.S. performed molecular experiments, with assistance from Y.W. S.F. performed phylogenetic analysis. Y. Osakabe and K.O. were responsible for genome-editing constructs. Y. Ozaki and A. K. collected and maintained the
plant materials, observed the sex phenotypes, and extracted the DNA. S.S. and K.Y. performed genome sequencing and assembly. K.M. and S.T. wrote the manuscript, helped by S.S. and S.F., and all other authors contributed to editing. The MSE1 sequence and high-throughput sequencing data used in this study have been deposited in DNA Data Bank of Japan (DDBJ) under accession numbers LC190965, SAMD00047009, SAMD00047010, SAMD00047011, SAMD00047624, and SAMD00064393.

References:

Akagi, T., Henry, I.M., Tao, R. \& Comai, L. (2014) A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646-650.

Ambawat, S., Sharma, P., Yadav, N.R. \& Yadav, R.C. (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol. Mol. Biol. Plants 19, 307321.

Aneja, M., Gianfagna, T.J., Garrison, S.A. \& Durner, E.F. (1999) Rapid sex-typing of Asparagus for male hybrid seed production using n-propyl
N-(3,4-dichlorophenyl)carbamate (NPC). HortScience 34, 1090-1094.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. \& Madden, T.L. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10, 421.

Caporali, E., Carboni, A., Galli, M.G., Rossi, G., Spada, A. \& Marziani Longo, G.P. (1994)
Development of male and female flower in Asparagus officinalis. Search for point of transition from hermaphroditic to unisexual developmental pathway. Sex. Plant Reprod. 7, 239-249.

Charlesworth, D. (2002) Plant sex determination and sex chromosomes. Heredity 88, 94101.

Charlesworth, B. \& Charlesworth, D. (1978) A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975-997.

Clough, S.J. \& Bent, A.F. (1998) Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. \& Robles, M. (2005)
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676.

Darwin, C. The different forms of flowers on plants of the same species. (John Murray, London, UK, 1877).

Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. \& Lepiniec, L. (2010)
MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573-581.
Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E.L., Tate, J. \& Punta, M. (2014) Pfam: the protein families database. Nucleic Acids Res. 42, D222-230.

Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker, B.J., Sharpe, T., Hall, G., Shea, T.P., Sykes, S., Berlin, A.M., Aird, D., Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke, A., Nusbaum, C., Lander, E.S. \& Jaffe, D.B. (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513-1518.

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis,
X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. \& Regev, A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652.

Harkess, A., Mercati, F., Shan, H.Y., Sunseri, F., Falavigna, A. \& Leebens-Mack, J. (2015) Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis). New Phytol. 207, 883-892.

Jamsari, A., Nitz, I., Reamon-Büttner, S.M. \& Jung, C. (2004) BAC-derived diagnostic markers for sex determination in asparagus. Theor. Appl. Genet. 108, 1140-1146.

Katoh, K. \& Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.

Kubitzki, K. \& Rudall, P. J. "Asparagaceae" in The Families and Genera of Vascular Plants (Springer, New York, 1998), vol. 3, pp. 125-129.

Kubota, S., Konno, I. \& Kanno, A. (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor. Appl. Genet. 124, 345-354.

Langmead, B., Trapnell, C., Pop, M. \& Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. \& Durbin, R.; 1000 Genome Project Data Processing Subgroup. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.

Löptien, H. (1979) Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Z. Pflanzenz 82, 162-173.

Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10-12.

Marks, M. 1973. A reconsideration of the genetic mechanism for sex determination in Asparagus officinalis. Proc. EUCARPIA Meeting on Asparagus (Asparagus officinalis L.), pp. 123-128. Wageningen, Netherlands: EUCARPIA.

Murashige, T. \& Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473-497.

Osakabe, Y., Watanabe, T., Sugano, S.S., Ueta, R., Ishihara, R., Shinozaki, K. \& Osakabe, K. (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci. Rep. 6, 26685.

Renner, S.S. (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588-1596. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G. \& Mesirov, J.P. (2011) Integrative genomics viewer. Nat. Biotechnol. 29, 24-26.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. \& Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539542.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D. \& Higgins, D.G. (2011) Fast, scalable
generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.

Stracke, R., Werber, M. \& Weisshaar, B. (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447-456.

Takayama, S. \& Isogai, A. (2005) Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467-489.

Talavera, G. \& Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. Telgmann-Rauber, A., Jamsari, A., Kinney, M.S., Pires, J.C. \& Jung, C. (2007) Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus. Mol. Genet. Genomics 278, 221-234.

Zhu, J., Chen, H., Li, H., Gao, J.F., Jiang, H., Wang, C., Guan, Y.F. \& Yang, Z.N. (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 55, 266-277.

Figure legends:

Fig. 1. Characterization of the MSE1 gene. (A and B) Photographs of male (A) and female (B) flowers of A. officinalis cv. Super Welcome. Arrows show the vestiges of opposite-sex organs. (C) RT-PCR analysis of full-length MSE1 using mRNA extracted from early buds. (D) PCR amplification of MSE1 from genomic DNA extracted from male and female individuals of A. officinalis cv. Super Welcome. (E) Domain structure of MSE1 protein. R2- and R3-type MYB domains are shown. (F and G) Quantitative RT-PCR
analysis of MSE1 expression using mRNA extracted from each tissue of A. officinalis cv. Super Welcome. Expression levels were normalized against the corresponding levels of Actin. Means and SEs of three (F) and nine (G) replicates are shown. (H) Comparison of the MSE1 locus between the X and Y chromosomes. Gray boxes show protein-coding regions. Dotted lines show the genomic regions that share DNA sequence similarities. Scaffolds were extracted from the assembly data of Illumina short read sequences from a single male DNA of A. officinalis cv. Super Welcome. PB means a long read sequence generated by PacBio sequencer using female genome.

Fig. 2. Conservation of MSE1 in genus Asparagus. PCR amplification of MSE1 from male (M) and female (F) individuals of A. officinalis three cultivars and dioecious (A) and eight individuals of hermaphroditic species (B) in genus Asparagus. Their sexes were determined by male-specific PCR markers or flower phenotypes.

Fig. 3. Genome editing of MSE1 orthologue, TDF1, in the model plant A. thaliana. (A) Genomic region of the TDF1 locus in A. thaliana. Gray boxes show protein-coding regions. Arrows show target sites (GE1, position 32-10 in MSE1 cDNA; GE2, 463-485; GE3, 610588) of the guide RNA-CRISPR/Cas9 complex. (B) Transgenes were amplified from genomic DNA of each transformant with primers for amplifying the guide RNA region. (C to F) Phenotypes of transgenic plants obtained by TDF1 genome editing. The transformants were designated as tdf1-GE1 to 3. Photographs show 2-3-week-old shoots of wild type (Col-0) (C), tdf1-GE1 (D), tdf1-GE2 (E), and tdf1-GE3 (F). Arrows show siliques. Bars, 1
cm. (G and \mathbf{H}) Male sterile phenotype of tdf1-GE3. Pollen grains were observed on anther and stigma in wild type (G), but not in tdf1-GE3 (H). Bars, 1 mm .

Supporting Information:

Additional Supporting Information may be found online in the supporting information tab for this article:

Figure S1 Summary of screening for male-specific genes in A. officinalis.
Figure S2 PCR amplification of male-specific gene candidates in male and female genomes.

Figure S3 Female RNA sequence fragments map to the 5’ terminus of MSE1 cDNA.
Figure S4 MSE1 is tightly linked to the Y chromosome in A. officinalis.
Figure S5 Alignment of predicted amino-acid sequences of MSE1 and other homologues.
Figure S6 Male DNA sequence reads are specifically mapped to the Scaffold_47312.
Figure S7 Alignment of DNA sequences of $M S E 1^{Y}$ and $M S E 1^{X}$ in A. officinalis.
Figure S8 One-base deletion creates a stop codon in $M S E 1^{X}$ in A. officinalis.
Figure S9 Phylogeny of genus Asparagus.
Figure S10 Alignment of predicted amino-acid sequences of MSE1 orthologues in asparagus and hermaphroditic species.

Figure S11 Alignment of predicted amino-acid sequences of MSE1 orthologues from male and female individuals in three dioecious species that have no deleterious mutation in MSE1 coding region.

Figure S12 Phylogeny of MSE1-related MYB domain transcription factors.

Table S1 Summary of transcriptome analysis of developing A. officinalis flowers
Table S2 List of contigs enriched in male genome sequencings

Fig. 1

B
A. densiflous
A. plumosus
A. virgatus
A. asparagoides
A. scandens

Fig. 2

A
TDF1

B

Fig. 3

RNA from 0.5-0.8 mm buds (male and female) $\downarrow \begin{aligned} & \text { HiSeq2000 } \\ & \text { Paired-end, } 101 \mathrm{bp}\end{aligned}$
Male, 10.5 Gbp; Female, 11.3 Gbp

\downarrow| de novo assembly |
| :--- |
| (Trinity) |

Mapping (bowtie) Male, 52.8 M reads Female, 56.6 M reads

Male-biased expression (male/female, 10>) 149 contigs

114 contigs

Male specific genes (male/female, 10>)
7 contigs (2 annotated genes)

Fig. S1. Summary of screening for male-specific genes in A. officinalis.
RNA extracted from early flowers of male and female A. officinalis cv . Super Welcome plants was sequenced on an Illumina HiSeq instrument. Assembly of RNA reads was performed with the Trinity program using male reads, yielding 104,937 contigs. Mapping of male and female RNA sequence reads against the assembled contigs revealed 149 contigs with male-biased expression (i.e., ≥ 10-fold more mapped reads in males than in females, and more than 50 mapped reads in males). After removal of splicing variants, 114 male-specific candidates were annotated by BLAST2GO, and further mapping of genome reads was performed. Ultimately, seven contigs were screened as male-specific gene.

Fig. S2. PCR amplification of male-specific gene candidates in male and female genomes. PCR was performed each male-specific candidate with specific primers using male and female genomic DNA from A. officinalis cv. Super Welcome (pools of four individuals for each sex). Only comp17730 (MSE1) was specifically amplified in this experiment.

Comp17730 (MSE1)

100 bp

Fig. S3. Female RNA sequence fragments map to the 5' terminus of MSE1 cDNA. Mapping data of male and female RNA sequence reads against MSE1 cDNA was visualized using the IGV software. Gray bars show single RNA sequence reads mapped to MSE1. Colored vertical lines represent mismatches with the assembled sequence, caused by SNPs or sequencing errors.

$$
\mathrm{n}=112
$$

Fig. S4. MSE1 is tightly linked to the Y chromosome in A. officinalis.
Seeds of A. officinalis cv . Super Welcome were treated with APC. After a month, about 60% of the seedlings had flowered. Individuals with abnormal or bisexual flowers were removed from this experiment. Genomic DNA was extracted from each individual and used as template for PCR amplification with MSE1-specific primers.

AoMSE1	1 MGRPPCCDKSNUKKGLWTEEEDLKLIAYTNTHGIGNWTSUPKKAGLKRCGKSCRLRWTNY
XP_006649927	1 MGRPPCCDKANVKKGPWTAEEDAKLLAYTSTHGTGNWTSUPQRAGLKRCGKSCRLRYTNY
BAK03933	1 MGRPPCCDKANVKKGPWTAEEDAKLLAYTSNHGTGNWTSUPQRAGLKRCGKSCRLRYTNY
NP_001173380	1 MGRPPCCDKANVKKGPWTAEEDAKLLAYTSTHGTGNWTSUPQRAGLKRCGKSCRLRYTNY
EAY89620	1 MGRPPCCDKANVKKGPWTPEEDAKLLAYTSTHGTGNWTSUPQRAGLKRCGKSCRLRYTNY

AoMSE1	61 LRPNLKHES
XP_006649927	61 LRPNLKHENFTQEEEELIVTLHAMMLGSRWSLIANQLPGRTDNDVKNYWNTKLSKKLRQRG
BAK03933	61 LRPNLKHENFTQEEEELIVTLHAMMLGSRWSLIANQLPGRTDNDVKNYWNTKLSKKLRQRG
NP_001173380	61 LRPNLKHENFTQEEEELIVTLHAMMLGSRWSLIANQLPGRTDNDVKNYWNTKLSKKLRQRG
EAY89620	$61 \xrightarrow{\text { LRPNLKHENFTQEEEELIVTLHAMLGSRWSLIANQLPGRTDNDVKNYUNTKLSKKLRQRG }}$
AoMSE1	121 IDPVTHKPISQIKETITTLAAAAAANH-HHLIHP------PPFNTRUNSCLSRDLKNVLLS
XP_006649927	121 IDPITHRPIADLMQSIGTLAIRPPPTAGVASY---VPASQAAPPAFTAYHDAPYFAALPQ
BAK03933	121 IDPITHRPIADLMQSIGTLSIRPPPPSAAGASSSSYLPVNPAAAPGLQLLHDDMPYHAALN
NP_001173380	121 IDPITHRPIADLMQSIGTLAIRPPPAAGAAP---------PPCLPVFHDAPYFAALQH
EAY89620	121 IDPITHRPIADLMQSIGTLAIRPPPAAGAAP--------->PPCLPVFHDAPYFAALQH

AoMSE1	5 KPQQFYEPTTATSTTLDEVYKQDKEIKWSDYLVDDVFVPNQE-----KELVVNGYGKEKV
XP_006649927	178 QQ----VVTKVEADAPVSPEQKPHQLNWSDFLADDATGAALAGHIHDAPQAALGQYQEGPA
BAK03933	181 H-HQQQQVITLLDADAPGAAASPDHQLKWSDFLDAAAL------EAAPQVVLGQYHEAAV
NP_001173380	170 QH-IQQQQUVTHUDADAPASPDSQHLQLNWSDFLADDAAGHGAD--APAPQAALGQYQEGSA
EAY89620	170 QH-IQQQQVVTHUDADAPASPDSQHLQLNWSDFLADDAAGHGAD--APAPQAALGQYQEGSA

AoMSE1	230 TSAVDEEVSSTVFGGEG--------------SSSSSSFVEGILDQGREMMMEFPEFFYDLL
XP_006649927	234 AAATGIVGG-RAFGDVDGASG----AVDDGAGAASAFIDAILDCDKEMGVDQLIAEMLAD
BAK03933	234 AGG----GAHAYGDTDSTAAN-GVGGDGGEDSAASAFIDAMLDSDKEMGVDQLIADLLAD
NP_001173380	228 PAATAVVGGGRAFGDVDGASAGVGAGTDDGAGAASAFIDAILDCDKEMGVDQLIAEMLAD
EAY89620	228 PAATAVVGGGRAFGDVDGASAGVGAGTDDGAGAASAFIDAILDCDKEMGVDQLIAEMMLAD

AoMSE1	27
XP_006649927	289 PAYYGGGGGGSSSSSELGWGC
BAK03933	288 PAYYYGGSSSSSKKSELGWGC
NP_001173380	288 PAYYGGGGG-SSSSELGWGC
EAY89620	288 PAYYGGGGG-SSSSELGWGC

Fig. S5. Alignment of predicted amino-acid sequences of MSE1 and other homologues.
Double-headed black bars show MYB domains. Magenta bars represent unknown conserved motifs. Aligned protein sequences are AoMSE1 (A. officinalis); XP_006649927, Oryza brachyantha (wild rice; accession no. XP_006649927); BAK03933, Hordeum vulgare (barley; BAK03933); NP_001173380, Oryza sativa (Japonica Group; NP_001173380); and EAY89620, Oryza sativa (Indica Group; EAY89620). Colored letters indicate conserved (red) or similar (blue) residues in this alignment.

Scaffold_47312

500 bp

Fig. S6. Male DNA sequence reads are specifically mapped to the Scaffold_47312. Male and female DNA sequence reads were mapped to the Scaffold_47312 by bowtie. Mapping data was visualized using the IGV software. Arrow shows MSE1 coding region including introns. Gray bars show single DNA sequence reads mapped to MSE1. Colored vertical lines represent mismatches with the assembled sequence, caused by SNPs or sequencing errors.

SW_Y1 61 GAC-----TTTGGACTGAGGAAGAAGATTTGAAGCTAATAGCTTATACCAACACTCATGG
61 GAC-----TTTGGACTGAGGAAGAAGATTTGAAGCTAATAGCTTATACCAACACTCATGG
SW X1
61 GAC-----TTTGGACTGAGGAAGAAGATTTGAAGCTAATAGCTTA-ACCAACACTCATGG
MW_X1 61 GAC----TTTGGACTGAGGAAGAAGATTTGAAGCTAATAGCTTA-ACCAACACTCATGG
NA_X1 61 GAC-----TTTGGACTGAGGAAGAAGATTTGAAGCTAATAGCTTA-ACCAACACTCATGG
Aps_X1 61 GAC-----TTTGGACTGAGGAAGAAGATTTGAAGCTAATAGCTTA-ACCAACACTCATGG
Aki_X1 61 GACTTTAATTTGGACTGAGCAAGAAGATTTGAAGCTAATAGCTTA-ACCAACACTCATGG
Asb_X1 61 GAC-----TTTGGACTGAGGAAGAAGATTTGAAACTAACAGCTTA-ACCAACACTCATGG
Ave_X1 61 GAC-----TTTGGACTGAGGAAGAAGATTTGAAACTAATAGCTTA-ACCAACACTCATGG

SW_Y1 116 AATAGGAAATTGGACTTCTGTTCCAAAGAAAGCAGGTTCTTTTTACGTAGCTAATTGGTT
MW_Y1 116 AATAGGAAATTGGACTTCTGTTCCAAAGAAAGCAGGTTCTTTTTACGTAGCTAATTGGTT
NA_Y1 116 AATAGGAAATTGGACTTCTGTTCCAAAGAAAGCAGGTTCTTTTTACGTAGCTAATTGGTT
SW_X1 115 AATAGGAAATTGGACATCTGTTCCAAAGAAAGCAGGTTCTTTTTATGTAGCTAATTGGTT
MW_X1 115 AATAGGAAATTGGACATCTGTTCCAAAGAAAGCAGGTTCTTTTTATGTAGCTAATTGGTT
NA_X1 115 AATAGGAAATTGGACATCTGTTCCAAAGAAAGCAGGTTCTTTTTATGTAGCTAATTGGTT
Aps_X1 115 AATAGGAAATTGGACATCTGTTCCAAAGAAAGCAGGTTCTTTTTATGTAGCTAATTGGTT
Aki_X1 120 AATAGGAAATTTGACTTCTGTTCCAAAGAAAGCAGGTTCTTTTAATGTAGCTAATTGGTT
Asb_X1 115 AATAGGATATTGGACTTCTGTTCCAAAGAAAGCAGGTTCTTTTTATGTAGCTAATTGGTT
Ave_X1 115 AATAAGATATTGGACTTCTGTTCCAAAGAAAGCAGGTTCTTTTTATGTAGCTAATTGATT

SW_Y1 176 GATTTTCTTCAAAATAATATTTACGTTATTGATTTTTTATTTATTTATTGGTAATGTGAG MW_Y1 176 GATTTTCTTCAAAATAATATTTACGTTATTGATTTTTTATTTATTTATTGGTAATGTGAG NA_Y1 176 GATTTTCTTCAAAATAATATTTACGTTATTGATTTTTTATTTATTTATTGGTAATGTGAG SW_X1 175 GATTTTCTTCAAAATAATATTTACCTTATTGATTTTTTTCTTATTTATTGGTAATGTCAG
MW_X1 175 GATTTTCTTCAAAATAATATTTACCTTATTGATTTTTTTCTTATTTATTGGTAATGTGAG
NA_X1 175 GATTTTCTTCAAAATAATATTTACCTTATTGATTTTTTTCTTATTTATTGGTAATGTCAG
Aps_X1 175 GATTTTCTTCAAAATAATATTTACCTTATTGATTTTTTTCTTATTTATTGGTAATGTGAG
Aki_X1 180 GATTTTCTTCAAAATAATATTTACCTTATTGATTTTTTTCTTATTTATTGGTAATGTGAG
Asb_X1 175 GATTTTCTTCAAAAAAATATTTACCTTATTGATTTTTTTCTTATTTATTGGTAACGTGAG
Ave_X1 175 GATTTTCTTCAAAAAAATATTTACCTTATTGATTTTTTTCTTATTTATTGGTAATGTGAG

SW_Y1	236	TATGCAATTTTAGGGTTGAAGAGATGTGGGAAGAGCTGTAG----GCTAAGATGGACTAA
MW_Y1	236	TATGCAATTTTAGGGTTGAAGAGATGTGGGAAGAGCTGTAG----GCTAAGATGGACTAA
NA_Y1	236	TATGCAATTTTAGGGTTGAAGAGATGTGGGAAGAGCTGTAG----GCTAAGATGGACTAA
SW_X1	235	TATGCAATTTTAGGGTTTAAGAGATGTGGGAAGAGCTGTAG----GCTGAGATGGACTAA
MW_X1	235	TATGCAATTTTATGGTTTAAGAGATGTGGGAAGAGCTGTAG----GCTGAGATGGACTAA
NA_X1	235	TATGCAATTTTAGGGTTTAAGAGATGTGGGAAGAGCTGTAG----GCTGAGATGGACTAA
Aps_X1	235	TATGCAATTTTATGGTTTAAGAGATGTGGGAAGAGCTGTAG----GCTGAGATGGACTAA
Aki_X1	240	TAAGCAATATTAGGGTTTAAGAGATGTGGGAAGAGCTGTAGCTAGGCTGAGATGGACTAA
Asb_X1	235	TATGCAATTTTAGGGTTGAAGAGATGTGGGAAGAGCTGTAG----GCTGAGATGGACTAA
Ave_X1	235	TATGCAATTTTAGGGTTGAAGAGATATGGGAAGAGCTGTAG----GCTGAGATGGACTAA

SW_Y1
MW_Y1
NA_Y1
SW_X1
MW_X1
NA_X1
Aps_X1 Aki X1 300 TTATCTGCGCCCTAATTTGAAGCATGAGAGCTTCACTCAACAAGAAGAGGAGATGATTAT Asb_X1 291 TTATCTGCGCCCTAATTTGAAGCATGAGAGCTTCACTCAACAAGAAGAGGAGATGATTAT Ave_X1 291 TTATCTGCGCCCTAATTTGAAGCATGAGAGCTTCACTCAACAAGAAGAGGAGATGATTAT

SW_Y1 352 AACACTTCATGCTACAATCGGAAGCCGGTATTGTTCTCTCTATCAATTTATTTGATT-GA
MW_Y1 352 AACACTTCATGCTACAATCGGAAGCCGGTATTGTTCTCTCTATCAATTTATTTGATT-GA
NA_Y1

$$
352 \mathrm{~A}
$$

SW_X1 351
MW_X1 351
NA_X1 351
Aps_X1 351 AACGCTTCAAGCTACAATCGGAAGCCGGTATTGTTCTCTCTCTCAATTTATTTGAT--GA
Aki_X1 360 AACACTTCATGCTACAATCGGAAGCCGGTATTGTTCTCTCTCTCAATTTATTTGATT-GA
Asb_X1 351 ------TCATGCTACAATCGGAAGCCGGTATTGTTCTCTCTCTCAATTTATTTGATTTGA
Ave_X1 351 AACACTTGATGCTATGATCGGCAGCCGGTATTGTTCTCTCTTTCAATTTATTTGATT-GA

SW_Y1 411 GGATTTTATATCATGATGTTAA---CTACTGTAGTTTTCATTTTAGTCAATTAGGAACAT
MW_Y1 411 GGATTTTATATCATGATGTTAA---CTACTGTAGTTTTCATTTTAGTCAATTAGGAACAT
NA_Y1 411 GGATTTTATATCATGATGTTAA---CTACTGTAGTTTTCATTTTAGTCAATTAGGAACAT
SW_X1 351 ---------ATCATGATGTTAA---CTACTGTAGTCCTCATTTTAGTCAATTAGGAACAA
MW_X1 410 GGATTTTATATCATGATGTTAA---CTACTGTAGTTCTCATTTTAGTCAATTAGGAACAA
NA_X1 $351------$-ATCATGATGTTAA---CTACTGTAGTCCTCATTTTAGTCAATTAGGAACAA
Aps_X1 409 GGATTTTATATCATGATGTTAA---CTACTGTAGTTCTCATTTTAGTCAATTAGGAACAA
Aki_X1 419 GGATTTTATATCATGATGTTAA---CTACTGTAGTTCTCATTTTAGTCAATTAGGAACAA
Asb_X1 405 GGATTTTATATCATGATGTTAA---CTACTGTAGTTCTCATTTTAGTCAATTAGGAACAA
Ave_X1 410 GGATTTTATATCATGATGTTAAGTACTACTGTAGTTCTCATTTTAGTCAATTAGGAACAA

SW_Y1 468 TATTTTGTTTGAATAGTTTTAACCTAGAAAGAATTTCTAGTGTAGAGCTGCTAACACAAA MW_Y1 468 TATTTTGTTTGAATAGTTTTAACCTAGAAAGAATTTCTAGTGTAGAGCTGCTAACACAAA NA_Y1 468 TATTTTGTTTGAATAGTTTTAACCTAGAAAGAATTTCTAGTGTAGAGCTGCTAACACAAA SW_X1 399 TATTTTGTTTGAATAGTTTTAACCTAGAATGAATTTCTAGTGTAGTGCTGCTAACACAAA MW_X1 467 TATTTTGTTTGAATAATTTTAACCTAGAATGAATTTCTAGTGTAGTGCTGCTAACACAAA NA_X1 399 TATTTTGTTTGAATAGTTTTAACCTAGAATGAATTTCTAGTGTAGTGCTGCTAACACAAA Aps_X1 466 TATTTTGTTTGAATAATTTTAACCTAGAATGAATTTCTAGTGTAGTGCTGCTAACACAAA Aki_X1 476 TATTTTGTTTGAATAGTTTT-
Asb_X1 462 TATTTTGTTTGAATAGTTTTAACCTAGAATGAATTTCTAGTGTAGTGCTGCTAACACAAA Ave_X1 470 TATTTTGTTTGAATAGTTTTAACC

SW_Y2
MW_Y2
NA_Y2
SW_X2
MW_X2
NA_X2
Aps_X2
Aki_X2
Asb_X2
Ave_X2

61 CATAAAGAACCACTGGAACACAAAACTGAGCAAAAAACTGT----GCCAGCAAGGCATCG
MW_Y2 61 CATAAAGAACCACTGGAACACAAAACTGAGCAAAAAACTGT----GCCAGCAAGGCATCG NA Y2 61 CATAAAGAACCACTGGAACACAAAACTGAGCAAAAAACTGT----GCCAGCAAGGCATCG SW_X2 43 CATAAAGAACCGCCGGAACACAAAACTGAGCAGAAAGCTGTACGTGGCAGCAAGGCATCG MW_X2 43 CATAAAGAACCACCGGAACACAAAACTGAACAGAAAACTGTACGTGGCAGCAAGGCATCG NA_X2 43 CATAAAGAACCACCGGAACACAAAACTGAACAGAAAACTGTACGTGGCAGCAAGGCATCG Aps_X2 43 CATAAAGAACCACCGGAACACAAAACTGAGCAGAAAACTGTACGTGGCAGCAAGGCATCG Aki_X2 43 CATAAAGAACCACTGGAACACAAAACTGAGCAGAAAACTGTACGTGCCAGCAAGGCATCG Asb_X2 43 CATAAAGAACCACTGGAACACAAAACTGAGCAGAAAACTGTACGTACCAGCAAGGCATCG Ave X2 50 CGTAAAGAACCACCGGAACACAAAACTGAGCAAAAAACTGTACGTGCCAGCAAGGCATCG

SW_Y2
MW_Y2
117 A-CCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTAGCCGCC
117 A-CCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTAGCCGCC
NA Y2 117 A-CCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTAGCCGCC
SW_X2 103 AACCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTCTCCGCC
MW_X2 103 AACCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTCTCCGCC
NA X2 103 AACCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTCTCCGCC
Aps_X2 103 AACCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTCTCCGCC
Aki_X2 103 AACGCCGTCACCCACGAACCCATCTCTCAAATCAAGGAAACCATCACCACTCTTGCTGCG
Asb_X2 103 AACGCCGTCACCCACAAACCCATCTCTCAAATCAA
Ave_X2 110 AACCCCGTCACCCACAAACCCATCTCTCAAATCAAGGAA-------CCACTCTCTCCGCC

SW_Y2 176 GC------CGCCGCCGCCAACCACC--ACCTCCTAATCCACCCTCCACCCTTCAACACCC
MW_Y2 176 GC------CGCCGCCGCCAACCACC--ACCTCCTAATCCACCCTCCACCCTTCAACACCC
NA_Y2 176 GC------CGCCGCCGCCAACCACC--ACCTCCTAATCCACCCTCCACCCTTCAACACCC
SW_X2 163 GC------CGCCGCCGCCAACCACC--ACCACCTAATCCACCCTCCACCCTTCAACACCC
MW_X2 163 GCCGCCGCTGCCGCCGCCAACCACC--ACCACCTAATCCACCCTCCACCCTTCAACACCC
NA X2 163 GCCGCCGCTGCCGCCGCCAACCACC--ACCACCTAATCCACCCTCCACCCTTCAACACCC
Aps_X2 163 GCTGCCGCCGCCGCCGCCAACCACC--ACCACCTAATCCACCCTCCACCCTTCAACACCC
Aki_X2 163 GC------CGCCGCCAACCACCACC-----ACCTAATCCACCCTCCACCCTTCAACACCC
Asb_X2
Ave_X2

SW_Y2
MW_Y2
NA_Y
SW_X
28
MW_X2
21 GCGTCAACAGCTGCCTCAGCCGCGCGTGACCTCAAGAACGTCCTCCTCTCCA
NA_X2 221 GCGTCAACAGCTGCCTCAGCCGCGCGTGACCTCAAGAACGTCCTCCTCTCCA
Aps_X2 221 GCGTCAGCAGCTGCCTCAGCCGCGCGCGACCTCAAGAACGTCCTCCTCTCCA
Aki_X2 212 GCGTCAACAGCTGCCTCAGCCGTGCGCGACCTCAAGAACGTCCTCGATCCTCTCCAAATT
Asb_X2
Ave_X2
217
SW Y2
MW_Y2
276 AACCGCAACAATTCTACGAACCAACAACAGCCACAAGCACCACATTGGATGAGGTTTATA

267 AACCGCAACAATTCTACGAACCAACAACAGCCACA--------TTGGATGAGGITTATA
MW_X2 273 AACCGCAACAATTCTACGAACCAACAACAGCCACA--------TTGGATGAGGTTTATA
NA_X2 273 AACCGCAACAATTCTACGAACCAACAACAGCCACA---------TTGGATGAGGTTTATA
Aps_X2 273 AACCGCAACAATTCTACGAACCAACAACAGCCACA---------TTGGATGAGGTTTATA
Aki_X2 272 AACCGCAACAATTCTACGAACCAACAACAGCCACA---------TTGGATGAGGTTTATA
Asb_X2
Ave_X2 265 AACCGCAACAATTCTACGAACCAACAACAGCCACAAGCACCACATTGGATGAGGTGTATA

SW_Y2 336 AGCAGGATAAGGAGATCAAATGGAGCGATTATCTCGTCGACGA---TGTTTTCGTGCCGA

MW_Y2
336 AGCAGGATAAGGAGATCAAATGGAGCGATTATCTCGTCGACGA---TGTTTTCGTGCCGA
NA_Y2 336 AGCAGGATAAGGAGATCAAATGGAGCGATTATCTCGTCGACGA---TGTTTTCGTGCCGA
SW_X2 318 AACAGGATATGGAGATCAAATGGAGCGATTATCTCGT
MW_X2 324 AACAGGATATGGAGATCAAATGGAGCGATTATCTCGT
NA_X2 324 AACAGGATATGGAGATCAAATGGAGCGATTATCTCGT
Aps_X2 324 AACAGGATGTGGAGATCAAATGGAGCGATTATCTCGT
Aki X2 323 AGCAGGATATGGAGATCAAATGGAGCGATTATCTCGTCGACGA---TGTTTTCGTGCCGA
Asb_X2
Ave_X2 325 AGCAGGATAAGGAGATCAAATGGAGCGATTATCTCGTCGACGACGATGTTTTCGTGCAGA
SW_Y2 393 ACCAAGAGAAGGAATTGGTGGTGAATGGATATGGGAAGGAGAAGGTGACAAGTGCAGTGG
MW_Y2 393 ACCAAGAGAAGGAATTGGTGGTGAATGGATATGGGAAGGAGAAGGTGACAAGTGCAGTGG
NA_Y2 393 ACCAAGAGAAGGAATTGGTGGTGAATGGATATGGGAAGGAGAAGGTGACAAGTGCAGTGG
SW_X2 355
MW_X2 361
NA X2 361
Aps_X2 361
Aki_X2 380
Asb_X2
Ave_X2 385 ACCAAGAGAAGGAATTGGTGGTGAATGGACATGGGAAGGAGAAGGTGACAAGTGCAGTGG
SW_Y2
453
MW_Y2
NA_Y2 45
SW_X2 355
MW_X2 361
NA_X2 361
Aps_X2 361
Aki_X2 440
Asb_X2
Ave_X2 445 GATGAGGAGGTGAGTAGTAGTGTGTTAATTTGGAGGTGAAGGGACTAGTAGTTCGAGTTC
SW_Y2 508 TTTTGTGGAGGGAATATTA---GATCAGGGGAGGGAGATGATGATGGAGTTCCCTGAGTT
MW_Y2 508 TTTTGTGGAGGGAATATTA---GATCAGGGGAGGGAGATGATGATGGAGTTCCCTGAGTT
NA_Y2 508 TTTTGTGGAGGGAATATTA---GATCAGGGGAGGGAGATGATGATGGAGTTCCCTGAGTT
SW_X2 355
MW_X2 361
NA_X2 361
Aps_X2 361
Aki_X2 49
Asb_X2
Ave_X2
505 TTTTGTGGAGGGAATATTATTAGATCAGGAGAGGGAGATGATGATGGAGTTCCCTGAGTT

SW_Y2 565 TTTTT-------ATGATTTGCTGTAGGCGTTTGTGCGTTGAGGATCTTAGT---TAGGAA
MW_Y2 565 TTTTT-------ATGATTTGCTGTAGGCGTTTGTGCGTTGAGGATCTTAGT---TAGGAA
NA_Y2 565 TTTTT------ATGATTTGCTGTAGGCGTTTGTGCGTTGAGGATCTTAGT---TAGGAA
SW_X2 $355--------------------$--AGGCGTTTGTGCGTTGAGGACCTTAGTAATTAGGAA
MW_X2 361 -----------------------AGGCGTTTGTGCGTTGAGGACCTTAGTAATTAGGAA
NA_X2 361----------------------AGGCGTTTGTGCGTTGAGGACCTTAGTAATTAGGAA
Aps_X2 361----------------------AGGCGTTTGTGCGTTGAGGACCTTAGTAATTAGGAA
Aki_X2 552 TTTTTTTTTTTAATGATTTGCTGTAGGCG
Asb X2
Ave_X2
565 TTTTTT-----AATGATTTGCTGTAGGCGTTTGTGCGTTGAGGATCTTT

SW_Y2 615 CTTCGTGTGGAGTATTAGTAAATTATTTTAAACTTAGGTTGATGTTTAGTCAGGGTGGTA MW_Y2 615 CTTCGTGTGGAGTATTAGTAAATTATTTTAAACTTAGGTTGATGTTTAGTCAGGGTGGTA NA_Y2 615 CTTCGTGTGGAGTATTAGTAAATTATTTTAAACTTAGGTTGATGTTTAGTCAGGGTGGTA SW_X2 391 CTTCGTGTGGGGTATTAGTGAATTATTTTAAGCTTAGGTTGATGTTTAGTCAGGGTAGCG MW_X2 397 CTTCGTGTGGGGTATTAGTGAATTATTTTAAGCTTAGGTTGATGTTTAGTCAGGGTAGCG NA_X2 397 CTTCGTGTGGGGTATTAGTGAATTATTTTAAGCTTAGGTTGATGTTTAGTCAGGGTAGCG Aps_X2 397 CTTCGTGTGGGGTATTAGTGAATTATTTTAAGCTTAGGTTGATGTTTAGTCAGGGTAGCG

Fig. S7. Alignment of DNA sequences of $M S E 1^{Y}$ and $M S E 1^{x}$ in A. officinalis and related species.
MSE1 ${ }^{Y}$ and MSE1 ${ }^{X}$ were PCR-amplified from three A. officinalis cultivars [SW (Super Welcome), MW (Mary Washington), and NA (Niagara)] and related species [Aps (A. pseudoscaber), Aki (A. kiusianus), Asb (A. schoberioides), Ave (A. verticillatus)] and sequenced. Y1 and X 1 show MSE1 ${ }^{Y}$ and MSE1 ${ }^{X}$ containing the first and second exons (A), and Y 2 and X 2 show the third exon (B). Green highlight indicates the protein-coding region of MSE1 ${ }^{Y}$. Yellow highlight indicates conserved deleterious mutations in MSE1 ${ }^{X}$ among these species. Although X 2 sequence of A. schoberioides is partial, there is no conserved deleterious mutation among other dioecious species in the non-sequenced $M S E 1^{X}$ region of A. schoberioides.

MSE1 ${ }^{\text {r }}$

MSE1 x

Fig. S8. One-base deletion creates a stop codon in MSE1 ${ }^{X}$ in A. officinalis. DNA and translated amino acids of the first 120 bp from the start codon in MSE1 ${ }^{Y}$ and MSE1 ${ }^{X}$. One-base deletion in MSE1 ${ }^{X}$ results in a conversion from TAT (Y) to TAA (stop codon).

Fig. S9. Phylogeny of genus Asparagus.
The majority-rule consensus tree based on Bayesian inference using the five chloroplast intergenic sequences reported by Kubota et al. 2012. The Cordyline stricta sequence was used as the outgroup.

A. officinalis 240 TVFGGEGSSSSSSFVEGILDQGREMMMEFPEFFFYDLL
A. pseudoscaber 240 TVFGGEGSSSSSSFVEGILDQGREMMMEFPEFFFYDLL
A.kiusianus 239 SVFGGEGSSSSSSFVEGILDQGREMMMEFPEFFFYDLL
A. verticillatus 239 SVFGGEGSSSSSSFVEGILDQEREMMMEFPEFFFYDLL
A. schoberioides 239 SVFGGEGSSSSSSFVEGILDQEREMMMEFPEVFYDLL
A. densiflorus 239 SVFGGEGSSSSSSFVEGILDQGREMMMEFPQFFFYDLL
A. plumosus
A. virgatus
A. asparagoides 240 RVFGGEGSSSSGSFVEGILDQERAMMMEFPEFFFYDLL 240 SVFGVEGGSSSSSFVEGILDQEREMMMGFPQFFYDLL
234 SVFGGEGSSGSSSFVEGILDQEREMTMEFPQFFYDLL
Fig. S10. Alignment of predicted amino-acid sequences of MSE1 orthologues in asparagus and hermaphroditic species.
MSE1 orthologues of hermaphroditic species in genus Asparagus were PCR-amplified and sequenced. Colored letters indicate conserved (red) or similar (blue) residues in this alignment.
A. officinalis_Y 1 MGRPPCCDKSNUKKGLLTEEEDLKLIAYTNTHGIGNWTSUPKKAGLKRCGKSCRLRWTNY
A. acutifolius_M
A. stipularis_M
A. cochinchinensis_M
A. acutifolius_F
A. stipularis_F
A. cochinchinensis_F 1 MGRPPCCDKSNUKKGLLTEEEDLKLIAYTNTYGIGNWTSVPKKAGLKRCGKSCRLRUTNY 1 MGRPPCCDKSNUKKGLLTEEEDLKLIAYTNTHGIGNUTSUPKKAGLKRCGKSCRLRUTNY 1 MGRPPCCDKSNUKKGLLTEEEDLKLIAYTNTHGIGNWTSUPKKAGLKRCGKSCRLRLTNY 1 MGRPPCCDKSNUKKGLLTEEEDLKLIAYTNTYGIGNWTSUPKKAGLKRCGKSCRLRWTNY 1 MGRPPCCDKSNUKKGLWTEEEDLKLIAYTNTHGIGNWTSUPKKAGLKRCGKSCRLRWTNY 1 MgrppccidkSnvkkgluteeedukliaytnthgignuTsupkkaglkrcakscrlputny
A. officinalis_Y
A. acutifolius_M
A. stipularis_M
A. cochinchinensis_M
A. acutifolius_F
A. stipularis_F
A. cochinchinensis_F
A. officinalis_Y
A. acutifolius_M
A. stipularis_M
A. cochinchinensis_M
A. acutifolius_F
A. stipularis_F
A. cochinchinensis_F
A. officinalis_Y
A. acutifolius_M
A. stipularis_M
A. cochinchinensis_M
A. acutifolius_F
A. stipularis_F
A. cochinchinensis_F
A. officinalis_Y
A. acutifolius_M
A. stipularis_M
A. cochinchinensis_M
A. acutifolius_F
A. stipularis_F
A. cochinchinensis_F

121 IDPVTHKPISQIKETITTLAAAAAAN----HHLLLIIHPPPFNTRVN-SCLSRDLKNULLSK
121 IDPVTHKPISQIKETITTLAAAAN------HH-HIHLIHPPPFNTRVN-SCLSRDLKNVLLSK
121 IDPVTHKPPISQIKETITTLTAAAANNH-HH-HH-HH-HH-HLIHPPPPFNTHAN-GCLSRDLKNVLLSK
121 IDPVTHKPPISQIKETITTLAAAAASAAA--NHH-HHLIHIHPPPFNARVNSCCLSRDLKNVLLSK
121 IDPVTHKPISQIKETITTLAAAAN-----HHHH-HLIHPPPPFNTRVN-SCLSRDLKNVLLSK
121 IDPVTHKPPISHIKETITTLTAAAAAANH-HH-HH-HIHHLIHIHPPPFNTHAN-GCLSRDLKNVLLSK
121 IDPVTHKPPISQIKETITTLAAAAAAAAA--NH-HIHLIHPPPPFNARVNSCCLSRDLKNVLLSK

176 PQQFYEPTTATSTTLDEVYK-QDKEIKWSDYLVDDVFVPNQEKELVVNGYGKEKVTSAVD
174 PRQFYEPTTATSTTSDEVHE-QDKEIEWSDFLVDDVFVSNQEKDSUVNGCGKETVTRTVD
180 PQQFYEPTTATSTTLDEVIH-QDAKEIKWSDFLVDDVFVSNQEKDSUANGNGKEKUTRTVG 179 PQQFYEPTTATSTTLDEUYNKQDKEIKWSDYLVDDVFVPNQEKELVVNGYGKEKVTSAVD 175 PRQFYEPTTATSTTLDEVHE-QDKEIEWSDFLVDDUFVSNQEKDSUANGCGKETVTRTVD 180 PQQFYEPTTATSTTLDDVH-K-QDKEIKWSDFLVDDVFVSNQEKDSUANGYGKEKUTRTVG 179 PQQFYEPTTATSTTLDEUYNKQDKEIKWSDYLVDDUFVPNQEKELVVNGYGKEKVTSAUD

Fig. S11. Alignment of predicted amino-acid sequences of MSE1 orthologues from male and female individuals in three dioecious species that have no deleterious mutation in MSE1 coding region.
MSE1 genome fragments were PCR-amplified and sequenced from male and female individuals of A. acutifolius, A. stipularis, and A. cochinchinensis. Colored letters indicate conserved (red) or similar (blue) residues in this alignment.

Fig. S12. Phylogeny of MSE1-related MYB domain transcription factors.
The majority-rule consensus tree based on Bayesian inference. Node support values indicate Bayesian posterior probabilities. Homo sapiens MYB (HsMYB; accession no. NP_001155129) protein was used as the outgroup. Amino-acid sequences used in this analysis are AoMSE1 (A. officinalis), VvMSE1 (grape; accession no. CAN75378), TcMSE1 (cacao; XP_007099739), SIMSE1 (tomato; XP_004234868), HvMSE1 (barley; BAK03933), and OsMSE1 (rice; NP_001173380), and MYB proteins from A. thaliana (AtMYB35/TDF1, NP_189488; AtMYB103, NP_200422; AtMYB28, NP_200950; AtMYB41, NP_194540; AtMYB16, NP_197035; AtMYB9, NP_197179; AtMYB107, NP_186944; AtMYB74, NP_192419; AtMYB4, NP_195574; AtMYB32, NP_195225; AtMYB106, NP_186763; AtMYB29, NP_196386; AtMYB93, NP_174726; AtMYB20, NP_176797; AtMYB7, NP_179263; AtMYB39, NP_567540; AtMYB85, NP_567664; AtMYB61, NP_172425;
AtMYB125/DUO1, NP_191605).

Table S1. Summary of transcriptome analysis of developing A. officinalis flowers

	Male	Female
No. of reads (RNA)	$105,588,640$	$113,110,016$
Used reads	$98,278,009$	$105,828,189$
No. of contigs	104,937	
No. of unigenes	51,525	
N50 (bp)	1,920	$316,258,290$
Male-biased expression*	114	
No. of reads (Genome)	$316,018,228$	
Male-specific genes**	7	
Annotated genes	2	

*No. of tags in male >50, male/female >10
**No. of tags in male >10, male/female >10

Table S2. List of contigs enriched in male genome sequencings

ID	$\begin{aligned} & \hline \text { RNA- } \\ & \text { seq } \\ & \hline \end{aligned}$				Genome reads			Blast2GO annotation
	Lengt h (bp)	Male (tag)	Female (tag)	M/F*	Male (tag)	Female (tag)	M/F*	
comp17730_c0	1,030	338	5	72.3	91	5	18.2	transcription factor myb86
comp9180_c0	934	56	0	-	117	0	-	uncharacterized protein LOC102611758
comp21134_c0	968	188	0	-	250	18	13.9	NA**
comp22784_c0	1,041	110	0	-	113	4	33.3	NA
comp29423_c0	747	63	0	-	106	1	106.0	NA
comp24246_c0	469	98	1	104.9	43	0	-	NA
comp22788_c1	232	143	3	51.0	41	1	41.0	NA

*M, male; F, female; M/F values were normalized against the number of mapping reads. **NA, Not available.

