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Finite-temperature properties of nonmagnetic transition metals:
Comparison of the performance of constraint-based semilocal and nonlocal functionals
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We assess the performance of nonempirical, truly nonlocal, and semilocal functionals with regard to structural
and thermal properties of 3d , 4d , and 5d nonmagnetic transition metals. We focus on constraint- based functionals
and consider the consistent-exchange van der Waals density-functional version vdW-DF-cx [Phys. Rev. B 89,
035412 (2014)], the semilocal PBE functional [Phys. Rev. Lett. 77, 3865 (1996)], and the PBEsol functional
[Phys. Rev. Lett. 100, 136406 (2008)], as well as the AM05 metafunctional [Phys. Rev. B 72, 085108 (2005)].
Using the quasiharmonic approximation, the structural parameters, elastic response, and thermal expansion
at finite temperatures are computed and compared to experimental data. We also compute cohesive energies
explicitly including zero-point vibrations. It is shown that overall vdW-DF-cx provides an accurate description
of thermal properties and retains a level of transferability and accuracy that is comparable to or better than
some of the best constraint-based semilocal functionals. Especially, with regard to the cohesive energies, the
consistent inclusion of spin-polarization effects in the atoms turns out to be crucial, and it is important to
use the rigorous spin-vdW-DF-cx formulation [Phys. Rev. Lett. 115, 136402 (2015)]. This demonstrates that
vdW-DF-cx has general-purpose character and can be used to study systems that have both sparse and dense
electron distributions.
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I. INTRODUCTION

The adiabatic connection formula (ACF) enables a formal
determination of all exchange-correlation (XC) effects in
density-functional theory (DFT) [1–3]. The XC energy density
functional (DF) Exc can be seen as the electrostatic binding
of electrons with its associated XC hole. Good Exc approx-
imations represent the core of DFT, and Exc formulations
reflect insight pertaining to the collective response of the
interacting electron gas [2,3]. Important progress was achieved
by enforcing hole conservation and other physical constraints
in the formulation of the local density approximation (LDA)
as well as semilocal functionals based on the generalized
gradient approximation (GGA). Hole conservation underpins,
for example, the PBE functional [4], that has proven to
be highly successful as a general-purpose functional for
problems in which physical behavior is governed by the
response at large electron concentrations. Specifically, the
PBE functional is accurate for both hard materials and
individual molecules, and accordingly it has found widespread
applications [5].

The past decade has witnessed the successful introduction
of the van der Waals (vdW) density-functional (vdW-DF)
method [6–10], launched as a systematic extension [11–13] of
the LDA and the GGA. Unlike local and semilocal functionals
such as the latter two, it describes also the much larger class of
sparse systems [14], e.g., molecular solids, layered materials,
and weak chemisorption cases, in which binding across
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internal voids arises from a truly nonlocal, vdW-type binding.
The Chalmers-Rutgers vdW-DF method is focused on the
electron response and has both regular releases (vdW-DF1 [7],
vdW-DF2 [15], and vdW-DF-cx [16]) and variants (including
vdW-DF-C09 [17], optB88, optPBE [18], optB86b [19], and
rev-vdW-DF2 [20]). It has recently been extended with a
rigorous spin formulation that reflects the vdW-DF design
logic [21]. There are also related but alternative formulations
of the nonlocal-correlation term in the Vydrov–van Voorhis
family (VV09 [22], vdW-DF-09 [23], and VV10 [24]) and
approaches that emphasize multipole response and mutual
coupling of exchange holes [25–27]. In addition, there are
approaches that focus on the dipole and multipole response
of orbitals, atoms, and clusters (typically obtained outside
of the ground-state DFT framework), compute the mutual
coupling energy, and add it to a traditional ground-state DFT
description [28–39]. It is commonly required that the chosen
approach must be accurate both when there are important
regions of low-electron concentration, i.e., sparse matter such
as in intermolecular binding [14], and when studying dense
matter, i.e., harder materials such as transition metals.

The recent consistent-exchange version, vdW-DF-
cx [9,13,16], uses the vdW-DF plasmon-pole response descrip-
tion also to determine the semilocal component of the vdW-DF
method. vdW-DF-cx is determined by a dielectric-response
description that automatically enforces current conservation
in the screening response [7,13]. The vdW-DF-cx method
effectively uses the same plasmon-pole response to define both
gradient-corrected exchange and nonlocal correlations. This
new vdW-DF version thereby minimizes a hidden crossover
term δE0

x that generally enters in the vdW-DF family of
functionals [16].
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vdW-DF-cx has already proven itself accurate and useful in
a number of problems that involve both regions of sparse and
dense electron distributions such as molecular dimers [16,40],
layered materials [9,41–45], semiconductors [9,46], molecular
crystals [47,48], adsorption processes [21,49], as well as
weak chemisorption, molecular switching, and molecular self-
assembly [21,49,50]. The ACF foundation and the emphasis
on conservation laws in the vdW-DF-cx construction further
suggests a general-purpose nature [9] and motivates a compre-
hensive investigation of its performance also for regular dense
matter. This is particularly interesting since earlier members
of the vdW-DF family have repeatedly been found to yield an
inferior description of traditional bulk materials, in particular
the late transition metals [49].

Here, we benchmark vdW-DF-cx for thermophysical prop-
erties of nonmagnetic transition metals, for which extensive
experimental data are available for comparison [51–53].
Specifically, we consider lattice parameters, thermal expan-
sion, and bulk moduli at finite temperature as well as the
cohesive energies including zero-point contributions at the
level of the quasiharmonic approximation (QHA). This data set
explicitly tests not only the description of energy and structure
but also forces, going beyond the set of properties commonly
considered in comparative assessments of XC functionals.
In addition to vdW-DF-cx, we consider the constraint-based
semilocal functionals, PBE [4] and PBEsol [54], as well as
AM05 [55].

We show that vdW-DF-cx meets and exceeds the per-
formance of the PBE, PBEsol, and AM05 functionals for
nonmagnetic transition metals. This suggests that vdW-DF-cx
provides a good, balanced description of nonlocal exchange
and nonlocal correlation also in these types of materials.
vdW-DF-cx thus remains a candidate for serving as a general-
purpose materials-theory tool, working for both hard and soft
matter [9].

The remainder of this paper is organized as follows.
The next section provides an overview of the constraint-
based functionals considered in the present work, while
methodological aspects are compiled in Sec. III A. Section IV
describes the main results, and Sec. V provides a summary
and conclusions. A detailed compilation of results including a
per-element comparison with experimental data can be found
in the supplementary material [56].

II. CONSTRAINT-BASED NONLOCAL FUNCTIONALS

A. General aspects

Comparisons among constraint-based nonlocal functionals
are valuable in our drive to further improve truly nonlocal
DFs. Several previous studies have shown that some vdW-DF
approaches can work well for solids [9,18–20,39,57]. While
this has helped build trust in the vdW-DF method, constraint-
based functionals such as vdW-DF-cx, PBE, and PBEsol
are all linked to the ACF and conservation [4,13,16,54] and
can thus be expected to yield good transferability. Similarly,
AM05 is linked to other constraints, interpolating between
model systems [54,55]. Yet as briefly reviewed below, different
physical aspects were emphasized in their construction, and
one can thus expect to gain insight into strengths and

limitations of each approach exactly because these functionals
are each representatives of a specific design logic. By focusing
the present benchmark on constraint-based functionals, we are
thus able to draw more general conclusions.

The four functionals considered in the present work
share some common traits while also having some distinct
differences in their design logic, making it interesting to
contrast their performance. All matter has internal surfaces
with a variation between higher and lower electron density
regions, and insight from surface physics underpins all the
designs. It led Langreth and Perdew to the early GGA [3] and
it entered the specification of gradient-corrected correlation in
PBEsol [54] and AM05 [55]. These concepts are also central
to the development of the vdW-DF method [6,10], which takes
the surface idea further than in the GGA. This is done by noting
that a semilocal representation of the electron-gas response
does not retain a full description of the electrodynamical
coupling among (GGA) XC holes [6,10–13]. The electro-
dynamical coupling is relevant, for example, when there are
multiple interacting density fragments (molecules or surfaces)
separated by a region with low electron concentration [6,13].

The Fermi wave vector kF (r) = [3π2n(r)]
1/3

sets a local
energy scale via the LDA exchange energy per particle,
εLDA
x (r) = −(3/4π )kF (r). We take semilocal functionals to

imply that the XC hole form or the energy per particle depend
exclusively on the local (spin) density n(r) and the local
scaled gradient s(r) = |∇n|/[2n(r)kF (r)]. Semilocal GGA
functionals can be expressed via the local variation in the
XC energy per particle,

εGGA
xc (r) ≡ Fxc(n(r),s(r))εLDA

x (r). (1)

Here, the XC enhancement factor Fxc(n(r),s(r)) reflects the
physical nature of the associated semilocal XC hole [4,54].

In addition to functionals that (like PBE, PBEsol, AM05,
and present vdW-DF versions) use a gradient-corrected ex-
change description, there are also ongoing developments of
constraint-based meta-GGAs (MGGAs), including the new
SCAN-MGGA and TM-MGGA [58–60]. These functionals
also employ the variation in the local kinetic-energy density
to refine the account of nonlocal XC effects. The inclusion of
such higher-order XC effects is important for a description of
weaker binding at intermediate distances, and it also improves
the description of the bulk structure and cohesion over that of
the constraint-based GGAs [59,60]; not considering dispersive
interactions, the performance of such new MGGAs for bulk
structure (as obtained in other codes) is better than what we
are documenting here for vdW-DF-cx [59]. It is, however,
beyond the present scope to also benchmark these new highly
constraint-based MGGAs.

In a continued development of the vdW-DF method, we
chose to focus on constraints. There are at least four important
criteria that can help the design of robust and transferable
density functionals:

(i) Conservation of the exchange-correlation (XC) hole
[2,3,9,13,61–63].

(ii) Current conservation in the description of the electro-
dynamical response that underpins the definition of the XC
hole via the ACF [2,3,13,64].
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(iii) Adherence to the global Lieb-Oxford bound (g-LOB)
[65–67].

(iv) Most relevant for developing the vdW-DF method:
avoidance of spurious exchange (non-vdW) binding arising
at intermediate-to-far fragment separations [7,68,69].

Charge conservation, criterion (i), has long been understood
as being essential for the design of robust, transferable density
functionals. After all, the combination of the electron and
its associated XC hole must be charge-neutral for the DFT
treatment (as a noninteracting quasiparticle) to be sensible [3].
Compliance with criterion (ii) is essential in the definition of
the vdW-DF method [7,10], and it was explicitly used in mo-
tivating the formulation of the vdW-DF-cx method [13]. Also,
closely related insight on the F -sum rule was central in the
definition of both the LDA [2,3,64] and the constraint-based
GGAs (r)PW86 [69,70], PBE [4], and PBEsol [54]. Criterion
(iv) is relevant for avoiding double counting in the present
vdW-DF versions (which starts with gradient-corrected ex-
change [13]). Seeking a meta-vdW-DF (starting instead from
the new MGGAs) is interesting since it may thus be possible
to better discriminate between spurious and physical binding
at intermediate distances [59,60]; at present, however, one
is motivated to pick the exchange enhancement Fx(s) ∼ s2/5

asymptotically [6,7,10,15,69]. The original and revised
PW86 [69,70], PBE [4], PBEsol [54], as well as both the
original vdW-DF and the new vdW-DF-cx should be seen as
highly constrained: They incorporate the first two criteria [(i)
and (ii)], while criteria (iii) and (iv) are expected to be fulfilled
in actual calculations.

B. The PBE functional

The PBE functional [4] is an important example of a
constraint-based GGA [5,71]. The PBE was designed by first
constructing a numerical GGA with an enhancement factor
F̃xc that reflects conditions on the shape of the semilocal XC
hole description and, in a subsequent step, by extracting an
analytical form for the PBE Fxc for practical use. One can
expect a high degree of transferability because it is anchored
in conservation laws [2,3]. In fact, the PBE functional has had
a huge impact on materials theory and has turned out to be an
extremely successful general-purpose functional for systems
with dense electron distributions including both individual
molecules and hard materials [5].

C. The PBEsol functional

One of the best-performing constraint-based semilocal
functionals for condensed matter is the PBEsol functional [54].
While, as in the case of PBE, the nature of screened many-
body response and the XC hole were emphasized during its
construction, its authors also relied on other formal results in
its design. The GGA framework that underpins both PBE and
PBEsol is very powerful, but it is not possible to satisfy all
constraints at the same time.1 The PBE functional is highly
transferable and works very well for both molecular formation

1The relation between PBE and PBEsol reflects in part the physical
insight used for picking the form of gradient-corrected exchange
enhancements [54]. Both functionals use conserving (albeit different)

energies and the structure and energies of hard materials. As
a result of the diagrammatic (gradient-expansion) emphasis,
PBEsol yields an even better description of the structure of
hard materials [54].

PBE and PBEsol are designed also to comply with a so-
called local Lieb-Oxford bound (l-LOB). This condition is
formulated as

Fx(s(r)) < 1.804. (2)

By complying to Eq. (2), the g-LOB criterion (3) is automati-
cally satisfied. It should also be noted that there exist densities
(shell-like structure) for which breaking the l-LOB also means
violating the g-LOB [65,67]. It is desirable to explicitly test
compliance with the g-LOB criterion (3) for actual calculations
when the GGA-exchange description can violate the l-LOB
condition (2).

D. The AM05 functional

The AM05 constraint-based functional [55] performs very
well for describing the structure of dense materials. The AM05
provides, in principle, an exact account of exchange effects
for surfaces, i.e., the boundary between regions of higher
and lower electron densities, whereas for internal regions
this surface-exchange description is merged with that of the
LDA. It relies on reference input other than formal many-
particle theory, and it is not usually counted as constraint-
based [54,66], yet it is parameter-free and therefore included in
this benchmarking. Like PBEsol, the AM05 functional extracts
the gradient-corrected correlation from a study of the jellium
surface energy. While it has different roots from those of PBE
and PBEsol, it can be viewed as a semilocal functional since
it is possible to express the energy per particle variation using
Eq. (1). Like the regular GGAs, it lacks an account of truly
nonlocal correlation effects. The exchange enhancement in
AM05 is such that the l-LOB condition (2) can be broken, but
it is not clear to what extend it will affect calculations for dense
matter, e.g., transition metals and other bulk systems.

E. The vdW-DF framework

The vdW-DF method [6–8,10,12,16] represents a system-
atic nonempirical extension of both LDA and the semilocal
GGA description [9,13,21]. The very first version of this
method was conceived two decades ago starting from a
simple Ashcroft picture [11] of vdW binding in the itinerant
electron gas [10,13]. It provides seamless integration with a
GGA-type description while enforcing conservation laws on
the underlying many-body response description [7,8,10,13].
The method predates the PBEsol and AM05 functionals,
and its origin [12] actually coincides with the launching
of the PBE functional [4]. The vdW-DF method captures

approximations for the semilocal XC hole. In the case of the PBE
functional, one arrives at a small-s expansion that is also suggested
by exact-scaling results for atomiclike high-density regions [5,54,71].
By contrast, in the construction of PBEsol, one obtains a behavior
consistent with diagrammatic results for pure exchange in the weakly
perturbed electron gas.
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vdW forces among dimers in the asymptotic and the binding
limits [7,72–77] as well as attraction between two-dimensional
layers [6,41–43,68]. Importantly, it also captures the more gen-
eral problem when nonlocal correlation forces compete with
other types of forces [9], for example, giving rise to binding
across important regions of low electron densities [10,14].
The method was expected to be relevant in first-principles
DFT for both pure vdW problems including regular physisorp-
tion [49,78–80], porous-materials gas absorption [81–90],
and DNA base-pair interactions [91–95]. It was also quickly
realized that truly nonlocal correlations affect materials
descriptions much more broadly than what was perhaps
originally anticipated [10,14,57,77,96–100]. The recent vdW-
DF formulations are, for example, proving themselves valuable
in the treatment of organic-inorganic interfaces and general
weak-chemisorption problems [18,21,35,49,50,96,101–104].

The vdW-DF framework formally constitutes an ACF
recast [7,10,13]

Exc =
∫ ∞

0

du

2π
Tr{ln[∇ε(iu) · ∇G]} − Eself. (3)

Here, Eself and G denote the Coulomb self-energy and
Green function, respectively, u is a complex frequency, and
ε denotes a suitable approximation for a scalar, nonlocal
dielectric function. The trace is over all spatial coordinates. The
vdW-DF framework has exact screening, and it defines ε via
a plasmon-pole response description that reflects constraints
such as the F sum rule [7,9,10,13]. The vdW-DF method
begins with a plasmon-pole approximation for a screened
response treated at the GGA level, i.e., by choosing ε(iu)
so that it reflects the shape of an internal XC hole correspond-
ing to a GGA-type semilocal functional Ein

xc. The vdW-DF
method proceeds to define semilocal and nonlocal functional
components,

EvdW-DF
xc = E0

xc + Enl
c , (4)

where the semilocal component satisfies

E0
xc ≈ Ein

xc (5)

while the truly nonlocal XC energy term is defined as

Enl
c =

∫ ∞

0

du

2π
Tr{ln[∇ε(iu) · ∇G] − ln[ε(iu)]}. (6)

The vdW-DF framework can be interpreted as a rigorous
implementation of the Ashcroft picture of vdW forces since
Eq. (6) formally counts the shifts in electronic zero-point
energies that arise with an electrodynamical coupling between
the internal GGA-type XC holes [13]. In the most widely used
general-geometry versions, the evaluation of Eq. (6) involves
a second-order expansion that allows an efficient universal
kernel formulation [7,8,10]. The vdW-DF versions are entirely
nonempirical and rest solely on the physics that underpins
the LDA XC energy and the GGA-type gradient-corrected
exchange in E0

xc and Ein
xc.

Here we benchmark the finite-temperature performance of
the recent consistent-exchange version vdW-DF-cx [16]. In
this functional, the exchange component in E0

xc is chosen to
minimize

δE0
x ≡ E0

xc − Ein
xc (7)

for small-to-medium values of the scaled density gradient s.
In practice, this means that �E0

x = 0 is for all systems but
atoms and small molecules [10,13,16] so that vdW-DF-cx
effectively serves as an implementation of (an expanded form
of) the full vdW-DF framework Eq. (3) [7,9,10,13]. Additional
documentation for this new vdW-DF version can be found in
Refs. [9,10,13].

In the design of vdW-DF2 and vdW-DF-cx, compliance
with criteria (4) was prioritized over having compliance with
the l-LOB condition (2), and hence an automatic, universal
compliance with the g-LOB criteria (3). For the present focus
on materials with dense electron distributions and metallic
bonding, the l-LOB condition is not expected to be broken at
any relevant spatial points. We also note that Refs. [16,105]
show that the vdW binding among molecular fragments almost
always arises from regions with small to moderate values of
s > 2–3. There is no breaking of even the l-LOB condition
from such regions (either) when using vdW-DF-cx.

III. METHODOLOGY

A. Computational details

DFT calculations were carried out using the projector
augmented wave (PAW) method [106] as implemented in the
Vienna ab-initio simulation package (VASP) [107]. For vdW-
DF-cx calculations, we used the patch released in Ref. [41].
In primitive cell calculations, the Brillouin zone was sampled
using �-centered k-point grids with 13×13×7 divisions for
hexagonal-close-packed (hcp) structures, 14×14×14 divi-
sions for face-centered-cubic (fcc) structures, and 15×15×15
divisions for body-centered-cubic (bcc) structures. The plane-
wave cutoff energy was chosen 30% larger than the commonly
recommended value for each element in order to obtain very
well converged forces and especially stresses. The values
employed are tabulated in Table V of the supplementary
material, which also provides details concerning the PAW
setups. Generally, we employ PAW setups from the 2012 VASP

database with the exception of W, for which we consider a
semicore setup that includes the 5p (but not the 5s states)
in the valence, the performance of which has been carefully
assessed previously [108,109]. These PAW setups have been
shown to yield very good agreement with respect to all-electron
calculations [110,111].

B. Vibrational modeling

To evaluate finite-temperature properties, we employed
the quasiharmonic approximation (QHA). First, the harmonic
Helmholtz free energy F (T ,V ) was evaluated as a function of
temperature at a fixed volume V according to [112,113]

F = 1

2

∑
qν

h̄ωqν + kBT
∑
qν

ln[1 − exp(−h̄ωqν/kBT )]. (8)

Here, the summations are the result of a discretization of the
integral over the vibrational density of states and carried out
over phonon modes with momentum h̄q and index ν. The
Gibbs free energy G(T ,p) at constant pressure p is obtained
by repeating the calculation of F (T ,V ) for a range of volumes
and minimizing the sum of internal energy U (V ), Helmholtz
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energy F (T ,V ), and the pressure-volume term according to

G(T ,p) = min
V

[U (V ) + F (T ,V ) + pV ]. (9)

While the internal energy U (V ) simply corresponds here
to the Born-Oppenheimer energy as a function of volume,
evaluation of the vibrational contribution Eq. (8) requires
knowledge of the phonon dispersion on a dense q-point mesh.
Toward that end, force constants were calculated using the
finite displacement method and 4×4×4 supercells. In the
latter calculations, the Brillouin zone was sampled using
�-centered 3×3×3 k-point grids. The minimization in Eq. (9)
was carried out over volumes ranging from 0.85V0 to 1.15V0,
where V0 is the volume corresponding to the minimum of the
Born-Oppenheimer energy landscape.

Knowledge of the Gibbs free energy as a function of volume
and temperature allows one to readily extract, for example,
the lattice parameter(s), the bulk modulus, and the thermal
expansion coefficient(s) at finite temperatures. All of these
thermophysical properties were extracted using the PHONOPY

package [113]. Specifically, the bulk modulus was obtained by
fitting the Gibbs free energy to the Vinet equation of state [114].

Furthermore, we calculated the cohesive energy Ecoh at 0
K including the zero-point energy (ZPE) contribution,

Ecoh = Ebulk + 1

2

∑
qν

h̄ωqν − Eatom, (10)

where Ebulk and Eatom denote the total energy of the bulk
material and the atom, respectively. All terms in the latter
equation were evaluated at the 0 K lattice constant corrected
for zero-point effects.

C. Atomic reference energies: Spin effects

In general, spin polarization must be included when
calculating Eatom. While a consistent spin-polarized version
of the vdW-DF method was recently introduced [21], it has so
far only been implemented in the QUANTUM-ESPRESSO pack-
age [115]. The vdW-DF evaluation of nonlocal correlations
amounts to tracking the total energy shift that arises with
the electrodynamical coupling of plasmons, which, in turn,
represent a GGA-type response to external fields [13]. The
vdW-DF approximations that are implemented in VASP [19]
are not fully consistent since they ignore the fact that spin
polarization will itself adjust these plasmons [21].

In the present study, we therefore proceeded as follows
in order to obtain atomic reference energies and eventually
cohesive energies for vdW-DF-cx. We calculated the non-
spin-polarized atomic energy E

nsp, vasp
atom using VASP and then

added the atomic spin-polarization energy �
qe
spin obtained

using QUANTUM-ESPRESSO with the rigorous-spin vdW-DF-cx
description [21]. That is, we obtained the atomic energies as

Eatom = E
nsp, vasp
atom + E

sp, qe
atom − E

nsp, qe
atom︸ ︷︷ ︸

�
qe
spin

. (11)

In effect, this procedure amounts to computing VASP and QHA-
based cohesive-energy estimates E

vasp
coh and then adding a spin

correction

�spin-correction = �qe
spin − �vasp

spin , (12)

where �
vasp
spin = E

sp, vasp
atom − E

nsp, qe
atom represents the VASP approxi-

mation for the vdW-DF-cx atomic spin-polarization energy. A
detailed compilation of the atomic reference energies can be
found in Table VI of the supplementary material.

In the QUANTUM-ESPRESSO calculations of �spin, we relied
on norm-conserving pseudopotentials (NCPP) from the ABINIT

package [116], using a plane-wave (density) cutoff of 80 Ry
(400 Ry) so as to best mimic the fact the VASP calculations are
based on hard PAW setups. This NCPP choice was possible
for all but the case of W, where the ABINIT NCPP did not yield
the correct spin-polarization state. For the W case alone, we
therefore relied on a W ultrasoft pseudopotential in calculating
�spin correction.2

IV. RESULTS

A. General assessment

In this section, we provide an overview of the key
results from our comparative analysis of constraint-based XC
functionals. A complete compilation of the data obtained with
each XC functional, including lattice constants, can be found
in the supplementary material. To measure and compare the
performance of different functionals, we consider the mean
absolute percentage error (MAPE) defined as

M = 1

N

∑
k

∣∣∣∣∣
A

(k)
DFT − A

(k)
expt

A
(k)
expt

∣∣∣∣∣, (13)

where A
(k)
DFT and A

(k)
ref denote predicted and experimental values

of a property of structure k, and the average contains N

samples.
Many properties exhibit characteristic variations across the

transition-metal series, which follow the d-band filling (Fig. 1)
and are reproduced by all XC functional considered here.
While ZPE and thermal expansion effects are generally limited
to a few percent of the volume, they are nonetheless crucial
for an accurate assessment.

The performance comparison (Fig. 2 and Table I) confirms
that PBEsol and, with the exception of the cohesive energy,
also AM05 represent general improvements over PBE. The
relatively large MAPEs (Table I) arise mostly from larger
errors in just a few systems. In the case of PBE, the MAPE for
the cohesive energy of bcc structures is particularly large. This
issue is primarily caused by an inaccurate description of the
electronic configuration of the isolated spin-polarized atoms,
which impacts the atomic reference energy.

More interestingly, the comparison demonstrates that the
truly nonlocal vdW-DF-cx performs at least at the level of
PBEsol and AM05. In fact, considering all the properties,
vdW-DF-cx provides the best overall agreement with the
experimental reference data. This is especially remarkable
since previous nonempirical versions of the DF method,
namely vdW-DF1 [7] (in which exchange is approximated

2We also tested using the W NCPP while constraining the spin
polarization to the correct configuration, which yields a vdW-DF-cx
value for the cohesive energy of W that is in even better agreement
with experiment than when using the ultrasoft pseudopotential.
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FIG. 1. Overview of thermophysical properties at 300 K obtained using the quasiharmonic approximation in conjunction with density-
functional-theory calculations. (a) Equilibrium volume, (b) bulk modulus, and (c) coefficient of average linear thermal expansion from
experiment (Refs. [52,53]) and calculations based on the vdW-DF-cx functional. Deviation between different XC functionals and experiment
for (d) equilibrium volume, (e) bulk modulus, and (f) coefficient of linear thermal expansion. The shaded regions indicate the set of 3d , 4d ,
and 5d transition metals.

by the revPBE functional [117]) and vdW-DF2 [15] (in which
exchange is approximated by a revised version [69] of the
PW86 functional [70]), perform rather poorly for the late
transition metals. In particular, in the case of Ag and Au, the
lattice constants are considerably overestimated in vdW-DF1
and vdW-DF2 [19], while vdW-DF-cx yields excellent results
for these elements.

B. Cohesive energies

Overall the constraint-based functionals considered here
perform reasonably well with regard to the description of the
cohesive energy (Fig. 3), although for most of the functionals
there are problems with specific elements. Most notably,
the vdW-DF-cx description clearly outperforms the other
functionals in terms of the cohesive energies.

Moreover, the results demonstrate that the rigorous inclu-
sion of spin effects in vdW-DF-cx [21] is important for an
accurate description of the cohesive energy in nonmagnetic
transition metals [Fig. 3(c)]. Since the atomic spin-polarization
energies are very large in the middle of the transition-metal

bands [Fig. 3(d)], it is important to use the rigorous-spin
vdW-DF-cx formulation [21]. The corrections are negative
and systematically lead to larger values for �spin (see
Table VI of the supplementary material). As a consequence,
our rigorous-spin vdW-DF-cx calculations provide a system-
atic improvement for the description of nonmagnetic transition
metals, lowering, for example, the MAPE from 9.1% to 7.3%
when using hard PAW setups for vdW-DF-cx.

C. Effect of PAW setups in the case of vdW-DF-cx

For computational efficiency, it is often desirable to employ
PAW setups that contain only the highest occupied states in the
valence. This not only limits the total number of states in the
calculation, but it also often allows using relatively large core
radii that require smaller plane-wave-basis cutoffs in order to
obtain converged results. While so far we have only considered
results obtained using such “standard” PAW setups, it is now
instructive to examine the choice of the PAW setup more
closely. Toward that end, we exclusively consider calculations
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Standard deviations of the distribution of errors for each property and
functionals are shown as black error bars.

based on the vdW-DF-cx functional and “hard” PAW setups,
as detailed in Table V of the supplementary material.

Using the hard PAW setups systematically improves the
agreement with experiment, typically reducing the MAPE by
a fraction of a percent (Table I and Fig. 2). Yet, the comparison
clearly demonstrates that already the “standard” PAW setups
yield very good result and are sufficient to achieve good results
in many situations. It should be noted that the comparison
here is restricted to the vdW-DF-cx method, but a similar
improvement when moving from standard to hard setups is
likely to be observable also for the other functionals.

Cadmium represents an exception, for which there is a pro-
nounced difference between standard and hard setups. For ex-
ample, the lattice constants at 300 K change from a = 3.168 Å
and c = 5.373 Å to a = 3.023 Å and c = 5.512 Å when
going from standard to hard PAW setups. The latter values
are also in notably better agreement with the experimental
numbers of a = 2.98 Å and c = 5.62 Å (Table II of the
supplementary material). More generally, the late transition
metals in hcp structure (Zn and Cd) are challenging for
all XC functionals. This behavior is related to their special
electronic structure, which manifests itself, e.g., in c/a

ratios (experimentally c/a = 1.89 and 1.86 for Cd and Zn,
respectively) that are considerably larger than in the ideal hcp
structure (c/a = 1.633).

D. Structure trends, semilocal, and nonlocal functionals

The deviations between calculated and experimental data
follow certain trends [Figs. 1(d)–1(f)]. While PBE tends to
overestimate the equilibrium volume, the other functionals are
overall in rather close agreement with the reference data.

Contrasting specifically the vdW-DF-cx and PBEsol per-
formance (Fig. 4) shows that both functionals exhibit similar
trends with respect to the variation of the accuracy with
d-band filling. It is apparent that the data for the first and last

TABLE I. Performance of constraint-based XC functionals with
respect to the description of thermophysical properties. The compar-
ison includes the equilibrium volume V , bulk modulus B, as well
as the linear coefficient of thermal expansion αl measured at room
temperature, while in the case of the cohesive energy Ecoh zero Kelvin
data are compared, albeit including ZPE effects. Unless otherwise
noted, the calculations were carried out using standard PAW setups.
The comparison comprises 11 hcp, 7 fcc, and 5 bcc elements.

Functional V B αl Ecoh

vdW-DF-cx hcp 3.0% 9.9% 20.6% 10.9%
fcc 1.0% 5.0% 5.9% 9.5%
bcc 1.9% 8.4% 27.3% 4.5%
total 2.2% 8.1% 17.6% 9.1%

vdW-DF-cx hcp 2.6% 8.5% 17.7% 7.8%
(hard PAW fcc 1.0% 4.9% 5.5% 8.7%
setups) bcc 1.7% 7.7% 30.0% 4.2%

total 1.9% 7.2% 16.7% 7.3%

PBE hcp 2.3% 7.1% 23.6% 10.9%
fcc 4.6% 15.1% 11.8% 8.1%
bcc 2.2% 5.6% 37.4% 23.3%
total 3.0% 9.2% 23.0% 12.7%

PBEsol hcp 2.8% 9.9% 21.7% 14.7%
fcc 1.1% 6.1% 8.4% 12.4%
bcc 2.6% 9.0% 28.7% 16.8%
total 2.2% 8.5% 19.2% 14.5%

AM05 hcp 2.7% 11.3% 22.3% 25.7%
fcc 1.2% 6.8% 6.8% 9.7%
bcc 3.0% 7.8% 29.8% 4.8%
total 2.3% 9.2% 19.2% 16.3%

columns of the series are slightly under- and overestimated,
respectively. The largest relative corrections of the volume
arise for Zn and Cd, and those elements also have some of the
largest vibrational corrections to the cohesive energies. In fact,
most DFs provide an inaccurate description of these elements,
which, as indicated above, exhibit a hcp structure with a very
large axial ratio.

Larger deviations from the reference data are also observed
for V (bcc) for all functionals. We ascribed this behavior to
the low-temperature magnetism that has been reported in this
element [118], while in the present calculations it is treated
without spin polarization.

Similar trends as for the equilibrium volume can be
observed for the bulk modulus [in reverse fashion, Fig. 1(e)]
and the linear coefficient of thermal expansion [Fig. 1(f)],
although the errors are more scattered. The latter effect is
probably connected to a larger uncertainty in the experimental
data, as will be discussed in the next section.

E. Bulk modulus and thermal expansion

So far we have used experimental values from compilations
of standard values [52,53] as reference data for equilibrium
volumes (lattice constants), bulk moduli, and thermal expan-
sion coefficients. While the data for lattice constants are usu-
ally very accurate, it must be acknowledged that measurements
of bulk moduli and thermal expansion coefficients can carry
rather significant errors, which are usually not documented in
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tion is expected for GGAs and is found in both cases.

reference compendia. A closer inspection of experimental data
available in the general scientific literature, however, reveals
that at least in some cases these errors can be comparable to
or even exceed the deviation between the best performing XC
functionals and experiment.

For illustration purposes, we employ experimental data for
the Young’s moduli E and Poisson ratios ν of polycrystalline
samples of the fcc metals Ir, Pt, and Rh [119]. As the
experimental data range from 300 to 1500 K, this also
allows us to compare experiment and calculations over a wide
temperature span. The experimental data can be converted to
the bulk modulus using the relation B = E/3(1 − ν). This
illustrates that there is considerable scatter in the experimental
data with changing temperature, which does not appear to be
associated with a specific trend (Fig. 5); this is particularly
pronounced in the case of Pt. The calculations overestimate
the experimental data, but overall the agreement is good with
a similar temperature dependence.

F. General discussion

High accuracy and transferability of vdW-DF-cx had been
previously indicated by a range of successful applications
to systems that combine regions of both sparse and dense
electron distributions [9,16,21,42,47–50]. In the present paper,
it has been demonstrated that, unlike the vdW-DF1 and
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B = E/3(1 − ν).

vdW-DF2 versions, vdW-DF-cx also performs very well for
hard materials.

The strong performance of PBEsol for traditional materials
can be primarily traced to two of its features, namely a good
form for gradient-corrected exchange and a good balance
between this exchange part and the account of gradient-
corrected correlation. The vdW-DF-cx strategy of seeking
an ACF evaluation, see Eq. (3), implies picking a semilocal
exchange component in E0

xc that is given by a diagrammatic
expansion and therefore is similar to that of PBEsol in the
low-to-medium s regime. Yet, vdW-DF-cx still replaces the
PBEsol description of gradient-corrected correlation entirely
with a truly nonlocal XC term Enl

c . The fact that DF-cx
performs at a PBEsol level with respect to hard materials thus
suggests that vdW-DF-cx achieves a good balance between
exchange and correlation. This observation makes it plausible
that one can obtain further functional improvements by relying
on the ACF recast, Eq. (3), for descriptions of nonlocal
correlation effects [7,10,13,16].

V. SUMMARY

This study presents a comprehensive benchmark of
constraint-based semilocal and nonlocal functionals with
respect to finite-temperature thermophysical properties of
nonmagnetic transition metals. The main outcome of this com-
parison is that, unlike its predecessors in the vdW-DF family,
the recently developed nonlocal vdW-DF-cx version achieves
good transferability and accuracy also for hard materials. This
is crucial, for example, for investigations of weakly bound
molecules at transition-metal surfaces. In the case of vdW-DF1
and vdW-DF2, the substantial overestimation of the lattice
constants of the late transition metals, in particular Ag and
Au, limited their application to these systems. The successful
validation of vdW-DF-cx for these cases allows full ionic
relaxation and thus tracking of the impact of, e.g., associated
adsorption-induced surface modifications [9,19,50].

We note that Ambrosetti and Silvestrelli [39] recently
presented a related benchmarking of several functionals,
including vdW-DF-cx, for the coinage metals. Our findings
are consistent with their results.

An excellent performance is expected for the other function-
als considered here, but it is interesting to note that the truly
nonlocal functional vdW-DF-cx has as good a performance
and transferability, if not better. This is encouraging for further
development that will build upon the vdW-DF framework.

Finally, we observe that quantitative comparisons, as shown
in the tables included in the supplementary material, can also
assist a crude benchmarking of future vDW-DF versions. This
is because the tables implicitly provide a quantification of
the net differences between the raw Kohn-Sham results and
the associated room-temperature characterizations that are
relevant for comparison with most experimental observations.
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075148 (2014).

[14] D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck,
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E. Küçükbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M.
Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki,
L. Paulatto, C. J. Pickard, W. Poelmans, M. I. J. Probert, K.
Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler,
M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström,
A. Tkatchenko, M. Torrent, D. Vanderbilt, M. J. v. Setten,
V. V. Speybroeck, J. M. Wills, J. R. Yates, G.-X. Zhang, and S.
Cottenier, Science 351, aad3000 (2016).

[111] http://molmod.ugent.be/deltacodesdft.
[112] D. C. Wallace, Thermodynamics of Crystals (Dover, Mineola,

NY, 1998).
[113] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
[114] P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, Phys. Rev. B

35, 1945 (1987).
[115] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R.

085147-11

https://doi.org/10.1002/qua.20315
https://doi.org/10.1002/qua.20315
https://doi.org/10.1002/qua.20315
https://doi.org/10.1002/qua.20315
https://doi.org/10.1021/ct900365q
https://doi.org/10.1021/ct900365q
https://doi.org/10.1021/ct900365q
https://doi.org/10.1021/ct900365q
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.2189229
https://doi.org/10.1063/1.2189229
https://doi.org/10.1063/1.2189229
https://doi.org/10.1063/1.2189229
https://doi.org/10.1021/jp801693p
https://doi.org/10.1021/jp801693p
https://doi.org/10.1021/jp801693p
https://doi.org/10.1021/jp801693p
https://doi.org/10.1063/1.3366652
https://doi.org/10.1063/1.3366652
https://doi.org/10.1063/1.3366652
https://doi.org/10.1063/1.3366652
https://doi.org/10.1016/j.cpc.2010.12.025
https://doi.org/10.1016/j.cpc.2010.12.025
https://doi.org/10.1016/j.cpc.2010.12.025
https://doi.org/10.1016/j.cpc.2010.12.025
https://doi.org/10.1103/PhysRevB.91.195103
https://doi.org/10.1103/PhysRevB.91.195103
https://doi.org/10.1103/PhysRevB.91.195103
https://doi.org/10.1103/PhysRevB.91.195103
https://doi.org/10.1103/PhysRevB.84.193408
https://doi.org/10.1103/PhysRevB.84.193408
https://doi.org/10.1103/PhysRevB.84.193408
https://doi.org/10.1103/PhysRevB.84.193408
https://doi.org/10.1088/0953-8984/24/42/424213
https://doi.org/10.1088/0953-8984/24/42/424213
https://doi.org/10.1088/0953-8984/24/42/424213
https://doi.org/10.1088/0953-8984/24/42/424213
https://doi.org/10.1088/0953-8984/24/42/424212
https://doi.org/10.1088/0953-8984/24/42/424212
https://doi.org/10.1088/0953-8984/24/42/424212
https://doi.org/10.1088/0953-8984/24/42/424212
https://doi.org/10.1103/PhysRevB.85.064302
https://doi.org/10.1103/PhysRevB.85.064302
https://doi.org/10.1103/PhysRevB.85.064302
https://doi.org/10.1103/PhysRevB.85.064302
https://doi.org/10.1021/cm301427w
https://doi.org/10.1021/cm301427w
https://doi.org/10.1021/cm301427w
https://doi.org/10.1021/cm301427w
https://doi.org/10.1021/jp302190v
https://doi.org/10.1021/jp302190v
https://doi.org/10.1021/jp302190v
https://doi.org/10.1021/jp302190v
https://doi.org/10.1021/jz301576s
https://doi.org/10.1021/jz301576s
https://doi.org/10.1021/jz301576s
https://doi.org/10.1021/jz301576s
https://doi.org/10.1021/ja4102979
https://doi.org/10.1021/ja4102979
https://doi.org/10.1021/ja4102979
https://doi.org/10.1021/ja4102979
https://doi.org/10.1021/jz500202x
https://doi.org/10.1021/jz500202x
https://doi.org/10.1021/jz500202x
https://doi.org/10.1021/jz500202x
https://doi.org/10.1021/acs.chemmater.5b00315
https://doi.org/10.1021/acs.chemmater.5b00315
https://doi.org/10.1021/acs.chemmater.5b00315
https://doi.org/10.1021/acs.chemmater.5b00315
https://doi.org/10.1039/C5TA10416E
https://doi.org/10.1039/C5TA10416E
https://doi.org/10.1039/C5TA10416E
https://doi.org/10.1039/C5TA10416E
https://doi.org/10.1002/qua.25057
https://doi.org/10.1002/qua.25057
https://doi.org/10.1002/qua.25057
https://doi.org/10.1002/qua.25057
https://doi.org/10.1063/1.4948321
https://doi.org/10.1063/1.4948321
https://doi.org/10.1063/1.4948321
https://doi.org/10.1063/1.4948321
https://doi.org/10.1103/PhysRevLett.95.186101
https://doi.org/10.1103/PhysRevLett.95.186101
https://doi.org/10.1103/PhysRevLett.95.186101
https://doi.org/10.1103/PhysRevLett.95.186101
https://doi.org/10.1021/ja0761941
https://doi.org/10.1021/ja0761941
https://doi.org/10.1021/ja0761941
https://doi.org/10.1021/ja0761941
https://doi.org/10.1021/jp905765c
https://doi.org/10.1021/jp905765c
https://doi.org/10.1021/jp905765c
https://doi.org/10.1021/jp905765c
https://doi.org/10.1088/0953-8984/23/13/135001
https://doi.org/10.1088/0953-8984/23/13/135001
https://doi.org/10.1088/0953-8984/23/13/135001
https://doi.org/10.1088/0953-8984/23/13/135001
https://doi.org/10.1088/0953-8984/24/42/424210
https://doi.org/10.1088/0953-8984/24/42/424210
https://doi.org/10.1088/0953-8984/24/42/424210
https://doi.org/10.1088/0953-8984/24/42/424210
https://doi.org/10.1103/PhysRevB.74.155402
https://doi.org/10.1103/PhysRevB.74.155402
https://doi.org/10.1103/PhysRevB.74.155402
https://doi.org/10.1103/PhysRevB.74.155402
https://doi.org/10.1103/PhysRevB.77.205422
https://doi.org/10.1103/PhysRevB.77.205422
https://doi.org/10.1103/PhysRevB.77.205422
https://doi.org/10.1103/PhysRevB.77.205422
https://doi.org/10.1103/PhysRevB.77.121404
https://doi.org/10.1103/PhysRevB.77.121404
https://doi.org/10.1103/PhysRevB.77.121404
https://doi.org/10.1103/PhysRevB.77.121404
https://doi.org/10.1103/PhysRevB.80.155431
https://doi.org/10.1103/PhysRevB.80.155431
https://doi.org/10.1103/PhysRevB.80.155431
https://doi.org/10.1103/PhysRevB.80.155431
https://doi.org/10.1063/1.4754130
https://doi.org/10.1063/1.4754130
https://doi.org/10.1063/1.4754130
https://doi.org/10.1063/1.4754130
https://doi.org/10.1103/PhysRevLett.96.146107
https://doi.org/10.1103/PhysRevLett.96.146107
https://doi.org/10.1103/PhysRevLett.96.146107
https://doi.org/10.1103/PhysRevLett.96.146107
https://doi.org/10.1103/PhysRevB.85.121409
https://doi.org/10.1103/PhysRevB.85.121409
https://doi.org/10.1103/PhysRevB.85.121409
https://doi.org/10.1103/PhysRevB.85.121409
https://doi.org/10.1063/1.4922688
https://doi.org/10.1063/1.4922688
https://doi.org/10.1063/1.4922688
https://doi.org/10.1063/1.4922688
https://doi.org/10.1557/mrs2010.581
https://doi.org/10.1557/mrs2010.581
https://doi.org/10.1557/mrs2010.581
https://doi.org/10.1557/mrs2010.581
https://doi.org/10.1103/PhysRevB.87.205421
https://doi.org/10.1103/PhysRevB.87.205421
https://doi.org/10.1103/PhysRevB.87.205421
https://doi.org/10.1103/PhysRevB.87.205421
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1063/1.4956377
https://doi.org/10.1063/1.4956377
https://doi.org/10.1063/1.4956377
https://doi.org/10.1063/1.4956377
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1126/science.aad3000
http://molmod.ugent.be/deltacodesdft
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1103/PhysRevB.35.1945
https://doi.org/10.1103/PhysRevB.35.1945
https://doi.org/10.1103/PhysRevB.35.1945
https://doi.org/10.1103/PhysRevB.35.1945


LEILI GHARAEE, PAUL ERHART, AND PER HYLDGAARD PHYSICAL REVIEW B 95, 085147 (2017)

Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S.
Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo,
G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and
R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502
(2009).

[116] X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken,
Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M.

Mikami, P. Ghosez, M. Veithen, J. Y. Raty, V. Olevanov,
F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann,
and D. C. Allan, Z. Kristall. 220, 558 (2005).

[117] Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
[118] Y. M. Smirnov and V. A. Finkel, Sov. Phys. JETP 22, 750

(1966).
[119] J. Merker, D. Lupton, M. Töpfer, and H. Knake, Platinum Met.
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