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ABSTRACT

Trichoderma is one of the most studied and applied fungal biocontrol agents. The benefits of these mi-
croorganisms to the plant include: suppression of pathogens, growth promotion, enhanced nutrient
availability and induction of resistance. The biological activity is related to the variety of metabolites that
they produce. These metabolites have been found to directly inhibit the pathogens, increase disease
resistance and enhance plant growth.

In this study, we have examined the effect of two Trichoderma strains and their secondary metabolites
on Vitis vinifera in terms of induction of disease resistance, plant growth promotion and increase of
polyphenols or antioxidant activity in the grapes. Applications of T. harzianum M10 or T. atroviride P1, as
well as their respective major secondary metabolites, harzianic acid (HA) and 6-pentyl-a-pyrone (6PP),
have been conducted in greenhouse by foliar spray or drenching. The treatments suppressed the
development of powdery mildew caused by Uncinula necator. In a field experiment, a spore suspension of
T. harzianum strain T22 or a 6PP solution was applied until fruit harvest. The results indicated that both
T. harzianum T22 and 6PP are able to improve crop yield and increase the total amount of polyphenols
and antioxidant activity in the grapes. The effects of the isolated natural compounds were comparable

with those obtained by using the living fungus.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional methods used to protect agricultural crops from
various pathogens have been based mainly on the use of chemical
pesticides. The Italian National Institute of Statistic (ISTAT) reported
that in Italy the total usage of fungicides in 2010 has been 67.7
millions of kilograms, of which the 27.5% (18.6 millions of kilo-
grams) have been used for vineyards treatments. Among the total
volume of fungicides applied on grapes, about the 75% were based
on sulphur active ingredients, used for the control of powdery
mildew.

Beside the cost of synthetic pesticides, environmental impact
and the risk for animal and human health has to be considered.
Furthermore, the repeated use of such chemicals has been noted to
cause the development of microbial pathogens resistant to
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pesticides. Consequently, in recent years there has been an
increasing interest in the use of new tools based on biocontrol
agents (BCAs) or their metabolites for disease control. Some of the
most studied biocontrol agents are fungi belonging to the genus
Trichoderma, used as a biopesticides and biofertilizers to protect
plants and enhance vegetative growth (Harman et al., 2004; Lorito
et al.,, 2010; Woo et al., 2014). The advantages related to the
application of these fungi in agriculture include: suppression of
pathogens by using a variety of mechanisms (competition, antibi-
osis and direct mycoparasitism), plant growth promotion and in-
duction of disease resistance (Harman et al., 2004; Shoresh et al.,
2010). One factor that contributes to the beneficial biological ac-
tivity of some Trichoderma species is related to the wide variety of
secondary metabolites that they produce (Reino et al., 2008;
Sivasithamparam and Ghisalberti, 1998; Vinale et al.,, 2014a,b).
These natural compounds may be involved in antibiosis, func-
tioning synergistically with other compounds as inhibitors of the
growth and  development of  pathogenic  microbes
(Sivasithamparam and Ghisalberti, 1998; Reino et al., 2008). In
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addition they may play a positive role in the interaction with the
plant, by inducing systemic resistance and promoting plant growth
(Vinale et al., 2008a,b; 2012). Today, there are many agricultural
products based on Trichoderma that are commercially marketed all
over the world (Woo et al,, 2014). Formulations containing the
living fungus present some limitations for their use in the field such
as: unreliable biocontrol effects when locations, environmental
conditions, or target crops are changed; the reduced ability of some
strains to colonize different soils and plant roots at effective levels;
the dose-effect response for disease control is often not directly
proportional; the viability of the fungal inoculum is subjected to
good storage conditions; and finally the products function effec-
tively only if used as preventative treatments (Woo et al., 2014).
However, using the compounds, naturally produced by Tricho-
derma, which are actively involved in the different mechanisms of
biological control, may overcome many of the problems compared
to the use of the living microorganism. The aim of this study was to
investigate if the efficacy of applying living Trichoderma BCAs
already used as an alternative to synthetic pesticides, can be
improved, or substituted by single or combined treatments with
the bioactive secondary metabolites produced by the same bene-
ficial microbe. The metabolites considered in this study are 6-
pentyl-a-pyrone (6PP), a food grade volatile pyrone, and har-
zianic acid (HA), a tetramic acid derivative with iron binding ac-
tivity (Vinale et al., 2013).

2. Materials and methods
2.1. Fungal material

T. harzianum strain M10 (M10) and T. atroviride strain P1 (P1),
were used for the in-vivo experiments and for the production of the
secondary metabolites (microbe collection of the Department of
Agricultural Sciences, Biocontrol Laboratory, University of Naples,
Federico II). For the field experiment was used the highly-effective
T. harzianum strain T22 (Trichoderma harzianum Rifai, anamorph
ATCC® 20847™),

The fungi were maintained on Potato Dextrose Agar (PDA,
HiMedia Mumbai, India) medium covered with sterilized mineral
oil (Sigma Aldrich, St. Louis, MO.).

The Trichoderma propagules needed to conduce the in-vivo and
in-field experiments, were produced by solid-state fermentation on
rice bran (500 g) inoculated with the Trichoderma spore suspension
(1 x 108 spores/ml) and incubated at 25 °C. After 7 days the spores
were collected washing rice bran with sterile water.

2.2. Isolation and characterization of Trichoderma spp. secondary
metabolites

The two effective Trichoderma strains M10 and P1 were used to
produce the bioactive molecules. Mycelia were inoculated to 5 L
conical flasks containing 1 L of sterile potato dextrose broth (PDB,
HiMedia Mumbai, India). Stationary cultures of each strain were
grown for 30 days at 25 °C. The cultures were vacuum-filtered
through filter paper (Whatman No. 4, Brentford, UK), and the
filtrate (2 L) was extracted exhaustively with ethyl acetate (EtOAc).
Organic fractions were dried with Na;SO4 and the solvent evapo-
rated in vacuum at 35 °C. The yellow oil residue obtained from P1
was subjected to flash column chromatography (50 g Si gel
0,2—0,5 mm Merck-EMD Darmstadt Germany), by eluting with a
gradient of petroleum ether: EtOAc (9:1 to 4:6) to obtain 80 mg 6-
pentyl-a-pyrone (6PP). Recovered fractions were analyzed by thin-
layer chromatography (TLC Si gel 60 F»54 Merck-EMD Darmstadt
Germany; mobile phase: petroleum ether: EtOAc; 8:2); and frac-
tions with similar profiles were combined. The red residue

obtained from M10 was dissolved in CHCl3 and extracted three-
times with NaOH 2 M. Harzianic acid (HA) then precipitated with
HCI 2 M. The solid was recovered (135 mg), solubilised and sub-
jected to RP-18 vacuum chromatography (20 g Si gel RP-18,
40—63 pm Sigma Aldrich, St. Louis, MO), eluting with a gradient
of methanol (MeOH):H,0:CH3CN (0,5:9:0,5 to 10:0:0). After sepa-
ration approximately 45 mg of pure HA was collected. The com-
pounds were detected on TLC using UV radiation (254 or 366 nm)
and/or by dipping the plates in a 5% (w/v) ethanol solution of 2 M
H,S04 and heating at 110 °C for 10 min. Purified metabolites were
characterized by NMR analysis recorded with a Bruker AM 400
spectrometer operating at 400 ('H) MHz using residual and
deuterated solvent peaks as a reference standard and/or by LC/MS
qTOF analysis recorded with an Agilent system (6400).

All the chemicals used are from Sigma Aldrich St. Louis, MO,
unless specified differently.

2.3. In vivo powdery mildew control assay on Vitis vinifera

One year old plants of Vitis vinifera cv. Sangiovese were planted
in pots (14 cm of diameter 500 ml) containing a peat and soil
mixture (1:1 v:v). Plants were grown for 2 months, from April to
June, in greenhouse (25° + 5 °C; 70% +10% RH; with natural
photoperiod). Treatments were conducted by foliar spray with a
solution of pure 6PP or HA at 10 uM and 1 uM, or with spore sus-
pensions of P1 or M10 (applied at 10® spore/litre). After 2 months
disease incidence and severity of powdery mildew infection caused
by U. necator were evaluated. Disease severity was determined on a
0—4 scale, where 0 was healthy and 1—4 diseased (1 = <10% of the
leaf surface covered with powdery mildew; 2 = 11-25% of the leaf
surface covered with powdery mildew; 3 = 26—50% of the leaf
surface covered with powdery mildew; 4 = >50% of the leaf surface
covered with powdery mildew) considering the mean calculated on
the first 10 leaves for each plant. Plants naturally infected by
U. necator were introduced in the glasshouse 30 days earlier and
shaken over the whole plants. All the in-vivo biocontrol experi-
ments have been repeated at least three times.

2.4. Field experiments

The experimental field of V. vinifera cv. Sangiovese (4 years old
plants) was laid out in 9 rows (3 rows per treatment in random
order) composed of 12 plants per row. A 1 uM solution of 6PP and a
spore suspension of T22 (10® spore/litre) were applied by drench-
ing (5 L per row). Controls consisted in water treated plants.
Treatments were applied every 14 days, starting one month after
plants sprouted, and finished with fruit harvest, for a total number
of 10 treatments. The field trial has been repeated two times.

2.5. Analysis of polyphenols and antioxidant activity

Polyphenols were extracted from fruits by homogenizing for
1 min in 20 ml of extraction solution containing methanol/water/
formic acid (60:37:3 v/v/v) 5 g of whole grapes. The homogenate
was centrifuged for 5 min at 5000 rpm, and the supernatant was
collected, evaporated to dryness by using a SpeedVac concentrator
(ThermoSavant, Holbrook, NY, USA) with no radiant heat and then
re-suspended in extraction solution. The quantity of total poly-
phenols in the extracts was determined according to the
Folin—Ciocalteau method (Fogliano et al., 1999). Gallic acid was
used as standard and results were expressed as gallic acid equiva-
lents (GAE) (mg GAE/100 g of seeds or skin dry matter - DM). The
absorbance was measured in triplicate for each sample using a
UV—Vis spectrophotometer (Lambda 25, PerkinElmer, Italy) at
765 nm.
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The antioxidant capacity was measured using the ABTS/HRP
colorimetric assay. The method is based on the capacity of a sample
to scavenge the ABTS radical cations (ABTS**), which are reactive to
many antioxidants such as phenols and causes a colour change that
is detected by spectrophotometry. The experimental samples are
compared to a standard antioxidant (Trolox) in a dose-response
curve (Cho et al., 2004; Re et al., 1999).

2.6. Data analysis

Data of disease incidence, grape yield, polyphenols and antiox-
idant activity were analysed by R statistical software, using Agricola
package for ANOVA and Least Significant Difference test according
to the p-value reported in each graph. The data analysis in the
present paper are referred only to the results of the last year ex-
periments since the results of each repetition had similar trends.

3. Results
3.1. Characterization of Trichoderma spp. secondary metabolites

The 'H NMR spectra of the secondary metabolites isolated from
P1 and M10 indicated that the major compounds purified from the
two Trichoderma strains had the same signals of 6PP and HA,
respectively, as those observed in the literature and identical to the
standards available in our laboratories (Collins and Halim, 1972;
Sawa et al., 1994; Vinale et al., 2009). LC — MS analysis showed
that HA was detected as [M+H]" (m/z 366), [M+Na]" (m/z 388),
[M+K]" (m/z 404) and [M; + Na]™ (m/z 753.3) while 6PP as
[M+H]+ (m/z 167) and [M+Na]* (m/z 189).

3.2. In vivo disease control of powdery mildew on Vitis vinifera

In vivo experiment for disease control on grape plants showed
that the two secondary metabolites treatments (6PP and HA)
inhibited the disease development compared to the control simi-
larly to the applications of the two Trichoderma strains. Control
plants showed typical disease signs caused by U. necator consisting
of a white mildew growing on the upper side of leaves with a
disease severity of 3,06 (mean value).

Application of HA and 6PP showed a significant reduction of
disease development (Fig. 1-A; Fig. 1-B).

4.00 a

Spraying 10 uM solution of HA significantly reduced the pow-
dery mildew development by 60% on leaves but produced typical
phytotoxicity symptoms (necrosis and irregular leaves edge)
whereas the 1 uM HA solution sprayed resulted in a reduction of
20% of disease incidence compared to the controls without negative
effects on plant. Drenching applications of HA at 10 uM and 1 pM
reduced the disease severity respectively of about 23% and 13% with
no negative effects on plants (Fig. 1-A).

Spray application of 6PP at 10 uM and 1 puM resulted in the
reduction of disease severity respectively of about 28% and 32%
whereas reduction obtained by drenching was about 25% and 15%
(Fig. 1-B).

Plants treated with propagules of M10 and P1 generally showed
a higher level of pathogen control (Fig. 2) compared to the treat-
ments with the secondary metabolites.

Applications of these Trichoderma strains reduced disease
development at the same level by drenching or spraying, thus
indicating that the fungus is able to induce systemic resistance in
grape as well as the applications of their secondary metabolites.

3.3. Yield increase effect on Vitis vinifera

Field experiments on V. vinifera were carried out with
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Fig. 2. Disease control of a sprayed or a drenched spore suspension of T. atroviride P1
and T. harzianum M10. Control: H,O treated. Bars indicate disease severity levels on
grape leaves affected by powdery mildew. Different letters on the bars indicate
significative differences according to LSD test (p < 0,01).
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Fig. 1. Disease control by the Trichoderma secondary metabolites. A: Harzianic acid (HA) sprayed or drenched solutions applied at two different concentrations (10 uM and 1 uM). B:
6-pentyl-o.—pyrone solution (6PP) sprayed or drenched solutions applied at two different concentrations (10 pM and 1 uM). Control: H,O treated. Bars indicate disease severity
levels on grape leaves affected by powdery mildew. Different letters on the bars indicate significative differences among the control and each metabolite (HA or 6PP) according to

LSD test (p < 0.01).
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treatments based on the Trichoderma metabolite 6PP, in compari-
son to the use of T22. In order to evaluate the growth promotion
effects of 6PP and Trichoderma in the yield, no fertilizers were
added to grape plants.

T22 and 6PP increased yield in terms of weight (kg) of grape
product, respectively of 63% and 97%, as compared to the untreated
controls (Fig. 3).

3.4. Effect on grape quality

In order to evaluate the effect of 6PP and T22 on the quality of
grape fruits, total polyphenol content and antioxidant activity
(ABTS assay) were measured.

The antioxidant activity increased with the treatments of T22
and 6PP respectively by 48.7% and 60.3% compared to control
treatments (Fig. 4).

The polyphenol content increased in harvested fruits of plants
treated with either T22 or 6PP, with no significative differences
between the two applications. Results are reported in Fig. 5 as mg
equivalents of gallic acid.

4. Discussion

The first part of the present work was aimed at evaluating the
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Fig. 3. Effect of T. harzianum strain T22 (T22) and 6-pentyl-o-pyrone (6PP) treatments
on grape yield. Control: H,O treated. Bars indicated the mean of yield per plant in
terms of Kg of grapes produced. Different letters on the bars indicate significative
differences according to LSD test (p < 0,05).
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Fig. 4. Effect of Tharzianum strain T22 (T22) and 6-pentyl-o-pyrone (6PP) based
treatments on grape fruits antioxidant activity. Control: H,O treated. Bars indicated the
mean on 100 gr of products, expressed as mmol equivalents of Trolox. Different letters
on the bars indicate significative differences according to LSD test (p < 0,05).
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Fig. 5. Effect of T. harzianum strain T22 (T22) and 6-pentyl-a-pyrone (6PP) based
treatments on grape fruits total polyphenols amount. Control: H,O treated. Bars
indicated the mean of polyphenols amount on 100 gr of products expressed as mg
equivalents of gallic acid. Different letters on the bars indicate significative differences
according to LSD test (p < 0,05).

effectiveness of the two purified Trichoderma secondary metabo-
lites 6PP and HA on the control of powdery mildew, one of the most
important foliar diseases of grape, compared to the applications of
the living Trichoderma strains that produce the two natural com-
pounds (respectively P1 and M10). The results showed that the
purified molecules were able to reduce the disease severity on
grape leaves, regardless to the application methods (sprayed or
drenched) as well as those obtained by treatments with Tricho-
derma. The reduction of the symptoms, achieved when treatments
were applied to the soil (far from the pathogen challenge site),
indicates that the disease control effect is due the induction in the
plants of the systemic resistance. This ability of Trichoderma is
widely described and it is recognized as one of the most important
mechanisms my which these fungi protect plants (Woo et al., 2006;
Shoresh et al., 2010; Pieterse et al., 2014).

Trichoderma establishes an intimate relation with the host
plants and induces several changes in the plant defence-related
metabolic pathways, including the expression of pathogenesis
related proteins (PR proteins) or the upregulation of phenylalanine
ammonia-lyase (PAL) that is involved in the productions of phyto-
alexins (Shoresh et al., 2010). Among the tools that Trichoderma
utilizes to interact with plants there is the production of many
different molecules that are recognized as microbe-associated
molecular patterns (MAMPs) such as low molecular weight sec-
ondary metabolites, extracellular enzymes and hydrophobic pro-
teins (Seidl et al., 2006; Djonovic et al., 2007; Vargas et al., 2008;
Lorito et al., 2010; Ruocco et al., 2015). Vinale et al. (2008b;
2014a,b) demonstrated that different Trichoderma secondary me-
tabolites, including 6PP, are involved in the induction of plant
systemic resistance as they cause a reduction of disease symptoms
and the overexpression of defense genes. However, differences
found in terms of level of disease control between the effect of
Trichoderma and its secondary metabolites could be attributed to
the fact that the living microbe may use more than one mechanism
to attach the pathogen including combination of enzymes and
secondary metabolites that act synergistically (Harman et al., 2004;
Lorito et al., 2010).

The experiments conducted in the greenhouse showed also a
significant growth promotion effect on grape plants treated with
either Trichoderma strains propagules or their purified secondary
metabolites (data not shown). Based on this evidences, we tested
the Trichoderma secondary metabolite 6 PP (produced in a
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relatively large amount by several Trichoderma spp.) on grape
plants grown in field conditions with the aim to evaluate the
effectiveness of the purified compound in terms of agronomic
performances such as yield and quality of fruits. We also compared
the use of 6PP to the effectiveness of T22, one of the most studied
and commercially successful Trichoderma strain in agricultural ap-
plications (Harman, 2000).

The results obtained show that both Trichoderma and 6PP
treatments produce a substantial and comparable increase of grape
yield, especially when plants are grown without fertilization.

It's well known that Trichoderma strains can improve the plant
fitness in both axenic and natural soils especially in suboptimal
growth conditions in the field, where the fungus has a direct pos-
itive influence on plant growth other than alleviate the effects of
biotic or abiotic stresses that may naturally occur (Harman et al.,
2004: Shoresh et al.,, 2010). Enhancement of yield on corn has
been reported in several commercial and academic trials and it has
been considered as a direct effect of an increased root and foliar
systems (Harman, 2000). The plant growth promotion induced by
Trichoderma can be explained by an upregulation of photosynthesis
related proteins and a higher photosynthetic efficiency (Shoresh
et al., 2010) Some Trichoderma strains may also enhance the plant
nutrient uptake mechanism (Harman et al., 2004), and increase the
plant nitrogen use efficiency (Harman, 2000; Shoresh et al., 2010).
Furthermore, it already has been described the role on the growth
promotion of plants of Trichoderma secondary metabolites (Vinale
et al., 2008b, 2012; 2013). In particular, Vinale et al. (2008a,b)
demonstrated that 6PP has an auxin-like mechanism of action with
a concentration-related plant growth promotion effect. Garnica-
Vergara et al. (2016) confirmed this hypothesis demonstrating
that the growth of lateral roots in Arabidopsis plants was stimulated
by low concentration of 6 PP and they correlated this phenotypic
response to an overexpression of genes involved in the auxin
signaling.

Beside the yield enhancement, analysis on fruits performed in
this study demonstrated that Trichoderma and 6PP treatments
increased total polyphenols amount and a consequent augmenta-
tion of antioxidant capacity.

The plant phenolic compounds are a wide range of substances,
produced by the phenylpropanoid metabolism (Dixon and Paiva,
1995). The key factor for the synthesis of this class of molecules is
the phenylalanine ammonia lyase (PAL), that is the first enzyme of
this biosynthetic pathway (Dixon and Paiva, 1995). A large number
of these low molecular weight compounds, defined as phyto-
alexins, are rapidly accumulated in plants as response to different
stresses, biotic, caused by pathogens or insects attack, or abiotic,
caused by wounds, exposure to UV light, water or nutritional def-
icits (Hammerschmidt, 1999; Grayer and Kokubun, 2001). Yedidia
et al. (2003) demonstrated that cucumber plants treated with Tri-
choderma asperellum increased total amount of polyphenols and
treated plants engaged by the pathogen Pseudomonas syringe pv.
Lachrymans increased the total amount of polyphenols with anti-
microbial activity. Our results confirmed the ability of the living
fungus to enhance the accumulation in the fruits of this class of
compounds, thus activating or priming induced systemic resistance
mechanisms, and that a similar effect is obtained by the application
of 6PP. The augmentation of these substances in grapes is of
particular interest since they are a qualitative parameter with a
direct effect on grape and wine in terms of aroma and shelf life
(Robinson et al., 2014).

To the best of our knowledge, the present work is the first that
reports the effects of Trichoderma secondary metabolites on grape
plants in field conditions, thus demonstrating that a 6PP treatment
produces similar positive results as the living fungus in terms of
yield and fruit quality enhancement. Therefore, our results suggest

new possibilities of using natural compounds produced by bene-
ficial microbes in grape production, also by eliminating some of the
constrains associated with the application of living biological con-
trol agents.
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