

Learning to Program: The Development of Knowledge in

Novice Programmers

Nadia Kasto

A thesis submitted to

Auckland University of Technology

in fulfilment of the requirement for the degree of

Doctor of Philosophy (PhD)

2016

School of Engineering, Computer and Mathematical Sciences

Auckland, New Zealand

Primary Supervisor: Assoc. Professor Jacqueline Whalley

Secondary Supervisor: Anne Philpott

 Third Supervisor: Professor Stephen MacDonell

i

Abstract

This thesis presents a longitudinal study of novice programmers during their first year

learning to program at university. The purpose of this research was to gain a deeper

understanding of the ways in which novice programmers learn to program with an

emphasis on their cognitive development processes. The intended outcome was a better

understanding of the learning processes of novice programmers, which should enhance

the ability of educators to teach, design courses, and assess programming. A key aspect

of this research focused on cognitive development theories of Piaget, Vygotsky, Sfard

and Cognitive Load and to what degree these theories could explain observations of

novice programmers learning to write code.

In order to observe and investigate how novice programmers integrate new programming

structure, concepts or elements into their current understanding of code it is necessary to

be able to measure how difficult writing tasks are. Thus, the first aim of this research was

to develop a task difficulty framework, which consisted of a new empirically verified

software metric (code structure and readability) and a SOLO classification (task

complexity) for code writing tasks. This framework was then used to design nineteen

code writing tasks which were of increasing difficulty and complexity so as to trigger

situations that required some form of knowledge adaptation or acquisition. Over one

academic year, students were observed attempting to solve these programming tasks

using a think aloud protocol and were interviewed retrospectively using a stimulated

recall method. These observations were then linked to the cognitive theories in a way that

provides an explanation of how programming was learned by these students.

The results of this research indicate that both cognitive and sociocultural approaches are

important in the development of knowledge of novice programmers. Of the theories

examined two were found to be the most useful. The first is Vygotsky’s notions of the

Zone of Proximal Development, the role of more knowledgeable others, and recent ideas

about scaffolding. The second is Sfard’s theory of concept development that contributes

to a deeper understanding of the way novice programmers’ develop patterns and reuse

them in solving another programming task. The evidence about learning obtained during

this study provides strong support for a change in the size and organization of the classes

in which novice programmers are typically taught and in the teaching methods used.

ii

Table of Contents

Abstract …………. .. i

Table of Contents .. ii

List of Figures .. vi

List of Tables... x

List of Abbreviations.. xi

Attestation of Authorship .. xii

Dedication … ... xiii

Acknowledgements .. xiv

List of Publications ... xv

Chapter 1. Introduction ... 1

1.1. Background of the Research ... 1

1.2. Key Definitions ... 3

1.3. Research Questions ... 4

1.4. Research Design ... 4

1.5. Structure of the Thesis .. 5

Chapter 2. Background .. 7

2.1. Introduction ... 7

2.2. General Theories of Cognitive Development and Learning 7

2.2.1. Piaget and Neo-Piagetian Theories ... 8

2.2.2. Vygotsky’s Theory and the Notion of Scaffolding 14

2.2.3. Sfard’s Theory ... 18

2.2.4. Cognitive Load Theory ... 21

2.3. Theories of Learning: Knowledge and Strategy ... 26

2.4. Transfer in Cognition .. 28

2.5. Summary ... 32

Chapter 3. Research Methodology.. 33

3.1. Introduction ... 33

3.2. A Pragmatic Research Approach .. 33

3.3. Research Instrument Design ... 35

3.4. Ethics Consents ... 37

3.5. Research Participants .. 38

3.5.1. Recruitment ... 38

3.5.2. Sampling Methods - Participant Selection .. 38

iii

3.5.2.1. Sampling for the Difficulty Framework .. 38

3.5.2.2. Selecting Participants for Think Aloud Observations 39

3.6. Think Aloud Method .. 40

3.6.1. Think Aloud Data Collection Protocol ... 41

3.6.1.1. Training .. 41

3.6.1.2. Instruction .. 41

3.6.1.3. Setting .. 42

3.6.1.4. Recording Think Aloud ... 42

3.6.2. Pilot Study & Data Collection Method Refinement 42

3.6.3. Retrospective Interviews ... 44

3.6.4. Stages of Verbal Protocol Analysis .. 44

3.6.4.1. Transcription and Segmentation .. 45

3.6.4.2. Transcript Encoding Techniques ... 47

3.7. Intervention ... 49

3.8. Summary ... 51

Chapter 4. Framework Design .. 52

4.1. Introduction ... 52

4.2. Task Complexity vs. Task Difficulty .. 52

4.3. Educational Taxonomies... 53

4.4. Software Metrics ... 56

4.5. Software Metrics and Learning to Program .. 59

4.5.1. Complexity Metrics ... 60

4.5.2. Readability Metrics ... 63

4.6. Selecting the Metrics: A GQM Approach .. 65

4.6.1. Evaluating the Metrics .. 69

4.6.2. Data Set ... 69

4.6.2.1. Data Analysis and Results ... 70

4.6.2.2. Factor Analysis-Principal Axis Factor ... 72

4.7. Summary ... 77

Chapter 5. Research Instrument Design .. 79

5.1. Introduction ... 79

5.2. Programming Courses at AUT ... 79

5.2.1. The P1 Teaching Approach ... 80

5.2.2. The P2 Teaching Approach ... 83

5.3. The Design Process ... 84

iv

5.4. SOLO Classification ... 85

5.5. Transfer Learning: Classification of the Tasks ... 91

5.6. An Overview of the Tasks .. 93

5.7. Sequence 1 Counting Corridors ... 99

5.8. Sequence2 – Counting Beepers .. 102

5.9. Sequence3 – One-Dimensional Array .. 105

5.10. Sequence4 – Two-Dimensional Array .. 106

5.11. Sequence5 – ArrayList.. 107

5.12. Summary ... 109

Chapter 6. Think Aloud: Encoding and Interpretation 110

6.1. Introduction ... 110

6.2. Andre’s Think Aloud Sessions ... 111

6.3. Luke’s Think Aloud Sessions ... 134

6.4. Kasper’s Think Aloud Sessions .. 158

6.5. Matthew’s Think Aloud Sessions ... 179

6.6. Summary ... 194

Chapter 7. Theory of Learning and Learning to program 195

7.1. Introduction ... 195

7.2. Piaget and Neo-Piagetian Theories ... 195

7.3. Vygotsky’s Theory and the Notion of Scaffolding 201

7.3.1. Identifying the Zone of Proximal Development (ZPD) of Participants .. 201

7.3.2. Scaffolding Influence .. 204

7.3.2.1. Soft Scaffolding Assistance by the Researcher 205

7.3.2.2. Hard Scaffolding – Software Scaffolding – Robot World 208

7.3.2.3. Hard Scaffolding – Software Scaffolding – Unit Test 209

7.3.2.4. Metacognitive Scaffolding ... 210

7.4. Sfard’s Theory .. 210

7.5. Cognitive Load Theory ... 218

7.6. Summary ... 227

Chapter 8. Conclusion .. 230

8.1. Overview of Research ... 230

8.2. Research Questions ... 230

8.3. Reflections on the Think Aloud Method .. 235

8.4. Validity, Reliability and Generalisability of the Difficulty Framework 236

8.5. Trustworthiness of the Think Aloud Data .. 238

v

8.6. Implications for Teaching ... 240

8.7. Future Research .. 242

References ………………………...………………………………………………….243

Glossary ………………………………………………………………………………259

Appendix A. Think Aloud Data .. 260

Appendix B. AUTEC Ethics Approval .. 295

Appendix C. Prior Knowledge Questionnaire .. 302

Appendix D. The Learning Outcomes of the P1 Course .. 303

Appendix E. The Learning Outcomes of the P2 Course .. 304

Appendix F. Questions for Developing of Writing Difficulty Metric 305

Appendix G. Participants Categorisation According to Their Ability to Solve the

Programming Tasks .. 308

Appendix H. Summary of Think Aloud Recording Sessions 309

vi

List of Figures

Figure 3.1 Philosophical perspective of this thesis ... 37

Figure 4.1 The cognitive process dimension; (left) Bloom’s and (right) revised Bloom’s

taxonomy (adapted from Pohl, 2000, p.8) .. 53

Figure 4.2 SOLO taxonomy (taken from Hook, 2016, p.1) .. 55

Figure 4.3 Regular expression metric calculation and control flow graphs 61

Figure 4.4 The GQM paradigm (taken from Basili, Caldiera, & Rombach, 1994, p. 3) 66

Figure 4.5 Example readability metric calculation ... 69

Figure 4.6 Scree plot for the analysis .. 76

Figure 5.1 The conceptual relationships between the questions 95

Figure 5.2 The order in which the questions are presented to the participants 98

Figure 5.3 The scenarios provided for Seq1 Q1 .. 99

Figure 5.4 Three different scenarios for Seq1 – Q2 .. 100

Figure 5.5 Three different scenarios for Seq1 – Q3 .. 100

Figure 5.6 Two different scenarios for Seq1 – Q4 .. 101

Figure 5.7 The scenarios provided for Seq2 – Q1 .. 102

Figure 5.8 Three different scenarios for Seq2 – Q3 .. 104

Figure 5.9 Three scenarios for Seq2 – Q4... 104

Figure 6.1 Andre’s first screen image for the longest corridor 115

Figure 6.2 Andre’s second screen image for the longest corridor 116

Figure 6.3 Andre’s doodle for the longest corridor... 117

Figure 6.4 Andre’s third and final screen images for the longest corridor 117

Figure 6.5 Andre’s first and second screen images for the shortest corridor 121

Figure 6.6 Andre’s third and fourth screen images for the shortest corridor 122

Figure 6.7 Andre’s final screen image for the shortest corridor 123

Figure 6.8 Andre’s doodle for checking integers in a 1D Array are sorted in descending

order .. 124

Figure 6.9 Andre’s screen image for checking integers in a 1D Array are sorted in

descending order ... 125

Figure 6.10 Andre’s first and second screen images for the smallest element in a 1D array

 ... 126

vii

Figure 6.11 Andre’s third screen image for the smallest element in a 1D array 127

Figure 6.12 Andre’s doodle for the small stack of beepers algorithm 128

Figure 6.13 Andre doodle to trace the smallest stack of beepers algorithm 128

Figure 6.14 Andre’s fourth screen image for the smallest element in a 1D array 129

Figure 6.15 Andre’s code for find the largest index ... 130

Figure 6.16 Andre’s first and second screen images for the largest element in a 2D array

 ... 131

Figure 6.17 Andre’s last screen image for the largest element in a 2D array 132

Figure 6.18 Andre’s screen image for highest student mark in a collection of student

objects ... 134

Figure 6.19 Luke’s first and second screen images for counting all beepers 135

Figure 6.20 Luke’s third and fourth screen images for counting all beepers 136

Figure 6.21: Luke’s doodle for counting all beepers .. 137

Figure 6.22 Luke’s first screen image for the longest corridor 139

Figure 6.23 Luke’s second and third screen images for the longest corridor 140

Figure 6.24 Luke’s fourth and fifth screen images for the longest corridor 141

Figure 6.25 Luke’s sixth and seventh screen images for the longest corridor 141

Figure 6.26 Luke’s final screen image for the longest corridor 142

Figure 6.27 Luke’s first and second screen images for the smallest stack of beepers .. 144

Figure 6.28: Luke’s third screen image for the smallest stack of beepers 145

Figure 6.29 Luke’s first and second screen images for the shortest corridor 148

Figure 6.30 Trace-table for Luke’s code for the shortest corridor 149

Figure 6.31 Luke’s screen image for the smallest element in a 1D array 150

Figure 6.32 Luke’s first and second screen images for find the largest index 152

Figure 6.33 Luke’s first and second screen images for checking if beepers stacks are

sorted ... 153

Figure 6.34 Luke’s third screen image for checking if beepers stacks are sorted 154

Figure 6.35 Luke’s first and second screen images for the largest element in a 2D array

 ... 155

Figure 6.36 Luke’s screen image for column in a 2D array which contains a smallest

number... 157

viii

Figure 6.37 Luke’s screen image for highest student mark in a collection of student

objects ... 158

Figure 6.38 Kasper’s first and second screen images for counting the length of one

corridor .. 160

Figure 6.39 Kasper’s final screen image for counting the length of one corridor 161

Figure 6.40 Kasper’s first and second screen images for comparing the length of two

corridors .. 163

Figure 6.41 Kasper’s first and second screen images for the longest corridor 166

Figure 6.42 Kasper’s first and second screen images for the smallest stack of beepers

 ... 167

Figure 6.43 Kasper’s third and fourth screen images for the smallest stack of beepers

 ... 169

Figure 6.44 Trace-table for Kasper’s fourth screen image for the smallest stack of beepers

 ... 170

Figure 6.45 Kasper’s final screen image for the smallest stack of beepers 171

Figure 6.46 Kasper’s first and second screen images for the shortest corridor 173

Figure 6.47 Kasper’s third and fourth screen images for the shortest corridor 174

Figure 6.48 Kasper’s doodle for the longest corridor algorithm 175

Figure 6.49 Kasper’s first and second screen images for the largest element in a 2D array

 ... 177

Figure 6.50 Trace-tables for Kasper’s code for the largest element in a 2D array 177

Figure 6.51 Kasper’s first and second screen images for column in a 2D array which

contains a smallest number ... 179

Figure 6.52 Matthew’s first screen image for counting for counting all beepers 180

Figure 6.53 Matthew’s second and third screen images for counting all beepers 181

Figure 6.54 Matthew’s fourth screen image for counting all beepers........................... 182

Figure 6.55 Matthew’s doodle for counting all beepers ... 182

Figure 6.56 Matthew’s first and second screen images for comparing the length of two

corridors .. 184

Figure 6.57 Matthew’s first and second screen images for the longest corridor 185

Figure 6.58 Matthew’s third screen image for the longest corridor 187

Figure 6.59 Matthew’s first and second screen images for the smallest stack of beepers

 ... 189

Figure 6.60 Matthew’s first doodle to trace the small stack of beepers algorithm 189

ix

Figure 6.61 Matthew’s second doodle to trace the small stack of beepers algorithm .. 189

Figure 6.62 Matthew’s first and second screen images for the shortest corridor 191

Figure 6.63 Matthew’s code to print all the elements of a 1D array 193

Figure 6.64 Matthew’s first and second screen images for the smallest element in a 1D

array... 193

Figure 6.65 Trace-table for Matthew’s code for the smallest element in a 1D array ... 194

Figure 7.1 The relationship between ZPD and scaffolding... 205

x

List of Tables

Table 3.1 The transcription template .. 47

Table 4.1 Software metrics and their applicability across programming paradigms (taken

from Kasto & Whalley, 2013, p.60) .. 58

Table 4.2 GQM template... 67

Table 4.3 Metrics for instructor’s model and a percentage difficulty for each question 70

Table 4.4 The correlations between metrics and difficulty ... 70

Table 4.5 R-matrix .. 75

Table 4.6 Total variance explained ... 76

Table 4.7 Factor matrix for the analysis ... 77

Table 5.1 Main P1 topics .. 80

Table 5.2 The provided Robot class methods ... 82

Table 5.3 The workload expectation for the P1 course (taken from the course descriptor)

 ... 83

Table 5.4 Main P2 topics .. 84

Table 5.5 SOLO categories for code reading .. 86

Table 5.6 SOLO categories for code writing .. 87

Table 5.7 Novel SOLO classification categories for code writing tasks using schemas 88

Table 5.8 Transfer types (taken from Schunk 2012, p.319 Table 7.4) 91

Table 5.9 Overview of the tasks .. 94

Table 5.10 Schemas required for solving the questions .. 96

Table 7.1 The number of soft scaffolding given during the think aloud sessions for the

133 participant solutions .. 206

xi

List of Abbreviations

Abbreviation Full Description

AUTEC Auckland University of Technology Ethics Committee

CLT Cognitive Load Theory

IDE Integrated Development Environment

ITiCSE International Conference on Innovation and Technology in

Computer Science Education

KMO Kaiser-Meyer-Olkin

P1 Programming 1

P2 Programming 2

PAF Principles Axis Factor

SRES Software Readability Ease Score

SOLO Structure of Observed Learning Outcomes

ZPD Zone of Proximal Development

xii

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which to

a substantial extent has been submitted for the award of any other degree or diploma of a

university or other institution of higher learning.

Signed:

Nadia Kasto

xiii

Dedication

In the memory of my dear father

To my beloved mother

To my incredibly wonderful husband, Barry, who has been

supportive of my work. I love you always and forever.

To the stars of my live, Zain & Zinah, I love each one of you more

than I can say, and I am lucky and proud to be your mother.

 Nadia

xiv

Acknowledgements

Thanks God for helping me with the strength and determination to present this work.

I would like to express my sincere gratitude and appreciation to my main supervisor

Assoc. Professor Jacqueline Whalley for her support through my Ph.D. journey, I would

like sincerely to thank my secondary supervisor Ms. Anne Philpott for her advice. I would

also like to thank sincerely to my third supervisor Professor Stephen MacDonell for his

advice and valuable suggestions during the work of this thesis. I would like to thank

sincerely to Dr. Robert Wellington (AUT) for his support and advice on the research

method and the use of video equipment from his research lab. Furthermore, I would like

to thank sincerely to my previous supervisor Dr. Jiamou Liu for his support during the

first months of my Ph.D.

My special thanks go to David Whalley; although “thanks” seems inadequate for your

consistent guidance and support given throughout the writing of my Ph.D.

I would like to express my thanks to the staff and my colleagues in the School of

Computer and Mathematical Sciences who supported me throughout my study.

I would also like to thank the students who volunteered to take part in this research. I wish

them the best of luck in future.

Thank you to my wonderful friends who gave their support and encouragement.

To my husband, Barry; my children, Zain and Zinah; my mother, Jacqueline Kasto; and

my mother-in-law, Janet Awbi, my sincere appreciation for your love and support.

xv

List of Publications

Kasto, N. (2012). The development of knowledge in novice programmers. In Proceedings

of the 9th International workshop Computing Education Research (ICER’12) (p.

159). Auckland, New Zealand: ACM.

Kasto, N., & Whalley, J. (2013). Measuring the difficulty of code comprehension tasks

using software metrics. In Proceedings of the 15th Australasian Computer

Education Conference (ACE’13) (Vol. 136, pp. 59–65). Adelaide, South Australia:

Australian Computer Society Inc.

Kasto, N., Whalley, J., Philpott, A., & Whalley, D. (2014). Solution Spaces. In

Proceedings of the 16th Australasian Computer Education Conference (ACE’14)

(pp. 133–137). Auckland, New Zealand: Australian Computer Society, Inc.

Whalley, J., & Kasto, N. (2014). How difficult are novice code writing tasks ? A software

metrics approach. In Proceedings of the 16th Australasian Computer Education

Conference (ACE’14) (pp. 30–40). Auckland, New Zealand: Australian Computer

Society, Inc.

Whalley, J., & Kasto, N. (2014). A qualitative think-aloud study of novice programmers’

code writing strategies. In Proceedings of the 2014 conference on Innovation and

Technology in Computer Science Education (ITiCSE’14) (pp. 279–284). Uppsala,

Sweden: ACM.

Awbi, N. K., Whalley, J. L., & Philpott, A. (2015). Scaffolding, the Zone of Proximal

Development, and novice programmers. Journal of Applied Computing and

Information Technology (Poster), 19(1).

1

Chapter 1. Introduction

1.1. Background of the Research

Programming is a complex cognitive skill that requires mastering. The cognitive

development processes that trigger learning have been a subject of discussion in the

computer science education community for a number of years. A wealth of literature

points to the fact that learning to program is difficult but we have little understanding as

to how students learn to program (Grover, Pea, & Cooper, 2015; Lister et al., 2006;

McCracken et al., 2001; Soloway & Spohrer, 1989; Perkins & Martin, 1985; Soloway,

Ehrlich, Bonar, & Greenspan, 1983).

Several empirical studies have focused on the difficulties that students have with learning

different language concepts, such as; input and output, assignment of values to variables,

the role of variables, and iteration-statements (Izu, Weerasinghe, & Pop, 2016; Corney,

Teague, Ahadi, & Lister, 2012; Kuittinen & Sajaniemi, 2004; Samurçay, 1989; Spohrer,

Soloway, & Pope, 1985; Du Boulay, 1986). Others have focused on the difficulties that

novices have when trying to understand object-oriented concepts (Reges, 2006; Lister et

al., 2006; Fleury, 2000).

One empirical study found that while novice programmers may know the syntax and

semantics of individual statements, they may not recognize how to combine these features

into a valid program code (Spohrer & Soloway, 1986), and these have concluded that

“educators may be able to improve their students’ performance by teaching them

strategies for putting the pieces of program code together, and by helping them learn the

syntactic and semantic constructs of the language” (p. 632). In other words, the ability

to solve a code writing problem requires skills beyond practicing the syntax and semantics

of a programming language, and most of the errors in students’ programs are usually

related to a lack of organising knowledge and problem solving strategies, i.e. a deficiency

in their ability to see internal similarities between problems and to transfer ideas from one

problem to a similar problem in a different context (Muller, 2005).

The problems associated with learning to program are well documented by global, multi-

institutional studies. The McCracken (2001) working group’s empirical study of novice

code writing found that CS1 (first year programming) students were less proficient at

programming than anyone, including their teachers, had imagined. This work set the

scene for a number of other medium-to-large scale multi-national, multi-institutional

studies of novice programmers. A popular explanation for the failure of novice

2

programmers to reliably write correct and/or high quality code is that students lack the

ability to abstract a problem description, decompose it into sub-problems, and reassemble

the pieces into a complete solution. One study, which extended the McCracken groups

work, focused on code comprehension and found that students also fail to comprehend

code, suggesting that such students have a fragile grasp of the skills that are a prerequisite

for problem solving (Lister et al., 2004). Whalley et al. (2006), also studied students’

ability to comprehend code and extended this line of research. The authors found that

students who cannot read a piece of code and describe it in relational terms are not well

equipped to write code. Recent works have focused on the relationship between tracing,

explaining and writing code (Kumar, 2013; Murphy, Fitzgerald, Lister, & McCauley,

2012; Lister, Fidge, & Teague, 2009; Venables, Tan, & Lister, 2009; Lopez, Whalley,

Robbins, & Lister, 2008; Philpott, Robbins, & Whalley, 2007). While most studies point

to code writing being more difficult than code reading, studies by Denny, Luxton-Reilly,

and Simon (2008), and Yamamoto et al. (2012) found exactly the opposite. Other studies

found that there is very little correspondence between ability to write a program and the

ability to read one (Winslow, 1996). Lister et al. (2009) also questioned the idea of a skill

hierarchy suggesting that the observed hierarchy might actually be a consequence of the

difficulty level of the problems the students were given rather than evidence of a hierarchy

of skills. Some recent studies have focused on assessing the difficulty levels of code

reading and code writing and concluded that one reason for many students lack of success

could be the difficulty inherent in the instructional design of the course and/or the

difficulty of the programming tasks (Ginat & Menashe, 2015; Whalley et al., 2011;

Whalley et al., 2006).

It is generally accepted that learning to program is more difficult than learning other

computing subjects at tertiary level (Oliver, Dobele, Greber, & Roberts, 2004). It has been

postulated that this is because of the dependency between program concepts; a student

must fully understanding one concept before they can even begin to learn a new concept

and each programming problem solution can be reused in solving another programming

task (Robins, 2010).

Many studies of novice computer programmers, such as the ones noted in this section,

have relied on single snapshots of student work from naturally occurring data. While this

has become an accepted and valid method of research it has its limitations, as assumptions

are generally made about how students learn and about their learning processes. Although

these studies have led to some interesting findings, we cannot truly elicit a student’s

3

development of code comprehension and code writing skills from these snapshots. In

contrast the study proposed in this thesis, is a longitudinal study that follows tertiary

students through their first year of learning to program. The aim is to observe and

investigate the nature of student cognitive schemas and the way in which the students

adjust those schemas when undertaking code writing tasks for a period of nine months

(One academic year).

In this thesis a schema is defined as an existing mental structure stored in long term

memory. A schema represents an organisation and linking of knowledge. Programming

schema may be composed of salient elements which are defined as small syntactic units

Much of the research in the teaching and learning of programming to date has focused on

code comprehension rather than on code writing. There are several reasons why this is

the case. It is generally accepted that in order to be able to write code you have to read

code (Griffin, 2016; Lopez et al., 2008) therefore many studies have focused on code

comprehension as a precursor to code writing. Moreover, measuring a students’ code

writing ability is harder than measuring code comprehension tasks because of the free-

form nature of code writing which makes its interpretation ambiguous (Kumar, 2013).

This makes investigating the learning of code writing inherently more complex. However,

this does not mean that code writing should not be investigated. Indeed, the lack of

research in the area of code writing and the well-documented difficulties of novice

programmers suggest that there is a great need for such studies.

1.2. Key Definitions

This section defines the key definitions related to cognitive schemas commonly found in

the literature. For the purpose of this research the following working definitions were

developed. The term salient element was first used in the literature by Whalley et

al.(2011). Salient elements are syntactic elements in novice code. These include FOR-

loops, IF-statement or variable declarations. Salient elements are the simple elements

which when combined form a schema. Schema are existing mental structures in long term

memory. They represent an organisation and linking of knowledge. A plan is a set of steps

used to solve a programming task. Typically a plan will consist of more than one schema.

A pattern is a recurring schema or plan which is used so often it becomes a generalised

or abstract notion which can be applied to different problems. A pattern is more

generalised or abstract than a schema.

4

1.3. Research Questions

The aim of this research is to gain a deeper understanding of the ways in which novice

programmers learn to program, with an emphasis on their cognitive development

processes.

Research question 1 (Q1): Can we develop a framework that describes the difficulty of

novice code writing tasks? The question is refined to more specific questions:

1.1. Can we objectively classify the difficulty of the novice programming (code

writing) tasks?

1.2. Which existing taxonomy best illustrates the observed difficulty of programming

tasks?

Research question 2 (Q2): How do novice programmers integrate new programming

structure or elements into their current understanding of code? The question is refined

to three more specific questions:

2.1. Can we identify common patterns (strategies) that students apply when

attempting to write a piece of code?

2.2. What kind of tasks scaffold and reinforce code writing?

2.3. Can we identify the Zone of Proximal Development (ZPD) of a student?

Research question 3 (Q3): Does a student’s approach to integrating new knowledge

change over time? If it does, what triggers this change?

Research question 4 (Q4): What specific properties does a programming question or

task need to trigger a learning event?

Research question 5 (Q5): Can we develop a cognitive framework that describes the

ways in which novice programmers integrate new programming structure or elements?

The question is refined to two more specific questions:

5.1. What existing frameworks, if any, can be integrated or adapted to describe

the knowledge acquisition process of novice programmers?

5.2. Does any existing learning or cognitive theory (or combination of theories)

explain our observations of novice programmers?

1.4. Research Design

The study designed to answer these questions is a longitudinal study that follows a small

number of students through their first year of learning to program at Auckland University

of Technology (AUT). In this study, a mixed research method is adopted providing both

5

quantitative and qualitative data including the analysis of student responses to exam

questions and interviews and observation of students writing code. A novel framework is

designed that combines the ideas of software metrics and the SOLO taxonomy and this

will be used to measure the difficulty of programming tasks. This framework will

subsequently be used to design a set of tasks to trigger situations that require some form

of knowledge adaptation or acquisition. Once suitable programming tasks have been

identified participants will be observed individually while they are attempting to solve

these tasks. Data will be collected using think aloud protocols as well as direct

observations. At the conclusion of each session each participant will take part in a

retrospective interview about the way in which they attempted to construct a program that

performed the task set and about problems they encountered and what they did to try to

overcome those problems.

1.5. Structure of the Thesis

This thesis is organised into eight chapters, and structured as follows:

Chapter 1 introduces the thesis topic and outlines the research aims and design.

Chapter 2 contains the literature review, which surveys the theories of cognitive

development proposed by Piaget and Neo-Piagetian theorists, Vygotsky, Sfard’s theory

of concept development, and Cognitive Load Theory (CLT). It also explores the

application of these theories in the context of learning in general and learning to program

in particular. For this research, a clear understanding of these theories is key to developing

a broader understanding of the way in which learning occurs. This chapter also

investigates the strategies that novices use to comprehend and generate/write a program.

The chapter concludes with a review of the literature relating to the transfer of learning

and analogy in cognition.

Chapter 3 presents a detailed overview of methodological principles and a discussion of

the philosophical perspective for this thesis, including the research instrument design and

procedures adopted for data collection and sampling. This chapter also provides a

description of the think aloud method, the stages of verbal protocol analysis, and the

intervention model.

Chapter 4 presents detail about the design of a framework for describing programming

tasks and their difficulties. It discusses the design of a framework that combines the ideas

of the SOLO taxonomy and software metrics and reports on an empirical evaluation of

6

students’ responses to past code writing tasks and an analysis the metrics usefulness as

predictors of task difficulty.

Chapter 5 focuses on the design of a set of programming tasks (the research instrument)

within the difficulty framework described in Chapter 4. This chapter also addresses

pedagogical approaches, development tools and content of the programming courses

(Programming 1 (P1) and Programming 2 (P2)) in which this study is situated.

Chapter 6 details the think aloud transcriptions, encoding and provides a preliminary

analysis for the four key participants in this study (top participants and bottom

participants), which are further explored used in Chapter 7. The remaining data set from

the four participants has been included in Appendix A.

Chapter 7 discusses the common patterns of learning which were extracted from think

aloud data (Chapter 6) with reference to the cognitive theories of learning (Chapter 2).

Chapter 8 concludes the thesis. It identifies the limitations of the study, draws

conclusions from the findings and gives suggestions for further research into the learning

and teaching of computer programming to novice programmers.

7

Chapter 2. Background

2.1. Introduction

The literature reviewed in this chapter covers the following major themes:

 General theories of cognitive development, application of these theories in the context

of learning in general, and in particularly learning to program.

 Knowledge organisation and strategies for programming.

 Transfer in cognition.

The theories discussed in the first section have all made significant contributions to

educational psychology, and learning theory. They are general theories of cognitive

development. For this research, a clear understanding of these theories is a key to

developing a broader understanding of the way in which learning occurs. This is followed

by a section dealing with knowledge organization and problem solving strategies. Studies

of strategies used by programmers typically focus on what is happening in the mind of

the novice programmers when attempting to solve a programming task. Finally, this

chapter concludes with a literature relating to the transfer of learning and analogy in

cognition.

2.2. General Theories of Cognitive Development and Learning

Cognitive development theories depend on the premise that learning is based on previous

experiences and existing perspectives which influence the way new information is

interpreted. Individuals engage in a learning activity by integrating that new information

into their existing schema, building knowledge and skills based on prior knowledge and

experience rather than just passively absorbing what is presented to them.

Recently, attention has turned to looking at these theories as a way of trying to understand

how adult learners begin to learn programming. This research requires methods and

theories that help to observe and explain the process of learning and development, and

help to identify why students are having difficulty in learning to program. Piaget

developed a theory of cognitive development which is widely regarded as providing the

foundation on which later constructivist theories have been developed. Despite the

criticisms that have been made about his theory his views remain well regarded and

include aspects that inform both the design and analysis of this research. Moreover, those

later theories of learning which have their foundations in Piagetian theory should also

assist this research- for example, Vygotsky’s notion of a Zone of Proximal Development

(ZPD), Sfard’s ideas on the process of abstraction from concrete examples to abstract

8

concepts, and CLT studies on how to reduce the load on working memory to optimise

learning. Each of the above theories brings with it basic assumptions about the nature of

learning, the phenomena of interest, and the types of explanations that can be generated.

However, while multiple theories have been applied separately to computer science

education, there are still no very compelling answers to the question, “Why do so many

students struggle to learn to program?” This research differs from previous studies, in

computer science education, in that it starts with data about students engaged in learning

to program and then uses a number of theories of learning to explain our observations of

novice programmers and identify why students are having problems.

This section consists of a review of each theory and how each theory has been applied in

the context of learning to program. A key element to look at when examining the above

theories is what they have to say about how learning occurs and about the effects of

aspects of the learning environment on learning. Factors such as students’ prior

knowledge, how students organize knowledge (deep and fragile knowledge), social

interaction and scaffolding, practice, time zone for learning, and self-regulation of

learning could provide useful insights into how students learn to program.

2.2.1. Piaget and Neo-Piagetian Theories

One of the most influential learning theories to date was developed by Jean Piaget (Hsued,

2005). Piaget’s theory was formed from a constructivist perspective, which sees people

construct their own knowledge and understanding of the world by discovery (Schunk,

2012).

Piaget believed that individuals learn to interpret the world through building mental

knowledge (schemas) and that it is only when these schemas change qualitatively that the

process of cognitive development occurs. Piaget’s work focused on the individuals rather

than on any sociocultural influences on cognitive development.

Piaget theorized that there are two main processes that bring about learning; organisation

and adaptation. Organisation defines how existing knowledge or experiences are related.

Organisation is the result of practice over a long period of time. Piaget believed that this

organisation of information made the human thinking process more efficient. Adaptation,

on the other hand, is defined as the process by which humans match existing knowledge

with a new experience which may not fit within their existing knowledge readily. Piaget

argued that schemas could change through the processes of adaptation: assimilation and

accommodation. Assimilation is a process of incorporating new information into one's

existing mental structure (schema) for future retrieval and use (Flavell, 1977).

9

Accommodation is a process through which one changes their existing mental structures

(schemas) in order to accommodate new information (Flavell, 1977). Adaptation becomes

necessary when disequilibrium exists, that is when the individual’s beliefs (existing

schema) do not match their observed reality. The processes of adaptation are used to

restore equilibrium.

In his theory, Piaget identified four stages of intellectual development (Piaget & Inhelder,

1969). These four stages are: sensorimotor, preoperational, concrete operational and

formal operational. Piaget argued that intelligence developed progressively as the

individual moved through these stages.

Piaget, in his theory of childhood development, used the term “décalage” to represent the

idea that analogous cognitive structures or processes appear at different moments of

development rather than being synchronous. Vertical décalage describes the process of

carrying out the same task with increasingly sophisticated conceptual approaches whereas

horizontal décalage describes the time lag in achieving different tasks that require the

same cognitive structures (Flavell & Piaget, 1963). He described intellectual development

as an upward expanding spiral in which children must constantly reconstruct the ideas

formed at earlier levels with new, higher order concepts acquired at the next level (Piaget

& Inhelder, 1969; Hsued, 2005).

At about age six (primary school age), the child enters the concrete operational stage and

is able to apply operations to real objects and events. The cognitive abilities to solve

problems involving physical objects that require: seriation, classification, reversibility,

conservation, decentring, and/or transitivity begin to develop. This represents a

fundamental change in the child’s development because it is the beginning of operational

(i.e. rule based) or logical thought.

By the time adolescents reach the formal operational level of reasoning, they can organise

information, reach logical conclusions and form hypotheses (Huber, 1988). They develop

the ability to think in the abstract and can manipulate multiple variables systematically.

Another ability at the formal operational stage is that of metacognition and self-regulation

that entails “reflecting on, monitoring and management of one's thoughts” (Kuhn, 2008).

Piaget’s theory has been criticized largely because he based his theory on the observations

of a small set of children (and therefore his findings may not be generalizable), including

his own three children, from similar sociocultural backgrounds, and so does not

acknowledge the influence of cultural factors on learning and development.

10

The neo-Piagetian theorists have claimed that Piaget underestimated the thinking

capabilities of preschool children. They have tended to place more emphasis on the

influence of cultural experiences on a child’s cognitive development. They have often

adopted the view that people, regardless of their age, progress through increasingly

abstract forms of reasoning as they gain expertise in a specific problem domain, and have

attempted to modify Piaget’s stages by postulating additional levels of adult reasoning

(Commons, Richards, & Armon, 1984). Since there is little agreement about the post

formal operational levels that have been proposed and since these levels do not required

the use of a form of logical reasoning that is fundamentally different from that acquired

in the formal operational stage of development, levels beyond the formal stage have not

been discussed here. Similarly, because the subjects of this study were all in late

adolescence or early adulthood the validity of the criticism regarding the age of onset of

concrete operational thought is not relevant and so has not been critiqued in this thesis.

Although Piaget’s theory largely meets three of the criteria usually applied to the concept

of a developmental stage, i.e. qualitative change, ordinality and organization, the theory

does not meet two of the criteria. A change between stages is expected to meet the

criterion of abruptness whereas the change from one Piagetian stage to another is

normally very gradual. A stage is also expected to display concurrence, i.e. there should

be more or less simultaneous and similar changes across domains; but Piagetian theory

fails on this criterion. The emergence of the concrete operational process of conservation,

for example, often takes several years to fully develop, as the child’s conservation of

liquid, number, length, weight, etc. becomes established over a number of years.

Piaget and the neo-Piagetians have managed information about inconsistency in the stage

of reasoning used by individuals across different domains of knowledge differently.

Piaget recognised the lack of concurrence and added the notion of décalage to his theory,

but this is essentially a term that describes rather than explains the lack of concurrence.

Some neo-Piagetian theorists have suggested that it would be better to refer to levels or

modes of logical reasoning rather than stages and that an individual could then use

different modes in different domains of knowledge and this would not represent a failure

to meet the criterion of concurrence across all areas of reasoning which is applied to a

developmental stage theory (Ojose, 2008). Some neo-Piagetians have suggested that

processing and working memory capabilities may explain transitions in thinking level and

that differences in memory demands may explain the fact that different levels of reasoning

11

are observed in the same person solving problems in different domains of knowledge

(Strauss, 1993).

Neither Piaget nor the neo-Piagetians have defined a set of knowledge domains within

which concurrence could be expected. For example, is mathematics a domain or does it

consist of several domains: algebra, geometry, trigonometry etc.? And is geometry a

domain or should it separated smaller domains, e.g. Topography and Euclidean

geometry? If moral reasoning is accepted as being a domain then we have to face the

difficulty that young adults who reason about some moral problems by using formal

operational logic revert to less sophisticated stages of reasoning when responding to other

similar moral problems. Thus the lack of observed concurrence, even within what appears

to be a domain of knowledge, remains an unresolved difficulty for both Piagetian and

neo-Piagetian theorists and researchers.

A number of researchers have attempted to test the effectiveness of level of Piagetian

stage of development as a predictor for success in learning computer programming. Since

programming requires the ability to think in the abstract and to apply logic, the level of

Piagetian stage used to solve problems appears to be a strong candidate.

Kurtz (1980) reported a strong correlation of 0.63 between a test of Piagetian reasoning

problems and course grades but Barker and Unger (1983), using most of the same set of

Piagetian tasks and with a far greater number of students could not confirm the

relationship reported by Kurtz. Werth (1986) duplicated Kurtz’s study with a small

number of students and was also unable to find a relationship. Bennedsen and Caspersen

(2008), and Cafolla (1988) have also reported that measures of formal operational

reasoning based on student responses to Piagetian problems did not correlate strongly

with student grades for programming. Two studies that did report some predictive ability

separated the subjects into dichotomous categories of success based on course grades,

rather than using the raw grades. Fischer (1986) used a criterion of B+ or above, and

Hudak and Anderson (1990) used a criterion of 72%+, to place students into the

successful category. Fischer reported that 91% of the students in the successful category

were at the formal operational stage but none of those from the unsuccessful category

were at that stage. Hudak and Anderson reported that they had been able to correctly

predict the programming course successful/unsuccessful status of 72% of the students

from the results of a test of formal operational reasoning. In a similar vein, White and

Sivitanides explained the bimodal distribution of grades commonly reported for

introductory programming classes using Piaget’s development levels “The low mode may

12

indicate Piaget's concrete operation stage. The high mode may indicate Piaget's formal

operation stage” (2002, p.10).

The lack of agreement from the findings of the various pieces of research may be a

consequence of inadequacies in the measure of success in programming or due to the

concurrence issue described above. The measures of success in learning to program have

all been taken from formal assessments that were an integral part of the tertiary courses

in which the subjects were enrolled. However, a number of other studies have found that

the grades awarded students in programming courses frequently have deficiencies of

validity and/or reliability and are therefore probably not adequate as measures of the

ability to write computer programs. The other assumption made by the researchers is that

a measure of the stage of reasoning used to solve Piagetian problems that are located in

one domain of knowledge, e.g. physics or mathematics, would be an adequate predictor

of the level of reasoning used in another domain, i.e. computer programming. The lack

of concurrence in Piagetian stages makes this most improbable. Moreover, the age of

most students in the early years of their studies falls within the 15 to 20 year range, the

time given by Piaget for the development of formal operations. It should therefore be

expected that many of them would not have a firm grasp of formal operations and many

may not even have begun to engage in formal operational reasoning.

It must be concluded that it has yet to be demonstrated that tests of Piagetian reasoning

are useful for predicting success in learning to program and therefore useful as a student

selection tool. However, with greater attention to the issue of concurrence and to the

transition in mode of thinking that many tertiary students are likely to be undergoing, and

attention to the accuracy of the assessment of student’s programming competencies, it

may at least be possible to develop a measure of student reasoning that can identify those

students unlikely to succeed in the traditional, large class, novice programming course.

Alternatively, of course, it could be argued that the real problem is not one of predicting

success but of providing novice programmers with courses that are more appropriately

structured and provide better learning opportunities. Unfortunately many university level

introductory programming courses are lecture based and have yet to provide for the sort

of learning advised by Piaget 45 years ago: “You cannot teach concepts verbally; you

must use a method founded on activity” (Hall, 1970, p.30).

To date there have been very few empirical studies of the cognitive development of

novice programmers. However, in the last decade some Australasian researchers have

13

attempted to reinterpret aspects of Piagetian theory and apply these reinterpretations to

an empirical study of the development of the skills of novice computer programmers.

Lister (2011) suggested that Piaget’s developmental stages could be used to establish the

cognitive development levels of novice programmers. His hypothesis arose as a result of

earlier empirical studies of novice programmers that found novices need to be able to

trace with >50% accuracy before they can begin to understand the code (Philpott,

Robbins, & Whalley, 2007; Lister, Fidge, & Teague, 2009; and Venables, Tan, & Lister,

2009).

One of the limitations of Lister’s work is that it focused on the skill required to solve a

code comprehension problem to establish the neo-Piagetian level of the student’s

cognition. He did not explicitly explore subjectively or objectively the difficulty of each

problem. This means that it could be argued that some observations are an artefact of a

specific problem which may have contained unintended complexity or non-domain

specific content. A follow up empirical studies by Teague & Lister (2014b; 2014a;

2014c) attempted to classify students as sensorimotor, preoperational, or concrete

operational thinkers. Other researchers in computer education have not included the

sensorimotor stage1 because this stage consists of behaviours below what would normally

be expected by adult learners when learning in new cognitive domains, especially when

learning programming which requires higher cognitive abilities (Falkner, Vivian, &

Falkner, 2013; and White & Sivitanides, 2002).

Another limitation of Lister and Teague’s work is that the validity of the conclusions

reached are dependent on the accuracy with which he was able to match the logical

thought required to complete programming tasks to Piaget’s developmental stages. For

example, Lister proposed that “in a programming context, a novice at the concrete

operational stage should be able to easily make minor changes to code while conserving

what the code achieves” (Teague & Lister, 2014a, p.31). The implication of this

supposition is that if the student does not maintain the intended output of the code but

makes changes that would produce a different output then the student would be

functioning at a level below concrete operations i.e. at the preoperational level. The

1 According to Piaget, during the sensorimotor stage, infants learn to interact with the world around them,

which means that an infant could easily use a mouse and randomly press the keyboard buttons. Li & Atkins

(2004) found that preschool children of 3-5 years old are able to use a computer by pressing a mouse or

button to trigger a visual response but they are certainly not at the level to begin to learn to program a

computer. It is highly unlikely that tertiary students (late adolescent (17-19) and adult learners) engage in

reasoning below the concrete operational level even when faced with new programming tasks.

14

difficulty here lies with use of “conservation” to describe the maintenance of “what the

code achieves”. When Piaget developed his theory, conservation was defined as the

ability to see that some properties are conserved (don’t vary) after an object undergoes a

physical transformation. Lister is not talking about an object but about an abstraction

(what the code achieves) and minor changes in a piece of code are very different from the

sort of physical transformation Piaget referred to. Therefore, the inability of some

university level novice programmers to see that a minor change in code has altered what

the code achieves is not evidence that they have been using Piaget’s preoperational

thinking.

Learners, according to Piaget, are active constructors of their world and discoverers of

knowledge. In contrast Vygotsky’s social constructivism, while incorporating Piaget’s

ideas of active learners, emphasises social interaction in learning and development.

2.2.2. Vygotsky’s Theory and the Notion of Scaffolding

In formulating his theory of learning, Vygotsky focused on the sociocultural contexts that

influence learning (Vygotsky, 1978). Within his sociocultural theory, it is argued that

development occurs twice: firstly in the process of social interaction and secondly within

the mind of the individual (previous experiences and existing perspectives).

Vygotsky (1978) believed that social interaction with cultural tools represents the most

important part of a learner’s psychological development. Cultural tools include “all the

things we use, from simple things such as a pen, spoon, or table, to the more complex

things such as language, traditions, beliefs, arts, or science” (Cole, 1997). In computer

science education, the language and/or environment itself is the cultural tool to

understanding the programming concepts. Hence the language and/or environment is the

vehicle by which programming concepts are usually presented to a novice programmer.

Vygotsky categorised learning into three different levels:

1. What a learner can do independently (i.e. on their own). This stage was referred

to as the level of actual development. It involves skills that a learner has already

learned and with which they can work independently.

2. What a learner can do with the assistance of someone. This stage was referred to

as the level of potential development.

3. What is beyond the learner’s reach even if assisted by someone else.

According to Vygotsky, the potential for cognitive development depends on the Zone of

Proximal Development (ZPD). Vygotsky defines ZPD as the “the distance between the

15

actual developmental level as determined by independent problem solving and the level

of potential development as determined through problem solving under adult guidance,

or in collaboration with more capable peers” (Vygotsky, 1978, p. 86). In other words,

the ZPD gives an indication about what a learner can expect to achieve in the near future.

Vygotsky believed that when a learner is at the ZPD for a particular task, providing the

appropriate assistance by more knowledgeable others will give the learner enough of a

boost to achieve the task and make progress. Otherwise, the learners become frustrated

and cannot make progress because they have been left for too long at a point where they

could not easily make progress. As a result, they can lose motivation and interest (Black,

2006). Vygotsky predicted that teaching input would be most effective if it occurred at

the edge of the ZPD and that instruction located at or below a learner’s current level of

understanding would not be challenging enough to prompt further development; at the

same time, instructions that are beyond what a learner can perform is ineffective for

stimulating learning. He postulated that instruction should therefore be targeted

somewhere in between in order to enable learners to build on current knowledge. With

constant practice supported by more knowledgeable others, a learners understanding can

continue to improve. “In order to understand that after repetition it is easier to remember,

one must be experienced in memory tasks” (Vygotsky, 1981, p.181).

For Vygotsky, metacognition and self-regulation are not achieved until adolescence, and

require the exposure to scientific concepts provided by school instruction. Exposure to

school tasks and the repeated practice they provide promotes the development of

metacognitive knowledge about one’s own thinking. “School instruction induces the

generalizing kind of perception and thus plays a decisive role in making the child

conscious of his own mental processes. Scientific concepts, with their hierarchical system

of interrelation, seem to be the medium within which awareness and mastery first develop,

to be transferred later to other concepts and other areas of thought” (Vygotsky, 1986,

p.171).

To date there has been no empirical research reported in the literature which investigates

the relevance of Vygotsky’s theory of the ZPD to the learning of computer programming.

The closest is the research of Robbins (2010), which discusses the idea of a “learning

edge momentum” where the notion of the learning edge appears to have its foundation in

Vygotsky’s idea of a ZPD. In Vygotsky’s theory as a student learns their ZPD expands,

and the most meaningful learning occurs “only just or very nearly within the range of the

child’s independent ability. Rogoff (1984) called this the child’s cutting edge of

16

understanding” (Mcnaughton & Leyland, 1990, p.154). This idea is similar to that of

Robbin’s learning edge.

The bodies of work in computer science education which link to Vygotsky’s theory are

in the areas of collaborative learning, software tools, cognitive apprenticeship, and e-

learning. The research which has its roots in aspects of Vygotsky’s theory and is most

relevant to the research reported here is the work related to scaffolding.

The ZPD metaphor has over time become synonymous in literature with the term

scaffolding. However, Vygotsky did not use this term in his writing. Scaffolding was first

used by Wood, Bruner and Ross, who defined it as a “process that enables a child or

novice to solve a problem, carry out a task or achieve a goal which would be beyond his

unassisted efforts” (Wood, Bruner, & Ross, 1976, p.89). In any case, the term “Vygotsky

scaffolding” has been used by researchers to describe a teaching approach that provides

resources such as tools, strategies and guides that support the learners as they learn new

concepts in order to provide learners with a higher level of understanding than they could

have attained through independent study. An increasing number of educators and

researchers have used the concept of scaffolding as a metaphor to describe and explain

the role of Vygotsky’s more knowledgeable others in guiding learning and development.

The dual aspects of ZPD and scaffolding help the learner to finish the task and improve

the learner’s performance. However, sometimes the learners are assisted in the task but

are not able to take advantage of the experience; therefore such kinds of assistance will

be localised to that instance of scaffolding, and they will not provide support for learning

in the future. Thus, scaffolding must cover a delicate cooperation between giving support

and continuing to engage the learner actively in the learning process (Reiser, 2002).

Hannafine et al. (1999) identified four types of scaffolding:-

1. Conceptual (supportive) scaffolding: - Guiding the learner in what to consider when

the problem is defined.

2. Metacognitive (reflective) scaffolding: - Guiding the learner in such a way that they

are encouraged to reflect on the way in which they are learning and to look inward in

order to examine what learning strategies are effective for them.

3. Procedural scaffolding: - Redirecting learners to use resources and tools.

4. Strategic scaffolding: - Guidance about alternative approaches or methods to problem

solving that might help overcome the given problem.

17

Saye and Brush (2002) continued this line of research suggesting that there are actually

two types of scaffolds namely soft scaffolds and hard scaffolds. Soft scaffolds “are

dynamic, situation-specific aid provided by a teacher or peer”. This type of assistance is

generally provided “on-the-fly” when the teacher observes students and provides

immediate support (i.e. formative feedback) based on student responses. In contrast to

soft scaffolds, hard scaffolds “are static supports that can be anticipated and planned in

advance based on typical student difficulties with a task”. Software scaffolds fall into this

category. As part of this research students will be given programming problems to solve

and it might be useful to use the notions of ZPD, and a framework of different types of

scaffolds students receive in order to understand their learning processes.

In the 1980’s, Soloway and associated researchers started to investigate the nature of the

development of expertise in computer programming. They discovered that experts have

strategies/plans (schemas) for solving computer programming problems. As a result they

advocated teaching strategies and plans explicitly as scaffolds to assist novices in

constructing code (Letovsky & Soloway, 1986; Soloway, 1986; Spohrer, Soloway, &

Pope, 1985).

While there has been a vast amount of discussion in the literature on the teaching and

learning of programming, which advocates the use of scaffolding to enhance student

learning there have been very few empirical studies which provide explicit evidence that

scaffolding supports the learning of computer programming. Arguably one of the most

influential pieces of empirical research on the influence of more knowledgeable others

on the learning of computer programming was that of Perkins and Martin (1985). In this

study they investigated the influence of supportive scaffolding provided by instructors.

They reported that they were able to extend a student’s knowledge through the use of

such scaffolding, “In particular, prompts led to a correct resolution of difficulties 32%

of the time and hints an additional 17%, leaving 52% of difficulties requiring an answer

provided by the experimenter” (Perkins & Martin, 1985, p.32).

In computer science education, the term scaffolding has over time become synonymous

with forms of feedback (e.g. feedback from unit tests) and/or tools designed and used for

supporting learning (i.e. programming languages (e.g. Scratch) and development

environments (e.g. Alice)). As a consequence “the concept of scaffolding has been more

commonly employed to describe what features of computer tools and the processes

employing then are doing for learning” (Pea, 2013, p. 429). This means that most of the

reported research uses the notion of scaffolding to explain the way in which a tool is

18

designed or should be “pedagogically” used but does not further that work to an in depth

investigation of the role of scaffolding in the development of skills and knowledge of

novice programmers. It is possible that scaffolding could be considered as a subcategory

of the broader class of feedback. Feedback must be presented in a certain way in order

for it to scaffold learning. Some tools have been designed to scaffold learning by

providing timely and useful feedback and may thereby be scaffolding learning for some

students but there is no evidence in the literature that scaffolding is occurring. It should

also be noted that scaffolding with tools and software does not originate from Vygotsky’s

theory. Vygotskian “scaffolding” differs in that it is a type of cognitive apprenticeship

where the learner progresses with the assistance of more knowledgeable others.

It is likely to be important for this research that the idea of scaffolding and the nature of

scaffolding given to students is considered when designing both the research method and

as a dimension of the analysis of the results.

2.2.3. Sfard’s Theory

Anna Sfard (Sfard, 1991) explored the ability to abstract from concrete examples to a

generalized mathematical concept. Her work explored the dual nature of object and

process in the context of mathematical concept development and described two

metaphors acquisition (a constructivist cognition metaphor) and participation (a

sociocultural metaphor). Participation, in part, involves interacting with more

knowledgeable others to construct understanding, one of the key ideas in Vygotsky’s

theory.

Acquisition involves the accumulation of a set of facts or elements of knowledge, either

by reception or cognition through construction, that are abstract (Sfard, 1998). Sfard

argued that the process of acquiring a mathematical concept involves transitioning from

operational conceptions (processes, dynamic sequential and detailed) to abstract objects

(static structures). She identified a framework of three phases for concept formation from

process to object understanding namely, interiorization, condensation and reification.

These three phases are reflective of Piaget’s adaptation theory in which cognitive

structures are changed and reified. Understanding mathematical concepts through a set of

phases leading to the abstraction is similar to Piaget's notation of “reflective abstraction”

in which actions on existing schema become interiorized, as the individual processes

towards a state of equilibrium, and are then encapsulated (reified) as mental objects of

thought.

19

“At the stage of interiorization a learner gets acquainted with the processes which will

eventually give rise to a new concept… These processes are operations performed on

lower-level mathematical objects. Gradually, the learner becomes skilled at performing

these processes. The term “interiorization” is used here in much the same sense which

was given to it by Piaget (1970,p.14): we would say that a process has been interiorized

if it “can be carried out through [mental] representations”, and in order to be

considered, analyzed and compared it needs no longer to be actually performed.”(Sfard,

1991, p.18). At the condensation stage a learner “becomes more and more capable of

thinking about a given process as a whole” (Sfard, 1991, p.19). The phase of

condensation is chunking sequences of operations into smaller more manageable units.

“This is the point at which a new concept is officially born” (Sfard, 1991, p.19). Cognitive

development at the condensation stage manifests in an ability to readily alternate between

different representations of a concept. “The condensation phase lasts as long as a new

entity remains tightly connected to a certain process. Only when a person becomes

capable of conceiving the notion as a fully-fledged object, we shall say that the concept

has been reified. … Reification, therefore, is defined as an ontological shift a sudden

ability to see something familiar in a totally new light” (Sfard, 1991, p.19). With repeated

practice, a shift from the operational to structural approach can be made; “the …

[mathematical]… computational processes were caught into a static construct just like

water is frozen into a piece of ice” (Sfard 1991, p.25). Once a concept reaches reification,

it can then be used as a primitive object in higher-level concept acquisition. These steps

describe “the transition from computational operations to abstract objects” and this is in

essence the process of abstraction. Within these processes there is an integral assumption

that knowledge is an organized hierarchy of concepts that build on each other. Higher

abstract concepts require prior knowledge of lower level concepts (deep knowledge). A

reasonable extension is the conclusion that this prior knowledge must be within the

learners ZPD in order for higher level concepts to be learned.

Because Sfard focused on the development of relatively advanced mathematical thinking

(Pegg & Tall, 2002) her emphasis is on Piaget’s formal development level rather on

earlier forms of thinking such as preoperational or concrete operational. The learners’

characteristics are very likely to have an effect on how successfully they transition from

the first phase of operational conception to abstract objects. The relevance of Sfard’s work

for research on metacognition and self-regulation has been noted by Caswell and Nisbet

(2005).

20

Sfard’s framework while developed as a theory for explaining concept development in

mathematics is also relevant to learning computer programming. Like mathematics,

programming involves “tightly integrated concepts”. Robins (2010) argued that novice

programmers must fully understand one concept before they can even begin to learn a

new concept. “It is very difficult to describe or understand one concept/language element

(such as a for loop) independent of describing or understanding many others (flow of

control, statements, conditions, Boolean expressions, values, operators), which

themselves involve many other concepts, and so on” (Robins, 2010, p.26).

Lister et al. (2009) agree that skills in computer programming are analogous or

comparable to mathematical procedures because “they represent following step-by-step

instructions using the operations of the respective subject area” (p.160). However, they

also argue that there is a fundamental difference between the two subject areas because

computer science has both practical (skill based) and conceptual learning goals. They

suggest that in computer science skills are goals themselves and not merely intermediary

to reaching a more sophisticated understanding. Lister et al. (2009) supposed that there is

a major distinction between abstraction in mathematics education and computing

education research. In mathematics abstraction is related to information neglect in which

learners strategically ignore or discard key concepts in order to focus on the concept at

hand (Colburn & Shute, 2007). Conversely, in computer science, abstraction is related to

information hiding. Concepts are encapsulated (i.e. generalised, avoiding contextual

specificity) in order to deal effectively with invariants and create a foundation for the next

level of thinking.

Despite this difference Lister et al. (2009) claim that it is possible and fruitful to relate

the mathematics research findings to research related to the development of skills and

concepts in novice programmers. Lister et al.(2009) also suggested that there is a direct

and clear relationship between Sfard’s theory, variations on Sfard’s theory (Dubinsky,

1991; Gray & Tall, 2007), and the SOLO educational taxonomy (Biggs & Collis, 1982).

Dubinsky described the cycle of abstraction in terms of Action, Process, and Object

Schema (APOS theory). In APOS actions are said to be interiorised as processes and then

conceived as objects within a wider schema. This cycle of mental abstraction has also

been described in terms of procedure, process and procept where procept is a symbol

which can operate dually as a process or a concept (Gray & Tall, 2007). While there are

some differences in the detail of these theories, and Sfard’s theory they are fundamentally

the same.

21

In an earlier study, Eckerdal and Berglund (2005) undertook a phenomenographic

analysis of interviews of first year students about their understanding of what learning to

program means. The researchers found that many students talked about learning to

program in terms of having to learn a new way of thinking which is different from other

subjects they have studied. Eckerdal and Berglund compared their results with research

on the “process-object duality”, which is central to Sfard’s concept development theory,

developed in mathematics education. They hypothesized that it is of great importance that

students reach an understanding that learning to program is a “method” of thinking which

corresponds to “procedure conception”. They also suggest that “such a conception

scaffolds for the more abstract level of understanding, the object conception” (p. 141).

The research reported to date which has used Sfard’s theory to explain aspects of learning

to program has relied on theoretical conjecture. No study has been undertaken which

empirically attempts to observe or capture the three processes of interiorization,

condensation and reification in learning to write computer programs or code.

2.2.4. Cognitive Load Theory

An alternative perspective to the constructivist cognitive theories of learning is provided

by Cognitive Load Theory (CLT). CLT is founded on an understanding of human

cognitive architecture (Moreno & Park, 2010) and on the need for instructional design

principles that are based on knowledge of the brain and how memory works.

Sweller (1994) described CLT as an information processing model of cognition with key

learning activities including schema acquisition and automation of their usage. Some

ideas in CLT, despite the different origin, hark back to Piaget; for example the notions of

schema acquisition and automation have similarities with Piaget’s notions of organisation

and adaptation. Many neo-Piagetians added ideas from CLT to their theories in order to

explain observations they had made which could not otherwise be explained by their

theories. CLT has proven to be useful in explaining why some learners cannot progress

or have difficulty with certain aspects of learning. It provides a potential source of

explanation for why certain programming tasks might be more difficult than others for

novice programmers. Additionally because CLT’s primary focus is in reducing the

cognitive load by improving instructional design, CLT should be useful and relevant to

the design of the research instrument used in this research. What follows is a description

of the most relevant aspects of CLT and research in the computing education domain

which incorporates aspects of CLT.

22

CLT stemmed from the idea that the working memory is limited during problem solving

(Miller, 1956). If the mental processing capacity of these limited resources is

“overloaded” at any point during the learning process, then the learning process will be

jeopardised. CLT considers the load on working memory in three dimensions – intrinsic,

extraneous and germane cognitive load.

Certain working memory load is imposed by the basic structure of the information that a

student needs to gain in order to learn. This is known as intrinsic cognitive load. This type

of load is related to the difficulty of knowledge elements (concepts or schemas) and the

degree of interactivity between those elements, and is dependent on existing cognitive

schemas (Sweller, 1994). In CLT, the term element interactivity is used to refer to the

degree of connectedness between knowledge elements. The higher the connectedness, the

higher the load is on the working memory. Information that is not connected (i.e.

unrelated facts) and therefore can be assimilated serially imposes a relatively low intrinsic

cognitive load (Sweller & Chandler, 1994). On the other hand high element interactivity

requires the learner to simultaneously process several elements at a time (Kester, Paas, &

Van Merriënboer, 2010). Programming involves high element interactivity because it

involves many tightly integrated concepts. As a consequence it is reasonable to assume

that learning to write computer programs, especially when it involves the use of new

concepts or requires the adaptation or formation of new schemas, has a high intrinsic

cognitive load.

Extraneous cognitive load is related to the way in which instructional content is presented

to the learner. In inefficient instructional designs it adds unnecessary load and therefore

interferes with learning by overloading the working memory (Chandler & Sweller, 1991).

The programming language and the development environment are the tools with which

programming concepts are usually presented to a novice programmer. The concepts are,

in a typical university course, presented via formal lectures and practical programming

laboratories. The choice of computer programming language and development

environment may have a direct impact on students’ learning (Yousoof & Sapiyan, 2015;

Mason & Cooper, 2013; Ambrose, Bridges, Dipietro, Lovett, & Norman, 2010). Many

researchers have advocated using simpler development environments (for example Alice

(Carnegie Mellon University, 2006) and BlueJ (Kölling & Rosenberg, 2001)) or

simplified programming languages (for example Scratch (Lifelong Kindergarten Group,

2007)) in order to make learning to program easier by reducing the cognitive load

associated with the instructional tools. The language and development environment of

23

instruction is therefore extraneous to understanding these core programming concepts. In

this research some sources of extraneous cognitive load will be outside the control of the

researcher. For example, because students are studying a tertiary first year introductory

programming course the mode of delivery and instructional tools are set by the courses

lead instructor. Other aspects of extraneous cognitive load will be in the control of the

researcher and include the tools used to gather data (e.g. smart-pen) and the programming

problems (research instrument), which are presented to the participants for them to solve.

Additionally, the methodology used to observe and interview the participants may impose

extraneous cognitive load and it is important that steps are taken to minimise this. One

possible risk is that the cognitive load imposed by the research data gathering method

imposes so much extraneous cognitive load that it interferes with the participants’ ability

to write answers to the programming problems present to them.

It is generally accepted that learning computer programming is intrinsically and

extraneously difficult (Sweller & Chandler, 1994) because students have much to learn

in the first programming course including: new editor software, debugging tools, testing

techniques, and interdependent concepts such as language syntax, logical sequence steps,

variables, selection, iteration, etc. (Black, 2006).

Germane cognitive load is the degree of mental effort that is applied to schema

acquisition, i.e. to schema construction and automation (Paas & Van Merriënboer, 1994).

These activities generally consist of comparing and contrasting existing mental schemas

and newly presented information in conjunction with some form of practice in order to

initiate schema development (Cooper, Tindall-Ford, Chandler, & Sweller, 2001).

Germane cognitive load is sometimes linked to the learner’s degree of motivation and

level of interest in the material being learnt. German cognitive load may be of interest

when examining the cognitive processes of the participants in this research. It might be

useful to attempt to measure, possibly indirectly, the degree of effort made by the learner.

Measures such as time on task and recording aspects of their motivation while solving

tasks, especially when they encounter a barrier to their learning, might provide some

useful insights into the processes involved in learning to program.

In learning mode, new information from the environment is processed in working

memory to form knowledge structures enabling this knowledge to be stored in long term

memory. This process is known as schema acquisition and includes processes involved

in schema construction. In schema construction, new information entering the working

memory must first be integrated with pre-existing schemas in long term memory. For this

24

process to take place, relevant schemas in long term memory must be decoded into

working memory, where integration takes place. The result is an encoding of extended

schemas stored in long term memory.

There is evidence that supports the notion that self–regulated and metacognition

development are strongly related to cognitive load theory and that high cognitive loads

can result in a reduction in the learners’ capabilities to be self–regulated learners. The

level of prior knowledge, which in turn is influenced by the intrinsic cognitive load,

affects a learner’s metacognitive development and degree of self-regulation. A learner

with a lower level of prior domain knowledge will be more likely to experience a higher

level of mental effort (Van Merriënboer & Paas, 1990; Cooper & Sweller, 1987).

Metacognition and self-regulation can also relate to extraneous cognitive load because

the monitoring, control, and reflection activities involved require additional mental effort,

and therefore may result in a decreased performance for unskilled learners (Van

Merriënboer & Paas, 1990; Cooper & Sweller, 1987).

According to CLT, when learners are novices in a domain, the cognitive load associated

with unguided learning is high because novices lack any sort of guide to aid their

knowledge acquisition processes (Mayer, 2004). Supporting this theory is empirical

research examining the nature of expertise. Experts have been shown to have a greater

depth and breadth in their cognitive schemas stored in long term memory (Chase &

Simon, 1973; Chi, Glaser, & Rees, 1982),which suggests that experts require a much

lower mental effort to process the information.

The CLT processes of schema automation and schema acquisition are closely linked to

both Piaget’s ideas of organisation and adaptation, and Sfard’s theory of concept

construction. The process of reification is essentially chunking of existing schema to form

a new schema which becomes, in Sfard’s terms, an object which is then itself interiorised,

condensed and reified. It has been suggested that this “chunking” of information

enhances learning by freeing resources for germane actives. Schema automation refers to

a person's ability to acquire highly structured knowledge or schema with minimal error

and with very low levels of conscious attention (Van Merriënboer & Paas, 1990). The

construction and automation of schema does not serve to generate information and is

believed to be the result of practice over a long period of time. If a learner reaches the

point where schema can be processed automatically the cognitive resources are freely

available to focus on other aspects of learning, including cognitive transfer and problem

solving (Van Merriënboer & Paas, 1990; Cooper & Sweller, 1987).

25

Most researchers have focused on reducing extraneous cognitive load in learning to

program. Their focus has been on facilitating the transfer of knowledge and skills (Cooper

& Sweller, 1987). Researchers, in both mathematics and computer programming

education, have found evidence that the simultaneous presentation of worked examples

and problems facilitates schema acquisition and automation (Van Merriënboer & Paas,

1990; Cooper & Sweller, 1987). Tafton and Raiser (1993) reported that a worked example

alone can have a positive impact on learning. However, other studies have found that

learners tend to look only briefly at worked examples, consulting them only when they

get into difficulties in solving their tasks (Van Merriënboer & Krammer, 1987). As a

result of this finding the use of example-completion tasks was suggested to ensure that

the learner focuses on the work example prior to attempting to solve the new problem.

Van Merriënboer (1990) undertook a controlled experiment with an introductory

computer programming course where one group was taught using fully worked examples

and another group, in the same class, were taught using example-completion problems.

The example-completion group were found to perform better on a related program writing

problem than those who were provided with fully worked examples. This result was

replicated in a study by Van Merriënboer and De Croock (1992).

These results were later used to argue that focusing on a fully worked example when

trying to solve another, albeit similar, problem results in a high intrinsic and extraneous

cognitive load because both the worked example and the task are concurrently processed

in the working memory (Van Merriënboer, Kirschner, & Kester, 2003). Gray et al. (2007)

suggest the use of fading-worked examples rather than fully worked examples. The main

difference between example-completion tasks and fading-worked examples is that in

fading-worked examples, the learner can complete the partially worked examples in

stages by following certain patterns. The authors proposed that fading-worked examples

should focus on graduated and repeated exposure to the programming concepts.

Graduated exposure is suggested to help promote near transfer skills, while repeated

exposure across a variety of problems helps promote far transfer skills. Near and far

transfer are considered necessary skills for building effective schema (Perkins &

Salomon, 1994). Muller (2005) devised a pattern-oriented-instruction approach for

teaching computer programming and problem solving with a view to reducing the

extraneous cognitive load required for learning. Pattern-oriented-instruction is based on

using algorithmic patterns to reinforce schema acquisition. A similar idea is that of

teaching and learning to program using roles of variables. Role of variables has been

26

shown to help novice programmers to build abstractions of common program constructs

involving variables (Sajaniemi, 2002).

Other approach to reduce extraneous cognitive load and thereby increasing the working

memory available for the germane purpose (schema acquisition and construction) is

simple-to-complex-ordering of learning tasks. Van Merriënboer, Kirschner, and Kester

(2003) suggested using a simple-to-complex version of the whole task. In this strategy,

the novice learners start to practise problem solving on simple programming tasks and

progress towards more complex tasks. The load associated with simple versions of the

task is lower than the load associated with the more complex ones. These suggestions to

reducing extraneous cognitive load have not yet been supported by empirical evidence.

In conclusion, there is evidence scattered throughout the literature that cognitive load

plays a significant factor when learning. CLT may provide a useful means of reflecting

on the effectiveness of the research instrument and research method. CLT may also

provide a useful framework for explaining the data obtained from the participants when

they are working on programming problems.

2.3. Theories of Learning: Knowledge and Strategy

The way learners organise their knowledge tends to vary, and that variation is evident in

how knowledge organisation guides their retrieval and use of information during

comprehending and writing computer code. Therefore in studying the development of

knowledge, it is also useful to investigate our current understanding of the strategies that

novices use to comprehend and generate programming code.

Soloway and Ehrlich (1984) carried out one early and influential study into knowledge

organisation. They proposed a top-down strategy of program understanding in which

programmers search for evidence and use this evidence to help decompose programming

plans into lower level programming plans in order to build a mental representation. An

alternative view is a bottom-up program understanding strategy in which the

programmers start with individual code statements and chunk these statements into

higher-level of abstractions. This chunking process is repeated successively at higher

levels until a complete mental representation of the program is formed (Schulte, Clear,

Taherkhani, Busjahn, & Paterson, 2010).

Some researchers do not acknowledge the primacy of either the top-down or the bottom-

up program understanding strategy, and have concluded that programmers have the

capability to switch between these two models (Letovsky, 1987; Mayrhauser & Vans,

27

1998). Letvosky, Mayrhauser, and Vans’ conclusion was based on a study of professional

programmers so it is possible that novice programmers are not opportunistic in the

approach to program. Pennington (1987a) (1987b) described a comprehension process in

which two mental models represent programming knowledge: the program model (i.e.

the program text) and the situation model (i.e. data flow within a program, and function

or goal of a program). She concluded that programmers who exhibit a higher level of

comprehension were observed to cross reference frequently between these two models.

In addition to the above three models, there is another model that deals with program

comprehension from a different perspective. Fix et al. (1993) focused on five abstract

characteristics of the mental representation of computer programs that novices lack,

namely hierarchical and multi-layered structure, explicit mapping of code to goals,

foundation on recognition of recurring patterns, connection of knowledge, and grounding

in the program text.

Other researchers have focused on investigating the strategies that novices use to

generate/write a program code. Rist (1989) claimed that programming activity itself is

hierarchically structured; it is built from simple knowledge structures that are combined

to form more complex structures. At the lower level of detail they write lines of code and

then at a higher level the individual lines of code are combined to create a programming

plan. Finally, individual program plans need to be combined (via merging, nesting,

abutment, and tailoring) to form the final program structure. Rist (1989) was interested

in the processes that underlie the construction of programming plans. He concluded that

if the novice has the appropriate knowledge, a schema that provides the program solution

can be retrieved and the program design strategy used will be a top-down and forward

design process. If the knowledge does not exist, then a schema must be created. It is

generally accepted that in schema creation, novices tend to use a bottom-up and backward

design process (Rist, 1989). Davies (1991) was interested in the process of plan

construction, and he concluded that novices use a top-down approach. However, Davies

noted that during the latter stages of construction, because of cognitive failures, the

program design process takes on a more opportunistic approach in which the novice

programmer cross references between distinct hierarchical levels. An alternative view

proposed that novices use a top-down, depth first search in order to decompose the

problem into sub problems. The novice programmer then explores each part as far as

possible at a progressive level of detail, depending on the knowledge retrieved, until that

part of the solution can be implemented in program code. An abstract view of the total

28

solution will never appear in the novice schema (Pirolli, 1986; Pirolli & Anderson, 1985;

Anderson, Farrell, & Sauers, 1984; Jeffries, Turner, Polson, & Atwood, 1981). All the

above researchers argued that novice programmers try to generate a program code

through brute force (i.e. trial and error) by writing down the necessary steps when a

programming plan is not available. All of the above studies, except Rist (1989), have

relied on single snapshots for studying novice programmers writing a program code

strategy.

The way in which individuals organize knowledge affects their ability to retrieve and use

information effectively. Studies of strategies used by programmers typically focus on

trying to understand what may be happening in the mind of novice programmers when

they attempt to solve a programming task. Part of this research will focus on identifying

common patterns (strategies) that participants apply when attempting to write a piece of

code.

The active role of existing knowledge in assisting new learning is highlighted by literature

relating to the transfer of learning and analogy in cognition. The next section provides a

review of the literature relating to transfer in cognition.

2.4. Transfer in Cognition

Transfer in general refers to any use of past learning (and/or knowledge) when learning

something new. The adaptation and use of that knowledge will reflect its origin, its

original context and its current application for current goals. The learner will influence

the subject in such a way as to reflect, knowingly or otherwise, what they have previously

learnt (Robins, 2010).

Transfer of learning includes near transfer and far transfer. Near transfer (i.e. isomorphic

transfer) refers to transfer “within domain” where the source and target are drawn from

the same domain (Vosniadou & Ortony, 1989), for example, transfer among

programming languages. Wu and Anderson (1990) classified near transfer into two

subclasses in the context of learning to program: learning transfer and problem solving

transfer.

An example of learning transfer can be found in a study undertaken by Scholtz and

Wiedenbeck (1990). All subjects who joined the study had previous knowledge of C

(procedural program paradigm) and PASCAL (procedural program paradigm), and they

were asked to write a program using ICON (procedural program paradigm). The authors

concluded that the transfer of learning focused on different types of programming

29

knowledge; at the lowest level were language syntax and language semantics, while

algorithm development and problem solving were at the highest level.

An example of research, which investigated problem solving transfer can be found in Wu

and Anderson (1990). They investigated problem solving transfer between three

programming languages: LISP (functional program paradigm), PROLOG (logical

program paradigm), and PASCAL (procedural program paradigm). They conducted three

experiments. The first two experiments were between LISP and PROLOG while the third

experiment was between LISP and PASCAL. The study participants had prior knowledge

of all three programming languages. The authors reported that they had found three levels

of transfer between programming languages: the syntactic level (for example, using same

variable names and functions), the algorithm level (for example, choosing a similar

algorithm such as recursive algorithm or iterative algorithm for different languages), and

the abstract solution solving level (for example, checking that the elements of one- and

two-dimensional arrays were sorted, the subjects would focus on aspects of tasks that are

invariant amid transformations).

Both studies concluded that subjects were transferring their mental representation of one

solution to the other solution and that the kind of transfer depends on common elements

between programming languages such as the function of commands and the rationale of

the concepts (i.e. logical reasoning). This leads to faster problem solving and fewer errors.

Far transfer, in contrast, involves transfer “between domains” where what is transferred

is drawn from a different domain (Vosniadou & Ortony, 1989). For example, transfer

occurring from computer programming (PASCAL programming) to mathematical

problem solving (Algebra word problems) is considered to require far transfer of

knowledge (i.e. logical problem solving transfer) (Olson, Catrambone, & Soloway, 1987).

Salomon and Perkins (1989) identified two distinct but related mechanisms (i.e.

psychological paths for transfer), the low road vs. the high road. Low road transfer

happens when stimulus conditions in the transfer context and the prior context of learning

are nearly identical. In other words, in the context of novice programmers low road

transfer is possible when the underlying solution rationale can be extracted and

represented in the form of an abstracted solution schema. This abstracted schema enables

learners to correctly transfer learned solutions to problems with new surface

characteristics (i.e. minor changes to the code would change the behaviour of the code).

High road transfer, in contrast, “depends on mindful abstraction from the context of

learning or application and a deliberate search for connections: What is the general

30

pattern? What is needed? What principles might apply? What is known that might help?”

(Perkins & Salomon, 1994, p. 6458). Such transfer is not in general reflexive. It takes

time for exploration and the investment of mental exertion (schema acquisition). Low

road transfer and high road transfer are examples of transfer by abstraction (Perkins &

Salomon, 1994). Salomon and Perkins (1989) further defined two forms of high road

transfer: forward-reaching and backward-reaching. In forward-reaching transfer the

learner initially learns something and abstracts it in preparation for application in a new

situation. In backward-reaching transfer the learner is face with a problem and abstracts

key characteristics from the problem and reaches back into their existing knowledge for

matches. The idea of transfer of knowledge may prove valuable in interpreting the results

of the think aloud data. Because this research aims to reach some kind of understanding

of the cognitive processes in learning to program it is likely that a theory which tries to

explain the way in which schema are transferred would provide a useful understanding.

There is a large body of literature which centres on psychological paths for transfer. For

example, Chi and Bassok (1989) focused on students’ learning from the worked examples

of problems dealing with the application of Newton’s law. During the study, subjects

were asked to solve two categories of problems: isomorphic problems to the worked

examples and non-isomorphic problems taken directly from the target chapter (i.e. use of

the principle involved in the examples in different and more complex problems). The

researchers concluded that practicing multiple examples fosters transfer performance (i.e.

development of Neo-Piagetian concrete stage).

Fuchs et al.(2003) focused on explicitly teaching for transfer of mathematical skills by

providing tasks that help learners to connect between the new problem and previously

solved mathematical problems (i.e. increasing metacognition) by developing categories

for sorting problems that have got an identical schema (i.e. promoting schema

abstraction). During the study, subjects were asked to solve three categories of problems.

The first category contained problems that required solution methods similar to those that

had been taught in class except that they covered different stories and quantities. The

second category contained problems that, by comparison with those taught in class, had

superficial feature changes that affected neither the problem solutions nor the structures.

Examples of superficial feature changes are: different question format such as using

multiple choice questions, different key-word vocabulary, and combining multiple

questions in a larger problem solving context. The third category contained problems that

were presented as a standardized achievement (i.e. what the student needs to know

31

irrelevant to the study questions) including additional problem structures taught as part

of the curriculum.

Teague and Lister (2014a; 2014b) focused on isomorphic problems only, to investigate

novice ability to reason reliably at the Neo-Piagetian concrete operational stage. In any

case, the subjects usually do not identify the above problems classifications especially in

solving the programming task since the time the learner spent to learn programming and

practise problem solving is simply limited (Palumbo, 1990). But, if they are able to point

out the relationship between the prior problems and the new problem, then they are likely

to be able to solve the problem successfully (Simon & Hayes, 1976). The design of the

code writing problems for this research will take into consideration prior knowledge, prior

problems and be delivered in a sequence which means that the participants should be able

to recognise the connection to earlier problems.

Analogy is a powerful cognitive mechanism for promoting the understanding of an

unfamiliar situation (i.e. target analogy) in terms of a familiar one (i.e. source analogy)

(Muller, 2005). When reasoning by analogy the target analogy is seen as “the same kind

of situation” as the source analogy. Reasoning by analogy provides a way of focusing on

identical sub goals in common.

The process of reasoning by analogy can be usefully decomposed into several basic

constituent processes: “identifying relevant analogue in memory, mapping the

correspondences between an existing schema and the new instance, consequently, making

inferences about the target analogues, and eventually, grasping a better understanding

of the novel situation as a whole. As an important outcome, the analogy between specific

analogues may lead to the formation of a new schema that encompasses them, to the

addition of instances to memory, and to better understanding of old instances and

schemas that allow better access in the future” (Muller, 2005, p.59).

Broadly speaking, transfer by abstraction is similar to reasoning by analogy. To abstract

a solution is to identify identical sub goals in common (i.e. patterns) and avoid contextual

specificity. Explicit teaching of the connection between the new problem and previously

solved problems increases metacognition and promotes schema abstraction as long as the

cognitive load is controlled (Cooper & Sweller, 1987). Analogical reasoning is an

important practice in the computer science domain. Therefore, realizing similarities and

differences between problems and reuse of previously solved problems are essential for

schema acquisition and automata.

32

2.5. Summary

This chapter has described the general theories of cognitive development and learning

which may prove useful for the design and analysis phases of this research. Cognitive

theories emphasis that learning does not occur suddenly but instead gradually expands

this points to the need for research that is longitudinal. Much of the research that

investigates the learning of novice programmers consists of research that looks at the

learners at a single point in time. This research will follow students closely over their first

year of learning to program and observations will be made of novice programmers writing

code using a think aloud protocol. The overall aim of this research is to find some sort of

explanation or understanding of the way in which the students adjust cognitive schemas

when undertaking code writing tasks. One way of approaching this is to look at existing

theories of cognitive development and learning (discussed in this chapter) or combination

of theories and see if one of more of these theories or aspects of these theories can explain

the observations made in this research.

33

Chapter 3. Research Methodology

3.1. Introduction

This chapter begins with an overview of methodological principles and a discussion of

the philosophical perspective for this thesis. A detailed overview of the methods adopted

in the research is then presented. This research takes a mixed methods approach because

different methods are required in order to build a framework of question difficulty with

which to construct the research instrument and to observe novice programmers learning.

3.2. A Pragmatic Research Approach

In order to conduct research, it is important to understand the underlying philosophical

principles on which the research is constructed. Such perceptions can be subjectively

based on the distinctions between positivist research and interpretivist research at the

paradigm2 level, the ontological3 level, the epistemological4 level, and the

methodological level (Fitzgerald & Howcroft, 1998).

At the paradigm level, the positivist researcher assumes that an understanding of the

world can be obtained from objective measurements that are repeatable and independent

of social constructions (Fitzgerald & Howcroft, 1998). The interpretive researcher

assumes an understanding of the world comes from the subjective experiences of

individuals (Reeves & Hadberg, 2003). Thus, interpretive researchers may accept an

intersubjective approach, which is the ontological and the epistemological belief that

reality can only be described through social construction.

At the ontological level, the positivist researcher assumes knowledge is independent of

social construction (Fitzgerald & Howcroft, 1998), and opposes the views of interpretivist

researchers that multiple social realities exist that can be explored through human

interaction in order to discover how and why individuals make sense of the world as

situations emerge (Fitzgerald & Howcroft, 1998).

At the epistemological level, positivists assume an objective reality which can be

described using quantitative properties to identify facts and draw inferences in an attempt

to increase the predictive understanding of phenomena. Interpretive researchers assume

2 Paradigm refers to “a pattern, structure, and framework or system of scientific and academic ideas, values

and assumptions” (Olsen, Lodwick, & Dunlop, 1992; p. 16).
3 Ontology refers to nature and structure of the world or reality (Bryman, 1984).
4 Epistemology refers to the nature of human knowledge and understanding, which may be obtained through

different types of inquiry and alternative methods of investigation (Fitzgerald & Howcroft, 1998).

34

reality is influenced by interaction with social factors including the researcher who

recognises the meanings of individual actions within specific social contexts.

At the methodological level, the positivist tends to use methods, such as surveys and

experiments that are quantifiable in nature analysed using mathematically based

methods (statistical and descriptive analysis) (Creswell, 2009). In contrast, interpretivists

study things in their natural surroundings in order to understand or interpret phenomena

in terms of the meanings participants bring to researchers (Harwell, 2011). Accordingly,

researchers who employee this approach typically use methods such as grounded theory,

interviews, and think aloud protocols to provide richer accounts of the phenomena

(Creswell, 2009). Interpretivist researchers are the primary instrument for collecting the

qualitative data. Therefore, to gain a flexible and open research process, social interaction

is discouraged between participants and researchers (Harwell, 2011). The subsequent

qualitative data is analysed based on the identification of a major theme (Creswell, 2009).

The positivist and interpretivist viewpoints shape the way methodologies are adapted by

researchers. The two perspectives are philosophically distinct and there is some debate as

to whether these two philosophical perspectives are conflicting and therefore should not

be combined or may be combined using a mixed method approach (Onwuegbuzie &

Leech, 2005).

According to Rossman and Wilson (1985), three major camps of thought have evolved

from the qualitative and quantitative methodological approaches namely purists,

situationalists and pragmatists. The difference between these three points of view relates

to the extent to which the quantitative and qualitative paradigms co-exist and can be

combined. The purists’ camp believes in “mono-method” studies where quantitative and

qualitative approaches cannot and should not be mixed. In contrast, the situationalists’

camp believes that certain research questions are more suited to quantitative approaches,

whereas other research questions lend themselves more to qualitative approaches.

Situationalists believe that you should choose the method or approach which best suits

the research question. The situationalist researcher only mixes the two methods when

drawing conclusions at the end of the study during the overall interpretation; therefore

the two approaches are treated as being complementary. The pragmatics’ camp, unlike

purists and situationalists, assert that a false dichotomy exists between quantitative and

qualitative approaches (Newman & Benz, 1998). They believe that integrating

quantitative and qualitative methods within a single study is appropriate because both

approaches have their strengths and weaknesses and hence the researcher should adopt

35

both methods by employing the strengths of each of the techniques in order to better

understand social phenomena (Creswell, 1995).

The research undertaken in this thesis adopts a pragmatic approach, where the nature of

the research questions suggests that integrating quantitative and qualitative methods

within a single study will add reliability and should allow the researcher to highlight the

pertinent factors that impact novices learning to program.

3.3. Research Instrument Design

In order to conduct this research a research instrument must be designed. This instrument

will consist of a series of programming or code writing tasks which will be presented to

participants in a series sessions using a think aloud protocol. The aim is to design the

questions in sequences such that each sequence is a series of increasingly difficult

questions that build on each other in terms of programming concepts and cognitive

schemas (or programming blocks/concepts). Thus, within a sequence questions will

become progressively more complex.

To build such a sequence of questions a framework or method is required to measure the

difficulty and complexity of code writing tasks given to novice programmers.

In order to build the framework the potential components need to be identified and

evaluated. A quantitative method will be adopted, which allows the use of a statistical

analysis for evaluating the usefulness of these components to measuring the difficulty and

complexity of a code writing question.

A set of criteria will be established which will be used to select a set of code writing

problems from a large repository. The repository of questions consists of problems from

a series of controlled, summative practical programming tests held throughout the P1

course. Each of the selected code writing question’s difficulty will be measured or

estimated using the potential difficulty predictors. Participant performance on a question

will then be used as a measurement of the “real” or observed difficulty of that question

and compared with the difficulty of the question as measured by potential difficulty

predictors (e.g. software metrics or taxonomic levels). In the computer science education

literature the use of data from course assessments, aka naturally occurring data, and the

use of student performance as a proxy for the measurement of a difficulty of a task is well

documented and an accepted approach (Lister et al., 2007; Sheard et al., 2008; Shuhidan,

Hamilton, & Souza, 2009).

36

The evaluation of software metrics as a predictor of difficulty will consist of a quantitative

data collection stage and a quantitative analysis stage. In the data collection stage the

performance of the participants on each question will be calculated. Relevant software

metrics for the instructor model sample code will be calculated and be used as a measure

of the complexity of the question, and then the correlation between the calculated

software metrics data and the participants’ performance will be calculated in order to

measure the strength of the difficulty predictor (for further details see Section 4.6.2.1).

This approach allows us to answer research question RQ1.1 and evaluate the hypothesis

that software metrics provide a reliable and objective predictive measurement of the

relative difficulty of a novice code writing question.

It is likely that a number of metrics will correlate with difficulty. This is due to the fact

that many software metrics attempt to measure the complexity of code and it is logical to

assume that the more complex the code the more difficult it is to write. In order to simplify

the question of difficulty measurement it may be necessary to create a single measure of

difficulty rather than a set of individual measurements. In such a situation, a statistical

approach such as factor analysis, may be used in order to build a predictive model of a

group of inter-correlated variables (for further details see Section 4.6.2.2).

An alternative to software metrics is a more subjective measure based on educational

taxonomies such as Bloom’s taxonomy (Bloom, Krathwohl, & Masia, 1956) and SOLO

(Biggs & Collis, 1982). This approach has been investigated and reported in the literature

with guidelines for the classification of novice code writing tasks using both of these

taxonomies (Whalley et al., 2006). Researchers have reported that academics are able to

reliably classify novice programming problems using the SOLO taxonomy (Lister et al.,

2009) and that the cognitive level of the task reflects the actual difficulty observed. The

use of taxonomies to evaluate the difficulty of a code writing task is discussed in more

depth in Chapter 4 Section 4.3.

The method for evaluating software metrics as a measure of difficulty is purely

quantitative and stems from a positivists perception. While the assignment of level of a

taxonomy is more subjective, and therefore qualitative, the correlation of the assigned

level with the observed difficulty (student performance) is quantitative. It may be that in

order to measure the difficulty of a code writing problem that both the level of thinking

required to solve the problem and the complexity of the code together form a richer way

of describing and understanding the difficulty of a code writing problem. In investigating

both software metrics and taxonomies as potential predictors of difficulty this research

37

will adopt a positivist stance by using triangulation (Bogdan & Biklen, 2006), using more

than one theoretical scheme in the interpretation of the phenomenon, to increase the

credibility and validity of the research instrument designed using the proposed difficulty

framework.

In this research, a series of code writing questions, will be designed so that it progressively

builds on programming concepts and for each progressive question to become slightly

more difficult or complex to solve. The participants will be asked to attend a series of

think aloud sessions. During a session, each participant will be observed attempting to

solve these questions.

Because the question difficulty framework will be used to inform the design of the think

aloud questions the framework may also be used to inform the interpretation and analysis

of the think aloud data. Verbal protocol analysis will be used in order to extract patterns

of behavior which will then be categorized according to a coding schema to draw

conclusions about the relationship between the verbalizations (cognitive processes) and

the task solution (final product quality)(Atman & Bursic, 1998). Figure 3.1 gives an

overview of the philosophical perspective and methods adopted in this thesis.

Phase 3

(Think Aloud)

Data

Collection

Think aloud

Data

Analysis

Verbal

protocol

analysis

Research

outcome

Phase 1A

Objective measure

Software metrics

Data

Collection
Code writing questions

Phase 1B

Subjective

measure

SOLO

Phase1 (Framework Design)

Data Analysis

Stage-1-

Objectively

classify the

difficulty of the

tasks

Stage-2-

Design a Writing

Metric equation

Measure task
difficulty

Phase 2

(Instrument

Design)

Design a set

of code

writing tasks

Figure 3.1 Philosophical perspective of this thesis

3.4. Ethics Consents

Ethics consents were granted for this PhD research by the Auckland University of

Technology Ethics Committee (AUTEC).

38

For the first consent allowed for the collection of naturally occurring data and for

conducting think aloud sessions using a smart-pen to record the student writing code.

(Appendix B). A later amendment was made to this ethics application to allow for the use

of video recordings of the think alouds and retrospective interviews (Appendix B).

3.5. Research Participants

The participants for this research came exclusively from the population of students

studying P1 and P2 at Auckland University of Technology (AUT).

3.5.1. Recruitment

Recruitment involved a process which ensured informed and voluntary consent. The

researcher appeared for ten minutes at the first lecture of the P1 course to outline the

purpose and nature of the research. The consent forms and background information sheets

5 were circulated to all students. Students who consented, henceforth called participants,

returned a completed consent form and students were free to withdraw from the study at

any time prior to the data analysis phase of the research.

On giving consent each participant was asked to fill a questionnaire6 that was used to

establish the participants’ prior programming knowledge.

3.5.2. Sampling Methods - Participant Selection

“A sample is a proportion or subset of a larger group called a population...A good sample

is a miniature version of the population of which it is a part – just like it, only smaller”

(Fink, 2003; p.82).

Two different sampling methods will be used in this study. One for the selection of

participant data for developing and evaluating the difficulty framework and one for the

selection of participants for the think aloud observations.

3.5.2.1. Sampling for the Difficulty Framework

For the first phase of the research that of framework design, it is the intent that the

naturally occurring data from all students who volunteered will be used. This is because

sufficient data is required so that statistical analysis of the correlation of difficulty

predictors is valid. An analysis of the success of the participants (the sample) vs. the

5 See Appendix B, for the background information sheets and consent forms provided to students which

were approved by AUTEC.

6 The background information questionnaire which was completed by the participants in the think aloud

phase of this study is provided in Appendix C.

39

overall success of the cohort (the target population) will be used to ensure that the

participants are representative (non-random samples, purposive) of the cohort. This

means that the results of this phase of the study will be generalizable and that it will be

possible to use the research instrument designed using this framework to future cohorts

of the P1 paper. An assumption is made that the profile of the cohort from which the

participants are recruited is representation of a typical novice computer programming

class. The purposeful non-random sampling strategy used for quantitative data, which

Patton(1990) referred to as maximum variation sampling, is also known as homogeneous

sampling because the sample used for this part of the study were students all attending

the same course. This type of sampling “aims at capturing and describing the central

themes or principal outcomes that cut across a great deal of participant or program

variation” (Patton, 1990, p. 172). Here “variation” refers to the students’ grade

distribution. Maximum variation sampling is an accepted approach that has been widely

adopted by computer science education researchers (for example see work arising as a

result of the ITiCSE working groups Lister et al.(2004) and McCracken et al. (2001), and

the BRACElet project Whalley et al. (2006).

3.5.2.2. Selecting Participants for Think Aloud Observations

The process adopted for sampling for think aloud observations will be the critical case

sampling method. Critical case sampling is a type of purposive sampling technique that

is particularly useful in exploratory qualitative research and is based on the premise that

a small number of cases can be decisive in explaining the phenomenon of interest. The

selected cases should be “important” cases - cases that are likely to “yield the most

information and have the greatest impact on the development of knowledge” (Patton,

1990, p.236).

In order to identify the critical cases (desirable participants) it is necessary to first identify

the dimensions that make a case critical. The main dimension for the selection of

participants for analysis will be based on their dual ability to think aloud while

simultaneously performing another task. Moreover, the participants should have no prior

knowledge of programming. The performance of the participant on the programming

course is also an important dimension. Critical cases could be consider as participants

who excelled in the course and participants who fail the course. Selecting critical cases

from each quartile of the cohort will provide a sufficiently broad view of the learning

phenomena across the target population. Another dimension is likely to be the amount

and richness of the verbal data collected (i.e. interesting cases), and also the participants’

40

commitment to the project in terms of attending the majority of the sessions scheduled.

Although sampling for critical cases may not yield findings that are broadly generalizable

it does allow for the development of logical generalizations from the rich evidence

produced when studying a few cases in depth. However, such logical generalisations

should be made carefully.

3.6. Think Aloud Method

The think aloud method has been used effectively in the areas of psychology and

education to investigate cognitive processes. Think aloud requires participants to talk or

think aloud their thought processes while solving a task. In other words, the think aloud

method provides a description of cognitive processes or activities, ordered in time

(Flower & Hayes, 1980). One of the strengths of the think aloud method is that, when

conducted appropriately, it yields rich verbal data about reasoning during a problem

solving task and can provide insights into cognitive processes, thoughts and feelings.

Think aloud verbalisation is considered to be one of the most effective ways to assess

higher-level thinking processes and it may be used to study individual differences in

performing the same task (Olson, Duffy, & Mack, 1984). According to Ericsson and

Simon (1993), the cognitive processes that generate verbalisations are a subset of the

cognitive processes that generate behavior or action. Using think aloud and protocol

analysis allows researchers to identify what information is concentrated on during

problem solving and how that information is used to facilitate a solution to the problem.

From this information, inferences can be made about the reasoning processes used during

problem-solving.

Because think alouds are immediate, and performed concurrently with the task, the

information is believed to be retrieved from working memory. Thus, in general think

alouds are preferable to interviews post problem solving. Retrospective verbal reports

require retrieval of information retained in long term memory which may be incorrect or

incomplete. On the other hand, gathering real time data has issues because the load

associated with problem solving and speaking simultaneously may be too difficult for

some participants (Branch, 2000). Therefore, the goal of any method for thinking aloud

is to minimise the cognitive effort in verbalisation in order to enable participants to

articulate their thinking process and to ensure undue bias is not introduced by the

interviewer.

41

3.6.1. Think Aloud Data Collection Protocol

Ericson and Simon (1993) provide guidelines on how to carry out valid and complete

think alouds. These suggestions will form the protocol for the think aloud observations

and data gathering for this research.

3.6.1.1. Training

Training participants to think aloud is a technique which was successfully employed by

Rowland (1992) and it is recommended that participants are trained to think aloud to

improve the quality of the data acquired. Therefore, in this research two individual think

aloud train sessions were conducted to help the participants become more fluent with the

thinking aloud process. In these sessions the technique will be explained to them

emphasising that the idea was to verbalise whatever went through their minds and they

will be given the opportunity to practice thinking aloud while solving some practice code

writing tasks.

3.6.1.2. Instruction

Clear instructions will be given to the participants by the interviewer prior to the task. For

example: “Please keep talking out loud while solving the problem”. The primary goal is

to maintain focus on the task, with the articulation of thoughts as a secondary goal. Social

interaction will be discouraged in order to keep the participant focused on the specific

task at hand. When conducting a think aloud verbal method it is suggested that the

interviewer should only intervene when the participant stops talking, and to simply say:

“Keep on talking”(Van Someren, Barnard, & Sandberg, 1994). However, in this research,

such situations should be avoided if possible because the interviewer is the sole

researcher. Any intervention may lead the participants to believe either that something

they are doing is wrong or that the researcher will help them and therefore they do not try

to solve any problems encountered independently. It will be explained to the participants

that the researcher’s role during interview sessions would be as an observer only. On

completion of the think aloud session the interviewer will discuss with the participants

their solutions and further explore their experiences in the study and in trying to solve the

problems. Additionally, in response that discussion the researcher will be available to

offer them individual guidance with respect to any of the programming concepts that were

required to complete the relevant think aloud tasks, or any issues arising from their current

programming studies outside the think aloud session that they wished to discuss.

42

3.6.1.3. Setting

“The first thing to do when one wants to get a subject to think aloud is to make sure that

the setting is such that the subject feels at ease” (Van Someren, Barnard, & Sandberg,

1994, p.41). Taking into account this principle, and with the help from a department

faculty member, a suitable room was allocated for conducting meeting sessions. There

was large desk equipped with a desktop computer for the participants to use. Behind that

desk, there was a wide area that allowed the interviewer to set up a camera with a build

microphone to record the whole scene without disturbing the participant. There was a

second desk where the interviewer could sit with the participant after the think aloud and

question them about their thought processes during the solving of a problem.

3.6.1.4. Recording Think Aloud

When producing think aloud protocols, the researcher should not depend solely on the

direct observation to collect data. It is very important to always use a recording device so

the data can be viewed multiple times in order to ensure accurate and complete

transcriptions (Brown & Rodgers, 2002). At the beginning of this research, the intention

was to use a smart-pen and dot paper for collecting the data. Digital Evernote XML

(.enex) files are produced using the smart-pen. These files can be played and reviewed,

with synchronized visual and audio output, using Evernote software.

During the think alouds the researcher will also record field notes that consist of

descriptions of major events (as detailed in Section 3.6.4.1). At the end of each session,

the researcher will add additional notes reflecting on the session from their viewpoint.

In order to ensure that the methodology adopted for think alouds had a viable protocol

and that the researcher was able to capture the data required for this research a pilot study

was conducted. As a result of this pilot study it was expected that there would be some

refinement required of the research method, for use with novice programmers, despite

following the guidelines recommended in the literature.

3.6.2. Pilot Study & Data Collection Method Refinement

An initial group of 18 students studying P1 volunteered to be involved in the pilot study.

From this group of four students had previous knowledge of programming and were not

included in the sample group. Fourteen students attended the initial training sessions and

on being informed of what the study entailed, four of those students withdrew their

consent because they anticipated that they would not have enough time to fully commit

to the study. After collecting and examining the initial think aloud data from the

remaining 10 participants, seven were selected to take part in the pilot study. These

43

students had shown the dual ability to think aloud while attempting to solve the

programming tasks. Two participants withdrew from the study before the last session but

their data was included in the study because they had completed the majority of the study

and provided critical cases for analysis. The findings of this pilot study pointed to two

areas for improvement in the method, firstly the use of video to record think aloud and

secondly the need for retrospective interviews. The data from this pilot study is not

included in this thesis, but the results of the preliminary analysis of the data collected

from this phase were published (Whalley & Kasto, 2014).

In the pilot study, it was noted by the researcher that as the complexity/and difficulty of

the programming tasks increased, the participants started to encounter difficulties when

solving the programming tasks and requested the use of a computer. In the post think

aloud discussion, many of the participants reflected on the fact that using the Robot World

on the computer in their class labs enabled them to visualise the execution of the program

and gave them immediate feedback. The participants felt that programming on the

computer was easier than using pen and paper to write code. They commented that in the

case of an error on the computer, they could just experiment and change the code until

they got it right and to check their solution they could run the program and check the

output – something they could not do with pen and paper. Reflecting participants’

experience during the pilot study it was decided that it would be more appropriate to video

the students writing code on the computer in the development environment used in the

context of their course rather than writing using smart-pen and paper. This conclusion

was reached not only because the participants experiences suggested that this would be a

better mechanism but also because writing code on the computer may be considered to

be a more authentic task (Paperblanks, 2012).

The researcher trained the participants to verbalize their thoughts rather than to interpret

them as suggested by Van Someren, Barnard, and Sandberg (1994). However, despite

this coaching, during the pilot study, some of the participants found it nearly impossible

to communicate their thoughts and had to be continually prompted to thinking aloud.

Even with prompting they were unable to think aloud. It was observed by the researcher

that as the difficulty of programming tasks increased the problem of lack of verbalisation

increased and the majority of the pilot study participants found it nearly impossible to

communicate their thoughts. As a result the think aloud data was sporadic and incomplete.

It was theorised that the lack of verbalisation was not due to the participants being unable

to verbalise but that it was due to the high cognitive load imposed on novice programmers

44

by code writing tasks. This conjecture was reached because even students who verbalised

well on “easy” early tasks found it increasingly difficult to verbalise as the problems

became more difficult and complex. This conjecture, and the effect of cognitive load, will

be explored in more depth in the context of the full study and is discussed in later chapters.

What is important at the method level is that way is found to compensate for situations

where the think aloud data collected proves insufficient. As a result of the pilot study a

retrospective interview phase was added to the data collection method (as detailed in

Section 3.6.3). This phase will be held after the think alouds has been completed and will

make use of the ability to review video and smart-pen data as a mechanism to trigger the

retrospective interview discussions.

In order to film the think aloud sessions a camera attached to a tripod that allowed the

interviewer to smoothly pan and zoom. The camera will be focused on the computer

screen rather than on the participant. The camera was able to be locked in a fixed position

so that the researcher can record observation notes when necessary. A Sony HDV 1080i

video camera with a microphone, long-life battery and a wide-angle lens will be used.

The video (.wmv) file produced by the camera can then be replayed using iMovie

software.

3.6.3. Retrospective Interviews

In the case of retrospection method, the participants are questioned afterwards about the

thought processes during the solving of a problem. The retrospection interview will be

focused on portions of the think alouds which were incomprehensible, incomplete or

confusing during the first phase as suggested by Van Someren, Barnard, and Sandberg

(1994). The video provides an essential tool for triggering recall of these events.

Retrospection data are not the primary data source, but will be used to supplement any

unclear data derived from the think aloud phase.

One drawback of this approach relates to the duration of the participants’ sessions.

Because of the retrospective interviews the sessions will be longer. During the

retrospection phase participants will often be asked to revisit their solution and to revise

it as a result of nay insights they gain during the retrospective interview.

3.6.4. Stages of Verbal Protocol Analysis

Data analysis of verbal protocols typically consists of three stages: transcription,

segmentation and encoding.

45

3.6.4.1. Transcription and Segmentation

In this study, the researcher is responsible for the transcription process for the following

two reasons: Firstly, this process gives the researcher opportunity to revisit the think aloud

sessions before encoding and analysis, and secondly it avoids issues associated with a

third party transcribing the verbal reports (Jordan & Henderson, 2015). Such issues

include the need to train a third party (Johnson, 2011), the third party must understand

the research context (MacLean, Meyer, & Estable, 2004), the resultant omission of the

researcher’s role in interpreting the sessions (MacLean et al., 2004). Thus the selective

transcription of a third party is unlikely match that of the researcher (Davidson, 2009),

and the use of a third party can introduce data privacy and security issues (Jordan &

Henderson, 2015).

A preliminary step in transcription is to view video while it is being collected. This

strategy is useful in this research because the researcher herself conducts the interviews

and therefore the data she wrote during meeting includes time–indexed field notes that

consist of a description of major events, which is especially important in order to revisit

fragments where the think aloud is incompressible, incomplete or confused. These notes

will help to link retrospective interview data with the think aloud events.

The next step is for the researcher to quickly review the videotape soon after it is recorded

in order to create a content log, which, like the field notes, will provide a time-indexed

outline of the events on the videotape. Content logs can be extremely detailed, consisting

of a description of major events that took place, or they can consist of a description of the

content itself. Field notes and content logs allow the researcher to develop a sense of the

corpus of data and facilitate the selection of episodes for further detailed analysis. Field

notes and content logs are categorized under the indexing approaches which help in

developing representations of video data (Jordan & Henderson, 2015). In later stages, the

verbal report is transcribed and segmented by the researcher in details for the selected

participants and questions.

The transcription guidelines adopted for this research are:

 The participant verbalisation and program code were transcribed and recreated in a

table which consisted of a verbal statements column and a program code (i.e. program

code episodes) column. The program code episodes were then embedded with two

columns: program order column (i.e. the final order of the solution code), and

generation order column (i.e. the order the program instructions appear in the code),

in order to create the whole episode. Transcription guidelines for this stage were

46

adapted from Rist (1989; 1991). For the verbal statements column, preamble words

“student” and “interviewer” were used to clearly distinguish the participant’s

utterances from the interviewer’s utterances.

 Behavioural observations were registered as action protocols therefore an action

column was included in the transcription table. Examples of an action include: “the

participant uses his/her hand to point to the direction of movement of the robot”, “the

participant deletes this line of code” and “the participant compiles his/her program for

the second time”. Transcription guidelines for this stage were adapted from Van

Someren, Barnard, & Sandberg (1994).

 Time-stamped notes were created and recorded under the verbal statements column

for the participants’ utterances that were difficult to hear and understand. These time-

stamped notes were revisited later by the researcher.

o Breaks and hesitations in speech would be marked under the verbal statements

column. For example: up to 5 seconds with [pause], and over 5 seconds with

[long pause]. Recording such events is important as they are “good predictors

of shifts in processing of cognitive structures” Ericsson and Simon (1993, p.

225).

o In cases where participants simply verbalise exactly the code that they are

typing, only the first few utterances are recorded in the verbal statements

column during the think aloud session. These words are followed by […] to

indicate that this is the beginning of a direct code verbalisation. This relieves

the immediate burden of encoding during the session. After the session the

researcher will revisit this encoding to determine the end point of this

duplicate verbalisation.

o Where there were pauses in utterances, but the participant could be seen

writing, the written words were recorded in the program code column while

the verbal statements column was left empty. Silences, while carrying out

another task (e.g., writing), were not likely to be indicative of shifts in

processing of cognitive structures, so there was little value in recording a time

stamp.

 Non-speech words such as noise, coughs and sneeze were not transcribed.

 The additional comments, code writing and explanations given during retrospection

interviews were transcribed in the same manner as the think alouds.

47

Table 3.1 provides the transcription template which will be used to analyse each

programming task.

Table 3.1 The transcription template

P
ro

g
ra

m
 o

rd
er

G
en

er
a

ti
o

n
 O

rd
er

P
ro

g
ra

m
 c

o
d

e

P
a

rt
ic

ip
a

n
ts

 A
ct

io
n

s

V
er

b
a

l
st

a
te

m
en

ts

3.6.4.2. Transcript Encoding Techniques

The encoding of the verbal data follows the following coding schema

Learning behaviors were encoded using the novice programmer behaviors identified by

Perkins et al.(1989):

 Stoppers – stop when confronted with a problem or a lack of direction.

 Movers – keep trying, experimenting, and modifying their code until they succeed.

They are able to solve the problem independently or able to use interviewer

feedback effectively and subsequently go on to solve the problem.

 Tinkerers – make changes by random permutation (i.e. trial and error) and they

are typically unable to trace/track their code. Their behaviour like stoppers has

little chance of progressing their ability to program.

Programming Strategies were used to encode the way in which the participants wrote

and constructed their code. These classes were derived from the existing literature on

learning to program as follows:

 Stepwise design (Soloway, 1986) – dividing an unknown problem into

manageable sub-problems based on prior knowledge of similar problems. The

solutions to these sub-problems are then recomposed in order to solve the

unknown problem. Stepwise design is a divide and conquer technique (Sakhnini

& Hazzan, 2008).

 Familiar first – code is written in two stages, first the participants focus on writing

only the familiar parts or aspects of the problem. Their solution is then refined by

48

dealing with the parts not dealt with during the first phase of the solution (Sakhnini

& Hazzan, 2008).

 Trial and error – program by random permutations in the hope of reaching a

solution by chance.

 Sequential – code is written line by line in its complete and largely correct from.

The initial code may contain a minor syntax error, such as a missing bracket or

incorrect variable declaration, but it is easily fixed on compilation.

Activities encode other relevant code writing activities as:

 Planning

o Verbalise – participants think aloud about aspects of their solution before

actually writing the code.

o Pen and Paper – participants use the smart-pen and paper to plan aspects

of their solution in pseudo code or diagrammatically in the form of doodles.

 Tracing – participants work through the code they have already written in order

to understand how the code is operating or to fix a problem (bug) in their code.

o Mental Tracing – think aloud and reason about the written code or directly

read aloud the code written.

o Pen and Paper– using pen and paper to desk check or trace through the

code, complete a trace table, or draw the changing state of the robot and its

world.

o Visual debugging – using the visual outputs of the Robot World and the

robot’s animation to try and identify and fix a bug.

o Hand gestures – hand waving to work out how the code is working, this is

most likely when participants are trying to follow or track a robot’s

direction and motion.

o PRINT debugging – writing lines code which print the current state of

variables out to console.

 Unit test – using the supplied unit tests to support programming.

o Reading – reading and trying to interpret the unit test outputs/messages.

o Reading Test Code – reading the actual unit test code in an attempt to

understand either the test or the requirements imposed by the test.

o Reading PRINT debug – reading and interpreting the results of PRINT

debugging.

 Time on task – total time on the tasks, not including retrospection interviews.

 Total Number of Compilations

49

 Total Number of Code Executions

Timing point at which think aloud was conducted in terms of the number of weeks of

learning programming.

Scaffolding a classification of the types of assistance provided, discussed in detail in

Section 3.7, to the student by the researcher.

 Interviewer intervention – the assistance is provided by the interviewer when they

feel that the participant has worked on the problem long enough and the

participant shows no sign of being able to complete the task independently.

 On request – the assistance is provided at the request of the participant.

Scaffolding includes:

 Clarify

 Generational Prompts

 Hint

 Exact solution

Emotions:

 Confused

 Indiscernible

 Surprised

 Relieved

 Happy

 Frustrated

 Hesitant

 Angry

3.7. Intervention

The purpose of think aloud in this research was to gather data that closely reflected the

mental processes used by a participant for solving the programming tasks.

Using the intervention model, proposed should give adequate opportunities for all the

participants to successfully complete the task and for learning to take place.

In order to collect accurate data it is important to record these interventions and to track

their effect on the participants’ subsequent thought processes and to observe the effect of

these interventions in helping the participant overcome difficulties. The use of such

50

intervention has its roots in Vygotsky’s ZPD which defines the optimal level of challenge

for a student’s learning in terms of a task that the student cannot perform successfully on

his/her own but could perform successfully with some help from knowledgeable other.

Interviewer intervention measures will be recorded using a classification based on the

kind of assistance supplied during the intervention. All interventions were considered to

be a type of scaffolding and “can range from doing almost the entire task for them [i.e.

subjects] to giving them occasional hints on what to do next” (Collins, Brown, & Holum,

1991, p. 7). The first three types of scaffolding (clarify, “general prompt” and hint) are

directly adapted from Perkins and Martin (1985). While, the fourth type scaffolding, that

may be given involves providing the participant with an exact and correct solution. This

exact solution scaffold is based on the premise that “In teaching programming - and

problem solving in general a key objective is to develop useful methods of abstraction: If

every problem a student must solve appears to be new and different, then there is little

reuse of experience. A hallmark of expertise is the ability to view a current problem in

terms of old problems, so that solution strategies can be transferred from the old situation

to the current situation” (Soloway, 1986, p. 852).

The intervention classes/types are defined below:

 Clarify:

Task requirements are explained to the participant in order to clarify the code writing

task. For example, clarifying the terminology in the question text, removing

ambiguity from the question text, or confirming the purpose of the task.

 “General Prompt”:

Redirecting to encourage progress by allowing the participant to re-examine their

solution, recognize errors if any, and fix those errors without any support or

instruction being provided by the researcher. For example, suggesting that the

participant may be able to solve the problem if they manually execute the code using

smart-pen and dot paper.

 Hint:

If a couple of generational prompts does not help a participant to overcome their

difficulty then the researcher may resort to providing some guidance in the form of a

hint. For example, proposing a possible programming construct or indicating the

location of a syntactic bug.

51

 Exact Solution:

If the participants simply cannot solve a problem, even after providing hints and

“general prompt” or if they abandon the task an exact solution will be provided for

them to review before the next session.

A stepwise refinement technique (Soloway, 1986) will be considered in this research

in situations where participants are unable to progress. In this stepwise refinement,

the researcher will firstly attempt to redirect the participants to think aloud using the

smart-pen and the dot paper to solve the current problem (target code) by reminding

the participants of problems which they have solved successfully before and helping

them to arrive at the idea that such problems are part of the solution. Essentially the

researcher is helping the participant to breaking the problem into sub-problems; these

sub-problems can be merged or build on one another, each paving the way towards a

solution of the overall problem. The fundamental motivation for a stepwise refinement

technique is to redirect the participant to transfer solutions from previously solved

problems to new problem (i.e. the ability to abstract similarities and apply previously

solved problems to new situations). According to Rist (1989), the novice

programmers tend to place the minimum possible load on the their memory; therefore

explicitly teaching the connection between a new problem and previously solved

problems increases metacognition as well as promoting schema abstraction as long as

the cognitive load is controlled (Cooper & Sweller, 1987).

If the participant could solve the programming task on their own, the scaffolding

provided to the participant was classified under “general prompt”, otherwise it was

categorised under providing an exact solution; at this stage the role of the researcher

started to provide the participant with the exact solution. The researcher also used the

stepwise refinement technique instead of writing the code line by line to the

participant.

3.8. Summary

This chapter has described the adoption of a pragmatic approach to research using mixed

methods for this study. Three phases were identified namely; developing and verifying a

task difficulty framework, instrument design using this framework and verbal protocol

analysis with think aloud protocol and retrospection interviews, using the instrument, to

collect data related to novice programmers learning to write code.

The next chapter focuses on the development and evaluation of a framework for

predicting the difficulty of novice programmer programming tasks.

52

Chapter 4. Framework Design

4.1. Introduction

This chapter focuses on the design of a framework for describing programming tasks and

their difficulty level. This framework will be used to design a sequence of code writing

problems which are of increasing difficulty and complexity. The work discussed in this

chapter can be broken down into two parts. Firstly, an examination of potential

approaches to measuring the difficulty of novice code writing tasks and secondly an

empirical evaluation of selected approaches. As a result of this work a novel framework

for measuring the difficulty of such programming tasks was developed and this frame

work is presented here. The research discussed in this chapter addresses the first research

question and related sub-questions.

4.2. Task Complexity vs. Task Difficulty

Many researchers have hypothesised that there is a difference between task complexity

and task difficulty (for example: Braarud, 2001; and Campbell, 1988). Both authors agree

that task complexity consists of two different dimensions. Firstly, subjective complexity,

which relates to the kind of thinking, action, and knowledge needed in order to complete

a task. And secondly, objective complexity, which is a characteristic of the task itself.

Task difficulty, on the other hand, is people performance on the task. Such tasks are

defined as easy or hard, whether or not they are hard or easy is determined by how many

people can accomplish the task correctly or successfully (Hunkins, 1995). Campbell

(1988) concluded that while complex tasks are always difficult, difficult tasks are not

always complex. For example, tracing a path through a maze with a pencil can be very

complex, but is rarely difficult. Nevertheless, complexity may be a key concept in

determining a task’s difficulty. This view is supported by Börstler, Caspersen and

Nordström (2007) who reported that measures of difficulty for exemplar computer

program code, that are suitable for use in an educational context, must take into account

factors such as the complexity of the code itself as well as the level of thinking required

to understand that code. It is highly likely that this must also be the case for code writing

tasks. Therefore, two types of measures of difficulty were considered in this research.

Subjective measures and objective measures. The subjective measures considered are

based on educational taxonomies. The use of taxonomies as a means of determining both

the difficulty and the cognitive complexity of novice programming tasks has been well

documented. The objective measures considered were selected from those used

53

commonly in the software engineering domain. Software metrics have been established

as a way of obtaining objective, reproducible and quantifiable measurements, and have

numerous uses from project planning and cost estimation to quality assurance and

program complexity. Sections 4.4 to 4.6 detail some common software metrics, the

selection of potential software metrics and the evaluation of these metrics as measures of

novice code writing task difficulty.

4.3. Educational Taxonomies

Computer science educators have used various educational taxonomies to describe

programming task complexity, approaches to solving programming tasks and to classify

solutions to programming problems. The most widely adopted taxonomies to date have

been the Bloom (1956) and SOLO (Biggs & Collis, 1982) taxonomies.

In 1956, Bloom produced a taxonomy that consisted of a multi-tiered set of learning

objectives ordered according to their expected cognitive complexity (Figure 4.1). The

taxonomy is a behavioral classification system of educational objectives. Many variants

of the taxonomy have been proposed, but the most widely accepted is the revised Bloom’s

taxonomy (Anderson et al., 2001). This version of the taxonomy adds a knowledge

dimension (factual knowledge, conceptual knowledge, procedural knowledge, and

metacognitive knowledge), which specifies the type of information that is processed, to a

revised version of the original cognitive process dimension.

Evaluation

Synthesis

Analysis

Application

Comprehension

Knowledge

Creating

Evaluating

Analysing

Applying

Understanding

Remembering

Bloom Revised Bloom

Figure 4.1 The cognitive process dimension; (left) Bloom’s and (right) revised Bloom’s taxonomy

(adapted from Pohl, 2000, p.8)

A significant number of studies have used Bloom’s and the revised Bloom’s taxonomies

to categorize the difficulty of novice programming tasks (e.g. Shuhidan, Hamilton, &

Souza, 2009; Thompson et al., 2008; Lister & Leaney, 2007; Whalley et al., 2006). A

number of researchers (e.g. Shuhidan, Hamilton, & Souza, 2009; Thompson et al., 2008;

54

Fuller et al., 2007) have pointed out that there are some problems related to the use and

interpretation of Bloom’s and the revised Bloom’s taxonomy. Johnson and Fuller (2006)

found that it was difficult to reach any sort of consensus when academics were asked to

classify novice programming tasks using the Blooms taxonomy. Gluga et al. (2013)

suggested that many of the ambiguities in the application of Bloom’s taxonomy occur

because the academics classifying novice programming tasks often have

misunderstandings of the taxonomy categories as well as differing views on the difficulty

of programming tasks. It is probable that, as the academics came from different

institutions, these differing views occurred due to variations in their instructional focus.

It has also been reported that the ordering of cognitive tasks in Bloom’s taxonomy does

not map easily to the learning paths of many novice programmers. “[S]tudents performing

poorly on lower levels can still perform well on higher taxonomy levels” (Lahtinen, 2007,

p. 23). As a result of these difficulties, several variants of Bloom’s and revised Bloom’s

taxonomies have been proposed specifically for computer programming education (e.g.

Bower, 2008; Fuller et al., 2007; Marzano et al., 2000). These variants have not been

widely adopted by computer science educators and researchers. Perhaps this is partially

due to the fact that the suitability of the Bloom’s and revised Bloom’s taxonomies to the

design of learning and assessment activities has been disputed.

In a recent study, it was reported that the majority of the programming tasks in exams

were at the Application level (Simon & Sheard, 2012). It is therefore likely that Bloom’s

levels may not be at a suitable level of granularity to be useful for determining the

difficulty of novice (CS1) programming tasks.

Because of the lack of consensus in the computer science education domain on the use of

Bloom’s taxonomy, for the purpose of this research, it will not be adopted.

In 1982, Biggs and Collis developed a taxonomy called the Structure of Observed

Learning Outcomes (SOLO). The SOLO taxonomy consists of a hierarchy of five stages

or levels, which describe increasingly integrated thinking in a student's understanding of

a subject (Figure 4.2). “[SOLO] is based on a quantitative measure (a change in the

amount of detail learned) and a qualitative measure (the integration of the detail into a

structural pattern). The lower levels focus on quantity (the amount the learner knows),

while the higher levels focus on the integration, the development of relationships between

the details and other concepts outside the learning domain” (Thompson, 2008, p.27).

http://www.macmillandictionary.com/dictionary/british/reach_1
http://www.macmillandictionary.com/dictionary/british/sort_1

55

Prestrutural Unistructural Multistructural Relational Extended Abstract

Figure 4.2 SOLO taxonomy (taken from Hook, 2016, p.1)

At the lowest SOLO level, prestructural, the student is able to learn about or acquire bits

of information. They are unable to see or make connections between these bits of

information. At this operational stage the student has bits of information which essentially

have no structure and therefore make little sense. When the student begins to see simple

connections between these bits of information but they do not fully understand the

significance of the connections they are operating at the unistructural level. As the student

progresses they are able to start to see more and more connections between bits of

information but have yet to understand the importance of these connections (still unable

to fully abstract ideas from these connections or to see meta-connections). At this stage

the students is considered to be at the multistructural level of thinking. At the relational

stage students are able to see the connections and their significance in the context of the

subject area as a whole. Extended abstract is reached when the student is able to

generalise, transfer and connect their knowledge both within and outside of the subject

area.

Hattie and Purdie (1998) provided a number of examples or vignettes, not in computer

programing, to help guide educators in the use of the SOLO taxonomy and it is this work

on which much of the work related to using SOLO in computer science education is

based, with their vignettes and examples guiding the development of an interpretation of

SOLO for classifying novice computer programming tasks and student answers to code

reading and writing tasks.

Computer science education researchers have reported greater success in using SOLO,

rather than Bloom’s taxonomy, to classify students’ responses to code tracing and

comprehension tasks (Sheard et al., 2008; Clear et al., 2008; Philpott, Robbins, &

Whalley, 2007; Whalley et al., 2006; Lister, Simon, Thompson, Whalley, & Prasad,

56

2006), and code writing tasks (Ginat & Menashe, 2015; Seiter, 2015; Whalley, Clear,

Robbins, & Thompson, 2011; Lister et al., 2009; Shuhidan et al., 2009).

Thompson et al. (2008) noted that, in order to design a richer model for programming

tasks and their difficulties, the Bloom category for a programming task can be

meaningfully mapped to a number of categories in the SOLO taxonomy. Inspired by

Thompson’s observation many researchers, for example Jakoš and Lokar (2015), and

Meerbaum-Salant, Armoni, and Ben-Ari (2013), proposed a hybrid taxonomy for the

classification of programming task difficulty. However, none of these hybrid taxonomies

have been explored further so there is little empirical basis for their use as a measure of

code writing task difficulty. These hybrid taxonomies are therefore not explored further.

The body of research into using SOLO for classifying code writing tasks has consistently

reported that the higher the SOLO level of a task, the more difficult it is, as measured by

student performance (Whalley et al., 2011; Clear et al., 2008; Sheard et al., 2008). This

body of empirical research has resulted in accepted guidelines and rubrics for the

classification of novice solutions to code writing tasks using SOLO.

A classification of task difficulty using the SOLO classification was therefore chosen as

a subjective measure of code writing task difficulty because it has been found to be a

reasonably reliable measure of code writing task cognitive complexity and this

complexity has been found to be a measure which correlates to task difficulty.

Although the SOLO classification process is a subjective one, reliant on the classifiers

knowledge of SOLO, the task being classified and the context of the task within the

greater course of study, this cognitive complexity dimension of the framework is needed

because software metrics are unable to account directly for the cognitive complexity of

the code writing tasks. Using SOLO provides a means of accounting for the way in which

the novice programmer must structure their knowledge in order to solve a problem; from

more surface to deeper constructs.

4.4. Software Metrics

When academics were asked to rank the difficulty of programming problems, from

examinations, they found it difficult to agree on the difficulty of the problems (Simon et

al., 2012). The degree of agreement among the academics in estimating difficulty was

only 40%, so the inter-rater reliability was poor. This finding indicates that there is a need

for an objective measure of difficulty in this research.

57

In this research software metrics are proposed as a means of objectively measuring the

complexity, size and structure of the code. This approach seemed reasonable because one

aspect of the difficulty of a code writing task is the code itself, (e.g. the syntax, structure

and size) and so software metrics are likely to be a useful dimension to the “difficulty

framework”. It is expected that combining SOLO with software metrics will more

reliably measure the difficulty of code writing tasks than either would in isolation. SOLO

provides a richer way of describing and considering the complexity and difficulty of a

task while metrics are arguably more precise but provide less information about the nature

of the task itself.

Kaner et al. (2004) defined a software metric as “a function whose inputs are software

data and whose output is a single numerical value that can be interpreted as the degree

to which software possesses a given attribute that affects its quality” (p.2). Software

metrics were introduced to support the most critical issues in software development and

offer support for planning, predicting, monitoring, controlling, and evaluating the quality

of both software products and processes (Briand, Morasca, & Basili, 1996). A large

number of software metrics have been developed for the measurement of relatively large-

scale commercial software development projects. ISO 9126 (ISO, 2001) divides software

metrics into two categories: static metrics and dynamic metrics.

Static metrics are the group of software metrics used to capture the static properties of

code. These metrics are usually computed using static analysis tools, such as Checkstyle

(2016), PMD (2016), and Rationale® Software Analyzer tool (2016). Static metrics are

invariant and do not change regardless of whether or not the program executes. Most

existing software metrics are static. Some metrics measure the size of a program such as

lines of code, number of methods, Halstead’s metrics (Halstead, 1977) and number of

parameters. Other metrics measure the structural complexity of the program code such

as Cyclomatic complexity (McCabe, 1976), and average nested block depth. Last but not

least, some static metrics measure object oriented properties of the program code such as

number of children and depth of inheritance.

Dynamic metrics are usually computed from data collected during program execution (i.e.

at runtime) (ISO, 2001). Dynamic metrics directly reflect the quality attributes of code in

operation because they capture the actual values.

While there are many potential software metrics available that can be used for measuring

various aspects of code (i.e. size, structure, and readability) these metrics are typically

focused on a particular feature of a program and are often devised with a single

58

programing paradigm in mind. Table 4.1 provides a set of commonly used software

metrics classified by metric type and their applicability to three main programming

paradigms (i.e. imperative, procedural, and object oriented).

Table 4.1 Software metrics and their applicability across programming paradigms (taken from Kasto &

Whalley, 2013, p.60)

Metric Type Metric

Programming Paradigm

imperative procedural object oriented

 Number of lines of code

 Number of blank lines of code

 Number of comment lines of code

 Number of comment words

 Number of statements

 Number of methods

 Average line of code per method

Basic Number of parameters

 Number of import statements

 Number of arguments

 Number of methods per class

 Number of classes referenced

 Average number of attributes per class

 Number of constructors

 Average number of constructors per class

 KLCID

Complexity metrics Cyclomatic complexity

 Nested block depth

 Number of operands

 Number of operators

 Number of unique operands

 Number of unique operators

Halstead metrics Effort to implement

 Time to implement

 Program length

 Program level

 Program volume

 Maintainability index

 Weight method per class

 Response for class

Object oriented Lack of cohesion of method.

 Coupling between object classes

 Depth of inheritance tree

 Number of children

59

4.5. Software Metrics and Learning to Program

This section focuses on using software metrics to support research related to the

improvement of teaching and learning of computer programming and explores the

relatively small body of work in this area. This research is limited to using software

metrics as a way of aiding the design assessments and exemplar code, or as a means of

providing feedback on code.

Some early work investigated the usefulness of software metrics as a form of formative

feedback for novice programmers and as a diagnostic assessment tool for instructors

(Cardell-Oliver, 1995). This work used the following measurements as forms of

automated feedback: - program size metrics such as lines of code, number of methods,

and number of fields, unit tests, and program style violation counts, but did not investigate

these metrics as a way of estimating the difficulty of a novice programming task or

guiding the design of code examples and tasks.

A preliminary study by Kasto & Whalley (2013) focused on the use of software metrics

for determining the difficulty of code comprehension tasks. They found that dynamic

metrics, Cyclomatic complexity and average block depth correlated significantly with the

difficulty of code tracing tasks. They concluded that such an approach might also work

for code writing tasks.

The remainder of this section focuses solely on software metrics and their use for

measuring the difficulty and complexity of programming code tasks.

One of the obvious problems in using software metrics to inform the design of code

writing tasks is that there is no software metric that measures code that has yet to be

written and the aim of this work is to develop an objective means of measuring the

difficulty of a novice code writing task prior to the students undertaking the task. For this

research the choice was made to use the instructor’s model answer as the code from which

the metrics are calculated. Of course in theory, the model answer should provide a better

quality solution when the task is sufficient enough for there to be variation in the possible

solutions. In many cases an instructor’s solution might actually have less complex code

than many of the solutions produced by the students. Students, especially students who

find programming challenging tend to produce code which includes redundant code. In

order to produce a “good” solution students need to produce a more generalised,

connected or integrated solution that reduces redundancy (Whalley et al., 2011).

60

This research explores code complexity and readability metrics; both of these types of

metrics are potential components for the difficulty framework.

4.5.1. Complexity Metrics

McCabe proposed a complexity metric based on the structure of a piece of code as a

control flow graph, making use of graph theory, which directly measures the number of

linearly independent paths through a program’s source code; he named this metric

Cyclomatic complexity (McCabe, 1976). McCabe postulated that a program code with a

large number of possible control paths would be more difficult to understand, maintain,

and test. One limitation of the Cyclomatic complexity metric, is that code structures such

as ELSE-statements and backward branches are not considered (Shepperd, 1988;

Piwowarski, 1982; Magel, 1981) and it is highly likely that such structures contribute to

the complexity of a code writing task for novice programmers.

Driven by the limitations of Cyclomatic complexity metric, Magel (1981) proposed a

complexity metric making use of graph theory and regular expressions. Magel

represented the structure of a piece of code as a control flow graph and then derived a

regular expression from the control flow graph to calculate his regular expression metric.

The symbols in the regular expression were then counted to give a structure complexity

metric. Examples of the calculation of this metric can be found in Figure 4.3. The more

nested the code the higher the value of the metric (Figure 4.3, A vs. B). Backward

branches also contribute to a higher value than forward branches (Figure 4.3, D vs. C),

and increasing complexity in selection statements (Figure 4.3, E and F) also results in

higher values.

61

A B C

a

b

c

d

a

b

c

a

b

c

ab (ab) * c (dc)* d= 14 abc (bc) * (abc (bc) *)* = 19 a (b + n) c =6

D E F

a

b

c

a

b c

a

b c

d

ab (ab) * c = 8 a (b+c) = 6 a (b+c) d = 7

Figure 4.3 Regular expression metric calculation and control flow graphs (n = no node)

A study conducted by Mathias et al. (1999) used software metrics in order to examine the

underlying nature of code designed to study the process of program comprehension for

novice programmers. A correlation was found between the nature of the task (measured

by lines of code and Cyclomatic complexity) and the comprehension strategies used by

novice programmers. However, using lines of code to measure code complexity of the

program code is no longer accepted in the software engineering community because there

is no agreed standard approach for counting the lines and also because the number of lines

of code does not necessarily reflect the quality of the code. The easiest way to obtain a

lines of code metric is by simply taking a count of all the physical lines in the source code.

This raises issues when considering languages such as C and Java that allow statements

to be split across multiple lines (Mathias et al., 1999). The authors concluded that, despite

62

these issues, lines of code as well as Cyclomatic complexity might be useful in measuring

the difficulty of novice program comprehension tasks.

Parker and Becker (2003) employed Halstead’s metrics to measure and compare the

effectiveness of students’ solutions of two different types of code writing assessment

(constructivist and behaviourist). The authors did not reach any conclusions about the use

of metrics beyond the fact that constructivist tasks appeared to require more effort as

measured by both the metrics and student performance on the assignment.

A preliminary investigation by Klemola (1978) that measured student solutions to code

writing tasks using lines of code and Halstead’s metrics and that compared those

measures with student performance, concluded that neither metrics were able to explain

the error rate in the students’ solutions. Follow-on research by Rilling and Klemola (2003)

involved developing a software metric called the “Kind of Line of Code Identifier

Density” (KLCID) metric as a means of analysing the cognitive complexity of program

comprehension tasks. The proposed metric used the Identifier Density (𝐼𝐷) measure

(proposed by Rilling & Klemola (2003)):

𝐼𝐷 = 𝑇𝑁𝑜𝐼/𝐿𝑂𝐶

where 𝑇𝑁𝑜𝐼 is the total is number of identifiers and 𝐿𝑂𝐶 is the total number of lines.

In order to compute KLCID, lines that have the same type of operands with the same

arrangement of operators are considered equal and are counted as one unique line. For

example, the lines (a = b + c) and (d = e + f) when a, b, c, d, e and f are of the same type

are considered to be equal and are only counted once. KLCID is computed as:

𝐾𝐿𝐶𝐼𝐷 = 𝐼𝐷 ∈ 𝑢𝑛𝑖𝑞𝑢𝑒 𝐿𝑂𝐶 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑙𝑖𝑛𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠⁄

A correlation was found between increasing KLCID and decreasing student performance

for code comprehension tasks in a final examination of an introductory programming

course. Klemola and Riling (2003) concluded that KLCID was “a good candidate to

measure the complexity of code comprehension assessment tasks within the same

course”(P.165). This finding was not surprising as in text comprehension it has been

found that a higher density of concepts (i.e. topic knowledge) decreases the rate of

comprehension (Kintsch, Teun, & Van, 1978). However, KLCID is considered to be

limited in its application because it is time consuming to calculate. Because in this study

the internal control structure for the different code writing task are the same therefore

KLCID is not worth considering.

63

Petersen et al. (2011) investigated the relationship between cognitive load and the

concepts used in the exam questions; the majority of the questions in their study were

code writing tasks. The authors assessed cognitive load simply by counting the number

of distinct concepts. They concluded that the more concepts the students needed to deal

with to answer the question, the more difficult the question was and hence the higher the

cognitive load. In this study, concept count is essentially being used as a measure of

cognitive complexity. In order for this measure to be useful it would be necessary to have

an accepted list of concepts, with definitions, so that it could be used reliably.

4.5.2. Readability Metrics

Readability refers to the ease with which text can be read. Readability can be considered

to be a basic requirement for understandability (Börstler et al., 2007). It is difficult to

understand a piece of text that is hard to read. It is reasonable to include a metric that

measures the readability of code since empirical research has found that there is a strong

relationship between the ability to explain the code and write code (Lopez et al., 2008).

Many well-known readability measures have been used in the assessment of English

literature. These measures typically count the number of syllables, words and sentences

in a piece of text and produce a single numeric value. For example, Flesch Reading Ease

(Flesch, 1948),Gunning fog index (Gunning, 1952), SMOG (McLaughlin, 1969),

Bormuth readability index (Bormuth, 1971), and Flesch-Kincaid Grade Level (Kintsch et

al., 1978). Such measures simply parse text and do not measure understandability. Flesch-

Kincaid Grade Level is a recalibration of the Flesch Reading Ease metric. While they

both use the same core measures (word length and sentence length) they use different

weighting factors and as a result are inversely related. A text with a comparatively high

score on the Flesch Reading Ease test, meaning that the text is more readable, will give a

low score on the Flesch-Kincaid test. The Gunning fog index and SMOG grade level both

estimate the years of education needed on average to understand a piece of writing. The

Bormuth readability index calculates a reading grade level required to read a text based

on, firstly, average length of characters, and average number of familiar words in the text.

Readability measures have been the subject of considerable criticism because they fail to

take into account factors such as prior knowledge of the reader, knowledge presumed by

the writer, and the complexity of the written text (Bruce, Rubin, & Starr, 2015). Despite

this “readability formulas, unquestionably, have some utility. They have reasonable

utility and predictability as a starting point for determining the level of challenge of a

text” (Pikulski, 2002, p. 10).

64

In 1998, Kurt Starsinic (Starsinic, 1998) explored the idea of the use of readability

measures to assist him in training junior programmers during time-critical projects. He

selected the Flesch-Kincaid Grade Level measure to produce a script called Fathom that

was designed to automatically measure the readability of the programmers generated code

(in Perl) and grade their work. Starsinic found it was difficult to map syllables, words and

sentences to corresponding syntactic structures in code. How many syllables are there in

++ or { or $_? Is select easier to read than getHostByName? As a result of this mapping

difficulty; Starsinic developed a similar metric where he elected to measure the number

of tokens per expression, the number of expressions per statement, and the number of

statements per subroutine:

𝑐𝑜𝑑𝑒 𝑟𝑒𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (𝑒𝑙𝑡̅̅ ̅̅ × 0.55 + 𝑠𝑙𝑒̅̅ ̅̅ × 0.28) + 𝑠𝑟𝑙̅̅ ̅̅ × 0.08

where, 𝑒𝑙𝑡 is the expression length in tokens, 𝑠𝑙𝑒 is the statement length in expressions,

𝑠𝑟𝑙 is the subroutine length in statements, and where for example:

 tokens are ++ , ; , {, &&, $foo::bar, or any keyword

 expressions are 0.8, ($a+6), wantarray?@a:0

 and statements are $x++, $a = $foo::bar * 7.

Starsinic concluded that a low readability metric value indicates a more readable piece of

code and that a piece of code with a readability of 2.91 was easy to read, whereas code

with a readability of 6.85 was considered to be very complex and therefore hard to read.

No justification or explanation is provided for the weightings given to each operand in

the formula or for the thresholds that were used to determine the relative level of

complexity of the code readability. It should be noted that Starsinic’s code readability

metric was not empirically evaluated and that the author makes no claims as to the

effectiveness of the measure.

In a later study Börstler, Caspersen and Nordström (2007) proposed that some cognitive

aspects of code reading can be expressed using common software measures and explored

this idea in the context of two novice code reading tasks. Their aim was to develop a

reliable means of selecting appropriate code examples to help guide novice programmers’

learning and to distinguish between good and bad examples. They surmised that a good

example must be readable and comprehensible, and they designed a framework based on

these principles. Their framework consisted of Cyclomatic complexity, Halstead’s

difficulty metric, and an interpretation of the English language Flesch Reading Ease

65

measure they called a Software Readability Ease Score (SRES). SRES reinterpreted the

Flesch Reading Ease metric parameters as follows:

 syllables lexemes of the programming language

 words statements

 sentences units of abstraction

One of the limitations of the SRES measure is that syllables are interpreted as a character

count. This is justified with the argument that words with fewer syllables also have fewer

characters and might be meaningful in the context of the readability of natural language;

while in the context of programming code meaningful variable names (which could have

more characters) make the code more readable. Hence, while both measures will be

investigated, it is anticipated that Starsinic’s method might be better suited to measuring

code readability not just in the context of this thesis but also for novice code writing tasks

in general.

4.6. Selecting the Metrics: A GQM Approach

One of the key challenges faced by researchers when measuring software processes and

products is the choice of appropriate measurements. This is also a challenge for this

research. In the software engineering discipline the most widely known approach is to

apply a goal oriented method called the Goal Question Metric (GQM) (Van Solingen &

Berghout, 1999; Basili, Caldiera & Rombach,1994) (Figure 4.4). The GQM measurement

is a top-down system beginning with a focus on goals and consists of a set of rules for

interpretation of measurement data. It is generally accepted that “a bottom-up approach

will not work because there are many observable characteristics in software…, but which

metrics one uses and how one interprets them is not clear without the appropriate… goals

to define the context” (Basili, Caldiera & Rombach, 1994, p.528) The GQM has three

levels, the conceptual level where goals are established, the operational level where

questions are established, which help refine the goals and to assess whether or not the

goal has been met, and the quantitative level where the metrics and data are selected

which enable the questions to be answered. In this research because the data itself is

quantitative only the objective dimension of the quantitative level of GQM need be

considered.

66

Goal 1 Goal 2

Question
1

Question
2

Question
4

Question
5

Question
3

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5 Metric 6

Question
1

Figure 4.4 The GQM paradigm (taken from Basili, Caldiera, & Rombach, 1994, p. 3)

In order to select appropriate metrics, in the objective dimension, the GQM method was

applied to ensure that only potentially useful metrics are evaluated as measures of code

writing task difficulty.

There are some metrics that can be eliminated, prior to GQM selection. Most of the code

writing tasks set for the students in P1 are procedural even though the code is encapsulated

in classes and methods. For this reason, many of the object oriented metrics are not

appropriate because the same measurement would be obtained for almost all novice tasks.

Therefore procedural programming metrics were used in this research because they are

more appropriate given the context of this research and the programming courses the

students were studying. In addition, readability metrics were included as potential

difficulty measures because the literature in the field provides evidence that it is difficult

to write code if you cannot also read and understand code. The completed GQM template

is shown in Table 4.2.

67

Table 4.2 GQM template

Goal To measure the difficulty of novice programmer code

writing tasks

Question 1 Does the size of the writing task influence the difficulty of

code writing tasks?

Size- metrics M1 Number of commands

Question 2 What contributes most, if at all, to task difficulty operators

or operands?

Is it the number or the type of operands/operator which

influence task difficulty?

Size- metrics M2 Number of operators

M3 - Number of unique operators

M4 - Number of operands

M5 - Number of unique operands

Question 3 Does the structure of the code relate to how difficult it is

to write the code?

Structure–metrics M6 - Cyclomatic Complexity

M7 - Average Block Depth

M8 - Regular Expression

Question 4 Is code that students find more difficult to write also less

readable?

Metrics-Readability M9 - Adapted Starsinic’s metric

the parameters to this method are the following:

o Number of Keywords

o Number of Expressions

o Number of Operators (M2)

o Number of Commands (M1)

In order to answer the first question in the GQM template (Table 4.2), number of

commands was used because almost all of the procedures written required the students to

call methods on objects. The heavy use of methods is an artefact of the use of a robot

micro-world and the fact that in order to move and place the robot and beepers (the

objects) methods must be called on the relevant object. Beyond this calling of methods or

procedures the central aspects of most of the tasks were code structures such as selection

and iteration statements and arrays.

The number of commands was calculated as the total number of executable lines of code

rather than the total lines of code. A command line, was identified by a terminating semi-

colon or an opening brace for a block of code. In the case of a FOR-loop statement, all

code relevant to the loop was counted as a single statement (i.e. the initialization of the

stepper variable, the test condition, and stepper update).

68

For the second GQM question four metrics were selected from the widely adopted

Halstead metric set. These were the metrics specifically related to operators and operands.

The number of operators will be directly proportional to the number of operands but both

of these were selected as potential metrics because it maybe that novices actually

perceived operators to be much harder to understand than the accompanying operands. It

is also likely, but not proven, that code requiring the use of more types of operators

contributes more to the difficulty of a task than the total number of operators and for this

reason the unique count of operators and operands was included.

To answer the third question in the GQM, structural complexity metrics were included in

an attempt to capture the inherent difficulty in certain structural properties of the code,

such as an average nested block (i.e. a program code with too many levels of nested

blocks can be difficult), as well as Cyclomatic complexity. Because of the limitations

noted in the literature related to Cyclomatic complexity (Section 4.5.1), a regular

expression metric also included.

To answer the last question in the GQM, number of the keywords, number of expressions,

number of tokens and number of commands were selected to measure the difficulty of the

readability. These are all parameters for Starsinic’s readability metric (Starsinic, 1998).

In order to adopt Starsinic’s metric the tokens and expression parameters were redefined

as follows. Tokens were defined as a construct made up of Java operators (e.g.: ++, [], ||)

and keywords (e.g.: int, return, void). Expressions were defined as a syntactic

construction that has a value. Expressions are formed by combining variables, constants,

and method returned values using operators. For this research the manner in which

expressions were counted was altered. In Starsinic’s method an expression such as n=n+1

was counted as one expression. But for this research it was counted as two expressions in

an attempt to more closely map the way in which a novice might read the expression; it

is likely that most novices would break this down into two expressions: - Firstly

evaluating n+1, and then evaluating the assignment. Similarly, (x+y)/10 involves firstly

an evaluation of the sub-expression (x+y), and then an evaluation of the division. An

example of the count of the basic units for a readability metric, namely the tokens,

expressions and statements, is given in Figure 4.5.

https://www.d.umn.edu/~gshute/java/expressions.html#variables
https://www.d.umn.edu/~gshute/java/expressions.html#constants
https://www.d.umn.edu/~gshute/java/expressions.html#returned
https://www.d.umn.edu/~gshute/java/expressions.html#operators

69

public int method(int a, int b)

{

 int result = a - b;

 if(result < 0) {

 result *= -1;

 }

 return result;

 }

tokens = 15

expressions = 8

statements = 5

readability = 1.88

Figure 4.5 Example readability metric calculation

The next two sections explore whether or not the software metrics might be a suitable

way to estimate the difficulty of novice programming writing tasks.

4.6.1. Evaluating the Metrics

In order to evaluate the metrics selected using GQM a set of novice solutions to code

writing tasks were selected for analysis. The software metrics were calculated using the

instructor’s model answer, and the correlation between each metric and the level of

difficulty of the question based on participant performance was calculated. Metrics which

show a strong correlation with difficulty were considered to be appropriate for use in the

framework.

4.6.2. Data Set

The eleven Robot World code writing questions analysed in this chapter (See Appendix

F) were selected from a series of controlled, summative practical programming tests held

throughout the P1 course. For each question, the participants were provided with starting

code (a BlueJ project) and relevant unit tests and required to add a method to a Java class

in the project. The unit tests which were supplied tested the new functionality and

provided the participants with an opportunity to check the correctness of their answer and

fix any errors. Sixty participant responses were analysed for each question. These students

gave ethical approval for their tests to be analysed and were a representative non-random

sample of the entire cohort (Section 3.5.2.1).

The questions analysed in this section are limited to previously “unseen” questions

presented to participants in a test situation. Unseen questions involve writing entirely new

code for which the language constructs had been taught during the course but where the

students had not previously seen the code during the course either as an example or as an

exercise. If previously seen questions were included, it is likely that the correlation

between the software metrics and difficulty would be insignificant. This insignificance is

70

likely to be due to the difficulty of the question being affected by the level of thinking

required. A problem for which the participants have already seen the code may mean that

participants can simply answer the question by recall which would compromise the

effectiveness of the question for this research.

4.6.2.1. Data Analysis and Results

Table 4.3 gives the software metrics for the instructor’s model and participants’

performance for each of the questions analysed. It should be noted that the difficulty was

measured as the percentage of fully correct answers. Question 11 was therefore the easiest

question with a percentage difficulty of 100%, whereas question 1 was the most difficult

question with 14% of participants giving a correct working solution.

Table 4.3 Metrics for instructor’s model and a percentage difficulty for each question

 Questions

1 2 3 4 5 6 7 8 9 10 11

Difficulty (%) (n=60) 14 24 39 52 55 63 84 84 90 98 100

Cyclomatic complexity 12 5 5 5 6 5 4 3 2 2 1

Average nested block depth 4 2 3 2 4 2 2 2 2 2 1

Number of operators 18 15 4 14 8 8 3 6 1 1 0

Number of unique operators 5 8 2 6 4 4 2 6 1 1 0

Number of operands 9 17 0 14 4 4 0 6 0 0 0

Number of unique operands 4 8 0 6 2 2 0 4 0 0 0

Number of commands 49 13 14 27 20 20 9 7 3 4 4

Regular expression metric 60 24 24 29 31 25 20 14 8 8 3

Readability metric 5.78 4.88 2.74 1.78 2.38 4.20 1.69 1.90 1.14 1.33 1.28

The significance of the correlation of each metric to the difficulty of each question was

then tested using a Pearson’s correlation (Table 4.4).

Table 4.4 The correlations between metrics and difficulty

Software Metrics Pearson’s correlation

𝚛 𝜌 (one-tailed)

Number of operators -0.87** < 0.0001

Readability metric -0.85** < 0.0001

Regular expression metric -0.85** < 0.0001

Cyclomatic complexity -0.85** < 0.0001

Number of commands -0.78** 0.002

Number of unique operators -0.67* 0.012

Number of operands -0.67* 0.012

Average nested block depth -0.65* 0.015

Number of unique operands -0.59* 0.035

** Correlation is significant at the 0.01 level (one-tailed)

* Correlation is significant at the 0.05 level (one-tailed)

According to Evans (1996) a correlation is considered to be very weak (0 < r ≤ 0.19),

weak (0.20 ≤ r ≤ 0.39), moderate (0.40 ≤ r ≤ 0.59), strong (0.60 ≤ r ≤ 0.79), and (0.80 ≤

r ≤ 1) indicates a very strong correlation. As shown in Table 4.4, all of the selected metrics

71

are either very strongly or strongly correlated to the difficulty of the task. Not

unsurprisingly the correlations are negative, for example the higher the number of

operators the lower the performance of the participants on the question and therefore the

higher the difficulty of the question.

Unexpectedly, in the case of the questions analysed in this study, the number of operators

correlates more strongly with difficulty (r = - 0.87, p (one-tailed) < 0.001) than the number

of unique operators (r = -0.67, p (one-tailed) = 0.012). The fact that more operators

correlated with difficulty seems to be support an idea central to CLT, which is that the

more concepts novices need to deal with, the higher the cognitive load that will be

imposed (Petersen et al., 2011). The repetition of operators perhaps gives novice

programmers more opportunity to make mistakes.

The number of operands, in the case of the questions analysed in this study, also correlates

strongly with the difficulty (r = -0.67, p (one-tailed) = 0.012) than the number of unique

operands (r = -0.594, p (one-tailed) = 0.035). Perhaps the repetition of operands, like the

repetition of operators, gives novice programmers more opportunity to make mistakes.

The number of commands correlates strongly to difficulty (r = -0.78, p (one-tailed) =

0.002), the higher the number of Java commands required, the more difficult the question

is.

The readability measure was found to correlate very strongly with difficulty (r =-0.85, p

(one-tailed) < 0.001). This means that as expected, in the case of these questions, the

easier the code was for the students to write, the easier (according to the readability

metric) the code is to read and understand. It is possible that there is a causal relationship

between the ease of writing and readability of code. This idea has been explored in the

literature and although no cause has been identified to date there is empirical evidence

that there is some sort of relationship or correlation between code reading and code

writing (Simon, Lopez, Sutton, & Clear, 2009).

The very strong correlation between the difficulty of a question and increasing structural

and data flow complexity (r = -0.85, p (one-tailed) < 0.001), as measured by the regular

expression metric, supports the conjecture that many students cannot write code that

requires more complex structures and that there must be some relationship between the

ability to structure code and being able to produce working code regardless of the quality

of the code. Dijkstra (1997) claimed that the simpler the sequence control of the code the

easier the code will be to read. This conclusion can be extended to the simpler the

sequence control and the more readable the code the easier the writing of the code is.

72

Similarly, the higher the Cyclomatic complexity, the more complex the control flow of

the program code is and the more difficult the question is (r = -0.85, p (one-tailed) <

0.001). As postulated by McCabe (1976) code with a large number of possible control

paths should be more difficult to understand. The findings of this thesis research suggests

that this statement may now be extended to include that the code is also harder to write.

The more deeply nested the branches of the code are, the higher the average nested block

depth is and the more difficult the question was for the students (r = -0.65, p (one-tailed)

= 0.015). This is not really surprising as research investigating student responses to code

writing questions found that students find questions that can be solved by writing the code

line by line with limited reference to the previous lines of code are easier than those that

require the students to understand the relationship between the chunks or blocks of code

that they have written (Whalley et al., 2011).

4.6.2.2. Factor Analysis-Principal Axis Factor

The nine metrics found to strongly correlate with task difficulty are further investigated

in this section in an attempt to build a predictive model of a group of inter-correlated

variables that may be used to estimate the difficulty of a code writing task at the task

design phase.

Principal Axis Factor (PAF) is an approach to finding the least number of factors which

can account for the common variance (correlation) of a set of variables. Thus, in this

research PAF was used to simplify common variance amongst the set of possible variables

(the nine software metric values (Table 4.3)).

Recommendations on the appropriate sample size of PAF vary considerably. However,

Hogarty et al. (2005, p.222) noted that, “our results show that there was not a minimum

level of N or N:p ratio to achieve good factor recovery across conditions examined”.

Where N was the number of participants and p the number of variables. Hogarty et al.’s

finding is also consistent with that of MacCallum et al. (1999). This finding suggests that

PAF is a suitable method for this analysis where the sample size is small. In this case N

is the number of questions and p is the number of metrics.

Before applying the PAF, an R-matrix was calculated to check for multicollinearity.

Multicollinearity exists when multiple factors are correlated not just to the response

variable, but also to each other. When you have multicollinearity it can result in factors

that are redundant. The issue with multicollinearity is that it increases the standard errors

of the coefficients. This inflation of the standard errors makes some variables statistically

73

insignificant when they should be significant. Without multicollinearity (and thus, with

lower standard errors), those coefficients might be significant.

Table 4.5 provides an R-matrix, for the data set of nine metrics, which consists of three

rows, the first row of the table contains the results of a pairwise Pearson’s correlation

coefficient (r) between all of the metrics, the second row gives the one-tailed significance

of these coefficients (p-value), and the final row lists the Determinant = 1.900E-015.

Field (2009) provides the guideline that the Determinant value of the R-matrix should be

greater than 0.00001; if it is less than this value, it means that multicollinearity does exist.

In this case the Determinant is less than the necessary value of 0.00001. Therefore,

multicollinearity does exist in the data. One approach to mitigating the effect of

multicollinearity is either to remove any variables that are not highly correlated with other

variables or one of the two highly correlated predictors from the model. Further

examination of the metrics and their relationship was therefore required in order to reduce

multicollinearity before performing a PAF. As shown in Table 4.5, most of the metrics

were actually very strongly correlated or strongly correlated with each other.

The number of operators was found to be very strongly correlated with the number of

operands. As a result, the number of operators was proportional to the number of

operands; therefore, there was a need to consider eliminating one of these two variables

which clearly contribute to the multicollinearity problem. The operators and operands

metrics measure essentially measure the same thing; as demonstrated by their very strong

correlation. In deciding which of these two should be removed. The Determinant value

was calculated twice. Firstly using the data set with operands and unique operands counts

removed (Determinant = 2.721E-7). The second instance using the data set with the

operators and unique operators metric were removed (Determinant = 2.050E-7). The

Determinant value was similar in both calculations, therefore it was decided to remove

the operands and unique operand metric as the strength of their correlation with task

difficulty was much lower that for operators.

As the Cyclomatic complexity and regular expression metrics both convey essentially the

same information; so it was important to consider eliminating one of these two variables

to reduce multicollinearity.

The PAF was calculated twice more (after deleting the number of operands and the

number of unique operands metrics) in order to determine whether to remove Cyclomatic

complexity or the regular expression metric from the PAF.

74

1. Eliminating the Cyclomatic complexity gave a Determinant of 8.891E-005.

2. Eliminating the Regular Expression metric, gave a Determinant of 9.903E-005.

Both options resulted in an acceptable Determinant value but removing the regular

expression metric gave a higher determinant value thus, Cyclomatic complexity was

retained and the regular expression metric was removed.

The remaining six software metrics (Cyclomatic complexity, average nested block depth,

number of operators, number of unique operators, number of commands, and readability

metric) were used as the data set for calculating PAF.

75

Table 4.5 R-matrix

Correlation Matrixa

C
y

c
lo

m
a

ti
c

c
o

m
p

le
x

it
y

A
v

e
r
a

g
e

n
e
st

e
d

b
lo

ck
 d

e
p

th

N
u

m
b

e
r
 o

f

o
p

e
r
a

to
r
s

N
u

m
b

e
r
 o

f

u
n

iq
u

e

o
p

e
r
a

to
r
s

N
u

m
b

e
r
 o

f

o
p

e
r
a

n
d

s

N
u

m
b

e
r
 o

f

u
n

iq
u

e

o
p

e
r
a

n
d

s

N
u

m
b

e
r
 o

f

c
o

m
m

a
n

d
s

R
e
g

u
la

r

e
x

p
r
e
ss

io
n

m
e
tr

ic

R
e
a

d
a

b
il

it
y

m
e
tr

ic

Correlation

Cyclomatic complexity 1.000 .758 .782 .376 .382 .339 .955 .994 .793

Average nested block depth .758 1.000 .368 .027 -.021 -.046 .657 .741 .418

Number of operators .782 .368 1.000 .819 .871 .839 .822 .809 .774

Number of unique operators .376 .027 .819 1.000 .927 .965 .404 .409 .556

Number of operands .382 -.021 .871 .927 1.000 .988 .454 .423 .530

Number of unique operands .339 -.046 .839 .965 .988 1.000 .395 .374 .517

Number of commands .955 .657 .822 .404 .454 .395 1.000 .973 .705

Regular expression metric .994 .741 .809 .409 .423 .374 .973 1.000 .760

Readability metric .793 .418 .774 .556 .530 .517 .705 .760 1.000

Sig. (1-tailed)

Cyclomatic complexity

.006 .004 .142 .138 .169 .000 .000 .003

Average nested block depth .006

.147 .470 .477 .450 .019 .007 .115

Number of operators .004 .147

.002 .001 .001 .002 .002 .004

Number of unique operators .142 .470 .002

.000 .000 .124 .121 .047

Number of operands .138 .477 .001 .000

.000 .094 .112 .057

Number of unique operands .169 .450 .001 .000 .000

.129 .144 .063

Number of commands .000 .019 .002 .124 .094 .129

.000 .011

Regular expression metric .000 .007 .002 .121 .112 .144 .000

.005

Readability metric .003 .115 .004 .047 .057 .063 .011 .005

a. Determinant = 1.900E-015

76

The Kaiser-Meyer-Olkin (KMO) measure verifies the sampling adequacy for PAF

analysis. Kaiser (1974) recommended accepting values less than 0.5 as barely acceptable.

Hutcheson and Sofroniou (1999) provide a classification system for KMO values over

0.5. The classes are: mediocre (0.5 - 0.7), good (0.7 - 0.8), great (0.8 - 0.9), and superb

values over 0.9. For this data set; the value of KMO was 0.642, which falls into the range

considered to be mediocre. None the less the PAF was conducted because according the

Kaiser criterion this level is acceptable.

A PAF analysis was run to obtain eigenvalues. Kaiser (1960) recommended retaining all

factors with eigenvalues over than one. One factor in had eigenvalues over Kaiser’s

criterion of one and can therefore be retained, and this factor accounted for 69.431% of

the total variance (as shown in Table 4.6).

Table 4.6 Total variance explained

Total Variance Explained

Factor
Initial Eigenvalues

Extraction Sums of Squared Loadings

Total % of Variance Cumulative %
Total % of Variance Cumulative %

1 4.412 73.541 73.541 4.166 69.431 69.431

2 .957 15.946 89.487

3 .352 5.864 95.351

4 .245 4.080 99.431

5 .021 .356 99.788

6 .013 .212 100.000

Extraction Method: Principal Axis Factoring.

Figure 4.6 gives a scree plot of the principal factors and can be used to visually assess

which components or factors explain most of the variability in the data. The scree plot

confirms that most of the variability can be explained by the first factor and this factor

should be retained. Factor 2 is at the point of inflection and that and any subsequent factor

should be discarded.

Point of inflexion

Figure 4.6 Scree plot for the analysis

77

Table 4.7 presents the factor loadings, which represents the degree of correlation between

a specific observed variable and a specific factor. The higher values indicate a closer

relationship.

Table 4.7 Factor matrix for the analysis

Factor Matrix a

Factor

1

Cyclomatic complexity
0.974

Number of operators
0.930

Number of commands
0.920

Readability metric
0.834

Average nested block depth 0.647

Number of unique operators 0.627

Extraction Method: Principal Axis Factoring.

a. 1 factors extracted. 6 iterations required.

This principal factor suggests that structure, size and readability software measures

combined are sufficient to capture the most important aspects of the difficulty of writing

code for novice programmers. Hence, for this thesis the proposed objective metric

included in the framework is the factor determines here and is called the Writing Metric

(WM) and is defined equation:

𝑊𝑀 = (𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ∗ 0.974) + (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑟𝑒𝑎𝑡𝑜𝑟𝑠 ∗ 0.930)

+ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠 ∗ 0.920) + (𝑅𝑒𝑎𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 0.834)

+ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑒𝑠𝑡𝑒𝑑 𝑏𝑙𝑜𝑐𝑘 𝑑𝑒𝑝𝑡ℎ ∗ 0.647)

+ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 ∗ 0.627)

When interpreting the WM (based on an instructor’s model answer), a program code with

a lower WM value is considered an easy code writing task and a higher value is considered

a difficult code.

4.7. Summary

This chapter has focused on the design of a framework for describing programming tasks

and their difficulties. Two types of measures were suggested the subjective measure and

the objective measure. Different subjective measures were discussed in detail in this

chapter, and it was concluded, based on the literature review, that the SOLO taxonomy is

a suitable measure for the cognitive complexity of the code writing tasks to be used in

this study. For the objective measure, the GQM approach was used to select a suitable

metrics. An evaluation of these metrics was undertaken that compared software metrics

extracted from an instructor’s model answer to a task with the participants’ performance

78

on the tasks. A simple statistical approach was used to determine the degree to which each

metric correlated with difficulty. The results of this analysis showed that most of the

selected metrics were strongly correlated with the difficulty of the code writing task.

Finally, the correlation between metrics was investigated further using factor analysis

(PAF) and a novel writing metric for predicting the difficulty of code writing questions

was developed.

79

Chapter 5. Research Instrument Design

5.1. Introduction

In the previous chapter, a framework for describing programming tasks and their

difficulties was designed and evaluated. This chapter focuses on the design of a set of

programming tasks (the research instrument) using this framework. These tasks are

designed within the context and constraints of the pedagogy used in the programming

courses (namely P1 and P2) at AUT University. Therefore, this chapter begins with a

discussion of the delivery, pedagogical approaches, development tools and content of

these programming courses.

This chapter then goes on to present the tasks within the difficulty framework. The tasks

are in delivery sequences, which have been designed to trigger a reorganisation of a

participant’s cognitive structure. This restructuring can be thought of as being scaffolded

by connecting each task with a previous task in a sequence and/or with some aspect of

the participants’ existing knowledge, and should result in the participants creating a

product of learning as a new cognitive structure.

In order to create any new cognitive structure/schema participants need to be able to

transfer their existing knowledge (from previously seen tasks in the sequence) to the new

task at hand. Each sequence always starts with a minor variation of a task, which the

participants have already seen in their programming course or in a previous sequence in

this research instrument and therefore there is an assumption in this design that they

should have prior knowledge/existing schemas to build on when faced with a task.

Therefore, as part of building this set of program writing tasks the schemas required to

reach a solution are considered.

5.2. Programming Courses at AUT

The programming courses from which participants were recruited were two introductory

courses (Programming 1 (P1) and Programming 2 (P2)) in the first year of a bachelor’s

degree in computer science. The two courses focus on the development of problem

solving skills and foundation programming concepts. The student cohort is diverse. While

some students may go on to study further programming in software design and

engineering courses, many of the students choose to major in topics in which no further

programming is taught.

80

5.2.1. The P1 Teaching Approach

The P1 course at AUT University was designed with the assumption that the students

have no prior knowledge of computer programming. The course was taught using the

Java programming language7. The course was 12 weeks in length with three one-hour

lectures per week. During this time, the lecturer introduced the key concepts (see Table

5.1) using slides, demonstrations, and question and answer sessions.

Table 5.1 Main P1 topics

Week Lecture Lab Task/ Homework Concepts

1 Course overview Using a BlueJ project

Writing a sequence of instructions using

Robot World methods.

2 Basic Syntax

Selection (IF/ELSE)

WHILE-loops

Nested (WHILE/IF, WHILE/WHILE)

Simple selection and iteration (not nested)

only using Robot World methods.

3 Code tracing (desk checking)

variables & data types

WHILE-loops, selection and nesting using

primitive data type variables to store

values.

4 Arithmetic Operators

String Variables

Input and string comparison

Output-PRINT statements

Comments

Print statements and using loops to count

things.

5 Boolean expressions

Methods, parameters and return values

String variables

Concatenating and comparing strings

6 Planning and Developing an algorithm Practicing previous lab & homework

assignments

7 Methods calls with parameters

Characteristics of good programs

Planning algorithms

Writing methods

8 Object references

1D arrays (creating and accessing)

For-loops

1D arrays and using for loops to iterate

through the array

9 Handling errors & Exceptions

Javadoc documentation

Character expression

Using exceptions

Documenting methods with Javadoc

10 Objects & classes Objects & Classes

11 Constructors

Mutator and Accessor methods

Private methods

Objects & Classes

12 Packages & classes Practicing previous lab & homework

assignments

In addition to the lectures, the students attended one two-hour small class practical

programming laboratory a week, which was supervised by teaching assistants (typically

PhD students). In these lab sessions, students were given code writing problems to solve.

7 See Appendix D for a list of the learning outcomes for the P1 course.

81

For the majority of the course, students were not required to write their own classes but

instead were asked to write methods for existing classes.

A number of tools were used in the teaching and learning during P1. These were selected

by the course leader in order to facilitate teaching and learning. There has been extensive

research into the advantages of using various software tools to assist in the teaching and

learning of programming by, reducing the effect of complex programming environments,

incorporating visualisation tools, and reducing or simplifying teacher workload (Gómez-

Albarrán, 2005). Some studies have shown that these software tools have had positive

impacts on student learning (Dougherty, 2007; Kölling, 1999; McIver & Conway, 1996;

Cardell-Oliver, 1995; Pattis, 1981). While others have discovered no clear advantage in

using such tools (Thomas, Ratcliffe, & Thomasson, 2004).

For P1, BlueJ version 3.1.4 was the courses prescribed integrated development

environment (IDE). BlueJ provides a simplified mechanism with which students can edit,

compile, and then execute their programs using a minimal interface. It has been argued

that this simplified environment enables students to concentrate on solving programming

problems without becoming distracted by the mechanics of compiling and executing

programs (Kölling & Rosenberg, 2001). Moreover, BlueJ provides support, in a

simplified way, for unit testing (Kölling & Rosenberg, 2001). Many researchers have

reported on the advantages of using BlueJ in introductory programming courses (Haaster

& Hagan, 2004; Ragonis & Ben-Ari, 2005).

In P1, the students were provided with unit tests for all code writing tasks. These tests

allowed them to check whether or not their program provided a working solution to a

specific task. These tests/test cases were designed to cover, as much as possible, all

potential errors in a student’s program. It should be noted, however, that a poorly

structured solution and a well-structured solution might both pass the unit tests provided.

Some research has been undertaken which supports the use of unit tests for example,

Cardell-Oliver et al. (2011) found that when students were supplied with unit tests most

students were able to write fully compiled and functionally correct code. Whalley and

Philpott (2011) found that unit tests support the majority of students but that the weaker

students still tinkered with their code because their knowledge of programming was very

fragile. The benefits reported for most students motivated the introduction of unit tests to

the course as a teaching and learning tool.

The P1 course, during the time this study was undertaken, also used an in-house micro-

world, called “Robot World”, which could be compiled and run in BlueJ. Robot World

82

was inspired by “Karel the Robot” (Pattis, 1981). Such micro-worlds are considered to be

simple, interactive environments for student learning (Xinogalos, 2010). The advantages

of micro-worlds have been well documented in the literature. These advantages include:

 Reducing the complexity of a language by providing a limited instruction set with

simple syntax and semantics (Pattis, 1981).

 Enabling students to visualise the execution of the program by giving immediate

feedback and assisting them in the debugging process (McIver & Conway, 1996).

 Increasing the focus on problem solving and algorithm design (Kölling, 1999).

 Facilitating learning better than text-based (non-visual) systems (Dougherty, 2007).

The Robot World used at AUT was designed specifically to be used in the first few weeks

of the course in order to teach students the basics of sequential code, selection and

repetitive structures. Other concepts such as strings and arrays were taught without Robot

World.

At the beginning of the course, the students were provided with a small number of

predefined methods that allowed robots to check their status, move within the Robot

World and to pick up and drop off beepers (Table 5.2 gives the library of methods for the

robot class).

Table 5.2 The provided Robot class methods

Robotworld createRobotworld() boolean isRobotCarryingItems()

Robotworld

createRobotworld(int,int,String,boolean)

boolean isRobotCarryingItems(Robot)

Robot createRobot() boolean isItemOnGroundAtRobot()

Robot createRobot(int,int) boolean isItemOnGroundAtRobot(Robot)

Robot createRobot(String,int,int) void turnRobotLeft()

boolean isSpaceInFrontOfRobotClear() void turnRobotLeft(Robot)

boolean isSpaceInFrontOfRobotClear(Robot) void pickUpItemWithRobot()

boolean isGroundClearAtRobot() void pickUpItemWithRobot(Robot)

boolean isGroundClearAtRobot(Robot) void moveRobotForwards()

boolean isRobotDead() void moveRobotForwards(Robot)

boolean isRobotDead(Robot) void dropItemFromRobot()

boolean isRobotFacingWall() void dropItemFromRobot(Robot)

boolean isRobotFacingWall(Robot) void killRobot()

Students were required to complete ten weekly online quizzes consisting of code

comprehension tasks such as reading, tracing and code completion questions. The

homework consisted of code writing tasks. The students had a strict submission deadline

to complete the lab online quizzes and homework assignments. The time allowed to

complete each quiz and homework assignment was one week. Table 5.1 includes details

of the main topics for the lab, online quizzes, and homework assignments. For the P1

83

course, the assessment consisted of marks for completion of lab online quizzes (10%),

homework assignments (30%) and three controlled online code writing tests (test 1

(15%), test 2 (15%) and final exam (30%)).

All the tests and final exam were computer-based and open book. The main aim of the

open book tests was to ensure that students did not spend too much time recalling or

focused on syntax and to allow them to focus on the semantics and problem solving

aspects of the tasks.

The workload, as determined by the course leader, required from each student in order to

complete the course is provided in Table 5.3.

Table 5.3 The workload expectation for the P1 course (taken from the course descriptor)

Item Weeks Hours

In class 12 60

Independent study 12 90

Total learning hours 150

5.2.2. The P2 Teaching Approach

The main goal of the P2 course was to further develop the programming skills of the

student by introducing Object-Oriented Programming (OOP) concepts such as

inheritance and simple graphical user interfaces8. This course continued to use the Java

programming language. During the course, students were transitioned from the simplified

BlueJ environment to the fully-fledged development environment of NetBeans (NetBeans

IDE 8.0.1).

P2 was taught by a different lecturer to P1 and with this change in teacher there was also

a change in lecturing style. As for P1, P2 was 12 weeks in length, but with two one hour

lectures per week and 108 hours of independent study time allocated. Again the lecture

was used to introduce the core concepts (Table 5.4), using a similar approach to that of

P1 but with less frequent examples and discussion and more of a focus on communicating

the core topics using slides.

During the semester, the students were required to submit three take home assignments

due in weeks five, eight, and twelve of the course (25%). Additionally, students received

marks for completing the weekly lab code writing exercises (10%). There were four

controlled programming/code writing tests (test1 (10%), test2 (10%), test3 (5%) and the

final exam (40%)).

8 See Appendix E for a list of the learning outcomes for the P2 course.

84

Table 5.4 Main P2 topics

Week Main topics

1 Objects and Classes

Introducing inheritance

2 Class hierarchies and polymorphism

Methods and Overriding

3 Primitive arrays (1D, 2D) and ArrayList

Enumerators

Information Hiding

4 Writing unit tests

Abstraction & Interfaces

5 Revision of week1 to week4 topics

6 Java Collections Framework

7 GUI (Graphical User Interfaces)- Introducing Java Swing & NetBeans

GUI: Layout managers and more

8 GUI3: Events

UI Design & Usability

9 Debugging skills & tactics

10 Recursive algorithms

Handling Errors & Exceptions

11 Designing Unit Tests

Identifying ‘good’ test data

12 Review & Exam preparation

5.3. The Design Process

The tasks were specifically designed to encourage participants to think of new ways to

apply previously learned concepts to a new task. In order words to trigger the restructuring

or expansion of an existing cognitive schema. To do so effectively, the tasks need to

include concepts and principles from previous tasks and embed them in new scenarios. If

this is done correctly, participants will be forced to adapt their knowledge to new

situations. According to Mayer (1977) in order to study “the perception of the to-be

learned material”, “the availability of a cognitive structure to which the new material

may be assimilated”, and “the activation of the structure during learning” (p. 370), the

instructional design should be focused on three factors: sequencing, ordering, and

organisation. Therefore, in designing this research instrument careful attention was given

to the sequencing, ordering and organisation of both the course the students were studying

and also to the design of the tasks. The tasks were designed within a sequence of

conceptually similar but increasingly difficult questions. Several sequences were

constructed to cover a range of programing concepts from assignment of variables

through to selection, iteration and simple logic. In addition to applying the research

framework each task in the sequence was also contextualised in terms of the schemas and

prior knowledge/programming concepts required to solve the task in order to determine

an appropriate timing and order for presentation of the tasks during the period of this

research and the courses. Therefore, each sequence was designed around the teaching

material and the timing of the delivery of the material in the course. Sequences one to

85

three consisted of tasks related to the content of the P1 course, while the programming

tasks covered in sequences four and five were based on the course content of P2.

As discussed in Chapter 4, two types of measures were selected and used in this study to

estimate the difficulty of the programming tasks, a subjective measure based on the SOLO

taxonomy and an objective measure based on software metrics. The SOLO taxonomy is

used to measure the cognitive difficulty of the task, while software metrics are used to

measure the structural difficulty of the code.

5.4. SOLO Classification

As the tasks were designed within each sequence, the researcher classified each question

using the SOLO taxonomy and using the difficulty metric in order to ensure that for each

sequence the tasks became progressively more difficult.

In order to classify the tasks using SOLO the guidelines reported in the literature were

considered (Table 5.5 and Table 5.6). Most of the work reported in the literature uses

SOLO to classify novice programmer solutions to code comprehension and code writing

tasks (Ginat & Menashe, 2015; Sudol-Delyser, 2015; Whalley et al., 2011; Thompson,

2010; Shuhidan et al., 2009; Lister et al., 2009; Clear et al., 2008). Lister et al. (2009)

examined how SOLO might be used to classify novice solutions to code writing tasks and

used the examples provided by Hattie and Purdie (1998) for language translation to

inform their classification system. This classification system for novice code writing tasks

was investigated further by Whalley et al. (2011). Whalley et al. used a grounded theory

approach to identify salient elements in novice programmers’ code. These salient

elements were basic syntactic elements such as IF-statements and FOR-loops. Because

the code writing tasks themselves were very simple they did not go beyond these basic

syntactic elements and consider programming schema, plans or patterns. Whalley et al.’s

SOLO classification was then based on the degree to which a student produced code that

removed redundancy and provided a generalised solution. At the unistructural level

students simply produced code which was a direct line by line translation of the task

specification. A multistructural solution was still essentially a direct translation of the

task specification but in translation some lines of code were rearranged in order to provide

a working solution. This rearrangement may lead to a more integrated solution. At the

relational level all redundancy (unnecessary repetition of lines of code e.g., multiple IF-

statements) has been removed and the specifications integrated to form a logical whole.

While Whalley et al. (2011) focused on using SOLO to classify novice programmers’

solutions to code writing tasks their definition of levels considered the way in which the

86

code writing tasks was presented or phrased. Accordingly tasks which were phrased or

described in detail and gave a line by line description lent themselves to solutions which

were unistructural and a direct translation – this does not necessary mean that a valid

multistructural or relational solution could not be produced but all that is required is a

unistructural response. This research suggests that SOLO could be used to describe the

code writing tasks itself. In an earlier paper by Thompson et al. (2010) a classification

system was devised for code writing questions (Table 5.6) which was based solely on the

way in which the task was specified.

Table 5.5 SOLO categories for code reading

 Code reading Code reading Code reading

Clear et al. (2008) Thompson (2010) Sudol-Delyser (2015)

Relational Provides a summary of

what the code does in

terms of the code’s

purpose. (The “forest”).

Provides a summary of

what the code does in

terms of the code’s

purpose. Provides a

summary of the code

that recognises

applicability of the code

segment to a wider

context.

The parts of the problem

are integrated into a

coherent structure.

Multistructural A line by line

description is provided

of all the code. (The

individual “trees”).

A line by line

description is provided

of all the code.

Summarisation of

individual statements

may be included.

Answer demonstrates a

correct understanding of

the parts of the problem,

but there is no evidence

of connection between

problem parts.

Unistructural Provides a description

for one portion of the

code.

Provides a description

for one portion of the

code (i.e. describes the

IF-statement).

Answer demonstrates an

understanding of some

but not all aspects of the

problem.

87

Table 5.6 SOLO categories for code writing

 Student solution Student solution Code writing question Student solution Student solution Student solution

Lister et al. (2009) Shuhidan, Hamilton, and

Souza (2009)

Thompson (2010) Thompson (2010) Whalley et al. (2011) Ginat and Menashe

(2015)

R
el

at
io

n
al

Provides a valid well-

structured program that

removes all redundancy

and has a clear logical

structure. The

specifications have been

integrated to form a

logical whole.

Fully correct or almost

right. Novices appreciate

significance in relation to

the whole program and

can generalise outside of

program.

Requires interpretation

and decomposition in

order to arrive at a suitable

solution. Although the

specification provides all

of the details for a

solution, it provides few

clues that would hint at the

structure of the solution.

Provides a valid well-

structured program that

removes all redundancy

and has a clear logical

structure. The

specifications have been

integrated to form a

logical whole.

Provides a valid well-

structured program that

removes all redundancy

and has a clear logical

structure.

The specifications have

been integrated to form a

logical whole.

A valid well-structured

solution that involves the

composition of two or

more design patterns,

integrated in a non-

simple, interleaved

manner, to form a logical

whole.

M
u

lt
is

tr
u

ct
u

ra
l

Represents a translation

that is close to a direct

translation. The code

may have been reordered

to make a valid solution.

There are numbers of

connections made.

Novices can create code

for loops and

comparisons, but there are

a few minor slips, leading

to failure to connect the

whole idea. They may fail

to convert arguments, use

incorrect operators, and

not interpret general

explanation.

Requires some

interpretation in order to

arrive at a suitable

solution. Some parts of the

specification may be

directly translatable into

the solution.

Represents a translation

that is close to a direct

translation. The code may

have been reordered to

make a valid solution.

Represents a translation

that is close to a direct

translation. The code may

have been reordered to

make a more integrated

and/or valid solution.

A translation of the

specifications into

flexible manipulation of

a generic design pattern;

or a simple, elementary

composition of more

than one generic pattern.

U
n

is
tr

u
ct

u
ra

l

Represents a direct

translation of the

specifications.

The code will be in the

sequence of the

specifications.

Simple connections are

made. Novices can

compare, or write loops,

but fail to implement or

derive the connections of

loops in relation to

manipulation of arrays or

usage of further structures.

Requires a direct

translation of the

specification into a

possible solution.

Represents a direct

translation of the

specifications. The code

will be in the sequence of

the specifications.

Represents a direct

translation of the

specifications. The code

will be in the sequence of

the specifications.

Direct translation of the

specifications into a

straightforward

implementation of a

generic design pattern.

88

For this research either the Thompson et al. (2010) classification might be adopted or a

simple translation of the descriptions from Whalley et al. (2011) reframed in terms of the

task itself might be sufficient. However, the tasks in this research are different those used

to develop their SOLO classification systems. The tasks in this research are designed

explicitly to require multiple schemas and merging or nesting of those schemas to from

an integrated and generalised solution. The level of syntactic elements which was used

by Whalley et al. (2011) to develop classifications of code writing tasks using SOLO is

not appropriate for the tasks reported in this study. None of the tasks in this study will be

expressed such that a direct line by line translation is required because the intention is to

trigger retrieval of abstract schemas. This means that if we were to use existing

classification systems all the tasks would be relational. On reflection the published

classification systems are very limited in their applicability to novice programming tasks

which are focused on building abstract plans and problem solving skills. For these reasons

a new SOLO classification system is used in this research based on the notion of cognitive

schemas (Table 5.7). In order to have confidence in the validity of the SOLO

classification for the tasks developed for this research the tasks were also classified by

two academics experienced in using SOLO. Any differences were discussed until an

agreement was reached.

In order to clarify the classification process and commentary of the classification of three

tasks from sequence 1 (see Section 5.7 for full details of these tasks) follows.

Table 5.7 Novel SOLO classification categories for code writing tasks using schemas

- Length of a corridor – Unistructural Task

This question asked the participants to calculate the length of a corridor. In Robot

World this is achieved by moving the robot to the end of a corridor and counting the

number of moves it has to make in order to get to the end of the corridor. Solving this

problem requires the use of a single schema which is familiar to the participants and

SOLO category Description

Relational [R] Task requires the merging or nesting of more than one schema or parts

of schemas in order to produce a generalised working solution.

Multistructural [M] The task requires the use of either the same schema repeated or two or

more simple or familiar schemas that combined using a simple

construction process such as schema abutment (sequential

concatenation) to produce a solution.

Unistructural [U] The task requires the use of a single schema (not repeated and familiar)

which can be used directly without modification.

89

requires no modification. In order to program any code in the Robot World moving

the robot through the world is essential. The participants have prior this tasks

repeatedly used this programming schema to solve code writing tasks and indeed have

actually written code to count the length of a corridor:

While robot is not facing a wall

 Move forward

 Increment Counter

- Compare the length of two corridors – Multistructural Task

In order to solve this problem three simple schemas are required one to calculate the

length of a corridor (as above), one to move the robot to the next corridor, and one to

compare two numbers. In order to solve this task the length of a corridor schema is

repeated twice and then the comparison of the lengths is made, the schemas do not

require anything beyond minor tailoring and can essentially be used directly and are

combined in a simple abutment or concatenation process. The corridors are always in

the same position in the world. This meant that the task lends itself to being solved

using a multistructural approach and does not mean that a relational solution is not

possible. Thus the classification is made to indicate the lowest possible SOLO level

at which the novice programmer can operate in order to solve the task and is not

dependant on the way the task is phrased.

Calculate length

 While robot is not facing a wall

 Move forward

 Increment Counter1

Move to next Corridor

Calculate length

 While robot is not facing a wall

 Move forward

 Increment Counter2

Compare values of Counter 1 and Counter 2

Print result

90

- Find the longest corridor – Relational Task

This task required finding the longest corridor where there

may be any number of corridors in the world. The corridors

alternate and are always adjacent to each other. The image to

the right gives an example scenario with three corridors. In

order to solve this problem the schemas used in the previous task were required but

in order to generate a valid solution the schemas must be merged and adapted. The

schema could not just be sequentially joined or concatenated and produce a correct

solution.

Create most-wanted variable

calculate length of the first corridor and store the

result in most-wanted

While there are more corridors

 calculate length and store the result in current

if current > most-wanted

 most-wanted = current;

Return most-wanted

As an addendum in 2015, after this phase of the research and the think aloud data

collection was completed a paper was published which investigated using SOLO for the

classification of code writing tasks and student solutions that required the development

of simple CS1 level algorithms (Ginat & Menashe, 2015). Their classification system for

classifying the tasks is given in Table 5.6. Their encoding focused “on the selection and

manipulation of [algorithmic] design patterns” (Ginat & Menashe, 2015; p.456). They

classified seven code writing tasks using their SOLO level descriptors. These tasks were

designed to make students abstract basic pattern structures, and to help students see these

patterns as templates that can be manipulated. Ginat and Menashe’s classification system

is remarkably similar to the one conceived for this research in 2013 – simply exchange

pattern for schema – and gives us confidence that our interpretation of SOLO for

determining the level of thinking (hence difficulty) of a task is reasonable.

91

5.5. Transfer Learning: Classification of the Tasks

It is well accepted that learning requires the transfer of prior knowledge and/or skills to

a new situation. Indeed, the tasks for this study were designed so that students should be

able to transfer what has been learnt in a previous task (the transfer source) to the new

task at hand (the transfer target).

There are a number of different views of transfer. The traditional view is that of

Thorndike (1923) who believed that transfer depended on the original and the transfer

tasks having identical elements or similar features (stimuli) and where a clear and known

relationship exists between the tasks. Skinner (1953) suggested that transfer involves

generalization of responses from one discriminative stimulus to another. More recently it

has been suggested that transfer involves activating knowledge in memory networks and

requires links between links between pieces of information in memory (Gagné, Briggs,

& Wager, 1992). The more links there are the more likely activating one piece of

knowledge will activate another. Knowledge transfer is therefore a complex process for

which some taxonomies have been developed to define different types of transfer (Table

5.8).

Table 5.8 Transfer types (taken from Schunk 2012, p.319 Table 7.4)

Type Characteristics Source

Near Much overlap between situations; original and transfer

contexts are highly similar.

Royer (1986)

Far Little overlap between situations; original and transfer

contexts are dissimilar.

Literal Intact skill or knowledge transfers to a new task.

Figural Use of some aspects of general knowledge to think or learn

about a problem, such as with analogies or metaphors.

Low road Transfer of well-established skills in spontaneous and possibly

automatic fashion.

Salomon and

Perkins (1989)

High road Transfer involving abstraction through an explicit conscious

formulation of connections between situations.

High road

Forward reaching

Abstracting behaviour and cognitions from the learning

context to one or more potential transfer contexts.

High road

Backward reaching

Abstracting in the transfer context features of the situation that

allow for integration with previously learned skills and

knowledge.

Typically near transfer refers to transfer within a domain where the source and target are

drawn from the same domain (Vosniadou & Ortony, 1989), for example the transfer of

knowledge between programming languages. When tasks have similar elemental

structures they are often called isomorphic tasks (adjective | iso·mor·phic being of

identical or similar form, shape, or structure) and transferring from one task to another

involves near transfer. On the other hand far transfer involves transfer between domains

where what is transferred is drawn from a different domain (Vosniadou & Ortony, 1989).

For example a far transfer task might involve transferring algebraic knowledge to a task

92

that requires the development of a computer program (Olson, Catrambone, & Soloway,

1987).

In the context of computer programming a far transfer test has been defined as “the

design and construction of programs for new programming problems that require

solutions not encountered before” (Van Merriënboer, 1997, p. 277) and “near transfer

test” as “a test that measures knowledge of commands, syntax and standard language

constructs of the programming language” (Van Merriënboer, 1997, p. 276). A similar

distinction was made by Scholtz and Wiedenbeck (1990). In their study they gave

students with knowledge of two programing languages (C and PASCAL) a problem in a

new programming language (ICON). This distinction is too broad when considering the

novice programming tasks designed for this research. However unarguably the notion of

transfer is a useful mechanism for distinguishing between the designed tasks and might

also be useful in helping explaining why a participant might be able to solve one task and

not solve another task. Therefore the following novel knowledge transfer classification

consisting of three types was developed by the researcher to distinguish between near and

far transfer novice programming tasks:

1. Isomorphic Tasks

Tasks that share the same programming concepts and code structure (in terms of

salient elements, and order of those elements), but are superficially different. Thus,

the underlying solution rationale can be extracted and represented in the form of an

abstracted solution schema. This abstracted schema enables learners to correctly

transfer learned solutions to problems with superficial changes using the same

structure. For example consider code that finds the lowest number in a one-

dimensional array and code that finds the highest number in a one-dimensional array.

Both solutions have the same code structure and very similar algorithmic logic. In

essence, a small change in syntax (switching less than operator to a greater than

operator) is required.

2. Glued Isomorphic Tasks

Multiple schemas for programming tasks that have been solved before are combined

and/or adapted. In this case the target does not have the exact same underlying

solution rationale as the transfer sources but the transfer target task has sub goals

that are the same as the goal or sub goal of each transfer source. More than one

source is transferred. For example, a program that reads input integers and outputs

their average, requires the retrieval of the existing abstract solution schema for

93

summing of integer numbers, and the abstract solution schema for counting the

number of integers, and the merging of these two plans – which in turn should lead

to a new abstract cognitive schema.

3. Far Transfer Tasks

The target task requires the use of different programming concepts and code structure

than the source task. For example, code that calculates the summation of elements

stored in a one-dimensional array and the program code that calculates the

summation of elements stored in a two-dimensional array, ignoring that the first

problem is solved using the concept of a one-dimensional array and the second

problem is solved using the concept of a two-dimensional array, both problems have

identical sub goals in common so that certain sub goals or at least relevant sub goals

can be transferred; set the gather variable to zero, and then increment that value based

on the new value read from an array. Thus, identifying identical sub goals involves

identifying multiple abstract features (or “schemas”), which can be transferred.

It should be noted that as for other classification systems, such as the Bloom and SOLO

taxonomies, an intimate knowledge of the programing courses and programming tasks

students which constitute the participants prior knowledge is required in order to classify

the tasks.

The tasks designed for this research were classified according to this three class degree

of knowledge transfer taxonomy and the results of this classification are given in Table

5.9. The classification was undertaken with the assumption that the students programming

knowledge had been acquired during their course of study in P1 and P2. The

determination of prior knowledge and was dependant on the timing of the task delivery

in the think aloud sessions and the topic delivery and programming exercises in these

programming courses. The tasks were classified by the researcher and two independent

experts – where disagreements existed the classifiers discussed the process in order to

reach a consensus.

5.6. An Overview of the Tasks

Nineteen code writing tasks were created for this research. These code writing tasks were

classified into five categories based on the programming concepts required to solve the

problem and the context of the task (either a Robot World or a native Java task (one

outside of the Robot World using the standard Java libraries)).

94

An overview of these tasks and their classification within the difficulty, conceptual and

context frameworks is presented in Table 5.9.

Table 5.9 Overview of the tasks

S
eq

u
en

ce
s

T
a

sk
s

Conceptual knowledge Difficulty

measure

K
n

o
w

le
d

g
e

tr
a

n
sf

er

cl
a

ss
if

ic
a

ti
o

n

V
a

ri
a

b
le

S
el

ec
ti

o
n

It
er

a
ti

o
n

M
et

h
o

d

A
rr

a
y

 (
1

D
)

A
rr

a
y

 (
2

D
)

A
rr

a
y

L
is

t

C
la

ss

S
O

L
O

W
M

1 Q1 U 18.58 Isomorphic

1 Q2 M 61.03 Glued Isomorphic

1 Q3 R 75.55 Glued Isomorphic

1 Q4 R 75.55 Isomorphic

2 Q1 M 32.56 Far

2 Q2 M 35.47 Isomorphic

2 Q3 R 45.40 Far

2 Q4 R 48.33 Far

3 Q1 R 36.71 Isomorphic

3 Q2 R 38.34 Far

3 Q3 R 39.23 Isomorphic

3 Q4 R 40.02 Far

4 Q1 R 44.96 Far

4 Q2 R 56.72 Far

4 Q3 R 61.71 Isomorphic

4 Q4 R 67.33

Far

5 Q1 R 61.27 Far

5 Q2 R 65.54 Far

5 Q3 R 67.41

Far

*
 Where:

- U is unistructural, M is multistructural, and R is relational and U is the lowest level of thinking.

- For the writing metric the lower the value the easier the question is.

- The Knowledge transfer classification column gives a classification based on how the schemas

required to solve each task need to be used or changed in order to solve the problem using ideas

derived from transfer theory. Where isomorphic is the most direct transfer mechanism and by far the

least direct, and therefore hardest to accomplish.

- An illustration of the sequences (1-5) is provided on the next page.

95

The conceptual relationships between the tasks, both inter and intra sequence, are

illustrated in Figure 5.1. Table 5.10 provides a summary of the implied operative schemas

required to solve each task. Figure 5.2 shows the chronological order in which the

questions were intended to be presented to the participants. A detailed discussion of these

tasks/questions and task/question sequences is presented in the next section of this

chapter.

Programming 1

Seq1 – Q1

Count 1 corridor

Sequence 2

Count beepers

Sequence 3

1D array

Sequence 1

Count corridor

Programming 2

Sequence 4

2D array

Sequence 5

ArrayList

Seq1 – Q2

Count 2 corridors &

compare

Seq1 – Q3

Longest corridor

Seq1 – Q4

Shortest corridor

Seq2 – Q1

Count all beepers

Seq2 – Q2

Count No. of beepers at

each stack

Seq2 – Q3

Smallest stack of beepers

Seq2 – Q4

Beepers is sorted

Seq3 – Q1

Is sorted

Seq3 – Q2

Smallest element

Seq3 – Q3

Largest index

Seq3 – Q4

Sum of even no.

 Seq4 – Q1

Sum of odd index

Seq4 – Q2

Largest element

Seq4 – Q3

Column of smallest no.

Seq4 – Q4

Is sorted each row

 Seq5 – Q1

Highest student mark

Seq5 – Q2

Sum of odd marks

Seq5 - Q3

Is sorted students’ mark

1

1 2

2 3

3

4

4

Figure 5.1 The conceptual relationships between the questions

 Questions in each sequence are represented using different box colours.

 Arrows of type represents a conceptual relationship between tasks in the same sequence

 Arrows of type represents a conceptual relationship between tasks in the different

sequences.

96

Table 5.10 Schemas required for solving the questions

Sequence Question Schemas required to solve questions

1 Q1 Calculate the length of a single corridor.

 Topic knowledge for Java commands used in Table 5.9.

2 Q2 Calculate the length of a single corridor.

 Compare two integer numbers (homework assignment).

 Topic knowledge for Java commands used in Table 5.9.

3 Q3 Calculate the length of a single corridor.

 Compare two integer numbers (homework assignment).

 Topic knowledge for Java commands used in Table 5.9.

4 Q4 Either

o Schema for solving Seq1 – Q3,

o Or, schema for solving Seq2 – Q3

 Topic knowledge for Java commands used in Table 5.9.

2 Q1 Either

o Schema for picking up all the beepers across a single corridor

as well as counting the number of beepers at the first location

(homework assignment),

o Schema for counting the length of the corridor (Seq1 – Q1).

 Topic knowledge for Java commands used in Table 5.9.

2 Q2 Schema for solving Seq2 – Q1.

 Topic knowledge for Java commands used in Table 5.9.

2 Q3 Either

o Schema for solving Seq1 – Q3.

o Or, Schema for solving Seq2 – Q2, and compare two integer

numbers.

 Topic knowledge for Java commands used in Table 5.9.

2

Q4 Schema for solving Seq2 – Q2.

 Schema for solving Seq3 – Q1.

 Schema for comparing two integer numbers.

 Topic knowledge for Java commands used in Table 5.9.

3 Q1 Schema for solving values in the array is in ascending numerical

order (homework assignment).

 Topic knowledge for Java commands used in Table 5.9.

3 Q2 Either

o Schema for solving Seq1 – Q3

o Schema for solving Seq1 – Q4,

o Or schema for solving Seq2 – Q3,

 Topic knowledge for Java commands used in Table 5.9.

3 Q3 Schema for solving Seq3 – Q2,

 Topic knowledge for Java commands used in Table 5.9.

3 Q4 Either

o Schema for solving Seq2 – Q1,

o Or, their existing schema that calculates the summation of all

elements in a one dimensional array (homework assignment).

 Schema for checking if the number is odd or even.

 Topic knowledge for Java commands used in Table 5.9.

4 Q1 Either

o Schema for solving Seq2 – Q1,

o Summation of integer numbers (homework assignment),

o Or, schema for solving Seq3 – Q4.

97

 Schema for checking if the number is odd or even.

 Topic knowledge for Java commands used in Table 5.9.

4 Q2 Either

o Schema for solving Seq1 – Q3,

o Schema for solving Seq1 – Q4,

o Schema for solving Seq2 – Q3.

o Or schema for solving Seq2 – Q2.

 Topic knowledge for Java commands used in Table 5.9.

4 Q3 Either

o Schema for solving Seq4 – Q2,

o Or, schema for solving Seq3 – Q3.

 Topic knowledge for Java commands used in Table 5.9.

4 Q4 Either

o Schema for solving Seq4 – Q1,

o Or, schema for solving Seq2 – Q4,

 Topic knowledge for Java commands used in Table 5.9.

5 Q1 Either

o Schema for solving Seq1 – Q3,

o Schema for solving Seq1 – Q4,

o Schema for solving Seq2 – Q3.

o Schema for solving Seq3 – Q2.

o Or, schema for solving Seq4 – Q2.

 Topic knowledge for Java commands used in Table 5.9.

5 Q2 Either

o Schema for solving Seq2 – Q1,

o Summation of integer numbers (homework assignment),

o Schema for solving Seq3 – Q4,

o Or, schema for Seq4 – Q1.

 Schema for checking if the number is odd or even.

 Topic knowledge for Java commands used in Table 5.9.

5 Q3 Either

o Schema for solving Seq4 – Q4,

o Schema for solving Seq3 – Q1,

o Or, schema for solving Seq2 – Q4.

 Topic knowledge for Java commands used in Table 5.9.

98

Seq1 – Q4 Seq3 – Q1 Seq3 – Q2 Seq3 – Q3 Seq3 – Q4

Meeting 4 Meeting 5 Meeting 6

Seq4 – Q1

Meeting 8

Seq4 – Q2 Seq4 – Q3 Seq4 – Q4

Seq1 - Q1 Seq2 - Q1 Seq1 – Q2 Seq2 – Q2 Seq1 – Q3 Seq2 – Q3

Meeting 2Meeting 1 Meeting 3

Seq5 – Q1 Seq5 – Q2 Seq5 – Q3

Meeting 9

Seq1 Count corridor

Seq2 Count the no. of beepers

Seq3 1D array

Seq4 2D array

Seq5 ArrayList

Meeting 10

Seq2 – Q4

Meeting 7

Figure 5.2 The order in which the questions are presented to the participants

99

5.7. Sequence 1 Counting Corridors

The questions in this sequence focused on counting the length of a Robot World corridor.

The participants were required to write code to count corridor (concept) using Robot

World (context). To find the length of corridors requires counting the number of cells

travelled until a wall is encountered. These questions have small incremental increases in

conceptual difficulty as determined by SOLO, and the writing metric measure of

difficulty. Q1 requires a unistructural response, Q2 a multistructural response, and Q3

and Q4 a relational response. The same pattern of difficulty is seen in the code structure

and readability as determined by the difficulty metric (Table 5.9).

Q1: For this question, the participants were provided with a method header. They were

asked to complete the method by writing code to count the length of a single corridor.

The length of the corridor changes each time the code is run. In order to solve this

problem, they needed to move the robot, which was located at the start of the corridor and

count the number of cells the robot travelled until it reached the end of the corridor.

Examples of Robot World scenarios with a corridor of length 5 and 10 were provided for

the participants (Figure 5.3).

Figure 5.3 The scenarios provided for Seq1 Q1

The participants had already been given this question as part of their coursework, so it

should have been familiar to them. This question is the only question in the research

instrument, which students had already seen. The purpose of this question was to check

whether or not the participants had an existing cognitive schema for counting the length

of the corridors.

Q2: For this question, the participants were provided with the method header. They were

asked to complete the method by writing code to compare the length of two corridors and

print out a message that either stated the corridors were of equal length or gave the length

of the longest corridor. The corridors were always at the same location and were

connected in the same way and there were always only two corridors; only the length of

the corridors changed. Figure 5.4 shows the three different scenarios given to the students

as part of the task description.

100

Figure 5.4 Three different scenarios for Seq1 – Q2

In order to solve this problem, it was anticipated that the participants would need to

combine the two existing schemas. The first schema was one, which the participants

should have already developed during their study in the P1 course. This schema provides

a cognitive structure for finding the higher of two integer numbers and printing that

number within an appropriate message. The second schema is the one, which was required

to solve the previous task (Q1) in this sequence counting the length of a corridor.

Q3: In this question, there are any number (obviously limited by the dimensions of the

world) of interconnected n corridors, but they are always connected at the same point

(column 0, as shown in Figure 5.5). The length of each of the corridors changes randomly

each time the Robot World is created. The participants were asked to write a program that

used the robot to count and return the length of the longest corridor. The question text

provided the participants with the three different scenarios illustrated in Figure 5.5. The

main idea behind providing them with the three example scenarios was to suggest to the

participants that the number and length of the corridors varied.

Figure 5.5 Three different scenarios for Seq1 – Q3

While this question would have been new to the participants it should have appeared

familiar. It was designed so as to require them to utilise the knowledge that, ideally, ought

to have been developed in the process of solving the previous two questions in the

sequence. In this case the schemas had to be modified and adapted rather than just simply

joined. At the stage that this task was delivered the participants had already been assessed,

in the P1 course, on their ability to use the existing Robot World methods and to write

methods with a return statement.

101

In order to develop a fully generalisable solution a loop should be written to count the

length of the first corridor and this value stored in a most wanted holder variable. The

process then continues and for any further corridors encountered then the length is

counted. If the length is longer than that stored in the most wanted holder variable, then

the most wanted holder variable is updated to be the current corridors length. Such an

approach removes redundancy, which exists in less sophisticated potential solutions such

as counting each corridors length and then comparing the lengths.

Q4: Again this question builds on the cognitive schemas which the participants should

have developed during the generation of solutions to the previous questions in the

sequence. In this case, the question is also reliant on the participant having successfully

solved Q3 in sequence 1. In this question, there are any number of interconnected n

corridors, always connected at the same point (column 0, as shown in Figure 5.6). The

length of each of the corridors changes randomly each time the Robot World is created.

The participants were asked to write a program that calculated the length of the shortest

corridor, and then return the length of that corridor.

Figure 5.6 Two different scenarios for Seq1 – Q4

To solve this question, the participants were expected take one of two approaches:

1. Retrieve the schema developed in the previous question in the sequence and hence

adapt longest to shortest. The only change necessary to the code for the longest

should be in the comparison of the corridor lengths which changes from greater

than to less than in order to find the shortest corridor.

2. Retrieve a similar schema developed when solving Q4 in Sequence 2. Q4 asked the

participants to write code to find the smallest stack of beepers. In this case, the

participants would be more focused on the notion of finding a lower/smaller/shorter

value rather than on the process of counting corridors. To choose this approach

they would need to be able to appreciate the differences in managing the robot

movement for counting the length of a corridor vs. counting the number of beepers.

102

It is likely therefore that in this case they would need to select the relevant ideas

from the schema for counting corridors, and finding the smallest stack of beepers.

5.8. Sequence2 – Counting Beepers

The questions in this sequence focused on counting the number of beepers. This task

required code to count beepers (concept) using Robot World (context). These questions

were designed to impose small incremental increases in conceptual difficulty. The writing

metric and the SOLO classification both show that the tasks are progressively more

difficult through the sequence. The SOLO classification of the questions also suggests

that the first two questions require a lower level of thinking (a multistructural response)

than the others, which require the participants to be able to think relationally in order to

generate a working, fully correct, solution.

Q1: After solving (Seq1 – Q1) counting the length of a single corridor, the participants

were asked to write code to print the number of beepers from all the beeper stacks in a

corridor, in other words calculate the total number of beepers in a single corridor. They

were provided with the method header. From run to run the length of the corridor varies

as does the number of stacks encountered and the position of the stacks (Figure 5.7). In

order to solve this problem, participants are expected to have either:

 Started with an iteration statement that counted the number of beepers at a first

location, followed by nested iteration statements that allowed the robot to move and

count the beepers at each location, keeping a running total, until it reached the end of

the corridor.

 Or, started with nested iteration statements that allowed the robot to count the number

of beepers at its location and then move while counting beepers, followed by an

iteration statement for counting the beepers at the last location.

Figure 5.7 The scenarios provided for Seq2 – Q1

The lecturer had already taught the participants code examples which involved the robot

picking up one of and all of the beepers at each stack across a single corridor during a

lecture so, assuming the participants were paying attention, this problem should have been

relatively familiar. In related homework, the students had been asked to write code, which

103

counted the beepers in the first cell of the corridor that had a stack of beepers. Merging a

schema for picking up all the beepers in the corridor while keeping a running total of

beepers picked up might be one way of solving this question. Alternatively, the

differences between counting the length of the corridor and counting the number of

beepers could be recognised and this knowledge applied to reach a solution to the

problem.

Q2: The participants were provided with a method header and asked to complete a method

to print the number of beepers in each beeper stack across a single corridor. Therefore,

there would be a printed statement for every beeper stack encountered. The scenario

examples provided were the same as those for Q1 (Figure 5.7). To answer this question,

it was expected that the participants would tailor their existing schema for counting the

number of beepers from all beeper stacks in a corridor.

One way to solve this question would be to conserve the code structure, which the

participant developed for Q1. The main difference between Q1 and Q2 is that in solving

Q2 the participants should call the print method to print the value of the gather variable

(the variable storing the running total) after counting each stack and then reset that

variable to zero before counting the beepers in the next stack. This difference meant that

this question had a higher writing metric and therefore was for the purpose of this

instrument considered to be more difficult than Q1.

Q3: The participants were asked to solve this question after solving Seq1 Q3 and Q2 in

this sequence. They were presented with a scenario in which there were a number of

beeper stacks each one containing a different number of beepers. The participants were

asked to write a method to make the robot move along the corridor and count the number

of beepers at each beeper stack and return the number of beepers in the smallest stack

(Figure 5.8 shows the scenarios provided). Obviously, as indicated in the question, the

number of beepers in each stack is not fixed even though the scenario images do not show

this aspect of the problem.

104

Figure 5.8 Three different scenarios for Seq2 – Q3

To solve this question, the participants were expected to take one of the following

approaches:

1. Understand or recognise the differences between counting the length of the

corridor and counting the number of beepers, and then apply that knowledge.

2. Modify their existing schema for counting the number of beepers at each beeper

stack across a single corridor as well as a schema to compare two integer numbers.

Q4: The participants were asked to solve this question after solving Q3 and Seq3 – Q1.

The question involves writing a method that makes a robot walk through a single corridor,

count the number of beepers at each beeper stack, and return true if the beeper stacks are

in order of an increasing size, otherwise it should return false.

Three scenarios were provided for the participants as shown in Figure 5.9 and they were

told that if they ran the first and last scenario their code should return false, otherwise for

the second scenario their code should return true.

Figure 5.9 Three scenarios for Seq2 – Q4

This question and Seq3 – Q1 have the same sub goals; both of them require a sorting

algorithm. However, they involve different concepts and task contexts.

To solve this question, the participants were expected to take one of these approaches:

 Modify existing schemas for the sorting algorithm (as developed solving Seq3 –

Q1, which involved sorting integers in a one-dimensional array), and then

somehow adapt that schema to the Robot World,

 Modify and combine schema for counting the number of beepers at each beeper

stack across a single corridor and for comparing two integer numbers.

105

5.9. Sequence3 – One-Dimensional Array

The programming tasks in sequence3 involve a one-dimensional array (concept) using

native Java task (context). In the lab and homework assignments all the students,

including the participants in this study, learnt about one-dimensional arrays. All the

questions in this sequence are relational but becoming increasingly difficult according to

the difficulty metric (Table 5.9).

Q1: This question asks the participants to write a method called isSorted() that takes

an integer array as an input parameter, and returns true if the values in the array are sorted

in descending numerical order. Eight unit test scenarios were provided for the

participants. One of these scenarios checked the method parameter against Null array

pointer exception.

In a homework assignment, the participants had been asked to write a method that took

an integer array as an input parameter, and returned true if the values in the array were in

ascending numerical order.

Q2: This question required writing a method findSmallest()that returns the

smallest element in an array. The array is provided as a parameter to the method. Four

unit test cases were provided for the participants. The first three scenarios consisted of

positive and negative integer numbers, whereas the last scenario consisted of the positive

integer numbers only.

This question and the questions solved in previous meetings, for example, calculate the

longest corridor (Seq1 – Q3), the shortest corridor (Seq1 – Q4), and the smallest stack of

beepers (Seq2 – Q3) are similar; they all need a most recent holder variable and require

comparison of the stored value against a newer calculated value. However, none of the

previous questions involved negative numbers. The main challenge for the participants

would be in adapting their existing schemas to cope with negative numbers.

Q3: This question is very similar to Seq3 – Q2. The core differences are the adaption

from less than to greater than comparisons and that comparisons are based on the value

stored but the index of the array element is the value that must be held and returned. A

method called findLargestIndex() that takes an array of integers and returns the

index of the largest element in the array should be written. Four unit test cases were

provided for the participants.

To solve this problem, the participants were expected to make use of their existing schema

for finding the smallest number in an array and make minor changes to the code structure.

106

Q4: This question requires writing a method called foundSum() that takes an integer

array and returns the sum of any even numbers stored in the array. A homework

assignment had been undertaken which sums all the numbers in an array. This question

is considered to be more complex than the homework one because a selection Java

statement needs to be integrated into the schema for summing numbers in an array to

check whether or not each number in the array is even. Four unit test cases were provided

for the participants.

As part of practicing and coaching in the think aloud sessions, the participants had been

evaluated to ensure that they were able to check if an input number is odd or even. In

addition, in previous sessions as well as in the lab and homework assignments, all the

participants had been evaluated to ensure that they were able to write procedures that

calculate the summation of all the beepers in a single corridor, and the summation of all

elements in a one-dimensional array.

5.10. Sequence4 – Two-Dimensional Array

This is the first task in the sequence of the programming tasks for the P2 course. The

participants at this stage, in theory, should have a good knowledge of all programming

tasks covered in the preceding sequences. The programming tasks in this sequence

involve two-dimensional array (concept) in a native Java (context). None of the

questions had been seen before. Unit tests were provided along with the base code for all

of the questions in this sequence.

The questions were designed to be similar to problems the participants had already

encountered in the study. All the questions in this sequence are relational but becoming

increasingly difficult according to the difficulty metric (Table 5.9).

Q1: Participants were asked to write a method called foundSum() that takes a two-

dimensional array of integers and returns the sum of all the elements stored in odd indexed

rows of the array.

At this stage, the participants had had plenty of practise programming tasks that request

from them to count beepers and calculate the sum of some integer numbers. The

participants at this stage should also be aware of the differences between the value of an

element in an array and an index of an element in an array.

Q2: This question asks participants to write a method called

findLargestElement(), that takes a two-dimensional array of integers and returns

the largest element in a two-dimensional array. Three unit test cases were provided.

107

This question and questions solved in previous meetings, for example, calculate longest

corridor (Seq1 – Q3), shortest corridor (Seq1 – Q4), smallest stack of beepers (Seq2 –

Q3), and smallest element in a one-dimensional array (Seq3 – Q2) are similar in terms of

schemas.

Q3: Participants were asked to write a method called

findSmallestIndexColumn(), that takes a two-dimensional array of integers and

returns the index of the column containing the smallest element in the array. Three unit

test cases were provided.

This question was similar to Seq4 – Q2 as the index of the container of the smallest

element was the value, which had to be returned rather than the element itself. But in

contrast because this is a two-dimensional array the index is that of the column rather

than of the element. To solve this problem the participants were expected to either:

 Use their existing schema for finding the largest number (Seq4 – Q2),

 Or, tailor their existing schema for solving the question (Seq3 – Q3) using a one-

dimensional array and restructuring that schema to accommodate the two-

dimensional array.

Q4: This question asks the participants to write a method called

isSortedElementRow(), that takes a two-dimensional array of integers and prints

out a message that states whether or not the values in each row are in ascending numerical

order.

In previous sessions, participants had solved several related questions that required a

schema for checking whether or not things are in an ordered sequence, for example

checking if the values in a one-dimensional array were in descending order (Seq3 – Q1),

and checking if beeper stacks were in order of increasing size (Seq2 – Q4).

5.11. Sequence5 – ArrayList

The programming tasks in this sequence use ArrayList (concept) in native Java

(context). As for sequence 4, the questions in this session were in order of increasing

difficulty, measured using the difficulty metric value, and all were posed at the same

SOLO level, which meant that to solve the problem the participants needed to be

operating at a relational level.

The code base for these questions included a called StudentDatabase that stores an

ArrayList of Student objects. The Student class consisted of a single constructor, which

108

assigned values to fields storing a name and an array of marks field. Student marks are

within the range of 0-100. Unit tests were provided along with the base code for all of the

questions in this sequence.

Q1: Participants were asked to write a method called highestStudentMark(), and

print the highest mark and name of every student in the StudentDatabase.

Participants by this stage in the study should have had a well-developed schema for

finding the largest number and for iterating through an array, the biggest challenge should

have been adapting these schemas to the relatively new concept of an ArrayList data

structure.

Q2: This question asked participants to write a method called sumOfOddMarks(), that

prints out a message that reports the sum of all the odd marks for each student.

This question was deigned to build on schemas already familiar to the students such as:

summing of integer numbers (homework assignment), all even numbers in a one-

dimensional array (Seq3 – Q4), and the summation of numbers stored in odd indexed

rows of a two-dimensional array (Seq4 – Q1).

Q3: Participants were asked to write a method called

studentsMarksSortedEach(),and print out a message that states for each student

whether or not their marks are stored in ascending order. The participants had been

evaluated solving different sorting questions, for example, Seq3 – Q1, Seq2 – Q4, and

Seq4 – Q4. These questions are superficially similar; all of them have an identical sub-

goal in common (using a sort algorithm). All of these questions were solved using

different concepts and contexts.

To solve this question, participants were required to take their knowledge and skills,

which ideally had been developed in solving the sorting algorithm, and modify that

knowledge and those skills into an ArrayList concept using native Java commands.

109

5.12. Summary

This chapter has presented the questions, which form the instrument for this research.

Each question was placed in a delivery order that was dependent on a concept building

sequence and on a measure of difficulty. The sequence and timing of the delivery of the

questions has also been outlined. Because it was expected that participants would

progress at different rates, and find different aspects of the tasks difficult, the timing was

to be used as a guide only. The timing as presented in this chapter reflects the

preparedness of the participants in terms of the programming course so that all the

concepts used in the research questions would have already been encountered in their

study and been practiced in lab classes. The research is designed such that the student

would be able to solve dependent questions, or a variant of that question, prior to

progressing to the next question in the study. It was expected that all but the best

performing participants were unlikely to complete all of the instrument’s questions. The

next chapter provides the results of illustrative think aloud and retrospection interviews,

which utilize the questions in this research instrument.

110

Chapter 6. Think Aloud: Encoding and Interpretation

6.1. Introduction

In this chapter think aloud data, the transcriptions of that data and a preliminary analysis

of that data is presented. The data was transcribed and encoded using the method and

coding schema presented in Chapter 3.

The information provided in this chapter is for a select set of the participants. An initial

group of 21 students studying P1 volunteered to be part of this research. Two of these

students had previous programming experience and were therefore excluded from the

study. Nineteen students attended the initial think aloud training sessions. After being

informed of what would be required in more detail and experiencing practice think aloud

interviews five participants withdrew consent because they anticipated that they would

not have enough time to fully commit to the study. Of the remaining 14 students, 13 were

selected to take part in the research. These participants were the ones who demonstrated

at least a minimal capability to think aloud while solving the simple training programming

problems. Of these 13 participants one withdrew from the study after the second session.

One other participant, despite the best efforts of the researcher, made very slow progress

and was unable to think aloud or reflect on their thoughts during retrospective interviews.

Although the researcher continued to work with this participant throughout their first

semester the participant did not provide any useful data and therefore is their contribution

is not included in this encoding and analysis phase.

Seven of the eleven remaining participants from P1 continued attending the meeting

sessions during P2 and thus provided a full academic year of data9.

Because of space limitations the entire set of transcriptions, encodings and analysis of the

think aloud sessions for all seven participants has not been included in this thesis. Instead

the data for four participants is presented. In order to provide a useful picture the four

participants selected included the two who performed best in this study (Andre and Luke)

and the two who performed worst (Kasper and Matthew). The tasks presented in this

chapter are the ones which are used in Chapter 7 to map the observations, reported in

detail this chapter, with the constructivist cognitive theories discussed in Chapter 2. The

9 See Appendix H for a summary of the think alouds including hours of video recorded and diagrams

outlining the progression of learning for each participant.

111

detailed data, encoding and interpretation for the remaining tasks are provided in

Appendix A.

Data is grouped by participant. A brief overall summary of the participant’s general

approach to programming and performance is provided. The data is then grouped by

question in the order in which the questions were presented to the participant. The

information for each programming task/question is organised as follows:

 A table presenting the encoded think aloud and retrospective interview sessions.

Detailing: programming behaviours, emotions, strategies used, associated activities,

interview interventions, and timing with respect to weeks on course. Additionally any

relevant observations from the participants attempt(s) on earlier tasks are included.

Time on task is the time the participant spent on the task and does not include time

spent assisting the participant (scaffolding) or the time spent on the retrospective

interview.

 The transcribed think aloud data is then presented in temporal sequence along with

images of the participants’ code and any relevant or interesting notes/annotations the

participant made. The code itself is annotated to illustrate the temporal order of the

relevant programming activities. Some interpretations are made related to the

researchers observations, think aloud data and retrospection interview data.

 The transcribed data from the retrospective interviews is then documented where

relevant. In cases where the participant received quite a large degree of scaffolding

during the code writing or where participants were able to easily solve the problem

there was no need for a retrospective interview. The term interviewer is the used to

refer to the researcher and author of this thesis, Nadia Kasto.

6.2. Andre’s Think Aloud Sessions

6.2.1. Summary

Andre did not seem to move outside of his ZPD during the course of this research. In

general it was observed that Andre consistently planned his solution prior to coding. He

always attended the sessions on time and never cancelled a meeting. During the think

aloud sessions, Andre showed independence with respect to the tasks and made

considerable efforts to solve the programming tasks on his own without assistance. He

also made use of the tools he had been taught when trying to solve the tasks by tracing

his code, and reading and understanding unit test outputs and the unit test code. Andre

was a high performing student and was in the first quartile for both the P1 and the P2

course.

112

6.2.2. Counting the Length of One Corridor (Seq1 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning

Tracing Visual debugging, and hand gestures

Unit test

Time on task 6 minutes and 13 seconds

of compilation 3

of execution 2

Intervention “General prompt” scaffolding – provided on request

Timing Week four of the P1 course

Important observations with

respect to prior sessions

Data

1. Think aloud:

Andre started to code his solution without hesitation or verbalisation. Andre initially

created and set a gatherer variable to zero. He then wrote a WHILE-loop that moved the

robot and counted the number of moves. The number of moves is the length of corridor.

Finally, he added a PRINT-statement to print to the console the computed length of the

corridor. Andre compiled his code which generated a syntax error – he had omitted the

closing curly brace (}) for the WHILE-loop. After a short pause Andre asked for help.

2. Scaffolding:

The interviewer suggested that Andre compare the number of open and closed brackets.

Andre started to count the number of opening and closing brackets and easily fixed his

code.

3. Think aloud:

On running the unit tests they all failed, Andre realised there was an error but he did not

read the error messages generated by the unit tests. Instead he moved his finger along the

Robot World corridor displayed on the screen tapping and counting the corridor cells.

“One, two, three, four, five, I do not count the first location so I need to set it to one”

Seeing the Robot World image helped Andre fix his code – he set the initial value of the

gatherer variable to one.

113

4. Retrospection:

The following is part of the conversation between interviewer and Andre:

Interviewer: “Have you seen this question before?”

Andre: “No, I saw counting the beepers, so the beepers come with zero, and the initialise should

be set to zero to count the beepers”

Interviewer: “Did you read the syntax error?”

Andre: “Yep”

Interviewer: “Did you understand what the message meant?”

Andre: “I did not think so [pause]. Most of the time while I was doing the homework assignment,

I grew frustrated [pause] when I saw the messages shown below the screen.”

Interviewer: “Why were you frustrated?”

Andre: “Because, um, I think because I’m not always [pause] not always successful in carrying

out the work.”

At the end of the session, the interviewer explained to Andre, the usefulness of syntax

error messages, what the message he saw meant in this task and how to interpret it.

6.2.3. Longest Corridor (Seq1 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Confused

Strategies Stepwise design

Activities Planning Verbalise

Tracing Mental tracing, visual debugging, and hand gestures

Unit test

Time on task 40 minutes and 13 seconds

of compilation 3

of execution 3

Intervention 1. Hint scaffolding –interviewer intervention

2. “General prompt” scaffolding – provided on request

Timing Week six of the P1 course

Important observations with

respect to prior sessions

Andre solved the comparing the length of two corridors task (see

Appendix A) without any difficulty. He had practiced in isolation

counting the length of a corridor and comparing the value of two

integers, he just needed to concatenate these two programming plans.

In the case of this question the same two programming plans were

required but they had to be combined by merging and nesting rather

than concatenating and he had difficulty doing this. There were

additional robot navigation tasks as the robot had to be moved and

orientated in order to get to the second corridor before the second

corridor’s length could be counted.

114

Data

1. Think aloud:

Andre began by reading the problem. Andre took 4 minutes and 19 seconds to formulate

a plan for solving this question. He verbalised the plans as follows:

“I need to compare the numbers, the number of corridors changes each time it is created, so I

need to find it out, whether there are more than one corridor, I need to compare the length of

corridors, the first situation there are one corridor, so move the robot to the end of corridor, and

count the numbers, and turn robot back, and to check whether there is wall … the problem how

to compare, ah, the problem how to memorise the long of corridor, this is the longest ah [long

pause] … how to compare, three is not enough is keep changing go to the first, go to the second

corridor, [pause] but if there is more, four corridors, how to assign the integers, to assign the

variables, what I can do.”

Andre read the question again before he attempted write a solution. He then began writing

the code line by line. The first section of code mapped to his existing schema for counting

the length of the corridor. He then wrote the commands to reorient the robot to face west

and return to the start of the corridor (Figure 6.1, step1). Andre hesitated over the number

of left turns required to allow the robot’s orientation to face north. This move was required

to be in the correct direction to move to the second corridor. Andre started to read part of

his code to verify the robot direction:

“After counting the length of the first corridor, after this the robot facing wall, turn robot left

twice, turn left, turn left, move back, move back to the first location and it should be facing that

way [moving his hand to robot direction], facing to the west, so he [the robot] should turn left.”

After a short pause, Andre started to write an IF-block that allowed the robot to check the

existence of the next corridor and move to that position (Figure 6.1, step2). At this stage

the code was incorrect but Andre was unaware of the logical error.

After another short pause, he verbalised:

“How I should make it automatically check it each time?”

He then enclosed the existing code inside a new WHILE-loop (Figure 6.1, steps3A & 3B)

and re-read his code:

“We need while loop to make it. While not facing wall, so the robot moving, and after he went

to the next line, this while is still work”

After a short pause, he verbalised:

115

“Now we need, how to compare this, only we have one variable, so I can check whether, the first

one is bigger this one.”

Andre had trouble working out how to store the length of more than one corridor in a way

that would allow him to compare the lengths and work out which was the longest. Andre

spent about 2 minutes and 20 seconds re-reading his code. The interviewer felt that Andre

reached a dead-end and therefore intervened.

Figure 6.1 Andre’s first screen image for the longest corridor

2. Scaffolding:

The interviewer suggested to Andre that he might create as many variables as he needed

to store the value of the variables (Hint scaffold).

3. Think aloud:

Andre started to update his code as shown in Figure 6.2, he defined another most wanted

holder variable thelongestCorridor and a new gatherer variable

lengthOfPresentCorridor (step5), he deleted a gatherer variable

lengthOfCorridor, as shown in step6, etc. This process and the redundant code

generated indicates Andre’s fragile knowledge of the way in which integer variables store

data and how variable comparison works (as shown in Figure 6.2 step4 and step8). Andre

started to read his code from the third WHILE-loop, at the same time examining the

example Robot World images provided in the question specification.

Step1

Step2

Step3B

Step3A

116

“While not facing wall, so the robot’s moving, and after went to the next line, this while is still

work”

Finally Andre verbalised:

“I’m confused how to compare these two?”

Figure 6.2 Andre’s second screen image for the longest corridor

4. Scaffolding:

The interviewer redirected Andre (“General prompt” scaffold):

Interviewer: “If you think about the variables, you have one to store the value of the longest

corridor encountered so far. Also, you have one variable that has the length of the current

corridor. You want to know what the length of the longest corridor is. So you need to check if the

length of the longest corridor is greater than the present corridor.”

Andre asked for pen and paper and started doodling (Figure 6.3). Andre’s drew three

corridors and noted the length, he then drew boxes to represent the holder variables for

the present (current) corridor and the longest corridor and then traced to work out how

the comparison should work.

Step4 - Add

Step5 - Add

Step6 - Delete

Step7 - Update

Step8 - Add

117

Figure 6.3 Andre’s doodle for the longest corridor

5. Think aloud:

Andre corrected his code (see Figure 6.4 (left)) and then he started to mentally trace his

code:

“Present equal one, longest equal zero, while not facing, last equal one, present equal one, the

length of first corridor ah five greater than one longest one else, no I think I should [pause] delete

else”

Figure 6.4 Andre’s third and final screen images for the longest corridor

Step1

Step2

Step3

Step4

Step5

118

He realised that in some cases he would not find the longest corridor because he was

making a pairwise comparison. For example if there are three corridors he compared the

first with the second and stored the longest of the two corridors in his

theLongestCorridor variable then compared the second with the third and

whichever was longer (the second or the third) overwrote the value stored in

theLongestCorridor. This meant that if the first corridor was the longest it would

always be overwritten by the next longest corridor. Andre updated his code (see Figure

6.4(right), steps13). Finally, Andre tested his solution and found two errors related to

the robot’s orientation and moving to the next corridor (as shown in Figure 6.1 –

steps12). He was able to fix these bugs in his code by running the unit tests and follow

the code executing by watching robot move in the Robot World window (software

scaffolding) (see Figure 6.4(right), steps4 5).

6. Retrospection:

Andre found it difficult to remember exactly how he solved the question. This may have

been because he spent a lot of time solving the programming task or may have been

because he floundered so many times during the problem solving session.

The following is a conversation between the interviewer and Andre:

Interviewer: “Had you seen this question before?”

Andre: “No”

Interviewer: “Have you seen a question similar to this question before?”

Andre: “Nope [pause], but many times I solve questions about counting corridors and beepers.”

Interviewer: “What was the most difficult part when solving this question?”

Andre: “Comparing the length of corridors and repeating the process.”

At the end of the session, the interviewer gave Andre feedback about the quality of his

code and how he could further develop it and the interviewer explained to Andre the

mistakes he made when using and comparing the variables. Andre and the interviewer

worked on writing an improved solution to the problem before closing the session.

119

6.2.4. Shortest Corridor (Seq1 – Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Surprised

Strategies Stepwise design

Activities Planning

Tracing Mental tracing, and visual debugging

Unit test Read the unit test message

Time on task 53 minutes and 16 seconds

of compilation 4

of execution 4

Intervention None

Timing Week eight of the P1 course

Important observations with

respect to prior sessions

Andre previously solved an isomorphic question (the longest corridor).

He had difficulty recalling how he had solved the longest corridor task

but he was able to recall the fact that he needed to define a most wanted

holder variable. The code quality of his solution for the longest

corridor question may have hindered Andre’s ability to transfer

knowledge. He used initially used an incorrect pairwise comparison

and in the end the longest corridor code was more complex than

necessary and contained redundancy. Andre took a long time to solve

the longest corridor task and was focused on the aspects which caused

him difficulty rather than the overall purpose of the code, which may

have made it difficult for him to transfer his knowledge to this new

task.

Data

1. Think aloud:

Andre saw the connection between the longest and shortest corridor tasks:

“So it is similar to last meeting, it was find out the longest, now it shortest, I think it is basically

ah the same, ah, so first to identify the method called ah, we do not need return value. First as I

remembered, we need to have ah, we need to have two, set up two integer variables to have

comparison.”

Andre started problem solving with a mistake in the method definition. He assumed that

the method did not return any value, he discovered this issue later. He then wrote two

variable definitions, the gatherer variable presentRow for storing the length of the

corridor, and the most wanted holder variable shortestRow for the storing the length

of the shortest corridor. Andre initialised both of them to zero. Andre repeated his earlier

mistake made when solving Seq1 – Q1 and Seq1 – Q2 and initialised the gatherer variable

to zero. He realised his mistake directly after he defined the most wanted holder variable

and fixed it. Andre then proceeded to write the code which allowed the robot to compute

the first corridors length and return back and reorient and move to the start of the next

corridor. He repeated the same mistake in robot orientation as he had made when solving

the longest corridor task. He tested his code and watched the robot moving on the screen,

120

he then fixed his mistake (see Figure 6.5 (left) for Andre’s code up until this stage). As

shown in Figure 6.5 (left), Andre was able to use methods.

After a short pause, he started to read the last paragraph of his main method code and

verbalise:

“While, let me see turn robot around , while not facing wall move robot forwards , and turn robot

right, so yes , while not facing the wall, first turn robot right, um, and move robot forwards, and

turn robot right, is better to use the big loop to make it always running”

As a result, Andre decided to add a while statement as he did in the longest corridor task

to encapsulate the code he wished to repeat (Figure 6.5(right), step1 (A& B). Andre

started to read his code again and verbalise:

“Okay check, not facing the wall yet, move robot forwards, plus plus yes, and turn robot around

go back, and turn robot right yes, and move robot forwards, and turn robot right, um but this

always, let me see, ah, so if we check moving back to the move robot forwards, he can move

forwards and then turn robot right, not facing the wall, because there is ah, because there is”

Andre realised that there was a mistake in his code; as a result, he updated his code by

adding an IF-statement as shown in the Figure 6.5(right), step2 (A& B). Until this stage;

Andre had focused only on the plans that allowed the robot to move across the corridors

and count the length of each of them. After a short pause, Andre verbalised:

 “We need to compare, while robot is not facing the wall, after this is done the present row is

already recalled at the beginning of it, um, at the beginning oh, I did a mistake”

Andre realised his mistake related to the method definition therefore he changed void

to int Figure 6.5(right), step3 and he then verbalised:

“We need to make short row to store the value of present row, and then we make the present row

to, maybe we can put it there, so we do not need”

After the above utterance, Andre updated his code as shown in Figure 6.6(left), steps49.

At this stage, Andre started to repeat his code from the longest corridor solution in order

to compare the current corridor length with the most wanted holder variable’s value. He

adapted the comparison to search for the shortest corridor but he made the same pairwise

comparison mistake as he had in the longest corridor task Figure 6.4 (left).

121

Figure 6.5 Andre’s first and second screen images for the shortest corridor

Andre had acquired the habit of tracing his code to check it before he attempted to compile

it. So, he started to mentally trace through the IF-block:

“If this is five [the gathered variable] and that one six [most wanted holder variable], so it will

be changed to this one, but if this is seven [the gatherer variable] so it is not bigger this one.”

Andre finally added the RETURN statement for his method (Figure 6.6(left), step10) and

then compiled the code and ran the unit tests:

“Oh, no, I need to move twice, because robot will not face the wall, move forwards twice.”

Visualising the robot helped Andre to correctly update the block segment related to the

robot moving across the world Figure 6.6(left), step11. Andre was surprised when the

supplied unit tests failed for the second time. Andre read one of the unit test messages —

“Expected 7 but was 8”

The unit messages did not support Andre into fixing his code. Andre spent about 6

minutes and 54 second trying to fix his code as well as mentally tracing his code. See

Figure 6.6(right), steps1112 for the last update at this stage. Andre’s code failed to

Step1A

Step1B

Step2A

Step2B

Step3

122

return the length of the shortest corridor for the third time. Andre again re-read one of the

unit test messages — “Expected 7 but was 1”

Figure 6.6 Andre’s third and fourth screen images for the shortest corridor

Andre spent about 9 minutes and 15 seconds trying to fix his code. Figure 6.6(right)

steps13 through 16 shows the changes made to the code during this time. At this point

Andre still had not realised that that his code compared the length of two adjacent

corridors in a pair wise manner. Andre again started to mentally check his code:

“Let me check it again, the length of the first corridor one, two, three, four, five, six, seven, eight,

nine, ten. Length of the second corridor one, two, three, four, five, six, seven. Length of the third

corridor one, two, three, four, five, six, seven, eight. So ah last corridor equal one, present

corridor equal ah ten. Ten [the value of the presentRow] less than one [the value of the

lastRow], no, um so shortest row equal one [the value of the lastRow]. Now last row equal

ten, present row equal 7, so if we compare seven with ten the values of the shorts row will be also

seven, again last row will be seven, present row will be eight that mean we compare both of them

Step4 - Add

Step5 – Delete

Step7 - Re write

Step6 – Add

Step8 – Delete

int

Step9 - Add

Step10 - Add

Step11 - Add

Step11 - Update

Step12 - Delete

Step13 - Add

Step14 - Add

Step15 - Update

Step16 - Add

123

oh, no we do not compare with the smallest, let me check it again…, yes, oh no we do not compare

it with the smallest.”

Figure 6.7 Andre’s final screen image for the shortest corridor

Andre made the final changes to his code as well as adding comments (As shown in

Figure 6.7). Andre started to read his code again. Finally when Andre re-ran the supplied

unit tests, all the tests passed.

2. Retrospection:

The interview after solving this question took a considerable amount of time and the

salient points are noted here. Andre discussed that fact that he had seen the link between

the algorithm to finding the longest corridor and this task of finding the shortest corridor.

He mentioned that the first algorithm, for the longest corridor, was easier because the

initial value of the most wanted holder variable could be set to zero.

At the end of the session, the interviewer reiterated early feedback from previous sessions

about using and comparing variables. It was also highlighted that he needed to focus on

all possible robot scenarios in order to come up with a working solution. There was also

some discussion about how to read and understand the unit test messages and the

importance of reading and understanding those messages before starting to try and fix any

bugs.

124

6.2.5. Checking if integers in a 1D Array are sorted in Descending Order (Seq3 –

Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Happy

Strategies Sequential

Activities Planning Pen and paper (doodles)

Tracing Mental tracing

Unit test

Time on task 8 minutes and 30 seconds

of compilation 1

of execution 1

Intervention None

Timing Week ten of the P1 course

Important observations with

respect to prior sessions

Prior to encountering this problem, Andre had undertaken a similar

exercise checking to see if numbers in an array were ascending as part

of his P1 course work.

Data

Think aloud:

Andre began by reading the problem and verbalised:

“First I need to return true or false [pause], if it sorted ascending, ah, if first place smaller than

second one, second one is smaller than third one, ah, this time descending not ascending, the

numbers are arranged from the largest to the smallest. Could I use a pen?”

Andre started to draw a one-dimensional array; this array contained four elements. He

started to work out how he would need to compare the elements in the array to find out if

they were in descending order (see Figure 6.8).

Figure 6.8 Andre’s doodle for checking integers in a 1D Array are sorted in descending order

Once he had worked out the logic he began writing the code. First he wrote the method

header. He assumed that the method returned a Boolean value, and then he verbalised

while writing his code (see Figure 6.9):

“For int [integer] i equal 0, i less than my array dot length [myArray.length] minus one, i

plus plus, [pause], if my array i [myArray[i]] [pause] less than my array i plus one

[myArray[i] + 1], I need to return false. Let me check. [Andre pointed to the Figure 6.8],

four less than two, no, two less than one, no, one less than zero, no. that is right. If all okay I need

125

to return true. Let me check if first element is smaller than the second one return false, any time

if my array i [myArray[i]] less than my array i plus one [myArray[i] + 1], return false”

Finally, Andre compiled and ran the supplied unit tests to verify the correctness of his

solution.

Figure 6.9 Andre’s screen image for checking integers in a 1D Array are sorted in descending order

Andre did not encounter any issues in trying to solve this task. From the beginning it was

clear that he had recalled the class exercise which check to see if integers in a one-

dimensional array were sorted ascending. Not retrospective interview was conducted. He

was happy that he had managed to solve the problem successfully on his own.

6.2.6. Smallest Element in a 1DArray (Seq3 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Confused

Strategies Stepwise design

Activities Planning Verbalise

Tracing Mental and pen and paper tracing

Unit test Read messages and test code

Time on task 46 minutes and 13 seconds

of compilation 4

of execution 3

Intervention “General prompt” scaffolding – provided on request

Timing Week ten of the P1 course

Important observations with

respect to prior sessions

From observations made for solving this question, it is evident that

Andre’s lack of prior knowledge led to a pattern of continuous errors.

For solving this question, Andre made the same mistake (an incorrect

pairwise comparison) when he tried to transfer his knowledge from

longest corridor and shortest corridor to this question. Also, the quality

of the code he had used for the longest corridor, the shortest corridor,

and the smallest stack of beepers (see Appendix A) questions may have

hindered Andre’s ability to transfer his knowledge without difficulty

for solving this task.

126

Data

1. Think aloud:

Andre began by reading the problem and immediately started to plan his solution, and he

verbalised:

“The method should return the integer smallest, so we need to find the smallest [pause], so if we

set up, we need to set up, we need to set up the, ah, the integer call it the smallest. Then we need

loop to read all the elements of the array and we need to compare each element which one, the

smallest.”

He then proceed to write the method header which returned an integer value (Figure 6.10

(left)). He continued coding and wrote the definition and initialisation of the most wanted

holder variable smallest followed by the FOR-loop that consisted of a stepper variable

called count. Inside the FOR-loop block, Andre added an IF-block followed by the word

RETURN as shown in Figure 6.10 (left).

Figure 6.10 Andre’s first and second screen images for the smallest element in a 1D array

Andre started to read and check his code:

“Return the smallest, let me see, if this is smaller than that yes, if is bigger that no and let me

see, I know the smallest ah [pause] else okay”

As a result, he decided to add an ELSE-block (see Figure 6.10(right), step1). As shown

in Figure 6.10, Andre concentrated on two successive elements in the array each iteration,

which meant that he repeated his old mistake of pairwise comparison (as already

discussed for the tasks which required finding the longest and shortest corridor).

“First compare this position zero with one, so if number in zero is smaller than index one so we

should put this one in this, temporary and if it’s bigger than that we should put the next one to the

smallest, and then compare the next one when one to zero but altering from zero to one, we

compare one and two so if one is the smallest then two so the one still be the smallest but if it

bigger than two so I will change.”

Step1

Step2

127

Then he continued to type the RETURN statement (see Figure 6.10(right), step2). Andre

compiled his code and he easily fixed the one syntax error. He had used round braces (

) instead of square braces [] when accessing an element of the array (Figure 6.10

before fix the syntax error and Figure 6.11 after fix the syntax error). Andre ran the

supplied unit tests, all the tests failed. He started to read the test messages:

“Oh no minus nine, the smallest element is minus nine”

Andre opened the supplied unit test file and started to read the relevant test case which

used an array containing the integer values {-9, 1, 2, 3, 4}. Andre started to verbalise his

code:

“It is smaller than this, it should be minus nine, ah this smaller than this [Andre means one], so

it should be minus nine, if this one is smaller than that one [Andre means two], and let me see,

so, so, let me see [pause] if this one is smaller than that one, should be write one, one no”

Andre deleted the IF-ELSE block and introduced a second FOR-loop block as shown in

Figure 6.11.

Figure 6.11 Andre’s third screen image for the smallest element in a 1D array

Andre compiled and ran his program and all tests failed for the second time, he started to

read his code and verbalised:

“So if it is array smallest than this one and count greater than this, we chose different loop and

we compare to the next one, which is the smallest”

Finally, Andre said “I’m not sure” and he asked for help.

2. Scaffolding:

The following is a conversation between Andre and the interviewer.

Interviewer: “Have you seen this question before?”

128

Andre: “I think so, it is similar to finding the least beepers in the stack. When I started with one-

dimensional array, I actually start to think that the beepers in each box is the element of the array,

but the dimensional array is still new”

The interviewer asked Andre to write an algorithm that could find the smallest stack of

beepers using smart-pen and paper (“general prompt” scaffolding). Andre wrote the

algorithm in pseudo code as shown in Figure 6.12.

Figure 6.12 Andre’s doodle for the small stack of beepers algorithm

Then the interviewer asked Andre about the order of the third and the fourth elements.

Andre responded by updating his doodle swapping the third and fourth step (indicated

with a double headed arrow in Figure 6.12). After that, the interviewer asked Andre about

the value of the second variable: does it change or remain fixed. Andre responded that

what he meant by the ‘second value’ was the next value. The interviewer asked Andre to

desk check his algorithm, giving him using the array {1, 0, -1, 2}. The trace generated is

shown in Figure 6.13.

Figure 6.13 Andre doodle to trace the smallest stack of beepers algorithm

After tracing Andre verbalised:

“I compare the first two, I did not compare with this one because in the smallest I was using the

WHILE-loop to check the end of the stacks but this time I need to use FOR-loop, I did not practise

a lot using FOR-loops with the array.”

3. Think aloud:

Andre started to update his code as shown in Figure 6.14 and re-run the supplied unit

tests.

129

Figure 6.14 Andre’s fourth screen image for the smallest element in a 1D array

6.2.7. Index of the Largest Element in a 1D Array (Seq3 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning Verbalise

Tracing Mental tracing

Unit test

Time on task 6 minutes and 42 seconds

of compilation 2

of execution 1

Intervention None

Timing Week ten in the same session and immediately after solving the

smallest element in a one-dimensional array problem.

Important observations with

respect to prior sessions

Andre had managed to solved the smallest element in a one-directional

array with the with the interviewer’s assistance.

Data

Think aloud:

After reading the question, Andre started planning:

“This question is similar to the first question [find the smallest element in a one-dimensional

array], the first question find the smallest one, and this question find the largest one, um, should

return the index of largest element, the point is how to find the index, is the basically the same so,

the difference the first one is asked to return the smallest element and now asked as to return the

index of it, basically is the same returning, the most difficult part of this question how to find the

index of an array”

He then wrote the method signature and defined the most wanted holder variable

largest and assigned the value of the first element of the array to this variable. Andre

started to verbalise his planning further focusing on how to define and work out the value

of the index:

130

“Let me think about the largest, so first think to compare with, find out the largest, and I need to

know the index of it, index of the largest element, if is bigger than that if it smallest than than the

largest one, will be the okay, if it is bigger than that one, um [pause] I need index of result”

Andre decided to define another most recent holder variable and he called it index and

initialised it to zero. Then he continued on and line by line wrote the code shown in Figure

6.15.

While writing the programming code, Andre paused twice to question the value of the

stepper variable, and what it should be and how to compare it focusing specifically on the

IF-block.

The first occasion was after setting the most holder variable largest to be current value

in the array (the element at count):

“Largest equal array but if it smaller than that, I do not need to change it, oh yes, if it big than

that”

Secondly, after setting the most holder variable index to the value of the stepper

variable:

“If we comparing , the second one is bigger than the value of the index, the index will change will

change to second ,if it still in that the index is always will be one, but if third is bigger than the

value of index then will be changed again , otherwise the index will be one”

Andre compiled his code and immediately identified and fixed the syntax error present

(Figure 6.15) by adding the missing data type int to the stepper variable declaration.

Finally he ran the unit tests to verify the correctness of his solution, they all passed.

Figure 6.15 Andre’s code for find the largest index

Add int

131

6.2.8. Largest Element in a 2D Array (Seq4 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing

Unit test Read messages and test code

Time on task 9 minutes and 16 seconds

of compilation 2

of execution 2

Intervention None

Timing Week five of the P2 course

Important observations with

respect to prior sessions

The previous problem that related to this question was finding the

smallest element which was solved three months earlier. In solving this

question, it appears that Andre’s faulty adjacent pairwise comparison

schema still exists despite having fixed the error on three earlier

occasions – a new correct schema does not appear to have been

formed.

Data

Think aloud:

Andre began programming the method name and the array of type integer as a passing

parameter, and then he defined a nested FOR-loop block, followed by an IF-statement as

shown Figure 6.16 (left). At this point he read that line of code and verbalised:

“So let me check it, so row zero zero, then row will be one no, so let me see.”

He made a decision to update the IF-statement as shown in Figure 6.16(right), step1. And

then he read that line of code and verbalised again:

“Fix the row and let the column so that will be the row zero and row one so zero zero, zero one,

zero two, and after this finished, before for loop.”

Figure 6.16 Andre’s first and second screen images for the largest element in a 2D array

After that, Andre decided to define the most wanted holder variable largest and set it

to zero (Figure 6.16 (right), step2). Then he added an assignment command after the IF-

statement as shown in Figure 6.16 (right), step3.

Step2 - Add

Step3 - Add

Step4 - Add

Step1 - Update

132

Andre started to trace the IF-block:

“If the second one is bigger than the first one store the second one in the largest, but if it not

stores this one”

He decided to add an ELSE-block as shown in Figure 6.16 in step4 once introducing the

adjacent pairwise comparison error made consistently during his first semester of think

aloud sessions. Andre mentally checked his code again:

“Let me check it so first think we set row to row, and we set column to the row, and the first

location which is zero zero, and then we check if zero one is bigger than zero zero largest will be

zero one, but if it is not, we will set the largest one to um zero zero and so if then oh yes, if the

column let me see we can change it.”

Andre started to update his code and added the RETURN Java commands (Figure 6.17,

steps56).

Andre ran the supplied unit tests and one of three tests failed that consist of an array of

negative numbers only. He started to read the code for the test failed, and he verbalised:

“Expected -1 but was 0, if it minus one let me see, so the largest one should be the largest, so I

just need to modify the code because there is a minus number there -19, -1,-2,-9. Let me set the

largest number to a1 zero zero so it will be the first, if the first one is largest than two if if its not.”

Figure 6.17 Andre’s last screen image for the largest element in a 2D array

Not unsurprisingly Andre easily fixed the error as it was an error he had fixed several

times in the past (see Figure 6.17, step7).

Step5- Update

Step6- Add

Step7- Update

133

6.2.9. Print the Highest Mark and Name of Every Student in a Collection of Student

Objects (Seq5 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test Read test output and test code

Time on task 19 minutes and 7 seconds

of compilation 2

of execution 2

Intervention None

Timing Week seven of the P2 course

Important observations with

respect to prior sessions

Andre showed evidence that he had learned from his earlier mistakes

(see longest corridor, shortest corridor, smallest element in a one-

dimensional array, and largest element in a 2D array). In the other

words, the scaffolding and feedback given to him during the meeting

sessions were effective in enabling him to move forward and solve

subsequent programming tasks in each sequence.

Data

Think aloud:

Andre read the question twice, and then he started to write his solutions without hesitation

or verbalisation. Andre started with the method signature (Figure 6.18, step1 (A &B)),

followed by the FOR-loop statement with the stepper variable i. The function of the

stepper variable was to iterate for all the elements of the ArrayList called “Student”

(Figure 6.18, step2 (A & B)). Then Andre verbalised:

“Student marks this actually a 1D array, and with this array I can I can find the highest”

He then defined a most recent holder variable highestMark, and set its initial value to

zero (Figure 6.18, step3). Andre continued to enter the rest of his code (as shown in Figure

6.18, step4) in order line by line.

134

Figure 6.18 Andre’s screen image for highest student mark in a collection of student objects

Finally, Andre ran the supplied unit tests and started to read the output. He was surprised

when the output did not match the results supplied to him in the question. He started to

read the test code and to compare it with the outputs. While Andre read the test file, he

verbalised —“Tom is ah yes, I got it I need to set the highest”

Andre easily fixed his code by adding a line which reset the most recent holder variable

to zero before finding the highest mark for the next student in the ArrayList (see Figure

6.18, step5).

6.3. Luke’s Think Aloud Sessions

6.3.1. Summary

At the earliest stages of learning to program, Luke found some difficulties in making a

connection between unfamiliar situations in terms of familiar ones (he turned to a stopper

twice during the P1 course). But later on, he showed evidence that his level of

programming had improved through solving different programming tasks and in

following the feedback given to him by the interviewer. During this longitudinal study,

Luke changed the meeting sessions approximately two times. Luke showed evidence that

his level in programming was high due to his position in the first quartile of P1 and P2

course.

 Step1A

Step1B

Step2A

Step2B

Step3

Step4

Step5-Added

135

6.3.2. Counting the Number of Beepers in a Single Corridor (Seq2 – Q1)

Encoding

Question Not Solved

Behaviours Stopper

Emotion Indiscernible

Strategies Trial and error

Activities Planning

Tracing Visual debugging

Unit test Read the unit test message – at the final stages of problem solving

Time on task 9 minutes and 34 seconds

of compilation 6

of execution 6

Intervention Exact solution –interviewer intervention

Timing Week four of the P1 course

Important observations with

respect to prior sessions

Luke solved counting the length of corridor (Appendix A) without any

difficulty. He struggled to apply what he had practised before (count

the length of corridor, far transfer problem) in a new context. This is

not unusual for novice programmers. The same result has been

reported in similar observations conducted by Ambrose et al.(2010).

They stated that learners may fail to transfer relevant knowledge and

skills when they do not hold a rich conceptual understanding of

underlying principles and structure.

Data

1. Think aloud:

Luke appears in this case to fall back on a familiar schema which was not the most

appropriate schema. He seems to have recalled the algorithm or code to move the robot

across only a single corridor and count its length while there are beepers on the ground

and print the result to the console. He first wrote the code shown in Figure 6.19 (left). He

ran the supplied unit tests and all tests failed. Luke focused on visualising the first Robot

World scenario a corridor of length five and verbalised:

“Oh, my program not stop even if the robot hit the wall [pause], I need a way also to check if the

robot facing the wall, so to do that I would [pause], I’m not sure how to do that [pause], I will just

put IF statement inside the WHILE loop, if space in front of robot clear at that while move the

robot forwards”

Figure 6.19 Luke’s first and second screen images for counting all beepers

Step1

136

Luke added an IF-block inside the WHILE-block as shown in Figure 6.19 (right) and

again ran the first of the unit tests. While, he visualised the robot moving, he verbalised:

“Not working, so it get to the end and then not die this time [pause], just to continue in loop

because the WHILE statement, I need a way to, another variable Boolean type and set it to false”

At this point Luke started to adopt a trial and error strategy to programming. After adding

each Java command (steps shown in Figure 6.19 (right) and Figure 6.20(left) and (right)).

Figure 6.20 Luke’s third and fourth screen images for counting all beepers

Luke ran the supplied unit tests focusing only on the first Robot World scenario. He made

no attempt to read or trace his code. After his fifth attempt at running the tests failed for

the first Robot World scenario Luke started to read the unit test message for the first time

and verbalised:

“Expected seven beepers not four beepers, [long pause] oh there may be more than one beeper

so I gonna”

Luke started to update his code as shown in Figure 6.20(right) without any evidence that

he tried to mentally trace or read his code. Luke’s code was still well away from a correct

solution, therefore the interviewer offered to help him.

2. Scaffolding:

The interviewer asked Luke to write an algorithm that would allow the robot to pick up

all beepers at each stack across a single corridor (“General prompt” scaffolding) using

the smart-pen and paper. Luke’s attempt is shown in Figure 6.21 – he failed to recall the

correct algorithm.

Step2

Step3

Step4

Step5 - Delete

Step6 - Add

Step7A - Add

Step7B - Add

137

Figure 6.21: Luke’s doodle for counting all beepers

The interviewer redirected Luke to trace his online code the final result of the actions

provided in Figure 6.20(right):

Luke: “That caused a problem, when the robot moved. The robot picked up beepers and moved.”

Interviewer: “Yep, does your program pick up all the beepers in the corridor?”

Luke: “No”

Interviewer: “Is there anything else you might need?”

Luke: “Add WHILE-statement as well”

Interviewer: “Yes, please could you show me how?”

Luke: “I do not know.”

Luke gave up and asked for help. The interviewer started to use a stepwise refinement

technique to explain the code to Luke starting with the algorithm for picking up all the

beepers from a single stack, this algorithm was then extended to counting the beepers

from each stack, followed by the programming code for pick up all the beepers and finally

counting the beepers in a single corridor.

3. Retrospection:

The following is part of the conversation between the interviewer and Luke:

Interviewer: “Have you seen this question before?”

Luke: “No”

Interviewer: “How many beepers has each stack got?”

Luke: “At the beginning I thought it is one, then, the test shows the expected value was seven, so

it is more than one”

Interviewer: “Did the test help you to check the number of beepers?”

Luke: “Yes”

Interviewer: “Do you have an idea about how to implement this code?”

Luke: “No”

Interviewer: “You do not have any idea about how to write this program, but do you have an

idea that you need a counter to count the number of beepers?”

Luke: “Yes, I just practised with you”

Interviewer: “For this question, you do not have any plan?”

Luke: “Yes”

Interviewer: “So if I give you one hour, will you try with it until the time is finished?”

138

Luke: “Yes”

Interviewer: “For one hour, do you think you can solve it?”

Luke: “May be not sure”

Interviewer: “You mean by trial and error?”

Luke: “Yes”

Interviewer: “If this happened in a test, would you continue with this question?”

Luke: “I will solve the other question then I will return to this”

The interviewer reviewed the video tape with Luke. The interviewer focused on how Luke

could avoid problems resulting from the lack of focus on all possible robot scenarios as

well as reading and understanding all the unit tests messages before updating the code.

6.3.3. Longest Corridor (Seq1 – Q3)

Encoding

Question Not solved

Behaviours Stopper

Emotion Confused then Surprised

Strategies Trial and error

Activities Planning

Tracing Visual debugging

Unit test Read the unit test message

Time on task 45 minutes and 5 seconds

of compilation 8

of execution 7

Intervention Exact solution - provided on request

Timing At the end of the sixth week of the P1 course in the intra-semester

break.

Important observations with

respect to prior sessions

Like Andre, Luke solved the comparing the length of two corridors

task (see Appendix A) without any difficulty. He had practiced in

isolation counting the length of a corridor and comparing the value of

two integers, and he just needed to concatenate these two

programming plan. In the case of this question the same two

programming plans were used but they had to be combined by merging

and nesting rather than concatenating and he had significant difficulty

doing this. There were additional robot navigation tasks as the robot

had to be moved and orientated in order to get to the second corridor

before the second corridor’s length could be counted. Unlike Andre,

Luke also had trouble writing the method header.

Data

1. Think aloud:

Luke began by reading the problem. Luke then attempted to write the method signature –

he took two minutes and 39 seconds to figure out how to write the method header. He

assumed that he needed to define three input parameters, one for each corridor shown in

the example provided with the questions description:

“I’m still working with my homework assignment on methods, let me remember [long pause]. I

need to define three variables, one for each corridor. Int [integer] I gonna use int length of a

139

[integer variable name], int length of b [integer variable name], int length of c [integer variable

name] as [pause]”

At this point Luke realised that there were an unknown number of interconnected

corridors, therefore he decided to update the method signature definition and verbalised:

“It is gonna be different because there is a different number of corridors each time, so I’m going

to stick with one [one variable]”

Luke made his decision to define the method findLongestCorr() with no parameter

and no return a value (he did not discover until he compiled his code that there was a

problem with his method header). He did not appear to retrieve a fully formed schema for

counting the length of corridor but instead appears to have retrieved sub-plans and joined

those plans. Firstly he recognized the need to iterate in order to move the robot forward

then he realised a gatherer variable was required. He hesitated as to what the initial value

of the gatherer variable should be, zero or one, and finally after a short pause he made a

decision and set the gather variable to one.

Figure 6.22 Luke’s first screen image for the longest corridor

Luke continued writing code which allowed the robot turn and return back along the

corridor. He then added code in an attempt to turn the robot so that it could move on to

the next corridor but did not succeed in correctly orienting the robot so that it faced north.

He failed to discover this issue despite numerous attempts at running the unit tests his

code (Figure 6.22, Luke’s code up to this stage).

From this point on Luke started to experience significant difficulty. He began to generate

a solution using a trial and error approach. The most interesting samples of Luke’s

Step1A

Step1B

Step2B

Step2B

Step3

Step4

Step5

Step6

140

programming are listed in Figure 6.23 and Figure 6.24. Despite the various changes to his

code Luke found that the tests failed. His focus was solely on the ultimate test result (pass

or fail). He did not follow the visualisation of his code executing in the RobotWorld and

therefore missed seeing that his code resulted in the robot returning to the start of the first

corridor each time.

Figure 6.23 Luke’s second and third screen images for the longest corridor

After a short pause, Luke updated the RETURN statement to return the length1

variable rather than the length variable (Figure 6.25(left)). He again ran the unit tests

and for the first time focused on visualising the robot moving across the corridors. After

a short pause, Luke verbalised:

“One of the test failed [the scenario that allowed the robot to move across three corridors] and

the other two passed. Expected nine but was six, so here because, um [pause], I’m not sure why

the test failed because in this it should change to length of next corridor because in this case it

should be um [pause]”

He then moved the first IF-block (Figure 6.25). Luke ran the supplied unit tests and he

was surprised that he still got same unit test results. He started to verbalise:

“So okay what is happening, in the last test the robot started at the bottom, while the top for the

other two, so the code can work if starting from the top, just from the third test it is started from

the bottom [Luke did not realise that in the three scenarios that the robot starts at the same position

(0, 0)], so what I’m going to do is [pause]. I’m not sure how to solve this question [long pause] so

if I just make it um, I need to make started from the top, how can I do it [long pause].”

Step8 - Add

Step9 - Add

Step10 - Update

Step11 - Add

Step7 - Add

141

Figure 6.24 Luke’s fourth and fifth screen images for the longest corridor

Figure 6.25 Luke’s sixth and seventh screen images for the longest corridor

After a long pause, Luke continue try and get a working solution as illustrated in Figure

6.26 with no success. Finally he asked for help — “I need your help”.

Updated

142

Figure 6.26 Luke’s final screen image for the longest corridor

2. Scaffolding:

When the interviewer attempted to redirect Luke and provide assistance, he gave up on

the task and was not receptive to assistance. The interviewer started to use a stepwise

refinement technique to explain the code to Luke. The interviewer started with counting

the length of corridor program, followed by comparing two integer numbers, then

programming plans that allowed the robot to move to the next corridor, and finally

repeating the process of moving, counting, and comparing n-1times.

3. Retrospection:

Luke found it hard to recall the sequences he had used to try solve the question, even

though the interviewer reviewed the video tape of the programming session with him. In

a way this is not surprising as he fell back on a trial and error approach to programming

as soon as he encountered a problem. During the retrospection interview; the interviewer

focused on the way that Luke ignored many times visualising the robot moving across his

world and focused on unit tests only.

Add

143

Luke confirmed that he had not solved questions similar to this question even in the

homework assignment. And he said that the most difficult part was working out how to

repeat the process for moving and comparing the result many times.

6.3.4. Smallest Stack of Beepers (Seq2 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing, Pen and paper, and visual debugging

Unit test

Time on task 12 minutes and 8 seconds

of compilation 2

of execution 2

Intervention None

Timing After week six in the intra-semester break

Important observations with

respect to prior sessions
 When solving Seq2 – Q1, Luke was clearly outside out of his

depth and was unable to solve the problem and he was supplied

the model answer for this question. Luke was able to solve

different programming tasks in the same sequence which suggests

that he was able to learn from the model answer and was able to

apply that learning to new situations.

 In previous sessions, Luke focused on only one of the several

example robot scenarios supplied when trying to fix bugs which

often led to an incorrect solution. The interviewer suggested to

him that he should check all the scenarios during two separate

retrospective interviews for Seq2 – Q1 and Seq1 – Q3. When

solving this task (Seq2 – Q3) he seems to have taken notice of the

advice and he examined all of the scenarios in order to reach an

answer.

Data

1. Think aloud:

Luke initially wrote the code shown in Figure 6.27 (left) sequentially and without

hesitation. Before compiling his code Luke said:

“I’m going to set um … [pause] … to um because right now the smallest have no value to

compare with the first square, so [pause] I should set this to a hundred [pause], this should

compare with the first square, then I need to compile and test.”

Luke set the most wanted holder variable to hundred before compiling and running his

code (see Figure 6.27 (right)).

144

Figure 6.27 Luke’s first and second screen images for the smallest stack of beepers

On testing his code, Luke discovered that one test failed (in which the smallest stack of

beepers was located in the last location in the corridor). He lined up the Robot World

windows so he could examine all the test results at the same time. He then started to read

his code while checking against the test results.

“Looking at the tests, not testing the last square in each corridor, so I need to look at why. While

loop [while not facing wall], moving forwards and not testing the last one, so outside this while

loop, another while, I need to copy that”

Because of the limited programming constructs the students have at this stage of the

course and the Robot World functionality constraints it not possible to iterate one more

time in the current loop to count the final stack of beepers — an extra statement is required

after the while loop. Luke copied the code which counted beepers and compared the

number of beepers with the most wanted holder variable and pasted at the end of his

existing method body (Figure 6.28). It should be noted that the first nested WHILE-loop

only runs until the robot is in front of the wall and stops before the final stack beepers is

counted. Finally, Luke ran his code and all tests passed.

145

Figure 6.28: Luke’s third screen image for the smallest stack of beepers

2. Retrospection:

The following is part of the conversation between the interviewer and Luke:

Interviewer: “From the beginning you defined the variable smallest but you did not assign a value

to that variable, is that right?”

Luke: “When I wrote this line, I did not realise that I needed to set up a value, but later on I skim

read my code and realised that I needed to set the variable.”

Interviewer: “Have you seen this question before?”

Luke: “No, not this question.”

Interviewer: “Have you seen something similar to this?”

Luke: “Yes, in our meeting.”

Interviewer: “Do you think that your program will work if the number of beepers is more than

100?”

Luke: “[Pause] ah [pause]”

Interviewer: “Why did you select the number 100?”

Luke: “Because I saw that will be the higher.”

Interviewer: “May be you saw that the question was about maximum and minimum students’

marks? And students’ marks are between zero and hundred?”

Luke: “Oh, yes”

Copy

Paste

146

Interviewer: “May be in the homework, they asked you to find the minimum students’ mark?”

Luke: “I think that”

Interviewer: “So you remembered that plan, is the right?”

Luke: “Yep, and counting beepers”

Interviewer: “That means you also started to think how to transfer your knowledge from

counting the minimum mark to minimum beepers.”

Luke: “Yep”

The interviewer asked Luke to trace his code using the values 101,102,105,110,104. Once

Luke traced his code with these specific values, he realised that his code was not

generalisable solution although it worked for the scenarios provided for this task. At the

end of the session with Luke, the interviewer discussed the quality of his code and how

he could further develop.

6.3.5. Shortest Corridor (Seq1 – Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Surprised

Strategies Stepwise design

Activities Planning

Tracing Mental tracing, Visual debugging, Doodles – desk check

Unit test Read the unit test message

Time on task 7 minutes and 41 seconds

of compilation 6

of execution 4

Intervention “General prompt” scaffolding – provided on request

Timing After week six in the intra-semester break.

Important observations with

respect to prior sessions

Earlier Luke had been unable to write code to find the longest corridor

this problem is isomorphic to that problem. However he had recently

been able to write code, albeit not with a fully generalised solution, to

solve the smallest stack of beepers Seq2 – Q3 task and was now using

the unit tests more effectively. As a result of his discussion with the

interviewer after solving Seq2 – Q3 he was starting to appreciate that

while a solution might appear to be correct it may not always be able

to cope with a new scenario and that he should try to build a general

solution.

Data

1. Think aloud:

As Luke had been advised to do in previous meetings, he started solving this question by

writing utility methods to perform the basic robot operations such as turning a robot right

and turning a robot around (Figure 6.29(left), steps1 2). Then he started to write the

method to find the shortest corridor. Luke did not retrieve a fully formed schema for

counting the length of the first corridor but instead appears to have retrieved smaller sub-

147

plans and joined those plans. Firstly he recognized the need to iterate in order to move

the robot forward then he verbalised:

“Before while loop, we need to do int [integer], current equal zero, then we need to

increment current corridor, then when that is done, then sets.”

As a result, Luke realised that a gatherer variable was required and that that variable

currentCorr should initially be set to zero and increased each time as the robot moves

(Figure 6.29(left), steps3 5). And then he defined a most wanted holder variable

smallest and assigned that to be the length of the first corridor (see Figure 6.29(right),

steps6 7). He then without thinking aloud or hesitating wrote a sequence of commands

to reset the gatherer variable to zero ready to count the length of the remaining corridors

and return the robot back to the start of the first corridor and finally orient the robot to

face north (see Figure 6.29(right), step8). He did this without any evidence that he had

read or traced any part(s) of his code.

After a pause, Luke added some more code (see Figure 6.29(right), step9 (A &B)). And

then he started to read his code and verbalised:

“I need to check if it right , So it gonna test the first corridor and set it to the smallest,

then turn around , then turn right , after move forwards , it gonna turn right, it gonna

forwards forwards, turn right, test next corridor, after done that I need to compare. ”

Then, he continued to add another set of Java commands as shown in see Figure

6.29(right), step10. Luke compiled his code twice and he easily fixed the two errors in

his code, using the compiler feedback, by adding brackets to the end of the call to the

turnRobotAround method and adding a RETEUN statement to the method (Figure

6.29 (right), steps11 and12 respectively). Luke ran the supplied unit tests and watched the

robot moving across the corridor, he quickly realised that he had forgotten to add the

method call which would put the robot in the right direction to move up to the start of the

next corridor (see Figure 6.29(right), step13). He re-ran the tests and was surprised when

all the tests failed for the second time. He started to read the unit test messages and part

of his code, Luke verbalised:

“For the first test [scenario] expected five but was four. For the second one [scenario]

expected seven but was six. Test the first one[scenario] is set to the smallest and after that

test the next one, current less that smallest and smallest equal current and I forget to add

the equal statement set the current corridor to zero.”

148

Figure 6.29 Luke’s first and second screen images for the shortest corridor

Luke managed to fix one of his mistakes on his own by adding the line of code shown in

Figure 6.29(right) and step14. Luke ran the supplied unit tests to verify the correctness of

his solution and he was again surprised when all the tests failed. He got the same test

results. He again read the test output and his code:

“In this case [scenario] the same problem. Expected four but was five [this scenario], for

the second one [scenario] seven but was six, same before so um, so now, set it to zero,

and a while loop at the current corridor, if current corridor is less than smallest, smallest

equal current corridor and current corridor is zero. The difference is one, the code it

should be that is because [pause]. Current corridor started from zero, current plus plus

as the robot keep moving and counting”.

Step1

Step2

Step3A

Step3B

Step4A

Step4B

Step5

Step6

Step6

Step7

Step8

Step9A

Step10

Step9B

Step11 – Fix

error

Step12

Step13 -Add

Step14

149

After a long pause, Luke felt that he reached a dead-end and asked for help — “I need

your help”.

2. Scaffolding:

Interviewer: “If you think about the two tests, what is expected for the first test and what

is expected for the second?”

Luke: “Expected for first is five and I have got four, and then for the second is seven and

I have got six, always the difference is one”

Interviewer: “Yes the difference is always one, why it is always one?”

Luke: “Um”

Then the interviewer redirected Luke to trace through his code. Figure 6.30 shows what

Luke’s trace. Desk checking his code helped Luke identify the problem and he was able

to update his code by setting the gatherer variable to one instead of zero. The interviewer

used one of the unit test scenario as an example for tracing his code.

Figure 6.30 Trace-table for Luke’s code for the shortest corridor

3. Retrospection:

The following is part of the conversation between the interviewer and Luke:

Interviewer: “Have you seen this question before?”

Luke: “No, not this question. Um, I just solved the one with smallest stack of beepers [pause], ah

I think also with corridor. I just remembered. Is that right?”

Interviewer: “What was the most difficult part for solving this question?”

Luke: “Um, [pause] I’m still confused between counting the beepers and length of corridor”

150

6.3.6. Smallest Element in a 1D Array (Seq3 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Unsurprised

Strategies Sequential

Activities Planning

Tracing

Unit test

Time on task 7 minutes and 2 seconds

of compilation 3

of execution 1

Intervention None

Timing Week eleven of the P1

Important observations with

respect to prior sessions

Luke did not encounter any significant problems when solving the

smallest stack of beepers. It is important to note that although his code

passed the tests was not generalised, connected or integrated.

Data

1. Think aloud:

Luke began by reading the problem and immediately started to write the code line by line.

Luke started with the method header with an array of type integer as the parameter and

which returned an integer. He then defined the most wanted holder variable smallest.

Luke hesitated as to what the initial value of smallest should be and verbalised:

“Integer smallest equals … [long pause] … um zero … [long pause] … smallest equal int array

of zero [intArray[0]]”

After the above utterance, Luke made his decision and set the value of the most wanted

holder variable to the first element of the array, followed by the FOR-loop statement that

consisted of the stepper variable i. Inside the FOR-loop block, Luke added an IF-block

as shown in Figure 6.31. There was a long pause before he added the less than operator

(<) to the IF-block suggesting he was having to think carefully about which operator was

appropriate less than or greater than.

Figure 6.31 Luke’s screen image for the smallest element in a 1D array

Luke pointed to the first assignment statement and then verbalised:

“I need to change this value, let me try it”

151

He updated that assignment statement from int smallest = intArray[0]; to

int smallest;. Luke compiled his code. He did not show any surprise when he

received a syntax error. Luke verbalised:

“So I will change it to equals first index array, let me try it again”

Luke directly updated that line of code and wrote int smallest=intArray[1]; ,

after that, without hesitation, he changed 1 to 0 and verbalised:

“Smallest equal to the first element of the array, the first element come with index one, no no with

index zero”

Luke compiled his code for the second time and he easily fixed the next syntax error by

adding the RETURN statement to the end of the method body. Luke compiled his code

for a third time and then ran his program — all the tests passed.

2. Retrospection:

The interviewer questioned Luke about the two long pauses while he was writing his

code. The first pause was related to selecting the correct initial value for the most wanted

holder variable. The second pause was when he was deciding which relational operator

to use in the IF-block. Luke responded that he was thinking about how he solved the

smallest stack of beepers problem. Clearly he was using his knowledge gained from

solving the smallest stack of beepers to try and solve this problem and he saw similarities

between the two tasks. During the second pause he said that he was thinking about the

direction of the relational operator.

6.3.7. Index of the Largest Element in a 1D Array (Seq3 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test Read messages and test code

Time on task 9 minutes and 20 seconds

of compilation 2

of execution 2

Intervention None

Timing Luke solved this question in his eleventh week eleven of P1. Directly

after solving the smallest element in a one-dimensional array task.

Important observations with

respect to prior sessions

During solving Seq3 – Q2, two long pauses was recorded. Firstly,

before Luke initialised the value of the most wanted holder variable.

Secondly, before Luke added the relational operator (<).

152

Data

1. Think aloud:

Luke began by reading the problem and immediately started to write the code. Luke first

wrote the method header and then defined two most wanted holder variables. The first

most wanted holder variable he called largestIndex and set it to zero. The second

most wanted holder variable, he called largest. The function of the second most

wanted holder variable was to store the value of the first element of the array. Then, he

continued writing a line by line Java commands as shown in Figure 6.32 (left).

Finally, Luke ran the supplied unit tests. He discovered that one test failed and the other

passed. Therefore, he started to read the unit test message for the failed test and then he

verbalised:

“Expected two but was five”

After that he viewed the unit test file – findLargestIndex(new int[]

{0,1,2,3,-4}). Then he verbalised:

“For the first test result three correct [pause], the largest number in index three, ah I’m checking

against the initial element let me see.”

As a result, Luke updated his code by adding the following variable assignment:

largest = intArray[i]; immediately after the IF-statement (see Figure 6.32

(right)). Finally Luke compiled and ran the test units to verify the correctness of his

solution.

Figure 6.32 Luke’s first and second screen images for find the largest index

2. Retrospection:

Luke focused on talking about two kinds of scaffolding. Firstly on how solving the

previous question had helped him to solve this question. Secondly, how the unit tests

helped him to correctly fix the mistakes he had in his code.

153

6.3.8. Checking if Beeper Stacks are sorted in Ascending Order by Size of the Stack

(Seq2 – Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Happy

Strategies Stepwise design

Activities Planning

Tracing

Unit test

Time on task 10 minutes and 15 seconds

of compilation 1

of execution 1

Intervention None

Timing After Luke had finished the P1 course.

Important observations with

respect to prior sessions

For Seq2 – Q1, Luke was clearly outside of his ZPD and he was

supplied the model answer for this question. Luke was able to solve

different programming tasks in the same sequence which suggests that

he learnt from the model answer and was able to apply that learning to

new situations. Luke solved (Seq3 – Q1, Appendix A) with interviewer

assistance.

Data

Think aloud:

Luke started to verbalise and write his solution shown in Figure 6.33 (left) line by line.

“Integer x equal zero, [pause] I think it is fine to use WHILE loop, [pause], the next step [pause],

I need to move, and count all, as usual to count all, pick up, and add. After finish counting, I

gonna set x to zero”

Figure 6.33 Luke’s first and second screen images for checking if beepers stacks are sorted

After a pause, Luke verbalised:

“Ah, to pick up the beeper in the first location”

After the above utterance, Luke started to update his code so that it allowed the robot to

also pick up and count beepers at the first location Figure 6.33 (right). Then Luke

verbalised:

“I’m not sure the length of corridor [pause], let use make it seven. Let me count the length. I know

how to do it”

Step1

154

After the above utterance, Luke continued coding a block of code to move the robot down

the first corridor and back and count the length of that corridor (see Figure 6.34, step2).

Then, Luke decided he needed to store the counted beepers for each stack count in a one-

dimensional array (see Figure 6.34, steps35).

Then Luke verbalised:

“I need a loop to compare each of these values”

After the above utterance, Luke added code to check if the elements of the array is sorted

ascending (Figure 6.34, step6). Finally Luke compiled and ran his code to verify the

correctness of his solution. He encountered no difficulties in solving this problem.

Figure 6.34 Luke’s third screen image for checking if beepers stacks are sorted

6.3.9. Largest Element in a 2D Array Task (Seq4 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Happy

Strategies Stepwise design

Activities Planning

Tracing

Unit test Read the test message

Time on task 10 minutes and 3 seconds

of compilation 3

of execution 2

Intervention None

Timing Week six of the P2 course

Important observations with

respect to prior sessions

Luke had no problem solving a related and far transfer question the

smallest element in a one-dimensional array (Seq3 – Q2).

Step2

Step4

Step5

Step6

Step3

155

Data

1. Think aloud:

Luke began by writing the method header with an array of type integer as a parameter.

He defined a nested FOR-loop block, followed by an IF-block, and finally he added a

RETURN Java command as shown in Figure 6.35 (left).

Figure 6.35 Luke’s first and second screen images for the largest element in a 2D array

Before Luke compiled his code he verbalised:

“I just remembered that I’m checking against something, I need that thing to check against

[pause]”

After the above utterance, he defined the most wanted holder variable current after the

method signature and set its value to zero as shown in Figure 6.35, step1 (right).

When Luke compiled his code, he got a syntax error. Luke verbalised:

“I’ve still got a problem with nested loops, I need to practise more and more”

Luke easily fixed the error related to checking the length of the row and the column of

the two-dimensional array (Figure 6.35, step23) (right). Luke ran the unit tests for the

first time One out of three supplied unit tests failed. Luke read the test message and

verbalised:

“Expected -1 but was 0, and that’s because the initialisation of the current [variable], but I did

not think about the negative number so I should set it to ah [long pause] I want to set it to value

of [pause], minimum is [long pause], the value of the first one [the first number in the array].”

At this stage, Luke expressed doubt about the initial value of the most wanted holder

variable and finally he decided to set its value to the first element of the two-dimensional

array and ran the unit tests to make sure that he made the right decision – which he had.

2. Retrospection:

The following is part of the conversation between the interviewer and Luke:

Interviewer: “Before you compiled your code, you decided to define current variable as the last

Java command in your code, is that right?”

Step1- Add

Step2- Delete

Step3- Delete Step4- Update

Current=intArray[0][0]

156

Luke: “Yes, I’m checking against something, and I thought it is zero, but I did not think about the

negative number until I read the test message”

Interviewer: “Have you seen this question before?”

Luke: “Yep, I think in a one-dimensional array, I think the question was either the smallest or

largest element”

Interviewer: “Did you realise that this question and the smallest element in a one-dimensional

array had identical sub goals in common when you started solving the program?”

Luke: “Nope, but when I ran my code, my test failed I did.”

6.3.10. Column in a 2D Which Contains a Smallest Number (Seq4 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Happy

Strategies Stepwise design

Activities Planning

Tracing

Unit test

Time on task 3 minutes

of compilation 1

of execution 1

Intervention None

Timing Week Six of the P2 course

Important observations with

respect to prior sessions

Successfully solved the previous isomorphic question which required

writing code to find the largest element in a 2D array (Seq4 – Q2).

Data

Think aloud:

Luke read the problem and immediately started to verbalise writing the completed

solution code with minimal effort (Figure 6.36):

“Int [integer] find smallest index that takes two-dimensional array. I know I need int [integer]

smallest, smallest equal array of zero zero [array[0][0]], and FOR- loop int row equal zero,

row less than array length, row plus plus. I need another FOR- loop, column equal zero less row

length column plus plus [pause] another int [integer] variable because I need [pause] the index of

smallest column [pause] this question is different than the first one [pause]. int [integer] smallest

column [smallestCol] equal zero [pause]. If array row column [array[row][col]]

[pause] less than smallest smallest equal array row column [array[row][col]]. Close that.

Close that. Close that. Return, I need to run the test”

Finally, Luke compiled and ran the unit tests to verify the correctness of his solution – all

the tests passed.

157

Figure 6.36 Luke’s screen image for column in a 2D array which contains a smallest number

6.3.11. Print the Highest Mark and Name of Every Student in a Collection of Student

Objects (Seq5 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Happy

Strategies Sequential

Activities Planning

Tracing

Unit test

Time on task 7 minutes and 17 seconds

of compilation 1

of execution 1

Intervention None

Timing Week seven of the P2 course

Important observations with

respect to prior sessions

Luke had not encountered any significant issues when solving

problems which required iteration and searching of 1D and 2D arrays.

Data

Think aloud:

Luke began by reading the problem and immediately started to verbalise while writing

his code (see Figure 6.37, steps1 and 2):

“So method void, highest student’s details [HighestStudentMark()], I’m going to add

integer highest equals, no this not 1D [Luke deleted the line of code he was writing and added

[highestMark =]]. For integer i equal zero, i less than student size [student.size()],

this FOR- loop end with i plus plus. Close that. Int [integer] highest equals should be zero [pause]

no should be equals students dot get dot student mark i

[students.get(i).studentMark[i]] [pause] no equal to mark zero

[students.get(i).studentMark[0]]. For int [integer] x equals 0, x less than [pause],

so x should be less than students dot student mark and dot length

[students.get(i).studentMark.length], plus plus x”.

Step1A

Step1B

Step2

Step3

Step4

Step5

158

Then Luke updated the stepper variable x from zero to one as shown in Figure 6.37, step3.

After that he continued to verbalise while writing a line by line Java commands (see

Figure 6.37, step4):

“If students [pause] students dot get i dot student mark x

[students.get(i).studentMark[x]] less than [pause] no greater than highest mark

[highestMark]. Highest mark equal to students dot get i dot student mark x

[students.get(i).studentMark[x]]. Close that. Close that. Print student name. Print

student mark. I need to compile and run the test”

Finally, Luke compiled and ran the unit tests to verify the correctness of his solution.

Figure 6.37 Luke’s screen image for highest student mark in a collection of student objects

6.4. Kasper’s Think Aloud Sessions

6.4.1. Summary

Kasper was able to solve 11 out of 12 questions during the think aloud sessions when

studying P1 but only three out of seven questions during the P2 sessions. He was in the

second quartile of students in P1 and in the third quartile for P2. While, he was able to

solve many of the tasks in this study, Kasper was consistently observed to have trouble

mastering the Java commands he learned, especially during the P2 course. Kasper showed

all the signs of being a tinkerer when it came to writing code and as soon as he faced any

difficulty he resorted to trial and error programming. He also seemed to lack motivation

and engagement. He regularly postponed sessions and his lack of application is reflected

by his lack of progress. Kasper frequently demonstrated during the meeting sessions that

he did not consider tracing to be an important skill.

Step1B

Step3 – Update x=1

Step1A

Step4

Step2B

159

6.4.2. Counting the Length of One Corridor (Seq1 – Q1)

Encoding

Question Solved

Behaviours Tinkerer

Emotion Confused

Strategies Trial and error

Activities Planning

Tracing Visual debugging

Unit test Read message from one Robot World scenario only

Time on task 8 minutes and 8 seconds

of compilation 6

of execution 6

Intervention None

Timing Week four of P1

Important observations with

respect to prior sessions

Data

1. Think aloud:

Kasper started by writing a WHILE-loop statement, followed by a Robot World

command that allowed the robot to move across the corridor (Figure 6.38 (top), step1).

Then, he defined a gatherer variable lengthOfCorridor at the beginning of the

method and set its value to zero (Figure 6.38 (top), step2). After that he added a line which

increased the gatherer’s value by one inside the WHILE-loop block (Figure 6.38 (top),

step3). Kasper hesitated when deciding to print the number of the squares in a single

corridor. He had doubt as to whether he should multiply the gatherer value by two or

multiply the gatherer variable by itself. It became clear later in the think aloud that he had

confused counting the cells or squares in a corridor with the squaring a number — this

seems to be an issue with English comprehension rather than with writing code. Finally,

he the decision to multiply the gatherer variable by itself and then added the PRINT

statement (see Figure 6.38 (top), steps45). After a pause, Kasper decided to define

another variable to store the result of the multiplication and then he updated the PRINT-

statement according (see Figure 6.38 (bottom), steps67). Kasper ran the supplied unit

tests and all tests failed. He verbalised — “fail”

Kasper then focused on one of the robot scenarios (a corridor of length 5), ignored the

test’s messages, and verbalised:

“Start from zero, one, two, three, four [pause], I think after that”

160

Figure 6.38 Kasper’s first and second screen images for counting the length of one corridor

Kasper started directly to swap the position of the two Java commands

moveRobotForwards() and lengthOfCorridor++ (Figure 6.38 (bottom), step8

c.f. Figure 6.38 (top)). Kasper was surprised when the supplied unit tests failed for a

second time. He started for the first time to read one of the unit test messages (the test

message for a corridor of length 10) and verbalised:

“Expected ten but was eighty one”

Kasper started to re-read the question again and verbalise:

“It is not square, it just the square of length. This line is wrong”

He updated his code by deleting the Java command that squared the gatherer variable and

then updated the PRINT-statement accordingly. For the second time he swapped the

position of the two Java commands moveRobotForwards() and

lengthOfCorridor++ back to their original position as shown in Figure 6.38 (top).

Kasper ran his code for a third time and again all the tests failed. Kasper started to read

the unit test messages for the corridor of length 10 again and verbalised:

“Expected ten but was nine”

Kasper made two more attempts swapping around the position of the two Java commands

moveRobotForwards() and lengthOfCorridor++ and running his code

focusing on the same test’s output ignoring the other unit tests. Finally he increased the

value of the gatherer variable before the PRINT statement (Figure 6.39). Kasper compiled

his code for the sixth time and ran his program. This time all the tests passed.

Step1

Step2

Step3

Step4

Step5

Step6

Step7

Step8

161

Figure 6.39 Kasper’s final screen image for counting the length of one corridor

2. Retrospection:

The following is part of the conversation between the interviewer and Kasper:

Interviewer: “Did you plan before you started?”

Kasper: “The first thing, I was thinking about moving the robot, then I was thinking about

counting”

Kasper confirmed that he had solved similar question before

Kasper: “Because I have the problem before, I go back and through about the previous problem,

the similar code from that maybe one less [Kasper is referring to counting the beepers at a single

pile]”

The interviewer reviewed the video tape with Kasper focusing on how Kasper could avoid

problems resulting from the lack of focus on all possible robot scenarios and discussed

the importance of reading and understanding all the unit tests.

6.4.3. Comparing the Length of Two Corridors (Seq1 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Visual debugging, and Hand gestures

Unit test Read the unit test message for one Robot World scenario.

Time on task 17 minutes 52 seconds

of compilation 5

of execution 4

Intervention None

Timing After the sixth week of P1.

Important observations with

respect to prior sessions

In the previous meeting Kasper was not confident about counting the

length of the corridor – he was confused and this confusion led to a

trial and error approach to programming (Seq1 – Q1). This confusion

was evident again in for this task.

162

Data

1. Think aloud:

Kasper began by reading the problem. For this question a method header had been

provided so it is possible to run the unit tests before any code has been written. Kasper

ran the supplied unit tests to see the initial robot scenarios. After examining the starting

Robot Worlds he read the question again. Kasper first declared and initialised two

gatherer variables, one for each corridor length, to one. He then wrote a WHILE-loop

block to move the robot and count the length of the first corridor. After closing the

WHILE-loop block bracket, Kasper added a command to increment by one the gatherer

variable for counting the length of the first corridor and he verbalised:

“Just to calculate then go back to the upper corridor, I just count the last square, and then go

back to the upper corridor, so turn left turn left”

Kasper continue write his solution line by line adding code to turn the robot and return it

back along the corridor, reorient the robot and move it to the start of the next corridor (see

Figure 6.40 (left)). He then tested his code by running one of the supplied unit tests to

ensure that the robot moved correctly across the world:

“I just need to test this [he then ran the code and paused to watch the robot moving] … then left,

left, left then up [as he watched the robot move he articulated the movement he was seeing and

also waved his hand in the air in the direction the robot was turning]”

Based on visualising the robot moving across the world, Kasper realised that before

counting the length of the second corridor, he needed to add Java commands that allowed

the robot to face east. He then copied and pasted the Java commands for counting the

length of the first corridor and edited the gatherer variable’s name so that when the loop

ran it would store the length of the second corridor in the correct variable. Finally, Kasper

used three separate IF-blocks to compare the lengths of the two corridors (see Figure 6.40

(right)). Kasper compiled his code which gave a reached end file of while

parsing syntax error. Kasper fixed his code by adding the missing method close brace.

Kasper ran the supplied unit tests and all the tests failed. He started to read one of the

test messages:

“Corridor zero is the longest expected nine but was ten, it supposes to start from zero”

Kasper fixed his code by initialising the gatherer variables to zero instead of one.

163

Figure 6.40 Kasper’s first and second screen images for comparing the length of two corridors

2. Retrospection:

The following is part of the conversation between the interviewer and Kasper:

Interviewer: “Had you seen this question before?”

Kasper: “Nope”

Interviewer: “Why didn’t you use an IF-ELSE block instead of three IF statements?”

Kasper: “Because this is much simpler”

Interviewer: “Have you solved a question that required you to use IF-ELSE statements before?”

Kasper: “Yes in the test”

Interviewer: “In the test or homework?”

Kasper: “Yes in the test because as I remember there was a condition to use IF-ELSE”

At the end of the session, the interviewer discussed with Kasper about the quality of his

code and gave examples of when using an IF-ELSE IF block is a good idea.

Step1

Step3

Copy

Edited
corridorZeroLength

To

corridorOneLength

Paste

Step2

164

6.4.4. Longest Corridor (Seq1 – Q3)

Encoding

Question Solved

Behaviours Tinkerer

Emotion Indiscernible

Strategies Trial and error

Activities Planning

Tracing Visual debugging and PRINT debugging

Unit test

Time on task 15 minutes 25 seconds

of compilation 4

of execution 3

Intervention Hint scaffolding – provided on request

Timing The second week of the P1 intra-semester break

Important observations with

respect to prior sessions

When solving earlier tasks (see Seq1 – Q1 and Seq1 – Q2), Kasper had

expressed and had been observed having some doubt as to how to

count the length a corridor. It also emerged during the retrospective

interview for this task that Kasper had used IF-ELSE statements but

still found it easier to fall back on several independent IF statements

which were easier for him to understand.

Data

1. Think aloud:

Kasper began by reading the problem and then he verbalised:

“So we make a method that returns an integer and we have to calculate the length of corridors

so one corridor, the world is randomly changing, so we have to calculate the first one first.”

Kasper started by writing the method header. He followed this by initialising a gatherer

variable countLength for counting the length of the first corridor and set its value to

zero. Then he added a WHILE-loop block for counting and moving the robot across the

first corridor. After closing the WHILE-loop block bracket, Kasper added a debugging

PRINT statement to enable him to verify the correctness of the counting of the length of

the first corridor (Figure 6.41(left), step1).

Kasper compiled his code which gave him one error. He easily fixed the syntax error by

adding the missing RETURN statement (Figure 6.41(left), step2). He re-compiled and

ran the supplied unit tests; all the tests failed. He proceeded his debug PRINT statement:

“One, two … ten. Print nine but should be ten. One, two … twelve. Print eleven but should twelve.

One, two… six. Print five but should six, I miss to count one of them.”

Kasper easily updated his code increasing the gatherer variable by the one at the end of

the WHILE-block command and then deleted the debug PRINT (Figure 6.41(left),

steps34).

Kasper continued programming and verbalised (Figure 6.41(left), step5):

165

“These for corridor one, now I need to check if there is another corridor. Once it is get back it is

facing west, make it turn left, left, left. We check if it block or locked. Move, move to next corridor.

Once it is finish this corridor make it face east, so left, left, left. And then count this one [count

the second corridor].”

After a pause, Kasper concluded that he needed to define three gatherer variables, for the

three possible corridors, instead of one —“I think we need three integers”.

It did not occur to him that there might be more than three corridors depending on the

height of the Robot World.

Kasper started to update the name of the first gatherer variable from countLength to

countLengthCorr0 and then he defined countLengthCorr1 and

countLengthCorr2 and set them to zero too. He then copied and pasted the Java

commands for counting the length of the first corridor and renamed the gatherer variable

to count the length of the second corridor. He repeated the same process for counting the

length of the third corridor (Figure 6.41 (right)). This exactly the same process as he had

used in the previous task when trying to find the longest of two corridors (Seq1 Q2).

After a long pause, Kasper verbalised:

“We need to check to store the value of the largest corridor but I have no idea about how to, so

if [pause].”

As he completed the above utterance, he defined the most wanted holder variable

longest after three gatherer variables and set its value to zero. After a long pause,

Kasper changed his mind and he decided to delete the most holder variable definition.

After another pause, he decided to define three IF-blocks and deleted the method’s

RETURN statement. Then he compiled his code and verbalised:

“Missing return statement I need to use the IF-ELSE statement but I have no idea, ah, could you

help me?”

2. Scaffolding:

The interviewer started to explain to Kasper the structure of an IF-ELSE block with

examples (hint - soft scaffolding). As a result of this intervention Kasper was able to fix

his error.

166

Figure 6.41 Kasper’s first and second screen images for the longest corridor

3. Retrospection:

The following is part of the conversation between the interviewer and Kasper:

Interviewer: “When you started solving this question, you didn’t think that there may be four,

five or six corridors?”

Kasper: “Yes”

Interviewer: “What was your problem for solving this question? Did it begin when you started

to compare the length of the three corridors?”

Kasper: “This was the difficult part, but I get it now.”

Interviewer: “Have you seen similar questions using an IF-ELSE statement?”

Kasper: “Yes, last meeting. Now I remembered.”

Step1

Step2

Step3

Step4 - Delete

Step5

Step6 - Update

Step7

Copy

Paste

Step8

Copy

Paste

167

6.4.5. Smallest Stack of Beepers (Seq2 – Q3)

Encoding

Question Solved

Behaviours Tinkerer

Emotion Confused

Strategies Trial and error

Activities Planning

Tracing Visual debugging, Mental tracing , and PRINT debugging

Unit test

Time on task 16 minutes and 46 seconds

of compilation 6

of execution 6

Intervention “General prompt” scaffolding – provided on request

Timing The second week of the P1 intra-semester break

Important observations with

respect to prior sessions

Kasper easily recognised the link between this question and the longest

corridor problem. However, he found it difficult to transfer his

knowledge may be because of the low the quality of the answer code

he wrote for the longest corridor question. In the longest corridor

solution code, Kasper defined three gatherer variables, one variable for

each corridor and then used three separate loops to count and finally

compare the three values of the gatherer variables in order to find the

longest corridor.

Data

1. Think aloud:

Kasper started by writing the method signature and then he verbalised:

“I need to pick up the first [beepers at the first location]”

Instead of recalling the schema for picking up beepers at the first location, Kasper recalled

the schema for moving the robot across the corridor (Figure 6.42 (left)). Kasper ran the

supplied unit tests, and visualised the robot moving. He then started to verbalise while

updating his code (see Figure 6.42 (right), steps12):

“The robot should pick up and count beepers on the way. So we put another while statement to

pick up the items. Then I need variable to count, and initial that to zero.”

Figure 6.42 Kasper’s first and second screen images for the smallest stack of beepers

Step2

A

Step1

Step3

Step4

168

After that he started to read his code and verbalised his plan for the next steps:

“Once we count that, move forwards to count the another one, so ah, while is robot not facing

wall, while item on ground at robot pick up the first one move forwards, and start again, repeated

the loop, after doing that, after picking the second one, should be compare it with the first one,

so I need to define another one, ah [pause].”

After a pause, Kasper defined the most wanted holder variable smallestStack and

set its value to zero. After a long pause, Kasper started verbalising while writing an IF-

block followed by reading and planning the next steps:

“So I will compare it, so if ah [long pause], if smaller stack is smaller than [after writing

smallestStack <, he deleted the line]. [Pause] If count item greater than smallest stack [after

writing >, he change it to <]. If count item smallest than smallest stack, then we make smallest

stack equal to count item and then move forward and do again but we need to set the counter to

zero [pause], if count item is smallest than smallest stack , smallest stack equal count item,

smallest stack will be zero, so, [pause], I think [long pause], so we just assume, so count item is

smaller than smallest stack, smallest stack equal count item, smallest stack is zero, um [pause].”

As shown from the above utterance, Kasper expressed doubt about the correct way for

comparing the gatherer and most holder variables but finally he made his decision as

shown in (see Figure 6.42 (right), step4). As shown from the above utterance and what

he wrote in Figure 6.42 (right), step4 he sometimes verbalised information, and thought

about possible options, that were not subsequently implemented in his code. For example:

“smallest stack will be zero”

At this stage, Kasper began multitasking – updating and reading his writing (Figure

6.43(left)):

“I will make this smallest stack [student updated the variable name used for counting the beepers

from countItem to smallestStack], so if the first one is the smallest, and we get the second

one, count item less than smallest stack, smallest stack equal count item, I suppose the first one

is the smallest stack, ah, then we need something to compare, I think, we have to find out what

the first counter will be like. First, this could be the first count [highlighted the WHILE-block for

counting the beepers using the mouse] and we need to show how to compare with the first one,

and then make that back to zero , and store it somewhere.”

169

Figure 6.43 Kasper’s third and fourth screen images for the smallest stack of beepers

For the second time during the problem solving, Kasper verbalised information that was

not implemented in his code. Kasper’s fragile knowledge of the role of variables and of

the comparison of variables is exemplified here (Figure 6.43(left)). After a pause (60

seconds), he re-read the assignment statement and IF-block he had written, and reasoned

about their correctness:

“Smallest stack equal count item, if count item smaller than smallest stack, smallest stack equal

count item. Smallest stack equal count item, if count item smaller than smallest stack, smallest

stack equal count item. So the number of beepers should store in count item not small stack.”

As a result of the above utterance, Kasper again updated the variable name for counting

the beepers (using countItem instead of smallestStack). Then he ran the supplied

unit tests. Kasper focused on watching the robot moving on the screen and ignored the

unit test messages “Not picked up the last”

After he completed the above utterance, he added the PRINT statement (see Figure 6.43

(right), step8) and re-ran the unit tests. He reasoned about his code’s correctness focusing

only on the result of the PRINT statement and ignoring the unit test messages and robot

scenarios:

“Sixteen, sixteen, [print message for the first scenario]. Fifteen, fifteen [printed message for the

second scenario]. Thirty two, thirty two [printed message for the third scenario]. I forget to set the

counter to zero.”

He then initialised the gatherer variable to zero (Figure 6.43(right), step9) and re-ran the

supplied unit tests. Again Kasper focused only on the output of the print statement:

“Six, six [print message for the first scenario]. Two, two [printed message for the second scenario].

One, one [print message for the third scenario]. I think the problem with print statement.”

Step5 – Update

Step6 – Add

Step7 – Update

Step8 – Add
Step9 – Add

S
te

p
1
0

 –
 M

o
v
e

170

Kasper changed the position of the PRINT statement (Figure 6.43(right), step10). And re-

ran the unit tests verbalising:

“Now, print two different numbers, I’m confused, I need your help.”

2. Scaffolding:

The interviewer gave Kasper a robot image scenario, and a trace table with three columns

headed countItem, smallestStack, and PRINT statement. The number of

beepers at each location was recorded by the interviewer as [2, 4, 1, 3]. The

interviewer used the data in the unit test scenario as an example for tracing (the first four

piles from the second robot scenario). Kasper was asked to complete the trace table.

Figure 6.44 shows what he wrote in the trace table.

Figure 6.44 Trace-table for Kasper’s fourth screen image for the smallest stack of beepers

The following is the conversation between Kasper and the interviewer once the trace table

had been completed:

Kasper: “Ah, same numbers, I’m confused”

Interviewer: “What do you think the problem is?”

Kasper: “I do not know”

Then the interviewer started using the stepwise refinement technique using algorithms

which Kasper had seen and implemented in previous think aloud sessions. The

interviewer firstly asked him to write code to count the number of beepers at the first

location in the corridor and store the result in the most wanted holder variable. Then the

interviewer asked Kasper to extend that code so that it counted the beepers at each of the

remaining stacks across a single corridor and compare the value of gatherer variable with

the most wanted holder variable. Kasper was able to write his solution using a computer,

but this solution contains redundant and unnecessary duplication of commands (see

Figure 6.45).

171

Figure 6.45 Kasper’s final screen image for the smallest stack of beepers

3. Retrospection:

The following is part of the conversation between the interviewer and Kasper:

Interviewer: “Have you seen this question before?”

Kasper: “Yes”

Interviewer: “What was that question that you solved before?”

Kasper: “The biggest corridor”

Interviewer: “Yes that is right”

Interviewer: “Did you try to compare and contrast between what you had seen before and this

question?”

Kasper: “I just remembered I need to count the first one, store the result. Then count and compare

the new value with the old one, then I realised ah there is a problem to set the value of the smallest

to zero.”

At the end of the session, the interviewer gave Kasper feedback about the quality of his

code and how he could further develop it.

172

6.4.6. Shortest Corridor (Seq1 – Q4)

Encoding

Question Not solved

Behaviours Stopper

Emotion Confused

Strategies Trial and error

Activities Planning

Tracing Visual debugging and Hand gestures

Unit test

Time on task 16 minutes and 57 seconds

of compilation 2

of execution 1

Intervention Exact solution – provided on request

Timing Week nine of the P1 course

Important observations with

respect to prior sessions

Kasper had solved a similar isomorphic problem previously (the

longest corridor). In solving the longest corridor task he had found it

difficult to recall relevant prior knowledge. After nine weeks, Kasper

struggled to recall the schema for counting the length of the corridor

and returning back something that he should have had plenty of

experience with – in fact it was difficult to do any programming

without a solid understanding of the robot methods for navigating the

Robot World. His answer code for the longest corridor contained

redundancies and did not provide a generalised solution. This fragile

understanding may have hindered Kasper’s ability to transfer his

knowledge from longest corridor to shortest corridor.

Data

1. Think aloud:

Kasper first read the problem and then verbalised while writing his code:

“I solved this question before, this question looked familiar to me. So return an integer, let us call

it find shortest corridor, so I will make the robot move first. Reach end of the wall, once we do

that we count, get the initial for the first corridor [pause] so [pause], so we will make this um say

integer count equal 1. After move count just first the corridor count, um, I will do the rest”

Kasper did not retrieve a fully formed schema for counting the length of corridor but

instead appears to have retrieved sub-plans and joined those plans. Firstly, he recognized

the need to iterate in order to move the robot forward, then he realised a gatherer variable

was required (see Figure 6.46(left)).

Kasper decided to add another WHILE-block after the first WHILE-block (see Figure

6.46(right), step1). Then he decided to add Java commands inside the first WHILE-block

(see Figure 6.46 (right), step2). Kasper verbalised while continue writing his code and

using his hand waving to the robot direction:

173

Figure 6.46 Kasper’s first and second screen images for the shortest corridor

“If robot facing wall. Turn robot left twice. Then make it move to the other side, while is space

in front of robot clear move back to the initial position [pause] um, that should not counted [long

pause]. Comes there back to the other side, facing the wall, so should end in the loop lets me

finish this. Turn left, left, left.”

Kasper’s fragile knowledge was evident due to the difficulty he experienced when trying

to add java commands that returned the robot back along the corridor. Kasper commented

the last WHILE-block (adding // and //, Figure 6.46 (right), step3) and compiled the

code. He fixed a syntax error by adding a RETURN statement. He recompiled and ran

the supplied unit tests. All the tests failed. Kasper started to visualise the robot moving

across the world focusing on one scenario and ignoring the others. After a pause (62

seconds), he started to update his code (see Figure 6.47 (left)).

Step1

Step2

Step4

Step3 – Add

//

//

174

Figure 6.47 Kasper’s third and fourth screen images for the shortest corridor

After another pause (25 seconds), he verbalised:

“I think, I need two integers. The count one to count the first one, and compare the first one with

the second one, and then store the smaller one and the smallest.”

He proceeded to define the gatherer variable smallest and set its value to one,

uncommented the WHILE-bock and continued writing code inside the WHILE-block in

order to count the length of the second corridor (see Figure 6.47 (right), steps78). After

a pause (61seconds), he verbalised while updating and reading his code (see Figure

6.47(right), steps912):

“I think, I need another variable, count two equal one, and this should be count two plus plus not

smallest. Then, if count two smallest than count one, smallest equal count two, turn left, left, return

back, left, left, left, move to the next corridor. [Pause] um, so count equal count two, and set count

to zero, no, count should equal one not zero”

After another pause (59 seconds), he verbalised:

“I’m confused, I have got now three variables. I need your help.”

At this point Kasper gave up on the task and did not wish to continue.

2. Retrospection:

The following is part of the conversation between the interviewer and Kasper:

Step5 – Delete

Step6 – Add

Step7 Add

Step8 Update

Step9 Add

Step10 – Update count2++ ;

Step11 - Add

Step12 Add

175

Interviewer: “At the beginning of the problem solving, you said, you had solved this question

before, is that right?”

Kasper: “Yes, it looked familiar with me”

Interviewer: “Did you remember, what the requirement was for the question that you solved

before?”

Kasper: “Um, using different worlds.”

Interviewer: “What else?”

Kasper: “The number of corridors changes in this one and the other one as I remember was one,

two and three”

Interviewer: “In both questions the worlds were changing. In the last meeting, I asked you to find

the largest corridor, but today I asked you to find the shortest corridor. By the way, did you

remember the question that you solved before to find the smallest stack of beepers? Did you

remember the algorithm for the smallest?”

Kasper: “Ah, It is at the back off up of my head, but I cannot, I knew what to do.”

Interviewer: “Show me, how to find the smallest stack of beepers. Did you remember the

algorithm or did you forget it?”

Kasper: “I think I forget, but I remember about the corridor, I need to check the first corridor,

store the value and then make a while statement that while check the other corridors and compare

it with first”

Interviewer: “Is this plan that was in your mind?”

Kasper: “Yes”

Interviewer: “Could you write the algorithm for longest corridor?”

He wrote two lines of the algorithm (see Figure 6.48), then he asked for help.

Figure 6.48 Kasper’s doodle for the longest corridor algorithm

3. Scaffolding:

When the interviewer attempted to redirect Kasper and provide assistance, he gave up on

the task and was not receptive to assistance. Before Kasper left the interviewer started to

use a stepwise refinement technique to help explain the code to him. Starting off with

familiar pattern count the length of corridor and storing the result in the gatherer variable

followed by Java commands which allowed the robot’s orientation to face west and then

return back, followed by the program plan for counting the length of n-1-corridor and

comparing integer numbers.

176

6.4.7. Largest Element in a 2D Array (Seq4 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning

Tracing Pen and paper tracing and mental tracing

Unit test

Time on task 7 minutes and 20 seconds

of compilation 3

of execution 3

Intervention 1. Clarify scaffolding – provided on request

2. Hint scaffolding – provided on request

Timing Week nine of the P2 course

Important observations with

respect to prior sessions
 Kasper did not encounter any significant difficulties solving the

smallest element in a one-dimensional array, far transfer problem

(Appendix A).

 Kasper, for solving the first question in this sequence, requested

he use a paper that contains the syntax of a two-dimensional array

(Appendix A).

Data

1. Think aloud:

Kasper started by declaring a method header, then after a pause (34 second), he asked for

help – he needed the task requirements clarified.

2. Scaffolding:

Kasper: “The question asked for the index or the value?”

Interviewer: “Your program should return the largest element in a two-dimensional array.”

3. Think aloud:

After a pause (25 seconds), Kasper started to verbalise while writing his solution line by

line in sequential order (Figure 6.49(left)):

“We take the first and store it. Int [integer] first equal array two d zero zero [arr2d [0][0]]

and we compare it with the rest. We need two FOR-loops. Ah, then compare array two d x y

[array2d[x][y]] greater than first. First equal array two d x y [array2d[x][y]]”

Kasper read the loop structure he had written, and reasoned about its correction:

“Fix the row and change the column, then each time compare each element with the first. If yes

store the new one into the first else do nothing. Ah, I forget to return first.”

177

Figure 6.49 Kasper’s first and second screen images for the largest element in a 2D array

After the above utterance, he added a RETURN Java command. He then ran the supplied

unit tests and one out of three tests failed (the test failed – int[][] {{0,1,2,3,-

4}, {-2,-5,-100,8,9}}):

“The problem with the last test. Um, I need your help.”

Kasper asked directly for help without even trying to read or understand the unit test

messages.

4. Scaffolding:

Interviewer: “How many tests you have got?”

Kasper: “Three”

Interviewer: “How many tests passed?”

Kasper: “Two”

Interviewer: “Let us trace you code using the supplied unit tests”

The interviewer gave Kasper three two-dimensional arrays similar to the arrays in the

supplied unit tests, and a trace table with three columns headed x, y and first. The

interviewer asked Kasper to trace his code. Figure 6.50 shows what Kasper wrote in the

three trace tables. Kasper could not discover his mistake.

Figure 6.50 Trace-tables for Kasper’s code for the largest element in a 2D array

178

The interviewer followed the same procedures used by Kasper in previous think aloud

sessions (i.e. using the PRINT command) to test the correctness of his code. Therefore,

Kasper was asked to add a PRINT Java command. Kasper updated his code as shown in

(Figure 6.49 (right)) and verbalised:

“Not print all the element [long pause], why?”

The interviewer redirected Kasper to open his lecture notes to check the syntax of the

nested FOR-loop and two-dimensional arrays. However, he was unable to fix his code.

Finally, he solved the question after the interviewer intervened with syntactic help (Hint

scaffold — using for (int y = 0; y <arr2d[x].length; y++) instead of

for (int y = 0; y <arr2d.length; y++)).

5. Retrospection:

The following is part of the conversation between the interviewer and Kasper:

Interviewer: “Had you seen this question before?”

Kasper: “Yes, in programming one. Using one-dimensional array”

The interviewer reviewed the video tape with Kasper. The interviewer focused on how

Kasper could avoid problems resulting from the lack of focus on all the unit tests

messages before updating the code.

6.4.8. Column in a 2D Which Contains a Smallest Number (Seq4 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Familiar first

Activities Planning

Tracing

Unit test

Time on task 7 minutes and 31 seconds

of compilation 1

of execution 1

Intervention None

Timing Week nine of the P2 course

Important observations with

respect to prior sessions

Kasper needed two types of scaffolding during solving the largest

element in a two-dimensional array.

Data

1. Think aloud:

Kasper started to write his solution shown in 6.51(left). Then he verbalised:

“What I should return? [Pause] the column”

179

Figure 6.51 Kasper’s first and second screen images for column in a 2D array which contains a

smallest number

He commenced updating his code (see 6.51(right)). Finally he ran the unit tests to check

his solution.

2. Retrospection:

The following is part of the conversation between the interviewer and Kasper:

Interviewer: “Had you seen this question before?”

Kasper: “No”

Interviewer: “Have you seen a question similar to it?”

Kasper: “Yes, the last one [Seq4 – Q2]”

Interviewer: “Did you remember that in the one-dimensional array task, I asked you to find the

index of largest element in a one-dimensional array or had you forgotten it?”

Kasper: “I was not thinking about it. Because this question is using two- dimensional array”

Interviewer: “Did you think this question is easy or difficult?”

Kasper: “It is an easy question because of the previous question, if you give me this question first

it could be difficult for me to solve it.”

6.5. Matthew’s Think Aloud Sessions

6.5.1. Summary

Matthew’s programming ability was not great and his performance placed him in the third

quartile of P1 and in the fourth quartile in P2. The think aloud data revealed that many

times during the think aloud sessions for P1 and P2 he became a stopper and this seemed

linked to of his fragile knowledge of basic programming commands and syntax – he was

not at a level to truly understand the semantics. Matthew had difficulty mastering even

the most basic aspects of programming and therefore his knowledge did not develop

significantly during his time on this study. He lacked motivation and application. It was

the norm for him to postpone meetings and he did not practice his programming. He failed

to plan his solutions and did not make use of tools which might have scaffolded his code

writing. When faced with a bug or issue in his code he almost immediately asked for help

rather than try and solve the problem himself. When the researcher tried to encourage him

Step1

Step2

Step3

180

to make use of skills and techniques, such as tracing and debugging that were taught to

him during his study, to solve an issue independently he resisted and often refused to

continue.

6.5.2. Counting the Number of Beepers in a Single Corridor (Seq2 – Q1)

Encoding

Question Not solved

Behaviours Stopper

Emotion Indiscernible

Strategies Trial and error

Activities Planning

Tracing Mental tracing

Unit test Read one of the supplied unit test message

Time on task 14 minutes and 35 seconds

of compilation 2

of execution 2

Intervention Exact solution – interviewer intervention

Timing Week six of the P1 course

Important observations with

respect to prior sessions

Matthew solved this question straight after solving Seq1 – Q1.

Matthew easily solved Seq1 – Q1 despite being one of the poorer

performing students.

Data

1. Think aloud:

Matthew began by reading the problem and immediately started to verbalise and write

his solution step by step as shown in Figure 6.52:

“I will apply the variable beeper, because we do not count any beeper yet, so the beeper ah will

be zero. Beeper equal zero and [pause]. I will write WHILE loop, while is item on the ground. I

will count the beeper at that location, ah, beeper plus plus then I will move the robot forwards”

Figure 6.52 Matthew’s first screen image for counting for counting all beepers

Matthew recalled a plan for counting how many cells in a corridor existed with beepers

and to stop when the robot encountered the first location with no beepers (this plan that

was less relevant that others he had been exposed to – see Figure 6.52). After a short

pause, Matthew verbalised:

“Ah but this one, ah, robot move forwards, so, ah, this one only, move robot one location, and

this will stop when there is no beeper at location, ah, I will need to update my code [pause]

because the robot will stop. I think, I need to change the WHILE to IF-statement.”

181

He then updated the WHILE-statement to an IF-statement as shown in Figure 6.53(left),

step1. After a long pause, he decided to add an ELSE-block as shown in Figure 6.53(left),

step2. After a short pause, he decided to add a WHILE-block before the IF-ELSE block

as shown in Figure 6.53(left), step3.

Figure 6.53 Matthew’s second and third screen images for counting all beepers

Matthew continued writing his solution copying and pasting the IF-ELSE block after the

gatherer variable declaration as shown in Figure 6.53(right), step4. Matthew appears to

have very fragile knowledge of the basic programming constructs and this is reflected in

the chaotic layout of his code and lack of adherence to coding standards. He also is not

familiar enough with the algorithm for counting beepers along a single corridor and this

seems to impede his ability to construct a solution here.

Matthew ran the supplied unit tests but all the tests failed. Therefore, he read one of the

supplied unit test message and verbalised:

“Output should be seven but was no beepers”

Matthew added a debugging PRINT statement to the end of the method (Figure

6.53(right), step5). He re-ran the supplied unit tests, one test failed, he read the test

message and verbalised:

“Output should be seven but was four”

From this point that Matthew started to adopt a trial and error strategy to update his code.

The interviewer offered to help Matthew after he had spent about seven minutes engaged

in randomly changing his code and it seemed that he had little hope of solving the question

(Figure 6.54, Matthew’s final code).

Step1- Update

Step2 - Add

Step3A - Add

Step3B - Add

Step4

Copy

Paste

Step5

182

Figure 6.54 Matthew’s fourth screen image for counting all beepers

2. Scaffolding:

The interviewer redirected Matthew to write an algorithm, using smart-pen and paper,

that allowed the robot to pick up all the beepers in a corridor (“General prompt”

scaffolding). Matthew composed the algorithm shown in Figure 6.55. When the

interviewer attempted to redirect Matthew to trace his code he gave up and asked for help.

Hence, the interviewer started to use a stepwise refinement technique to explain the code

to Matthew. The interviewer started by explaining the algorithm and code for picking up

all the beepers from a single stack, then counting the beepers from each stack, followed

by the programming code for pick up all the beepers and counting the beepers in a single

corridor. The session was drawn to a conclusion

Figure 6.55 Matthew’s doodle for counting all beepers

183

6.5.3. Comparing the Length of Two Corridors (Seq1 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise refinement

Activities Planning

Tracing Mental tracing

Unit test Read the unit test message

Time on task He took 7 minutes and 17 seconds to solve the task.

of compilation 1

of execution 1

Intervention None

Timing Week seven of the P1 course

Important observations with

respect to prior sessions

Matthew did not encounter any significant difficulties in solving (Seq1

– Q1) in spite of the fact that he was among the bottom participants.

Data

Think aloud:

Matthew began the problem solving by writing a Java command that defined the gatherer

variable. He hesitated about what the initial value of the gatherer variable should be:

“Robot started at location zero, zero, I need to write a code to measure corridor one, the first I

have to apply variable for the corridor. Because true, are are, but the first corridor not computed,

yes, and the robot started from the first position”.

He then added a line by line Java commands that allows the robot to move, count the

length of a single corridor, and return back without any evidence that he read or traced

his code, as shown in Figure 6.56 (step1 and step2) (left). He then read the last WHILE-

loop, and reasoned about the suitable Java commands to recall:

“Now the robot in location zero, zero, it is facing west, so I have to turn the robot left three times

for facing the west no facing the south”.

After the above utterance, He continued to add a line by line Java commands that allowed

the robot to turn north Figure 6.56 (step3) (left). He then verbalised:

“I think I need to use the same code to measure the corridor one”.

After the above utterance, he defined a second gatherer variable and copied the

programming plan that counted the length of the first corridor, and then he renamed the

gatherer variable to count the length of the second corridor as shown in Figure 6.56 (step1

and step2) (right). Finally, Matthew used a nested IF-ELSE block to compare the lengths

of two corridors as shown in Figure 6.56 (step3) (right). Matthew ran his code and all

tests passed from the first trial.

184

Figure 6.56 Matthew’s first and second screen images for comparing the length of two corridors

6.5.4. Longest Corridor (Seq1 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing and visual debugging

Unit test Read the unit test message

Time on task 15 minutes and 17 seconds

of compilation 7

of execution 4

Intervention 1. Hint scaffolding – provided on request

2. “General prompt” scaffolding – provided on request

Timing During the intra-semester break of the P1 course after week six.
Important observations with

respect to prior sessions

Matthew had solved the comparing the length of two corridors task

(see Appendix A) without any difficulty.

Data

1. Think aloud:

Matthew started by adding a method header followed by an incorrect variable declaration

int length()=0. After writing this line of code, he verbalised while writing the

subsequent WHILE-loop block:

“Because the robot start at location (0, 0) facing east, I have not to change the robot direction.

First, ah, I will write a code to move robot forwards. I need to count the first also, so this should

be [pause] ah one.”

After the above utterance, Matthew updated the value of the gatherer variable from zero

to one (see Figure 6.57 (left), step3). Then, he wrote a closed bracket followed by a line

by line block of commands (Figure 6.57 (left), step4) intended to enable the robot to face

west. He did not discover that this code was incorrect until he tested his code and

Step1

Step2

Step3

Step1

Step2

Copy

Paste

Step3

185

visualised the robot moving. After a short pause, Matthew added a WHILE-block to

return the robot to location (0, 0) as shown in Figure 6.57 (left), step5.

Figure 6.57 Matthew’s first and second screen images for the longest corridor

Matthew re-read the last WHILE-block:

“Now the robot back to location (0, 0)”

After a long pause he verbalised while writing his code (see Figure 6.57 (left), step6):

“So I should turn the robot because it facing west now, it should be turned three times to allow

the robot facing north. For ah this one, I will move the robot forwards two times”

After yet another pause, he verbalised:

“Now, um, I need to start another variable so to start measure one and to compare with the

second one, so for his one”

He then defined the most wanted holder variable longestCorr immediately after the

gather variable definition. After a short pause, he finally released he had made a mistake

and that the gatherer variable name should not ended with () and he corrected the

gatherer variable definition and changed its name. He then assigned the value of the

gatherer variable to the most wanted holder variable as shown in see Figure 6.57 (right),

steps79.

After a short pause, Matthew continued adding line by line Java commands as shown in

Figure 6.57 (right), step10. After a long pause, Mathew verbalised:

Step1A

Step2

Step3 – Update 0 1

Step4

Step5

Step1B

Step6

Step7

Step8 – Update

Old – length()

Step9

Step1

0

Step11 – Update

 while

Step12 – Update

longcorr++

186

“So which one try to use the while loop to the second corridor, is the less corridor it is possible

so I think I will start the while loop at the face the robot to the ah north and the south one, I think

I will need while”

After the above utterance, he changed the IF-statement to the WHILE-statement as shown

in Figure 6.57 (right), step11.

Matthew started to compile his code and fix the error related to using the wrong name for

the gatherer variable longest rather than longcorr (see Figure 6.57 (right), step12).

His code would not compile and he failed to identify the problem – the method needed a

return statement. He asked for help.

2. Scaffolding:

The interviewer redirected Matthew to read the question again

Interviewer: “Read the question again. What should the method return?”

Matthew: “Return the longest corridor”

Interviewer: “Yep, the method should return the length of the longest corridor.”

After a long pause, Matthew decided to add the PRINT statement as the last Java

command in his code (see Figure 6.58, step13). The function of that PRINT statement

was to print the value of the holder variable of course this did not fix the problem:

Interviewer: “This method should return the longest corridor, so that means it should return an

integer, do you know how write a return?”

Matthew: “No”

Interviewer: “This method should return an integer value, is that right?”

Matthew: “Yep”

Interviewer: “How did you define your method at the beginning?”

Matthew: “int [integer]”

Interviewer: “So you need to return the length of longest corridor which is an integer, can you

do that?”

Matthew: “I do not know”

The interviewer explained to Matthew method signatures and return types and how to

write a RETURN statement using a different example (Hint scaffolding).

187

3. Think aloud:

Matthew ran the supplied unit tests. He discovered that there was a mistake in the robot’s

orientation. After updating his code as shown in Figure 6.58, step15, Matthew ran the

supplied unit tests for the second time. But all tests failed, therefore he started directly

updating his code by adding a line by line Java commands without any evidence that he

had reread or traced his code as shown in Figure 6.58, step16.

Figure 6.58 Matthew’s third screen image for the longest corridor

When Matthew ran the supplied unit tests for the third time, two out of three tests failed,

and therefore he started to read the unit test messages and reasoned about correction:

“Expected ten but was sixteen. Expected nine but was fourteen.”

After the above utterance, Matthew asked directly for help.

4. Scaffolding:

The interviewer redirected Matthew to count the length of the first and second corridor

for the second and third scenarios (“General prompt” scaffolding):

“Then length of the first corridor is ten while the second is seven. The length for the first is six

and the length for nine. Oh, I need to set the counter after counting the length of the first corridor”

Matthew then updated his code as shown in Figure 6.58, step17.

Step13

Step14

Step14 Delete

Step16

Step17

188

5. Retrospection:

In the retrospective interview, Matthew confirmed that he had neither solved similar

questions, nor had he solved homework assignments related to using methods and writing

with a return value. During the retrospective interview; the interviewer focused on the

importance of reading and interpreting unit test messages.

6.5.5. Smallest Stack of Beepers (Seq2 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Pen and paper tracing

Unit test

Time on task 16 minutes and 15 seconds

of compilation

of execution

Intervention 1. “General prompt” scaffolding – provided on request

2. “General prompt” scaffolding – provided on request

Timing During the intra-semester break of the P1 course after week six.
Important observations with

respect to prior sessions

When solving the longest corridor task Matthew could not write code

to return a value in a method.

Data

1. Think aloud:

Matthew began by reading the problem and immediately started to verbalise and write

his solution as shown in Figure 6.59 (left), step1(A &B):

“Int [integer] find smallest, first I will count, ah. I will initialise variable, so integer count equal

zero, integer smallest count [smallestCount] equal to zero [pause]. I think I just need smallest

count [smallestCount]. First I need to count the first stack of beeper. Now I will use WHILE.

While pick up beeper and increment. Ah, I need to count the other stacks. [Pause] then I will store

the variable count to the smaller count. Ah, [pause] now I will use WHILE. Move robot forwards.”

He then copy-pasted the upper While-block as shown in Figure 6.59 (left), step2. After

that Matthew verbalised continued writing his code line by line Figure 6.59 (left), step3:

“Then I need to use if for this one, if ah [pause] count [pause] smaller than smallest Count

[smallestCount]. So at the end we will return the smaller count.”

Matthew ran the supplied unit tests, two of three tests failed. Matthew asked directly for

help without attempting to solve the problem himself he actually didn’t even go as far as

reading the unit tests output.

189

Figure 6.59 Matthew’s first and second screen images for the smallest stack of beepers

2. Scaffolding:

The interviewer asked Matthew to desk check his code, giving him a corridor of length

three, and each corridor had different stack of beepers. The interviewer used the data in

the unit test scenario as an example for tracing (the first three piles from the first robot

scenario). Mathew traced to work out how his code should work (see Figure 6.60).

Figure 6.60 Matthew’s first doodle to trace the small stack of beepers algorithm

3. Think aloud:

“I think, I need to set count to zero”

Matthew updated his code as shown in Figure 6.59 (right), step4. Mathew re-ran the

supplied unit tests and two out of three supplied unit tests failed for the second time.

Matthew asked directly for help for the second time even without trying to read the

supplied unit test messages.

4. Scaffolding:

The interviewer redirected Matthew for the second time to trace his code using the

example shown in Figure 6.60, Matthew’s trace is shown in Figure 6.61.

Figure 6.61 Matthew’s second doodle to trace the small stack of beepers algorithm

Step1A

Step2

Copy

Paste

Step1B

Step3

Step4

Step5

190

5. Think aloud:

Matthew started directly to update his code as shown in Figure 6.59 (right), step5. Then

Matthew ran the supplied unit tests and all the tests passed.

6.5.6. Shortest Corridor (Seq1 – Q4)

Encoding

Question Not solved

Behaviours Stopper

Emotion Indiscernible

Strategies Trial and error

Activities Planning

Tracing

Unit test

Time on task 18 minutes and 14 seconds

of compilation 1

of execution 0

Intervention Exact solution - provided on request

Timing Week nine of the P1 course

Important observations with

respect to prior sessions

Matthew could not solve the longest corridor problem and required

intervention and teaching related to returning values from a methods.

Consequently, in the same meeting session Matthew was then able to

apply what he had learnt to solve the smallest stack of beepers task.

Data

1. Think aloud:

Matthew’s first plan involved using methods. He began by writing a method signature for

counting the length of the corridor with a void return type. Matthew did not retrieve a

fully formed schema for counting the length of corridor but instead appears to have

retrieved sub-plans and joined those plans as shown in Figure 6.62 (left), steps14. The

way Matthew wrote his code that indicates his fragile knowledge of methods that return

values, in every case his methods had no return value.

He added commands to return the robot to its starting position and changing the robot’s

orientation to face north ready to move to a second corridor, as shown in Figure 6.62

(left), step 5. After a short pause, Matthew verbalised:

“I need to use another method, change corridor”

After the above utterance, he wrote another method which moved the robot to the next

corridor (Figure 6.62 (left), step6).

After a short pause, Matthew verbalised:

“So after that I will us a method to find shortest corridor, so I will use void”

191

He then started to write a third method which should have returned the length of the

shortest corridor (Figure 6.62 (left), step7) but had a void return type and no RETURN-

statement.

Figure 6.62 Matthew’s first and second screen images for the shortest corridor

After a long pause, Matthew started to edit the method name count() to

countSquare() throughout his code.

After yet another long pause, he continue updating and writing the findShortCorr()

method as shown in Figure 6.62 (right). As indicated by the code produced Matthew not

only has difficulty with writing methods but also finds it hard to understand the

differences between local and global variables.

Matthew compiled his code for the first time. He struggled to fix the errors in his code

and resorted to a trial and error approach to generating his code. After 15 minutes,

randomly changing his code without thinking aloud, he asked for help.

Step1A

Step1B

Step3

Step4

Step6

Step5

Step7

Step8 – Update

Step9 – Update

Step10 – Add

Step11– Add

Step2

192

2. Scaffolding:

When the interviewer attempted to redirect Matthew and provide assistance, he gave up

on the task and was not receptive to assistance. The interviewer tried to use a stepwise

refinement technique to explain the code to him. The interviewer started with counting

the length of corridor program, then followed with examining code for comparing two

integer numbers. Programming plans that allowed the robot to move to the next corridor,

and finally repeating the process of moving, counting, and comparing n-1times were

discussed.

3. Retrospection:

In the retrospective interview, Matthew confirmed that he had neither tried to practise

solving the questions given to him in the think aloud sessions, nor had he undertaken the

homework assignment related to using and writing methods with RETURN statements.

6.5.7. Smallest Element in a 1D Array (Seq3 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Pen and paper tracing

Unit test

Time on task 5 minutes and 14 seconds

of compilation 4

of execution 3

Intervention 1. “General prompt” scaffolding – provided on request

2. “General prompt” scaffolding – provided on request

Timing Week eleven of the P1 course
Important observations with

respect to prior sessions

Matthew had difficulty solving the previous problems and had

developed a pattern of depending solely on the interviewer’s

assistance.

Data

1. Scaffolding:

Matthew expressed doubt about being able to solve any question that involved one-

dimensional arrays even after the interviewer had revisited the one-dimensional array

lecture given to him in week eight. In response, the interviewer asked Matthew to make

up any question using a one-dimensional that he thought he could answer successfully

and then write the solution using smart-pen and paper. Matthew elected to solve the

question that required him to print all the integers stored in a one-dimensional array

(Figure 6.63).

193

Figure 6.63 Matthew’s code to print all the elements of a 1D array

Based on his code, the interviewer then asked Matthew to try and start with this code in

order to build a solution for the smallest element question.

2. Think aloud:

Matthew started by writing the method header and then the FOR-loop statement which

he had written in Figure 6.63 using the stepper variable i. After a short pause, he decided

to define a most wanted holder variable smallestNum before the FOR-statement and

set its value to zero. Inside the FOR-block, Matthew added a line which set

smallestNum to be the current index (the value of the loop’s stepper variable i). After

a long pause, he wrote an IF-statement which incorrectly checked if the stepper variable

was less that the most wanted holder variable’s value. Finally he added a RETURN

statement to return the smallest number (Figure 6.64 (left)). Matthew ran the supplied

unit tests, all the tests failed. He directly asked for help without trying to read any of the

supplied unit test messages.

Figure 6.64 Matthew’s first and second screen images for the smallest element in a 1D array

3. Scaffolding:

The interviewer gave Matthew a one-dimensional array similar to the array in the supplied

unit tests that consisted of positive numbers {2, 9, 1} and a trace table with three columns

headed smallestNum, i, and num[i]. The interviewer asked Matthew to trace

through his code using this test data. Figure 6.65 shows what Matthew wrote in the trace

table. Matthew was able discover independently what his mistakes were and updated the

code as shown in Figure 6.64 (right). Matthew compiled his code which generated a

syntax error – illegal start of expression. Matthew correct his code updating int

smallestNum=[0] to int smallestNum=num[0].

Step1A

Step1B

Step2

Step3

Step4

Step5

Step6

Step8 – Update

Step7 – Update

Step9 – Update

194

Figure 6.65 Trace-table for Matthew’s code for the smallest element in a 1D array

4. Retrospection:

The following is part of the conversation between the interviewer and Matthew:

Interviewer: “How would you normally fix the errors in your code if the unit tests have failed?

Do you try to read the unit test messages or trace your code?”

Matthew: “I will call my friend”

6.6. Summary

This chapter focused on the think aloud transcriptions, the encoding and a preliminary

analysis of the code writing of four participants (Andre, Luke, Kasper, and Matthew).

The next chapter discusses various themes arising from the participants’ verbal protocols

in light of the literature on the cognitive theories and examines factors that influence

novice programmers learning to program within the structure of these theories.

195

Chapter 7. Theory of Learning and Learning to program

7.1. Introduction

In this chapter common patterns of learning, which have been extracted from the

observations of participants’ programming which are detailed in Chapter 6, are explored.

The aim of this chapter is to link these observations to the cognitive theories (which were

discussed in Chapter 2) in a way that provides a reasonable explanation about learning to

program, and about the extent to which these theories fall short as an explanation of

cognitive development in the programming domain and in identifying why novice

programmers are having difficulties in learning to program.

7.2. Piaget and Neo-Piagetian Theories

Piagetian and neo-Piagetian theories offer two components that could have potential for

providing insight into the reasoning used by the novice computer programmers studied

during this research: a stage theory and proposal regarding the way in which concepts are

formed and modified.

The stage theory contains two stages that are of particular relevance to learning to

program by the young adults in this study: concrete operations and formal operations.

Like the knowledge domains of mathematics and the sciences, computer programming

requires hypothetical reasoning which is a feature of formal operational thought. It is

possible for students to engage successfully in solving arithmetic or geometric problems,

that can be represented by physical objects or diagrams, by using concrete operational

reasoning but formal operational thinking must be used to solve algebraic or geometric

problems that demand hypothetical reasoning. Reasoning at a preoperational level cannot

be used to develop even the most basic concepts in these fields such as conservation of

number or classification of objects into sets.

It would be possible for computer programming students to use concrete operational

reasoning to develop some of the basic concepts used to write a program, such as concepts

of number, order and classification but most computer programming tasks are complex

and also require formal operational thinking. Students not able to think in a formal

operational way would not be able to write a program to perform these tasks except by

resorting to a trial and error approach. Several students exhibited trial and error

approaches to solving the problems, among these was Kasper. When Kasper tried to solve

the first question in sequence one the first time he ran the program the unit tests failed.

Kasper identified where he thought the problem might be and narrowed the issue down

196

to a couple of lines of code. He proceeded to switch the lines of code around in a random

trial and error process, running the program each time he reorganised the lines of code.

Eventually he managed to solve the problem but reaching the solution was a matter of

luck rather than understanding.

Formal operational logic is necessary for solving the programming tasks set in courses

for novice programmers. However, research has shown that people use more than one

stage and move backwards and forwards through stages as the knowledge domain and the

particular problems they face change. The Piagetian notions of horizontal and vertical

décalage describe this feature but do not explain why or under what circumstances it

occurs. This means that although it is highly probable that the students studied can apply

formal operational logic to solve some problems in some domains they are also likely to

revert to more primitive forms of reasoning at other times. The use of Piagetian stages to

label the level of reasoning used by a student trying to solve a particular programming

problem would provide little insight into the way in which students learn to program and

so has not been attempted here.

The Piagetian notions of schema development (equilibration, assimilation and

accommodation) appear to have more potential for providing insight into how students

learn to program. The concepts of equilibrium and disequilibrium, and the process of

equilibration describe possible mental states that cause the learning process of

accommodation to occur. Thus when disequilibrium is present (i.e. when new information

cannot be assimilated into existing schemas) it is assumed that there is a mental tension

caused by a lack of fit between existing schemas and observed events or problems to be

solved and that this is the motivation for the person to modify schemas or develop new

schemas and thereby achieve equilibrium. Neither the states of disequilibrium and

equilibrium nor the process of adaptation can be measured directly. However, it is

possible that evidence of these could be found within the programming behaviour and

think aloud responses of the participants.

There was certainly evidence that some of the participants had a great deal of difficulty

when faced with some of the programming tasks provided. They could not simply expand

existing schemas which had been learned through previously encountering very similar

tasks and thereby reach a correct solution, i.e. a working program that correctly fulfilled

the requirements of the task. In Piagetian terms they could be said to have experienced

disequilibrium. Unfortunately, for the less able participants this state of disequilibrium

often generated a sense of frustration and defeat. They were often overwhelmed by the

197

task or had no expectation that they would be able to find a resolution to the programing

problem and simply appealed for help or gave up. They were unable to modify an existing

schema or develop a new schema that would enable them to complete the task. They were

unable to use accommodation to restore equilibrium. For example, when Luke tried to

solve the longest corridor task (Seq1 – Q3) he first assumed that he needed to define three

input parameters - one for each corridor — “…I need to define three variables, one for

each corridor”. Then he identified that there was an unknown number of interconnected

corridors — “It is gonna be different because there is a different number of corridors

each time, so I’m going to stick with one [one variable]”. Therefore, he altered the way

that he proposed to solve the question in response to the new information, he wrote pieces

of code which solved sub-problems of moving the robot across a single corridor, counting

the length of the corridor, and comparing two numbers. He had used these pieces of code

to solve earlier tasks in the same sequence. But he did not combine them correctly in order

to build a program that allowed a robot to move around its world and count the length of

the longest corridor. Therefore, he began to generate his solution through a trial and error

process. Finally, he asked for help. As another example, when Luke solved the shortest

corridor (Seq1 – Q4), he wrote two methods to perform the basic robot operations, such

as turning the robot right and turning the robot around. Then he wrote the main method.

Firstly he merged the code for two different schemas or sub-problems, namely the

programming plans for moving the robot across a single corridor, and counting the length

of the corridor and storing its value into the most wanted holder variable. Directly

following this code he then added code that counted the length of each remaining corridor

checking using a loop. Each iteration he checked if the length of the corridor was shorter

than that which was stored in the most wanted holder variable. If it was shorter, then the

most wanted holder variable was set to be the current corridor’s length. To solve this

question, Luke retrieved his existing schema for counting the length of the corridor but it

was flawed. He had missed the subtlety of having to start the counter at 1 (to allow for

the robot to sit in the first square) rather than 0. Luke was unable to fix the error in his

code even when he read the unit test messages. After a long pause, Luke felt that he had

reached a dead-end, and was unable to progress independently. He eventually asked for

help. In the retrospection interview Luke said “I’m still confused between counting the

beepers and length of corridor”, this suggests that he was in a state of disequilibrium.

Although disequilibrium may be a useful concept to describe the state of mind of a student

prior to the adaptation process of accommodation it would seem that accommodation does

not necessarily occur. These participants must find some other way of managing the state

198

of disequilibrium. It is quite possible that some participants have experienced failure so

often that they learned to minimize the sense of disequilibrium and perhaps do not have

a strong sense of expectation that they are capable of completing programming tasks or

solving programming problems. For example, Andre’s lack of prior knowledge led to a

pattern of continual error (i.e. faulty schema for comparing integer numbers to store the

largest or smallest element — making a pairwise comparison). Andre’s think aloud

sessions for the longest corridor (Seq1 – Q3), the shortest corridor (Seq1 – Q4), the

smallest element in a one-dimensional array (Seq3 – Q2), and the largest element in a

two-dimensional array (Seq4 – Q2) all contain examples of the application of this faulty

schema. During these meeting sessions, the interviewer gave Andre information on the

correct algorithm many times but he was unable to take advantage of this. Disequilibrium

may be a necessary condition for accommodation of schemas but is not a sufficient

condition.

Some participants showed evidence of accommodation to develop new schemas.

Typically, the process of accommodation occurred when they were faced with larger

problem which consisted of recognisable subcomponents for which they had suitable

existing schema. The accommodation process consisted of restructuring and combining

these sub-schemas to form a new schema. For example, Luke showed evidence of

accommodation of schema when writing code to check whether or not beeper stacks were

sorted in ascending order by size of the stack (Seq2 – Q4). He started by writing code that

he had used to solve an earlier task for counting the number of beepers in each stack along

a corridor (Seq2 – Q2). Luke then realised that he needed to know the length of the

corridor in order to be able to create a one-dimensional array. Doing this would enable

him to store a count of the number of beepers in each stack for each square in the corridor

— “Let me count the length. I know how to do it” — in turn this allowed him to check

whether or not the stacks were sorted. Once he had the array of stack sizes, he used his

existing schema for checking if the elements in an array were sorted. Luke had already

encountered the task of checking for descending (Seq3 – Q1) and ascending order in the

P1 course. He added the code to check the order of the elements in the array to the end of

the method. It was clear that he recalled all three schemas one by one as he worked on a

solution and that he was reorganising and combining these existing cognitive schemas to

solve this new problem. Also, Luke showed evidence of accommodation of schema when

writing code for the counting smallest stack of beepers (Seq2 – Q3). He started by

merging two pieces of code which he had used before to solve earlier problems; these

code schemas were for counting the number of beepers in each stack along a single

199

corridor (Seq2 – Q2) and for finding the lowest number from a sequence of numbers

inputted from the command line (a completed homework assignment). However, he failed

to notice that during writing he had forgotten to pick up and compare the beepers at the

last location. On running his code, he recognised his mistake and from there started to

update his code accordingly. We conclude from this that Luke could not only retrieve the

two schemas required to solve the problem but was also able to merge and tailor his

schemas. In order to do this he is likely to have restructured, i.e. accommodated, his

existing cognitive structures. Moreover, because he had not previously seen a problem

like this he could not have already formed such a knowledge structure.

As another example of accommodation, Andre attempted to write a program to calculate

the highest student mark in a collection of Student objects (Seq5 – Q1). To solve this

problem, Andre started by writing a FOR-loop. The function of the FOR-loop was to

iterate for all the elements (Student objects) stored in an ArrayList called “Student”. Then

he verbalized “… 1D array, and with this array I can …find the highest”. Andre appears

to have related finding the largest item in a one-dimensional array to finding the highest

student mark from a list of student objects. However, he has at this stage written code to

find the smallest element in a one-dimensional array, iterate over an ArrayList of objects

using a FOR-loop, and add, get, set and remove elements in an ArrayList. When he started

writing the code he first wrote a FOR-loop statement to iterate through elements in an

ArrayList. Then he set the gather variable which was part of his schema for finding the

smallest item. Then he wrote the code for checking for student with the highest mark and

updating the gather variable. Based on Andres think aloud and sequence when writing his

code it seems that he restructured his existing schema for finding the smallest element in

an array to write this “checking step”. Andres existing mental schema for a one-

dimensional array had to be modified in order to accommodate the concept of an

ArrayList.

Some of the concepts used in the process of learning programing and in constructing a

computer program may well be gained through assimilation to schemas previously

learned in other contexts. For example, an existing schema for objects may be expanded

to accommodate the idea of objects within the concept of object oriented programming.

Some instances of assimilation were found during the analysis of the data collected from

the participants in this study. For example, Andre showed evidence of assimilation of

schemas when writing code to check whether or not the one-dimensional array elements

were sorted in descending order (Seq3 – Q1). He started by verbalizing that this question

200

was similar to checking whether or not the elements were sorted in ascending order

(homework assignment) — “ … if it sorted ascending, ah, if first place smaller than

second one, second one is smaller than third one, ah, this time descending not ascending,

the numbers are arranged from the largest to the smallest”. After this, he started to write

code that he had used to solve an earlier task (homework assignment – whether or not the

one-dimensional array elements were sorted ascending) he adapted his existing schema

by simply replacing the less than relational operator with the greater than operator. It was

clear that he was able to match the description of the target program with the source

program (existing mental schema) and make one minor change to the source structure to

produce a correct solution. Kasper showed evidence of assimilation of schema when

writing code for finding the column in a two-dimensional array which contained the

smallest number task (Seq4 – Q3). For solving this question, Kasper first focused on

writing the code that he had used to solve an earlier task for finding the largest element

in a two-dimensional array (Seq4 – Q2), making only one minor change to the source

structure to count the smallest element instead of the largest element. Then Kasper refined

his solution by adding new Java commands to solve the programming task.

The focus of both Piagetian and neo-Piagetian theorists on defining and gathering

evidence about cognitive stages seems to have resulted in a lack of research into the

circumstances within domains of learning, such as computer programming, that trigger

disequilibrium and into processes that could be used to achieve an optimal degree of

disequilibrium for the purpose of bringing about successful schema adaptation. It has

been possible to find evidence of learning through the use of the adaptation process by

participants trying to solve new programming tasks but Piagetian theory has not provided

a framework that could be used to design learning opportunities that would generate a

level of disequilibrium most likely to generate learning. It has been left to other theorists,

such as Vygotsky and Sfard, to develop ideas about how teachers can optimise learning

by controlling the gap between existing schemas and those required to solve a new

problem and to build bridges between a student’s schemas and those needed for a given

task.

201

7.3. Vygotsky’s Theory and the Notion of Scaffolding

7.3.1. Identifying the Zone of Proximal Development (ZPD) of Participants

The ZPD is the zone between what a learner can achieve independently and what the

learner could achieve in the near future with guidance from, or collaboration with others

who have more expertise in the field. Vygotsky believed that when a learner is at the ZPD

for a particular task, provision of appropriate assistance by more knowledgeable others

will give the learner enough of a boost to achieve the task and make progress. Otherwise,

if a task is too difficult for a learner to achieve on their own, they cannot make progress

may become frustrated and lose motivation and interest. Vygotsky believed that learners

construct new knowledge within their ZPD with the help of guidance from more

knowledgeable others and by integrating their own understandings with ideas provided

by more knowledgeable others.

The participants were categorised according to their ability to solve the programming

tasks. The three different categories were:

1. What a participant can do independently or with the assistance of software tools.

2. What a participant can do with the assistance of someone else.

3. What is beyond the participant’s reach even if assisted by someone else.

In Chapter 6, the main focus was on the two top participants and the two bottom

participants to capture their knowledge and the processes they adopted while problem

solving. In this chapter, the results of the middle three participants have also been

included in the analyses where this information could be useful for understanding the type

of assistance that each participant required, and their ability to solve the programming

tasks correctly.

The top participants (Andre and Luke) demonstrated their ability to move forward and

learn. As a result of practising problem solving supported by scaffolding, they were able

to recall and make associations based on their past experience in order to achieve a new,

higher level of understanding. This became evident in the the last P2 think aloud sessions

where these participants were able to solve different programming tasks with little

guidance.

For example, Andre was in his sixth week of the P1 course when he solved the find the

longest corridor task (Seq1 – Q3). Andre had not previously solved a question like this

and he confirmed this fact in the retrospective interview. Andre solved this question

correctly with hint and “general prompt” scaffolding. The scaffolding and feedback

202

provided enabled him to move forward and solve the smallest stack of beepers task (Seq2

– Q3, a far transfer problem – Appendix A), the shortest corridor task (Seq1 – Q4, an

isomorphic problem), the smallest element in a one-dimensional array task (Seq3 – Q2, a

far transfer problem), the largest element in a two-dimensional array task (Seq4 – Q2, a

far transfer problem), and the highest student mark in a collection of Student object (Seq5

– Q1, a far transfer problem). However during these meeting sessions, Andre showed

evidence that his faulty schema(s) still exist but later on as he practised solving multiple

questions supported with scaffolding and feedback, he succeeded in applying his

knowledge and skills in the different programming concepts and the task contexts.

As another example was observed during Luke’s think aloud sessions for counting the

number of beepers in a single corridor task (Seq2 – Q1). This question was clearly outside

of his ZPD. But the model answer that was given to him helped Luke to move forwards

to solve different programming tasks in the same sequence without the interviewer’s

assistance. For example, he solved the tasks that required him to write programs for

counting the number of beepers in each stack along a single corridor task (Seq2 – Q2,

Appendix A), the smallest stack of beepers task (Seq2 – Q3), and or checking whether or

not the stacks were sorted task (Seq2 – Q4).

The middle participants (Chen, Isaac and Harry) were working within their ZPD and still

needed scaffolding provided by a more knowledgeable others to solve the tasks. They

also needed more practice to develop more comprehensive or more strongly related

programming knowledge and skills. These middle participants were able in many cases

to retrieve schemas but their retrieval was unreliable and their schemas were often flawed.

In most cases they were able to solve the problems with scaffolding (see Appendix G). In

contrast, the bottom participants (Matthew and Kasper) had difficulty recalling what they

had previously learned. In addition, they did not practice programming outside of classes

and think aloud sessions. They did not undertake the homework assignments or work on

resolving programming tasks that had been sent to them after the research sessions

designed to support their learning. They therefore found it difficult to solve the more

advanced problems. Their learning capacity could be improved if they changed their

approach to learning by actively engaging with learning tasks such as practising program

syntax and solving programming tasks. These participants were not open to receiving

scaffolding from the researcher or other more knowledgeable others. Matthew was in the

third quartile of P1 and just passed the course. He solved 8 of the 19 questions in this

research. He dropped to the fourth quartile in P2 and failed the course. On the other hand,

203

Kasper who was able to solve 11 out of 12 questions during the think aloud sessions for

P1 was in the second quartile. Kasper showed evidence many times during later sessions

that he had not mastered the Java commands taught during P2 and his performance

dropped to the third quartile in P2.

During a think aloud session Kasper solved the largest element in a two-dimensional array

task (Seq4 – Q2) with the interviewer’s assistance (clarify and hint scaffolding syntax

support). In the same meeting session, Kasper was able to transfer his knowledge from

(Seq4 – Q2) to find the column in a two-dimensional array which contained the smallest

number (Seq4 – Q3, an isomorphic problem). Yet, after one week he struggled to transfer

his knowledge of the largest element in a two-dimensional array task to the related far

transfer problem that required him to write a program for finding the highest student mark

in an ArrayList of Student objects. His initial ability to transfer new understandings to

another problem seemed to show that he was working within his ZPD but, perhaps

because he did not hold a rich understanding of the principles underlying the ArrayList

concept, he was later unable to use this knowledge to solve a more distant, far transfer

problem and that problem appeared to be outside his ZPD.

Matthew was twice provided with scaffolding by the interviewer during his think aloud

session for the longest corridor task (Seq1 – Q3). The first scaffolding was a hint; the

interviewer explained how to define and use the method signature and the RETURN

statement. The second scaffolding was a “general prompt” scaffold; the interviewer

redirected Matthew to count the length of the first and second corridor for the second and

third scenarios which contained more than one corridor. With assistance from this

scaffolding he was able to produce a working solution. In the same meeting session,

Matthew was able to apply his knowledge about the method signature and the return value

to solve the smallest stack of beepers task (Seq2 – Q3, a far transfer problem). But in the

next meeting session (week nine), Matthew struggled to solve the shortest corridor task

(Seq1 – Q4, an isomorphic problem). At the retrospective interview, Matthew confirmed

that he had neither tried to practise solving the questions given to him in the think aloud

sessions, nor had he tried to solve related homework assignment related. Like Kasper,

Matthew appeared to be functioning within his ZDP during the first of the sessions when

he was able to transfer new understanding from one problem in order to solve the next

problem. However, at a later session he also was unable to transfer the earlier learning to

a new problem and in this case was unable to do so even though the new problem was

closely related to the ones solved earlier. For the weaker students, time between learning

204

sessions and a lack of motivation to practice newly acquired programming knowledge

between sessions appear to hinder progression of the ZPD.

7.3.2. Scaffolding Influence

Vygotsky believed that scaffolding plays an important role in assisting learners to a higher

level of understanding. Scaffolding at the right time and of the right nature can boost

learning in the present as well as in the future, which means that the “student learns both

by being taught and by self-instruction” (Simon, 1979, p. 87).

Figure 7.1 shows the relationship between the ZPD and types of scaffolding. Within the

ZPD, participants could solve a problem with the assistance provided by software tools

(hard scaffolding) or with the help of more knowledgeable others (soft scaffolding).

Outside the ZPD, participants were unable to solve the problem even when provided with

scaffolding. In these cases when appropriate participants where supplied with a model

answer based on stepwise refinement technique, an exact solution to study.

When providing scaffolding in this research, the interviewer used this hierarchy of

scaffolding types to support the participants were necessary. In the first instance of a

request for help clarification was used if appropriate otherwise a “general prompt” was

given which helped participants focus their efforts. Examples of “general prompt”

included suggestions to trace/desk check their code or refer to another similar problem.

If that was unsuccessful the participants were given a hint as to how to solve the problem

as a last resort an exact solution was required – usually at the point where the participants

had given up.

205

Figure 7.1 The relationship between ZPD and scaffolding

7.3.2.1. Soft Scaffolding Assistance by the Researcher

The intervention model proposed in Chapter 3 was intended to give adequate

opportunities for all the participants to successfully complete the programming task and

for learning to take place.

The interviewer from time to time gave a hint without any prior “general prompt”, or

provided the exact solution without a prior hint because the participant appeared to need

such kind of immediate support. In addition, a participant was sometimes provided with

more than one instance of scaffolding when solving a problem. Table 7.1 contains the

number of clarify, “general prompt”, and hint scaffolding that led the participants to

behave as movers as the tasks were within their ZPD.

Information about the think aloud session included in Chapter 6 provides evidence that

Kasper’s think aloud session for the largest element in a two-dimensional array task (Seq4

– Q2) is example of clarifying scaffolding. Further examples are given in Appendix A –

Andre’s think aloud session for counting the number of beepers in a single corridor (Seq2

– Q1) and Andre’s think aloud session for the smallest stack of beepers task (Seq2 – Q3).

As shown in Table 7.1, “general prompt” scaffolding was the most frequently provided

form of scaffolding. The participants who were assisted were placed into the following

three categories: tracing, stepwise refinement, and other. Three examples of “general

prompt” that were categorised as other were: the interviewer’s prompt to Andre to think

about how to implement and use variables (Seq1 – Q3), the interviewer’s prompt to Andre

206

to compare the number of open and closed brackets, and the interviewer’s prompt to

Matthew to count the length of corridors for different Robot Word scenarios (Seq1 – Q3).

Table 7.1 The number of soft scaffolding given during the think aloud sessions for the 133 participant

solutions 10

Scaffolding type Number of scaffolds =62

Clarify 12

 Tracing 19

General prompt Stepwise refinement 8

 Other 3

Hint 20

Many participants required prompting before they would try to resolve an issue in their

code by desk checking or tracing their program (Table 7.1). For example, Luke did not

trace his code for solving the shortest corridor task (Seq1 – Q4) without prompting and

nor did Matthew when trying to solve the smallest stack of beepers task (Seq2 – Q3). In

these think aloud sessions the researcher prompted the participants to discover the answer

by using the data in the unit test scenario as an example for tracing their code.

Table 7.1 shows that stepwise refinement scaffolding was not often required or used. The

participants had to already have retrieved the appropriate schemas to solve the problem

but were unable to adapt those schemas independently. Stepwise refinement scaffolding11

is a type of metacognitive scaffolding which aims to help the participants to become

aware of the potential connections between the new tasks and familiar previously solved

tasks. This recognition of the similarities between previously solved problems and the

new problem enables them to move forward. When Andre had difficulty solving the

smallest element in a one-dimensional array task (Seq3 – Q2, a native Java task). He was

redirected by the interviewer to solve a previously solved problem the smallest stack of

beepers (Seq2 – Q3, a far transfer problem in Robot World) using pen and paper. He was

able to successfully solve the Robot World problem again. This activity triggered his

memory and he was then able to solve the smallest element task by using his schema for

the Robot World problem.

10 See Appendix G for a summary of the type of scaffolding required by participant and code writing task.
11 Metacognitive (reflective) scaffolding is defined as guiding the learner in such a way that they are

encouraged to reflect on the way in which they are learning and to look inward in order to examine what

learning strategies are effective for them (as detailed in Chapter 2).

207

Similarly, during Kasper’s think aloud session for the smallest stack of beepers (Seq2 –

Q3) he was redirected by the interviewer to solve a previously solved program counting

the number of beepers at the first location and store the result in the most wanted holder

variable. Then the interviewer asked Kasper to extend that code so that it counted the

beepers at each of the remaining stacks across a single corridor (Seq2 – Q2) and compare

the value of the gatherer variable with the most wanted holder variable. Kasper was able

to write his solution using a computer. During Matthew’s think aloud sessions for the

smallest element in a one-dimensional array (Seq3 – Q2), he was redirected by the

interviewer and as a consequence decided to solve a print all the elements of a one-

dimensional array task in order to better understand what would be needed for the one-

dimensional array problem. In all cases the participants were able to move forward to a

successful solution to their particular programming problem.

Andre’s think aloud session for the longest corridor (Seq1 – Q3) contains an example of

hint scaffolding. The interviewer suggested that Andre create as many variables as he

needed. Another type of hint scaffolding was provided when the interviewer intervened

with syntax support during Kasper’s think aloud sessions for the largest elements in a

two-dimensional array (Seq4 – Q2). Matthew’s think aloud session for the longest

corridor (Seq1 – Q3) also contains an example of hint scaffolding in which the researcher

made him aware of the fact that the method return type needed to be integer not void.

Kasper was able to move forward to a successful solution. Andre and Mathew were also

able to move forward to a successful solution after additional scaffolding was provided

during the session.

Some participants exhibited stopper behavior, there were a total 31 instances recorded

during the course of this research. For example, in Kasper’s attempt at the shortest

corridor (Seq1 – Q4) he simply gave up. This question was clearly outside of his ZPD.

But the model answer given to him in the retrospective interview, later helped Kasper to

arrive at a correct solution for the smallest element in a one-dimensional array (Seq3 –

Q2, a far transfer problem – Appendix A). Similarly, Luke’s think aloud session for the

longest corridor (Seq1 – Q3) showed that this question was clearly outside of his ZPD.

But the model answer given to him helped Luke to solve an isomorphic problem, the

shortest corridor (Seq1 – Q4), with minimal intervention.

The researcher focused on engaging the participants in the discovery process but the

participants were still receiving assistance from the researcher. The inclusion of the

stepwise refinement category to Perkins and Martin’s soft scaffolding model (1985) in

208

this research proved successful as a scaffolding method. It helped some participants to

correctly solve the programming task. In the case of some participants they were able to

learn from a model answer and to move forward onto a similar but different question.

Stepwise refinement scaffolding led to a new understanding with minimal intervention.

Feedback given to participants during the retrospective interview on how to utilise tools

or to avoid problems that resulted from not considering all possible robot scenarios,

and/or not reading and understanding unit test messages (procedural scaffolding12) helped

some participants to solve future programming tasks. For example, the feedback given to

Luke regarding the importance of considering all the scenarios not just the simplest during

a retrospection interview about counting the number of beepers in the single corridor

(Seq2 – Q1) and the longest corridor (Seq1 – Q3) helped him to solve other programming

tasks. Evidence of this was found during Luke’s think for the shortest corridor (Seq1 –

Q4). During the course of solving this task Luke thought aloud about the various scenarios

provided in the unit tests when he found a bug in his code — “For the first test [scenario]

expected five but was four. For the second one [scenario] expected seven but was six…”

— “In this case [scenario] the same problem. Expected four but was five [this scenario],

for the second one [scenario] seven but was six…”.

7.3.2.2. Hard Scaffolding – Software Scaffolding – Robot World

Robot World has been reported to assist students in the debugging process because they

can visualise the execution of the code (McIver & Conway, 1996). In this research it was

also found that viewing the execution of the code – the robot moving across its world –

assisted the participants in the debugging process. This was observed often one example

was during Andre’s think aloud session for counting the length of the corridor (Seq1 –

Q1) where he actually tapped the computer screen to count the number of squares in the

Robot World window to check the output of his executed code. Even the lowest achieving

participants appeared to be assisted in this way as demonstrated in Kasper’s think aloud

session for comparing the length of two corridors (Seq1 – Q2). In this session, he wrote

part of his solution and then wanted to ensure that his robot was facing in the correct

direction for the next step in the solution sequence – “I just need to test this [he then ran

the code and paused to watch the robot moving] … then left, left, left then up [as he

watched the robot move he articulated the movement he was seeing and also waved his

hand in the air in the direction the robot was turning]”.

12 Procedural scaffolding: - Redirecting learners to use resources and tools (as detailed in Chapter 2).

209

7.3.2.3. Hard Scaffolding – Software Scaffolding – Unit Test

Unit tests have been found to provide students with immediate feedback which allows

them to independently test whether or not their program has provided a working solution

to a question (Whalley & Philpott, 2011;Cardell-Oliver, 1995).

Some participants were able to correctly interpret the unit test messages. They found the

unit test and the generated error messages easy to understand. For example, in Luke’s

think aloud session for the largest element in a two-dimensional array (Seq4 – Q2), when

he ran his code a unit test failed. He quickly interpreted the error message and fixed the

issue and verbalised this process — “Expected -1 but was 0, and that is because of the

initialisation of the current [variable], but I did not think about the negative number so I

should set it to ah [long pause] … to value of minimum is [long pause] the value of the

first one [the first number in the array]”. The two top participants, Luke and Andre, were

able to learn how to read and understand the unit test cases on their own and update their

code accordingly. For example Andre encountered one of three tests failed when

answering Seq4 – Q2 therefore he started to read the code for the test failed — “Expected

-1 but was 0, if it minus one let me see, so the largest one should be the largest, so I just

need to modify the code because there is a minus number there -19, -1,-2,-9. Let me set

the largest number to a1 zero zero so it will be the first” Similarly, Luke showed this

ability during his think aloud session for the index of the largest element in a one-

dimensional array (Seq3 – Q3). He was able to fix the error in his code after viewed the

unit test file — “For the first test result three correct [pause], the largest number in index

three, ah I’m checking against the initial element…”.

The unit tests helped some participants to realise that their code was not running correctly,

but it appears that they had difficulty correcting their solution. Luke’s think aloud sessions

for counting the number of beepers in a single corridor (Seq2 – Q1), and the shortest

corridor (Seq1 – Q4) both contain instances where he ran the unit tests, read and

verbalized the message but did not demonstrate that he understood the implications of the

message and he was unable to correct the errors. In such cases, clearly the unit tests did

not provide a sufficient scaffold for the participants.

It was apparent some participants took little care to read and understand the unit test

messages. Mathew’s think aloud sessions, for example see (Seq2 – Q3) and (Seq3 – Q2),

provide evidence that Matthew learned that it was easier for him to seek feedback from

the interviewer than to do his own code testing and correction. When this behavior

emerged, the interviewer began by providing the participants with clues using the data in

210

the unit test in order to move the participants towards a more independent approach to

problem solving in the future. The researcher focused on engaging Matthew in the

discovery process so he could begin to internalize the new information and learn from his

mistakes. While some participants then started using unit test before asking in Matthew’s

case he rarely used the unit test without prompting he just wanted to be given the answer.

When the interviewer asked about why he was reluctant to use unit tests he replied that

he never used them even if he was stuck on something at home he contacted a friend for

help. This means that rather than spending time trying to learn independently he relied on

others for an answer. Matthew failed the course.

7.3.2.4. Metacognitive Scaffolding

The instrument designed in this thesis helped the researcher to assess each participant

individually by identifying their ZPD. Secondly, it encouraged participants to think of

new ways to apply previously learned concepts (i.e. increasing metacognition). To do so

effectively, the tasks needed to take principles from previous tasks and embed them in

new scenarios (i.e. promoting schema abstraction). Some participants succeeded in

building connections between the new problem and previously solved problems (i.e.

increasing metacognition) by developing categories for sorting problems that had an

identical schema (i.e. promoting schema abstraction). At the end of this study, participants

were questioned about the usefulness of their participation in the study to themselves.

Some responses indicated the development of metacognitive reasoning.

Andre: “Yes, actually it helped me to sort my understanding to some questions and

knowledge. I started to realise there are relations between questions”.

Kasper: “Yes, it’s a good practise for me. It help me to understand my own thinking”.

7.4. Sfard’s Theory

Sfard based her theory on a dichotomy, identified by Piaget: figurative or structural

conception in which states are viewed as momentary and static, and operative thinking

which deals with transformations. Sfard believed that in order “to speak about

mathematical objects” you must deal with products of a process without being concerned

about the process itself (Sfard 1991, p.10). This means that when concepts are formed,

operational conceptions (process) must precede structural conceptions (object).

Sfard identified three hierarchical stages (phases) of mathematics concept development:

interiorization, condensation and reification. The transition from process to object

understanding, via these stages, takes place on a concept-by-concept basis and once a

211

concept is reified to an abstract object it can then be used as a primitive in the acquisition

of a higher level concept. It has been argued that computer science is different to

mathematics and that in mathematics concepts tend to be discrete and have a neat

hierarchical progression but this is not necessarily true in computer programming

(Colburn and Shute, 2007). Lister et al. (2009, p. 161) argue that, in computing, modular

concepts are encapsulated at the next level through information hiding and that this

therefore means that interiorization is not a distinct step but is blended in some way with

the condensation. Sfard herself also noted that the theory of concept development and

object construction is not as linear and hierarchical as her theory might suggest, “Even

so, in the light of both theoretical arguments and experimental findings, our model does

seem to present a prevailing tendency. In fact, this tendency may be so strong, that even

if a new concept is introduced structurally, the student would initially interpret the

definition in an operational way” (Sfard, 1991, p.23).

The phases of cognitive development, described by Sfard, cannot be measured directly

— “We must be aware of the methodological difficulty stemming from the fact that we

are dealing with a student’s implicit beliefs about the nature of … objects. Unable to

investigate the problem in a direct way, how shall we diagnose the different stages in the

conceptual development of a learner? It seems that we have no choice but to describe

each phase in the formation of abstract objects in terms of such ‘external’ characteristics

as student’s behaviours, attitudes, and skills.” (Sfard, 1991, p.18). Thus, it is possible

that evidence of these stages could be found within the programming behaviour and think

aloud responses of the participants in this study.

At the interiorization phase learners start to become familiar with the processes which

will in time lead to a new concept being developed. Interiorization is the stage in which

a set of actions leads to the modification of existing objects. This phase is considered to

be a gradual and quantitative learning process. The majority of examples of

interiorization found in the literature are of situations in which a learner becomes familiar

with applying processes to data or concrete objects. Sfard gives the example of counting

as a process which eventually leads to the development of the concept of natural numbers.

At the condensation phase learners “squeeze” sequences of operations into a single entity.

They are more able to think of the process as a whole rather than a series of steps. At this

stage students are able to combine processes, and make comparisons. “At this

[condensation] stage a person becomes more and more capable of thinking about a given

process as a whole...” (Sfard, 1991, p.19) and “progress in condensation manifests itself

212

as a growing ability to alternate between different representations of a concept. ” (Sfard,

1991, p.19). This phase continues while the newly developed entity is still linked closely

with a particular process. Sfard suggested that condensation of the concept of negative

numbers may be assessed by combining the underlying process of subtraction with other

computational operations (e.g. addition).

A concept has been reified when that concept is seen as a fully-grown object. Sfard noted

that reification, unlike the interiorization and condensation phases, tends to represent a

leap in understanding rather than a gradual evolution. In reification a new object is

separated from the process that created it and it becomes a static abstract structure in an

ontological shift. In Sfard’s negative number example reification is achieved when a

student can treat a negative number as a subset of the ring of integers without fully

understanding the formal definition of a ring.

The following quotes from Sfard’s writing help to illuminate the notion of reification and

were found to be useful by the researcher when attempting to analyse a participant’s code

writing approaches:

“being able to recognize the same concept under many different disguises may be

regarded as one of the important characteristics of thinking in terms of abstract

objects. ” (Sfard, 1992, p.76).

“Various representations of the concept become semantically unified by this abstract,

purely imaginary construct. The new entity is soon detached from the process which

produced it and begins to draw its meaning from the fact of its being a member of a

certain category” (Sfard, 1991, p.20).

One paper in computer science education describes the development of the concept of a

variable using Sfard’s stages (Wille, 2010). In this case the students were writing

programs in LOGO in a Robot World. Each robot needs matchboxes (which are its

“memory”) on which letters for the names of variables such as “a” and “b” are written.

These matchboxes served as pre-set reifications of the idea of variable. Wille (2010,

P.663) defined Sfard’s three phases for the variable concept development as follows:

 Interiorization: the student can handle the program: processing the program,

filling matchboxes with matches, etc.

 Condensation: the student deals with variables as with objects but does not see

them as objects, the input and output is more important than the process itself.

 Reification: variables are seen as independent objects.

213

While these categorisations relate to programming rather than mathematics and are useful

when examining the development of the concept of variables they were conceived

specifically in the context of the research and the LOGO Robot World. It was found that

they were not so useful when interpreting data in this study. The descriptions present a

simplistic view of Sfard’s original phases and some of the useful ideas are lost in the new

definitions. For this reason, in this analysis it was attempted to map the think aloud data

to the Sfard’s original definitions and theory.

In week four of the P1 course Andre attempted to solve counting the length of a single

corridor task (Seq1 – Q1). He approached the code writing task line by line and did not

compile his code until he had completed the method body. When he ran the program there

was a compiler error – he had forgotten the closing bracket of the WHILE- loop. He was

unable to make use of the processes necessary to solve the problem and could not interpret

the compiler’s error message. He appeared to be unable to deal with the schema for

counting corridors as a single object. He instead resorted to a familiar cognitive schema

(counting the number of beepers in a single stack) and attempted to modify that schema.

In writing the code, he appears to be starting to condense the concepts of iteration with

WHILE loops and counting beepers but because he was unable to fix the minor bug

independently it seems that he is still dealing with the code as a sequence of steps or

operations rather than as a single entity. Thus, Andre’s code writing process and think

aloud suggests that he is still interiorising many of the concepts required to solve the

problem. It should be noted that while some concepts are still being interiorised and

condensed other concepts have become reified even at this early stage of learning to

program. In writing the code, Andre had clearly reified the idea of variables and was able

to view and use them as a single object. He was able to use variables in various contexts

(gatherer, most wanted etc.) without focusing on the specific syntax of writing a variable

– such variables were treated as objects. While Andre showed further evidence of

condensation and reification he consistently had faulty reified objects. It could be argued

that although he appeared to be condensing and reifying concepts, because the concepts

were faulty he was actually still at the interiorization phase. The following discussion

focuses on one participant, Luke, and his progression in learning through Sfard’s stages

illustrating the cyclical nature of development of concept development. Luke was selected

because he was able to move through the cycle of phases without faulty concepts being

developed.

214

Luke was half way through his first semester of programming when he attempted to solve

the smallest stack of beepers task (Seq2 – Q3). He wrote the code line by line and did not

compile his code until he had finished. Before compiling his code, Luke set the most

wanted holder variable to hundred. On running his code, Luke noticed that he had

forgotten to pick up and compare the beepers at the last location and he was able update

his code accordingly. In the retrospection interview, Luke confirmed that the reason he

had set the variable to 100 initially was because he had recalled solving the highest mark

problem and recognised the link between finding the smallest stack and finding the lowest

(minimum) mark where the lowest mark variable was set to 100 as this was the highest

possible mark.

Interviewer: “So you remembered the … [finding minimum mark] … plan?”

Luke: “Yep, and counting beepers”

His code writing process and think aloud suggests he had clearly condensed the idea of

counting the beepers and minimum students’ mark, and had tried to merge them. Luke

did not appear to have had any difficulties in making a connection between the problems

he had previously solved and this question. It is clear that Luke had not reified finding

the smallest number (minimum mark) because he had not at this stage generated an

abstract schema which could be used as input to a new process reliably. In addition, he

had not yet formed a generalised single object that he could apply to new situations; it

appears that while he was able to recognise the same concept under a different guise he

was not yet able to use that object. Even when applying the counting of beepers plan he

missed the final location – suggesting that this concept was also not a reified object.

Because he was able to recognise each plan in the guise of a new problem it seems that

these concepts of counting and finding the lowest number are both at the condensation

stage. Luke was able to use the concepts of simple iteration13 (WHILE-loop), variables

and selection as single abstract reified entities suggesting that these concepts were now

abstract objects independent of process, which could be used as input to a new process to

develop a new concept.

Five weeks after solving the smallest stack of beepers problem, Luke attempted to write

code to find the smallest element in a one-dimensional array task (Seq3 – Q2, a far transfer

problem). He approached the code writing task line by line. Luke hesitated many times

13 Simple iteration here is defined as iteration in order, one by one through a sequence of steps or a list of

items, without nested selection or iteration.

215

about what the initial value of the most wanted holder variable should be. He eventually

settled on the first element of the array as his starting value — “Integer smallest equals

… [long pause] … um zero … [long pause] … smallest equal int array of zero

[intArray[0]]”.

He continued writing the FOR-loop, followed by the IF-statement which checked the

current array element against the most wanted holder variable and updated the most

wanted variable if necessary. A long pause was recorded in the think aloud before Luke

added the correct relational operator (<) to the IF-statement which updates the most

wanted holder variable. When the interviewer asked him, in the retrospection interview,

what he was thinking at that point he said he was thinking about which operator he needed

to use.

Luke was observed to go over the line that defined and initialised the most wanted holder

variable again — “I need to change this value, let me try it”. He updated this line as

follows:

1. int smallest = intArray[0]; became “int smallest; ”

2. Compile

3. int smallest= intArray[1]; after that without hesitation, he changed

one to zero

At the retrospective interview, Luke confirmed to the interviewer that solving the smallest

stack of beepers problem helped him to solve this question. In solving this task Luke

again, as in Seq2 – Q3, called on his cognitive schema for finding the smallest number

(minimum mark). In this case he was able to solve the problem independently. He only

encountered one problem on compiling his code. He found he had missed the RETURN

statement for the method and was able to fix this immediately on his own. It was unclear

at this stage whether or not Luke had reified the concepts related to a one-dimensional

array such as indexing, iteration and searching. However, it became evident in the same

session solving the next task (Seq3 – Q3) that he had reified the concept of searching for

an element in a one-dimensional array.

The task Seq3 – Q3 is a problem that is isomorphic to the previous question (Seq3 – Q2).

The task asks the participant to find the index of the largest element in a one-dimensional

array. There were two new aspects to this problem: adapting the logic of existing schemas

or plans from the familiar find smallest element (or number) to finding the largest and

moving from the familiar find element in an array to finding the index of the element.

216

During the writing process, Luke seemed to be trying to update his existing schema for

smallest element in a one-dimensional array (Seq3 – Q2) by adding new information. As

Luke wrote his code, he forgot to update the value of the most wanted holder variable.

On running his code and reading the code for the test file, Luke said “For the first test

result three correct [pause], the largest number in index three, ah I’m checking against

the initial element let me see”. The first test has an array which includes positive and

negative numbers and stores the largest element (the highest number) at index three. He

realised that he was always checking against the first element in the array. Luke updated

his code correctly. In order to solve this problem Luke used two gatherer variables one

for the current element in the array and one for the index of the current element in the

array. The use of this extra variable is redundant but interestingly all participants in the

study took this approach. It seems that Luke is at the interiorization phase for finding the

index of the largest element in the array. On the other hand, Luke’s responses to this

question showed that he had become increasingly capable of thinking about finding the

smallest or the largest element in a one-dimensional array as a condensed entity without

needing to distinguish between the largest and the smallest element. Unlike in Seq3 – Q2,

Luke did not need to take time to think about which operator to use and wrote the selection

statement without hesitation. It was not clear at this stage whether or not the concept of

finding elements in a one-dimensional array had been reified but Luke was able to use

this concept in different guises.

After a further four months (a time which included the three-week inter-semester break),

Luke requested an opportunity to solve the largest element in a two-dimensional array

task (Seq4 – Q2, a far transfer problem). During the solving of this task it was clear that

Luke was still at the interiorization stage of concept development for finding elements in

a two-dimensional array. He relied on existing concepts, iterating over a two-dimensional

array and comparing two values. This posed a problem because while the concept of

comparing two values was reified, he had not yet reified the concept of two-dimensional

array iteration. Although in principle he should have developed a schema for iteration of

two-dimensional arrays as a result of his P2 course work this schema was clearly not well

formed and Luke was aware of this — “I’ve still got a problem with nested loops, I need

to practise more and more”. When Luke ran his code one of three supplied unit tests

failed — “Expected -1 but was 0, and that’s because the initialisation of the current

[variable], but I did not think about the negative number”. He was clearly linking this

problem with his understanding of two-dimensional array. It was not until after he had

217

run the code that he realised there might also be a link with finding elements in a one-

dimensional array:

Interviewer: “Have you seen this question before?”

Luke: “Yep, I think in a one-dimensional array, I think the question was either smallest

or largest element”

In the same meeting session, Luke solved an isomorphic problem which asked him to

write code to find the column in a two-dimensional array which contained the smallest

number (Seq4 – Q3). When solving this question Luke appeared to have no difficulty in

making a connection between the previous question and this question. There is no

evidence that he tried to read or trace his code and all tests passed on the first attempt. He

started with the most holder variable definition and initialisation, followed by the schema

for iterating over a two-dimensional array then — “… another int [integer] variable

because I need [pause] the index of smallest column [pause] this question is different than

the first one [Seq4 – Q2]”, followed by the rest of the Java commands. In the other words,

Luke’s responses to this question showed that he became more and more capable of

thinking about the smallest and the largest element of a two-dimensional array as a

condensed entity thus the concepts first encountered in Seq4 – Q2 appear are beginning

to be condensed. In writing this problem; Luke seems to have reified the concept of a

two-dimensional array and was able to view and use them as a single object. Also, the

concept of smallest/largest element. This was confirmed in the next meeting session one

week later when Luke attempted to write a code to calculate the highest mark for each

student in an ArrayList of student objects (Seq5 – Q1). The marks for each student are

stored as an instance variable which is a one-dimensional array.

Luke first defined the most holder variable — “I’m going to add integer highest equals,

no this not 1D” he deleted the line declaring the most wanted holder variable. He then

continued to add his code line by line. Luke was obviously recalling his schema for

finding an element in an array which was formed for a one-dimensional array in order to

solve this problem. He then went on to code the solution rapidly and on the first compile

and run it passed all of the tests. Luke appeared to be able to deal with the schema for

finding the smallest or largest element as a single reified object, and was able to use this

familiar object to develop a new concept. In solving this question he also needed to be

able to use ArrayLists of objects so it is highly likely, given his ease of use of ArrayList

(iteration and access of objects), that he had reified the idea of an ArrayList of objects as

218

a single object. In a subsequent session Luke again demonstrated his ability to use

ArrayLists as a reified object (see data for Seq5 – Q2, and Seq5 – Q3 in Appendix A).

In learning programming all of the participants in this study tried at various points to build

reified concept objects – some more successfully than others. Some participants such as

Andre were able to reify the very early concepts taught in P1 (e.g., variables and simple

selection) but were subsequently unable to move beyond the interiorization phase for

more advanced concepts. Andre was able to solve the questions in this study and write

code that passed the tests but his schema’s were flawed – this might suggest that it is

possible to use concepts that are not reified to produce a working solution but that solution

is not necessarily “well written”. Other students such as Luke were able to move forward

developing concepts. It was shown that a gradual development of concepts occurred from

interiorization to condensation to reification. Each object (a generalised abstract concept)

was then used to develop more advanced concepts in order to solve more difficult or

complex code writing problems. It was clear to the researcher that students in their first

year of programming are exposed to many new concepts all of which build on each other

in a very short period of time (24 weeks of teaching).

According to Sfard concept development and in particular the phases of interiorization

and condensation take time. Reification involves a leap in understanding which, beyond

the simple initial concepts which are first taught in an imperative first pedagogy, for most

novice programmers seems on the basis of this study to take more than a year. Most of

the participants, as the tasks became progressively more difficult, operated and in some

cases floundered about at the interiorization phase and sometimes at the condensation

phase. The questions as designed in this study should have supported concept

development far more than the questions which the students encountered in the courses

themselves. This is because the tasks were deliberately designed in order for concepts to

build on concepts or expand a concept. It is obvious that being cognisant of Sfard’s

concept development phases and the cyclical nature of concept development should

ensure that educators are able to provide better code examples and code writing tasks

which should assist learning. Additionally, being aware of the considerable time that

concept development takes might result in a more realistic and achievable curriculum.

7.5. Cognitive Load Theory

CLT provides a model which can be used to examine the load on working memory in

three dimensions - intrinsic, extraneous and germane cognitive load.

219

Intrinsic load depends on the internal difficulty of the learning task, moderated by the

level of learner expertise. Extraneous cognitive load is produced by the learning context

and the way in which instructional content is presented to the learner. In contrast, germane

cognitive load is the degree of mental effort that is applied to schema acquisition, i.e. to

schema construction and automation. The learning activities generally consist of

comparing and contrasting between existing mental schemas and newly presented

information, in conjunction with some form of practice in order to initiate schema

development. The working memory available for learning could be overloaded if the

combination of intrinsic and extraneous cognitive load is too high and there is therefore

insufficient learning memory available for the learner to be able to meet the germane

cognitive load required to modify or construct a schema or to solve a problem.

When a novice first has to write a computer program, the intrinsic load is high and that

form of load will only get lower when the person has learned the language and the

programming constructs and has had practice at programming. However, inefficient

instructional designs can add unnecessary extraneous cognitive load and therefore

interfere with learning by overloading the working memory. Recommended methods for

reducing the load include segmenting the programming task into simpler sub-

programming tasks and providing opportunities for practising relevant components of

knowledge. This can increase the availability of working memory resources for

processing interacting elements and constructing or modifying schema that are necessary

for accomplishing learning goals. In this study, the programming tasks used were

designed to encourage participants to think of new ways to apply previously learned

concepts. To do so effectively, the tasks needed to take principles from previous tasks

and embed them in new scenarios using the same or different programming concepts and

task contexts. The extraneous component of the cognitive load was reduced by

sequencing, ordering and organising the learning required to solve the programming tasks

presented to the participants.

During think aloud sessions some participants showed evidence that the use of simple-to-

complex sequencing, ordering and organising questions presented was a useful approach

to reducing extraneous cognitive load and thereby increasing the working memory

available for the germane load (schema acquisition and construction). An example of this

was observed during Luke’s think aloud session for solving the largest element in a two-

dimensional array task (Seq4 – Q2). Luke was questioned during the retrospective

interview as to whether or not he had solved the same question before, and he said he had

220

not done so. For solving this question, it seemed that he was trying to temporarily reduce

the load by dividing the unknown complex problem into known sub-problems. The order

in which he coded his solution suggested that he probably retrieved the schema for

iterating the elements of a two-dimensional array, then the schema for comparing two

numbers first. Later he realised that a most wanted holder variable was required. Luke

could easily fix the syntax error in his code that related to checking the length of the row

and the column of the two-dimensional array. On running his code and reading the unit

test message — “Expected -1 but was 0, and that because the initialisation of the current

[the most wanted holder variable], but I did not think about the negative number …” —

“… I think in a one-dimensional array, I think the question was either the smallest or

largest element” — at this stage of problem solving, Luke started to become aware of the

connection between this code and that of the previously solved question. This allowed

him to activate related information in his long term memory and as a result he directed

his attention to fixing the error in his code (updating the value of the most wanted holder

variable). In the same meeting session, he was able to use his existing schema for solving

this question and apply his knowledge and skills to find the column in a two-dimensional

array which contained the smallest number (Seq4 – Q3, an isomorphic problem).

Another example was observed during Kasper’s think aloud sessions for the find the

column in a two-dimensional array which contained the smallest number (Seq4 – Q3).

For solving this question, he firstly focused on the familiar pattern of the problem (i.e.

existing schema for solving the largest number in a two-dimensional array (Seq4 – Q2)),

and then refined his solution by dealing with the parts not dealt with during the first phase

of the solution. Finally, he ran the supplied unit tests. All the tests were passed from the

first trial. At retrospective interview, Kasper said — “It is an easy question because of

the previous question, if you give me this question first it could be difficult for me to solve

it”. Kasper’s approach of segmenting the problem appears to have been successful in

reducing the extraneous cognitive load and limiting the intrinsic load at any given time

thereby increasing the working memory available for use in reasoning about ideas central

to the germane cognitive load; he could easily see similarities and he was successful in

solving the extension to this question.

During his think aloud session for the index of the largest element in a one-dimensional

array (Seq3 – Q3), Andre started problem solving by verbalizing his plan — “This

question is similar to the first question[find the smallest element in a one-dimensional array],

the first question find the smallest one, and this question find the largest one, um, should

221

return the index of largest element, the point is how to find the index, is the basically the

same so, the difference the first one is asked to return the smallest element and now asked

as to return the index of it, basically is the same returning, the most difficult part of this

question how to find the index of an array.” — “Let me think about the largest, so first

think to compare with, find out the largest, and I need to know the index of it, index of the

largest element …” — Andre’s plan provided evidence that he was thinking in terms of

retrieving his existing schema for solving the smallest element in a one-dimensional array

(Seq3 – Q2) and he used it as a template for solving this question. In his planning he

focused on comparing and contrasting between the source and the target problem. During

the writing process, Andre seemed to be trying to add new information to his existing

schema for the source code. Andre was able to write his solution in a linear order. Andre

paused twice to question the value of the stepper variable, and what and how to compare

it. He was able to come up with the solutions. Andre tried twice to read part of his code,

compiled his code and was able to identify and fix the error (he had forgotten to add the

word int before the stepper variable initialisation). Finally, Andre ran his code and all

tests were passed from the first trial. He mastered the language syntax and semantics of

the new task (target), and showed that he was aware of similarities between problems.

Andre correctly solved the programming task by connecting the new problem to

previously solved programs. This may have enabled him to free cognitive resources for

germane activities such as reading his code and identifying and fixing errors, and solving

the question correctly. Andre’s approach of segmenting the problem appears to have been

successful in reducing the extraneous cognitive load and limiting the intrinsic load at any

given time thereby increasing the working memory available for use in reasoning about

ideas central to the germane cognitive load; he could easily see similarities and he was

successful in solving the extension to this question.

During his think aloud session for the highest mark in a collection of Student object (Seq5

– Q1), Luke showed that he had been able to use information about the source

programming task (smallest element in a one-dimensional array (Seq3 – Q2, a far transfer

problem)) as a template for solving this question. He was observed to go over some lines

of his code and update it accordingly. Luke ran his code and all tests were passed from

the first trial. For solving this question, Luke’s approach indicated that he had been able

to use schema developed during his efforts to solve Seq3 – Q2 and thereby to reduce the

cognitive resources required. This is similar to the evidence from Andre’s think aloud

session for the highest mark in a collection of Student object (Seq5 – Q1).

222

Additionally, in this study some participants used simple-to-complex sequencing and

ordering and organising questions, in ways that could have resulted in transfer of

performance from earlier tasks and of lower demands on working memory and hence a

decrease in the time required for the later related questions. For example, Andre took 46

minutes and 13 seconds to solve the smallest element in a one-dimensional array (Seq3 –

Q2), while he took 6 minutes and 42 seconds to solve the index of the largest element in

a one-dimensional array (Seq3 – Q3, an isomorphic problem), and 9 minutes and 16

seconds to solve the largest element in a two-dimensional array (Seq4 – Q2, a far transfer

problem). Also, Luke took 10 minutes and 3 seconds to solve the largest element in a

two-dimensional array (Seq4 – Q2), while he took 3 minutes to solve find the column in

a two-dimensional array which contained the smallest number (Seq4 – Q3, an isomorphic

problem).

Excessive cognitive load automatically influences learning by causing frustration that can

hinder learning activities. It is possible to argue that instances of participants spending

very little time on task indicate excessive cognitive load because learners quickly stop

putting effort into investigating their learning material. However, one might also argue

that the time needed to solve a programming task is an indication of the extraneous the

load imposed by the way in which the instructional material or problem is presented. The

data analysis revealed that some participants are unable to recall the thought processes

used when solving problems which took them a long time, as reported in Andre and

Luke’s retrospective interview for the longest corridor (Seq1 – Q3). This may have been

because they floundered many times during the problem solving session, or they spent a

lot of time solving the programming task. Andre took 40 minutes and 13 seconds for

solving the longest corridor question (Seq1 – Q3). While Luke spent 45 minutes and five

seconds trying to solve the same question before he turned into a stopper and ask for help.

CLT has been useful in explaining why some participants cannot progress or have

difficulty with certain aspects of learning. Excessive load caused learner frustration even

if participants were assisted in the task, and they were unable to take advantage of this

experience when faced with a related task. An example of this was Andre’s think aloud

session for the smallest element in a one-dimensional array (Seq3 – Q2). Andre made a

lot of mistakes when trying to solve this question, which may be because his lack of prior

knowledge led to a pattern of continuous errors (referring to Andre’s think aloud sessions

for the longest corridor (Seq1 – Q3), and the shortest corridor (Seq1 – Q4)). Finally, he

solved the question with the interviewer’s assistance (“general prompt” scaffolding). In

223

the same meeting session, Andre correctly solved the question that required him to find

the index of the largest element (Seq3 – Q3, an isomorphic problem). After fifteen weeks,

Andre made the same mistakes when trying to solve the largest element in the two-

dimensional array question (Seq4 – Q2, a far transfer) which means that his faulty schema

still existed. This may be because of the length of time since he had last practised solving

similar problems, but finally he succeeded in solving this question after he started to trace

his code and read the unit test message, and unit test file (i.e. he directed his attention to

the learning activities). Doing so allowed him to add more information to his knowledge

structure to update his faulty schema(s). This became evident in the next think aloud

session, when Andre was instructed to solve find the column in a two-dimensional array

which contained the smallest number (Seq4 – Q3, an isomorphic problem – Appendix A)

and the highest student mark in a collection of Student object question (Seq5 – Q1, a far

transfer problem). Another example was Matthew’s think aloud session for the longest

corridor (Seq1 – Q3). He solved this question with interviewer assistance (one of these

assistance was the interviewer intervened with syntax help). On checking his homework

assignment on week seven it was found that Matthew had not solved any questions related

to the method signature and return value. However, later on, during the same meeting

session, he could easily use the method signature and return value (referring to Matthew’s

think aloud sessions for the smallest stack of beepers (Seq2 – Q3, a far transfer)) even

though his behaviour was shown to be fragile when he attempted to solve the shortest

corridor (Seq1 – Q4, an isomorphic problem) in next meeting session (after three weeks).

This means that Matthew did not learn from his mistakes and this could be the result of

cognitive overload. If Matthew was cognitively overloaded, then this could be a cause of

the learning deficiencies. This is demonstrated by the following: Firstly, Matthew solved

the longest corridor with the interviewer’s assistance however, he could not learn from

this question because there was insufficient working memory resources left over to

develop appropriate schema in long term memory, i.e. to learn. Secondly, Matthew had

not practised a homework assignment so had not done the work that could have helped

him to establish appropriate schemas. This would have imposed a higher level load on

the working memory.

The unavailability of relevant schema may be a hindrance to the adaptation of new

knowledge because the intrinsic cognitive load involved in finding a correct solution to a

program is likely to be high (i.e. participants had to simultaneously process many new

elements of information in working memory). For example, Luke’s think aloud sessions

for counting the number of beepers in a single corridor (Seq2 – Q1) and the longest

224

corridor (Seq1 – Q3). Another example is in Matthew’s think aloud session for counting

the number of beepers in a single corridor (Seq2 – Q1). Moreover, if the quality of the

solution is not generalised, connected or integrated, the intrinsic cognitive load involved

in finding a correct solution to a program is likely to be high. This evidence cannot be

detected on a single snapshot of time, but by more than one meeting session. Empirical

evidence for this was Andre’s think aloud session for the longest corridor (Seq1 – Q3).

Andre’s solution was to set a most wanted holder variable to zero to store the current

longest corridor found. Each corridor is checked sequentially until there are no more

corridors. Andre’s solution was not valid for all situations. This became evident in the

next meeting session, when Andre was instructed to solve the shortest corridor (Seq1 –

Q4, an isomorphic problem). Another example of evidence for high intrinsic load was

Kasper’s think aloud session for the longest corridor (Seq1 – Q3). For solving this

question, Kasper defined three gatherer variables, one variable for each corridor, and then

used three separate loops to count and finally compare the three values of the gatherer

variables in order to find the longest corridor. His solution provided a directed translation

of the code scenarios and would only work with the scenarios provided in the question.

This became evident in the next meeting session, when Kasper was instructed to solve

the shortest corridor (Seq1 – Q4, an isomorphic problem). Kasper failed to provide the

required solution for this question and as a result he became a stopper.

According to CLT, when learners are novices in a domain, the cognitive load associated

with unguided learning is high because novices lack any sort of guide to aid their

knowledge acquisition processes. The general observation from think aloud sessions is

that when participants were struggling to solve the programming task, the cognitive load

imposed during the writing process was probably high, and this load could be reduced

when the interviewer guided them to aid their knowledge acquisition processes. This was

shown in the think aloud session for Andre, when he experienced difficulties while trying

to solve the smallest element in a one-dimensional array (Seq3 – Q2). He was redirected

by the interviewer to solve a previously solved problem, the smallest stack of beepers

(Seq2 – Q3). In the same meeting session, Andre succeeded in applying his knowledge

and skills for solving the smallest element in a one-dimensional array to solve the index

of the largest element (Seq3 – Q3, an isomorphic problem). Also, in Kasper’s think aloud

session for the largest element in a two-dimensional array (Seq4 – Q2), the interviewer

intervened by providing Kasper with syntax support of the nested FOR-loop and two-

dimensional array. It became evident in the same meeting session that Kasper had learnt

from this intervention. When he was instructed to solve find the column in a two-

225

dimensional array which contained the smallest number (Seq4 – Q3, an isomorphic

problem), Kasper had no difficulties with the syntax of nested FOR-loop or the two-

dimensional array. For solving each row of a two-dimensional array elements are sorted

task (Seq4 – Q4, Appendix A). Kasper had no difficulty with the syntax of the nested

FOR-loop or the two-dimensional array, but he had difficulty recalling his existing

schema for whether or not a one-dimensional array is sorted (Seq3 – Q1).

The issues that are explored in this study underline the relevance of using common

patterns (analogies) for practicing problem solving. However, at some stages of learning

some participants could not immediately draw on relevant prior knowledge; but later on

as they practised solving multiple questions supported with different kinds of scaffolding

some participants succeeded in building a connection between the new problem and

previously solved problems (i.e. increasing metacognition) by developing categories for

sorting problems that had an identical schema (i.e. promoting schema abstraction). As

evidenced by the data presented in Chapter 6 often participants mentioned the connection

between an earlier task and the current task. Once they had seen the value in thinking

about previous tasks in order to develop a solution for the “new” task they continued to

use this strategy. In another example, Andre was directed to desk check in order to solve

one problem and then continued to use this approach in future when he encountered

problems. It seems very likely that he had reflected on that strategy and saw it as an

effective approach to debugging and problem solving. This suggests that students were

able to develop metacognitive thinking, identify suitable strategies, and thus were able to

solve the more difficult questions more easily than expected and that these strategies may

reduce cognitive load.

This supports the notion that self–regulation and metacognition affects cognitive load.

Prior knowledge affects intrinsic cognitive load, a learner’s metacognitive development

and their ability to self-regulate. A participant with a high level of prior domain

knowledge will be more likely to experience a lower level of mental effort.

Analogies are very powerful in CLT terms as they can foster schema activation, and

therefore help schema construction. Additionally, correspondences between existing

schemas and the new instance have been found to influence the way that relevant

analogues interact with each other. Merging and nesting are difficult skills in themselves

because they require great attention to detail and deep interaction (i.e. intrinsic and

extraneous load tends to be high). All four participants could easily solve the question

that required them to compare the length of two corridors (Seq1 – Q2) (see Andre and

226

Luke – Appendix A. Kasper, and Matthew’s think aloud sessions – Chapter 6). The

solution for this question required an abutment of more than one plan together. Some of

them struggled with questions which required merging and nesting programming plans

(referring to Andre and Luke’s think aloud sessions for the longest corridor (Seq1 – Q3),

and Kasper’s think aloud sessions for the smallest stack of beepers (Seq2 – Q3) and the

shortest corridor (Seq1 – Q4)). Soloway (1986) also found that merging and nesting

programming plans are difficult skills especially for novice programmers because they

require great attention to detail and deep interaction.

In this study, variances of approaches in transfer strategies were found among the

participants. These transfer strategies generally consisted of comparing and contrasting

between existing mental schemas and newly presented information in conjunction with

some form of practice in order to initiate schema development. The names of these two

forms of strategies are forward-reaching transfer and backward-reaching transfer. In

forward-reaching transfer, the participants initially focused on generating abstract plans

and as they engaged in problem solving they considered where these abstractions might

be applied. The general observation about Andre’s behaviour during the think aloud

sessions is that he started to plan out his solution prior to coding. As he engaged in solving

the programming tasks, he considered other situations. An example of this was observed

during Andre’s think aloud session for the longest corridor (Seq1 – Q3). Andre started

problem solving by formulating a plan around the difficulties in solving this question in

term of sub-programs — “I need to compare the numbers, the number of corridors

changes each time it is created, so I need to find it out, whether there are more than one

corridor, I need to compare the length of corridors, the first situation there are one

corridor, so move the robot to the end of corridor, and count the numbers, and turn robot

back, and to check whether there is wall … the problem how to compare, ah, the problem

how to memorise the long of corridor, this is the longest ah [long pause] … how to

compare, three is not enough is keep changing go to the first, go to the second corridor,

[pause] but if there is more, four corridors, how to assign the integers, to assign the

variables, what I can do”. Another example of forward-reaching transfer was observed

during Andre’s think aloud session for the shortest corridor (Seq1 – Q4). For solving this

question, Andre showed evidence of retrieving his existing schema for the longest

corridor that could be used to solve this question — “So it is similar to last meeting, it

was find out the longest, now it shortest, I think it is basically ah the same … First as I

remembered, we need to have ah, we need to have two, set up two integer variables to

have comparison”.

227

Backward-reaching transfer occurred when the participants were faced with a problem

and abstracted key characteristics from the problem and reached back into their existing

knowledge for matches. Some participants showed evidence of backward-reaching

transfer by verbalizing statements about the next programming plan to apply during the

writing process. An example of this was observed during Kasper’s think aloud sessions

for the smallest stack of beepers (Seq2 – Q3). Kasper started by writing the method

signature and then he verbalized — “I need to pick up the first [beepers at the first

location]”. After writing the code for picking up the beepers at each stack along the

corridor except the last stack, he also verbalized — “… after doing that, after picking the

second one, should be compare it with the first one, so I need to define another one

[Kasper was thinking back about comparing two numbers]”. Another example of

backward-reaching transfer was observed during Matthew’s think aloud session for

comparing the length of two corridors (Seq1 – Q2). For solving this question, he started

with a gatherer variable definition — “Robot started at location zero, zero, I need to write

a code to measure corridor one, the first I have to apply variable for the corridor. Because

true, are are, but the first corridor not computed, yes, and the robot started from the first

position” — after counting the length of the first corridor (corridor zero), Matthew

verbalized again — “I think I need to use the same code to measure the corridor one [the

second corridor]”.

A key objective between CLT and the learning program is to develop a useful method

for acquisition of schema(s) and their use during problem solving that enables novice

programmers to draw on previous experiences to facilitating learning.

7.6. Summary

The Piagetian explanation of learning through the processes of equilibration, assimilation

and accommodation could be used to explain some of the learning behaviours of

participants observed during think aloud sessions and their responses during retrospective

interviews. The findings reported here indicate that although Piagetian theory may be

used to explain learning success it is not useful for predicting whether or not learning is

likely to take place, or whether disequilibrium will lead to schema construction or to a

form of avoidance behaviour that minimises the impact of disequilibrium. Piaget provided

a new way of thinking about learning and was a leader in the development of

constructivist learning theory. However, from the perspective of a teacher of computer

programming, the principal weakness of Piagetian theory is that it places an emphasis on

the independent construction of knowledge by students to the exclusion of the social

228

aspect of learning and does not provide ideas about what could be done to facilitate

schema construction through improvements in course construction or teaching strategies.

Vygotsky promoted guided discovery by providing novice programmers with the

assistance and feedback they required during problem solving. Vygotsky’s theory

promotes gradual changes using cultural tools and social contact. In this study, it was

found that scaffolding plays an important role in keeping participant’s practice moving

toward improvement. The scaffolding provided to the participants in this study ranged

from low level support (i.e. hard scaffolding – using software tools) to high levels of

support (i.e. providing the exact solution using a stepwise refinement). Information about

the problem solving behaviours of participants shows that the concepts of ZPD and

scaffolding provide a useful way of describing learning within the context of computer

programming. They also provide information about how a teacher can prompt learning

and what suitable software tools can be used to prompt learning. The instrument designed

for this thesis allowed the researcher to identify the ZPD of the participants and to some

extent to predict which the participants could take advantage of the scaffolding given to

them during the retrospective interview. The participants with a larger ZPD demonstrated

their ability to move forward. As a result of practising problem solving supported by

scaffolding, they were able to recall and make associations based on their past experience

in order to achieve a new, higher level of understanding. Participants with a smaller ZPD

found difficulties recalling what they had previously learned and therefore found it

difficult to solve the more advanced problems.

One of the main deficiencies of Vygotsky’s theory is that it does not explain how the

process of cognitive development occurs. We have been able to use the theory to engage

participants in successful teaching strategies but not to develop an understanding of the

cognitive processes that take place as novice programmers learn to program.

Sfard’s theory, like Vygotsky’s, focuses on engaging the learner in the discovery process

by providing learners with assistance from a more knowledgeable source. Sfard’s

framework while developed as a theory for explaining concept development in

mathematics is also relevant to learning computer programming. Like mathematics,

programming involves “tightly integrated concepts”. Sfard explored the three stages of

mathematical concept development. The empirical evidence derived from this

longitudinal study revealed that these same three stages are involved in learning to write

a computer program and the development of mental abstraction of the programming plan

(pattern). The findings reported in this study indicate that at the interiorization phase, the

229

cognitive demands on the participants are high. It may be that the participants have

difficulty in simultaneously attending to an understanding of the interactions among the

sub-problems, mastering the language syntax, reading, tracing, and testing. At the

condensation phase, the participants started to become aware of common patterns, and

the interactions among the program patterns, and used them as templates that could be

manipulated in diverse ways to enable them to correctly transfer the learned solution to a

new characteristic. At the reification phase, some participants are more successfully than

others showed evidence that they were able to recall relevant schemas and to construct a

solution that demonstrated that they were thinking about this solution as a unified entity.

The adaptation of Sfard’s stages proves to be of particular value when interpreting the

process of the novice programmers’ development from a cognitive perspective.

These three stages contribute to deeper understanding of novice programmers’ way of

developing patterns and reusing them in solving another programming task (abilities to

view a current problem in terms of old problems). They also provide information that

shows educators how to teach programming in away that allow them to organise related

topics of the programming course.

When a novice first has to write a computer program, the intrinsic load is high and that

form of load will only get lower when the person has learned the language and the

programming constructs, and has had practice at programming. In this research, CLT has

been used to explain why some participants could not progress or had difficulties with

certain aspect of learning. The concepts of intrinsic and extraneous load were used to gain

an understanding of the difficulties being faced by participants who were struggling with

a problem and whose cognitive resources were probably overloaded and so were unable

to build the necessary new schema. CLT assumes that learning results in schema

development but it does not provide a theory about how schema are developed.

Information about the problem solving behaviours of participants shows that the use of

simple-to-complex sequencing, ordering and organising questions was a useful approach

to reducing extraneous cognitive load and thereby increasing the working memory

available for the germane load (schema acquisition and construction). In addition,

information about the problem solving behaviours of participants shows that when

participants were struggling to solve a programming task, the cognitive load imposed

during the writing process was probably too high but could be reduced if the interviewer

guided their knowledge acquisition processes.

230

Chapter 8. Conclusion

8.1. Overview of Research

The main aim of this study was to gain a deeper understanding of the ways in which

novice programmers learn to program, with an emphasis on their cognitive development

processes. This was achieved by following the same participants during their first year

learning to program at the AUT. The participants were observed solving code writing

tasks from a set of related, progressively more difficult tasks while providing think aloud

information about what they were doing and thinking about during their problem solving.

They were also interviewed retrospectively.

Information obtained from observation, the think aloud protocols and retrospective

interviews was used to analyse the match between the cognitive processes used by the

participants and the ideas about learning presented in selected cognitive theories (Piaget,

Vygotsky, Sfard and CLT) in a way that provides a reasonable explanation about learning

to program and the extent to which these theories fall short as an explanation of cognitive

development in the programming domain.

8.2. Research Questions

This research was guided by five main questions.

Research question 1 (Q1): Can we develop a framework that describes the difficulty of

novice code writing tasks?

A novel task difficulty framework was developed which consisted of a new empirically

verified software metric and a SOLO classification for code writing tasks. It was found

that these two dimensions – an objective and a subjective measure – were needed to fully

explain the difficulty of code writing tasks, and that when combined they were a useful

way of distinguishing tasks. The software metric reflected the structural complexity, size

and readability of the solution code, and the SOLO taxonomy the level of cognitive

complexity of the code writing task. This framework was then used to guide the

development of the sequences of code writing tasks used in this research. The initial data

transcription and analysis, presented in Chapter 6 and Appendix A, showed that the

questions which were more difficult according to the framework were also the questions

the students found the most difficult to solve. Indications of increased difficulty for a

student included: more time on task, higher frequency of compilation and test runs, and

an increased reliance and need for assistance and whether or not a problem was solved.

231

This difficulty framework should be applicable for most novice programmer code writing

tasks in the first year of learning to program and should prove to be a useful tool for

educators and researchers when designing such tasks.

Research question 2 (Q2): How do novice programmers integrate new programming

structure or elements into their current understanding of code?

Through the research methodology adopted it was possible to identify common novice

programmer code writing strategies. Four approaches to code writing emerged based on

the observations of the novice programmers in this study. The most common strategy was

to adopt a stepwise design in which they broke down the problem into manageable

subparts and then recomposed these subparts to form a new solution. This is not at all

surprising as the tasks were designed so that each task built on the previous task’s

programming schema or plans in some way. This finding has implications for teaching as

it suggests that explicitly designing programming exercises to progressively build on

concepts and mental schemas improves learning.

There is also strong evidence to suggest that when novice programmers cannot identify

all the subparts of a problem they tend to fall back on the most familiar aspect of a task

or problem first and then try to build a solution from that point. It is also clear that

whenever possible they rely on building code sequentially (combining different or

repeating the same schemas in sequence) and tend to have difficulty when a task requires

the combination of cognitive schemas in a non-sequential manner. Lastly when novice

programmers cannot reach a solution within a relatively short time they tend to resort to

a trial and error approach to programming. Participants unable to retrieve an existing

schema tended to program using a trial and error approach which inevitably led to failure.

None of these observations are surprising and similar observations have been made in

published research studies of novice programmers.

It is clear from this research that novice programmers can be taught to be aware of

common patterns and the way in which patterns relate to each other and can be combined.

This awareness lends itself to more successful programming strategies. In cases where

the participants were able to recognise that a problem was analogous to a previously

solved problem they were almost always able to reuse their prior knowledge to solve the

new task and were able to identify the variation or differences between the these tasks. In

such cases they tended to first write a solution fairly quickly without compilation or

testing and then used the feedback from the tests and the compiler to refine their solution.

232

Scaffolding and feedback seemed to play a major and constructive role in learning for the

participants of this study. Through the use of a strategic scaffolding approach, inspired

by Perkins and Martin’s (1985) soft scaffolding model, students were able to integrate

new programming knowledge into their existing schemas. The researcher found that using

a stepwise refinement process, described in Section 3.7, as one means of scaffolding was

a particularly successful approach. Much of the time participants were able to take

advantage of scaffolding and feedback given to them to achieve a new, higher level of

understanding. However, more often than not the poorer performing participants while

able to make use of scaffolding to build a correct program were unable to fully recall that

knowledge and apply it to future tasks. It is clear that these students require more time to

learn, more guided learning and more practice.

The sequence of programming tasks designed for this research encouraged participants to

think of new ways to apply previously learned concepts. During the think aloud sessions

some participants were able to develop broader schemas for recognizing familiar program

structures. Some participants could not immediately draw on relevant prior knowledge

but later, as they practised programming supported with different kinds of scaffolding,

they succeeded in applying their knowledge to different programming concepts and

contexts (either a Robot World or a native Java task).

In this study, we were able to identify whether or not a participant was within their

Comfort Zone and/or ZPD when solving a question. Anecdotally, the researcher was able

to identify the ZPD of the participants and to some extent to predict which participants

would be able to take advantage of the scaffolding given to them during the retrospective

interview. If a participant was within their Comfort Zone they were able to solve the task

independently and therefore had reasonably robust cognitive schema which could be

applied to solve the problem. In the ZPD, but outside of the Comfort Zone, the

participants were able to solve a task with assistance; for the weaker students working too

far towards the edge of their ZPD meant that they did not form adequate cognitive schema

as a result of solving a problem, and in order to solve the problem they required a high

degree of intervention. For participants, where a task was well within their ZPD less

intervention was required and the intervention was less directive thus learning more by

discovery; schemas formed as a result of solving the task were able to be used reliably to

solve future tasks.

233

Research question 3 (Q3): Does a student’s approach to integrating new knowledge

change over time? If it does, what triggers this change?

There were no obvious trends in change over time. However the participants did tend to

move between different strategies depending on the task. Factors such as prior

knowledge, student motivation and attitude, strength of existing schemas and difficulty

of the task in terms of structure and the level of abstraction of thinking required affected

the approach used in learning.

The fact that no change was observed could be because there is not sufficient progress in

learning and knowledge in the first year of programming to be able to detect a change or

require a change. Moreover, in the programming courses taken by these students

reflection on learning and the way in which programming can be learnt effectively are

not aspects that are explicitly taught or focused on in instruction.

Faced with real world problems that require moral reasoning, adult learners have been

shown to use different levels of argument depending on the problem and to move

backwards and forwards between simple child-like reasoning and relatively advanced

reasoning in a similar manner to that observed for this research’s participants. More

advanced reasoning can be taught and learners can be taught how reason or reflect on

their own reasoning. Successful students already have a good approach to learning

programming and coping with new concepts and are able to progress by integrating these

new concepts into their knowledge structure. In the case of weaker students, explicitly

teaching metacognitive techniques could possibly be of help.

Research question 4 (Q4): What specific properties does a programming question or

task need to trigger a learning event?

In order to significantly progress learning a task needs to be designed to cause cognitive

dissonance and subsequent reconstruction. To trigger incremental steps in learning

existing knowledge is used and transferred to a new situation and retained over time. In

order for learning to occur tasks should be within the novice programmers ZPD to ensure

that a learning event is triggered. The task needs to be sufficiently challenging and require

effort but on the other hand be within the ZPD and require minimal assistance from a

significant other. This is a delicate balance.

Ultimately students are at different stages of learning at different times. Determining

which tasks should be given to a student at a given time depends on their current stage of

development. Because we can determine their ZPD we should be able in theory determine

234

which tasks are most appropriate at a given time. The ideas included in transfer14 of

learning are useful to determining the properties of a task which trigger different learning

events.

As a result of observing the participants solving various types of tasks the following

hypotheses have been developed:

1. Tasks which are Isomorphic have a tendency to consolidate existing cognitive

schemas. Such tasks require the minor adaption of automated schemas.

2. Tasks which are Glued Isomorphic require the retrieval and adaptation of more

than one cognitive schema. Such tasks may require minimal or significant

reorganization of the automated schema and become progressively more

challenging as the degree of reorganization and recombination of schemas

increases.

3. Tasks which are Far Transfer tasks trigger significant leaps in learning where the

other two types of tasks tend to trigger more incremental learning. These types of

tasks requires a shift from one concept to a new concept. For example transferring

a 1D array iteration schema to a 2D array schema.

All of these types of tasks have the potential to trigger learning experiences. The

researcher theorises that for most students Isomorphic and Glued Isomorphic tasks are

normally within their ZPD. However Far Transfer tasks are often outside of the ZPD for

students whose schemas and programming knowledge are fragile. Careful consideration

therefore is required as to when such tasks are given to a student – given too early such

tasks can stall progress and discourage the learner.

Research question 5 (Q5): Can we develop a cognitive framework that describes the

ways in which novice programmers integrate new programming structure or elements?

The information gathered for this research was not sufficient for the construction of a

fully formed cognitive framework, and additional information gained through future

research is required. Nevertheless, the data gathered over a full year points to some

important components that could form part of a future complete framework.

The results of this research indicate that both cognitive and sociocultural approaches are

important in the development of knowledge of novice programmers. All theories

14 The types of transfer tasks used in the remaining discussion were defined by the researcher for the purpose

of studying novice programmers (Section 5.5).

235

discussed in this thesis, except Piagetian theory, focused not only on intellectual

development but also on social interaction as an important factor in learning and

development. Of the theories examined two were found to be the most usefulVygotsky’s

notions of the Zone of Proximal Development, the role of more knowledgeable others

and more recent ideas about scaffolding, and Sfard’s theory of concept development.

The researcher was able to use Vygotsky’s concepts of ZPD and scaffolding as a

successful teaching strategy for engaging participants in learning and to progress

participant learning but these concepts were not sufficient to explain the cognitive

processes that take place as novice programmers learn to program. Sfard’s ideas appeared

to be useful in explaining the process of the novice programmers’ development from a

cognitive perspective.

8.3. Reflections on the Think Aloud Method

Think aloud has been used effectively in the areas of psychology and education to

investigate cognitive processes but the method does have some recognised limitations.

The most critical issue is that the requirement to problem solve and to speak about the

reasoning being used simultaneously may be too difficult for some participants (Branch,

2000). This problem was evident early on in this research the participants were very

often unable to both think aloud and to focus on the new concepts and the unfamiliar task

of code writing. Most of the students in this study were English as a second-language

students which placed an additional burden in terms of thinking aloud. They often found

it difficult to think aloud and tended to switch between their native language and English

while solving the programming tasks. At times the participants had difficulty finding the

appropriate English vocabulary to describing their reasoning.

Unfortunately think aloud is the only tool which researchers have to try and find out what

a person is thinking when solving a complex problem (Van Someren et al., 1994). In this

research the addition of video and retrospective interviews was found to enhance the data

acquired and provide greater insight into the participants’ thought processes. Even with

the revised method, for some participants the data acquired was sparse. It is important to

recognize that there is a limitation on the information acquired though retrospection

because working memory capacity is limited. Thoughts are retained briefly in working

memory and may be lost as soon as new thoughts supersede it – only certain information

is retained in long term memory, triggered by video playback and therefore recalled in

the retrospection. However, as the retrospection was always undertaken immediately after

the think aloud this issue was minimized.

236

The influence of the researcher on the method must also be acknowledged. In order to

minimize interviewer influence the think alouds were conducted in so far as it was

possible without prompts from the researcher. The interpretation of the think aloud data

required the researcher to make her own inferences. With the researcher aware of not

introducing her own bias to the transcription process the reconstruction of participant

remarks was as much as possible “literal” and closely connected to context by transcribing

using video and audio. However, some utterances appeared to consist of more than one

thought process and therefore required interpretation by the researcher.

Inadvertently changing a novice’s approach to solving the programming task was always

a possibility as a result of the intervention model used in this thesis. However, the

intervention model used was a valuable way of ensuring that participants benefited from

their participation and were therefore motivated to continue to participate throughout the

year. Many participants were able to complete a programming task as a consequence

researcher assistance and this process reflects teaching and learning. The interventions

were recorded and their effect on the participants’ subsequent thought processes noted

and considered in the analysis.

Participating in a research study such as this requires a real time commitment from the

students involved. Some participants withdrew from the research on completing the P1

course. Others frequently postponed meeting sessions due to other commitments. The

participants who completed the study commented on the usefulness of participation and

how it improved their understanding of programming. Interestingly it was not just the

highly motivated and engaged students who persisted in the study and the spread of

participants in terms of performance in the study, and on the relevant programming

course, was maintained until the end of the study.

8.4. Validity, Reliability and Generalisability of the Difficulty Framework

Validity in quantitative research refers to whether the research truly measures that which

it was intended to measure and whether the results are accurate (Joppe, 2014).

One obvious threat to the validity of the difficulty framework’s WM is that there is no

reliable way of identifying how the participants arrived at a given correct or incorrect

answer. This threat to validity is considered to be minimal due to the triangulation of this

method with the think aloud results. The observations of the participants solving the code

writing tasks confirmed that the tasks they found easy were the tasks which were

measured as easy by the WM. Similarly, tasks measured as hard by the WM were also

237

difficult for the participants. A link between time spent on the task, the number of

compilations required, and degree of success and the difficulty of the task as measured

by the WM was noted.

One possible threat to validity in using naturally occurring data, such as exam answers or

online test responses, is that the students may have “cheated” on the exam/test. This

possibility is minimal because of the closed programming environment used in online

tests and through the use on invigilators. The quantitative data for this research was based

on series of programming tests held throughout the P1 course. The programming tests

were computer-based and open book. These tests were about three hours long and were

conducted under formal examination conditions; therefore, the opportunity for plagiarism

was low.

Another threat to the validity of the results of this research concerns the mode of marking

and the rubrics for marking. In order to avoid issues related to potential inconsistencies

between markers and in marking schemas which award marks for incomplete and often

non-functional answer code, the researcher re-marked the assessments explicitly for the

purpose of this research.

The reliability of results of a quantitative research method refers to the extent to which

results are consistent over time and are an accurate representation of the total population

under study is a measure of the data’s reliability (Joppe, 2014).

In order to ensure the reliability of the difficulty framework a purposeful non-random

sampling strategy was used (see details in section 3.5.2.1). Because AUT ethical consent

is based on the principle of informed and voluntary consent it is possible that the sample

is not representative of the entire cohort. The overall grade distribution of the entire cohort

was compared with that of the sample – they were the same. Thus the sample is considered

to be representative and reliable.

Another issue worthy of note is that of the generalisability of the framework. This

framework is limited to code writing tasks that are typically given to novice programmers

in their first year of learning to program. Moreover, it is further limited to a small degree

due to the nature of the course in which this research is situated. The course was largely

procedural, even though it used a micro-world. For an objects first approach to teaching

and learning programming the WM would probably need to be extended to include object

oriented metrics. Thus, in the context of this thesis, the notion of an objective measure of

difficulty is considered in the positivist sense of developing an objective measure in

research involving specific students, situated in a specific course, and at a specific time.

238

However, the tasks presented to the students involve programming schemas and concepts

that are typical for current first programming courses globally. This means that it is likely

that the WM metric will be found to be applicable to other courses, in different

programming languages, and taken by other students.

8.5. Trustworthiness of the Think Aloud Data

The four criteria for trustworthiness in quantitative research are:

1. Credibility

Activities that increase the likelihood of credibility in a qualitative study include

prolonged engagement, persistent observation, and triangulation (Lincoln & Guba, 1985).

Each of these activities has been part of this research project.

As part of the observational method used in this research retrospection interviews were

included to ensure the credibility of the data gathered. As part of the retrospection process,

any data that was in doubt was checked with the participant and participant feedback sort.

This process of asking the participant, albeit indirectly in this research, is known as a

“member check”. Guba and Lincoln (1985) consider member checks an important

provision that can be made to reinforce a study’s credibility.

Triangulation further contributes towards the credibility of this study. Triangulation is

“checking information that has been collected from different sources or methods for

consistency of evidence across sources of data” (Mertens, 2005, p. 225) and was core to

the research method employed in this research. Credibility of data was ensured, therefore,

by:

 data being collected from multiple participants with diverse code writing abilities,

 the code writing tasks being designed using a verified difficulty framework,

 using more than one theoretical scheme in the interpretation of the observed

phenomena.

Further credibility is given to the result and data in the study by:

 the researcher having 20 years of experience teaching computer science,

 a pilot study was conducted to ensure that the methods were appropriate for the

purposes of the research.

2. Transferability

Guba and Lincoln (1989) define transferability as the extent to which results of a study

can be generalized to other situations (settings, contexts, or populations). There are some

concerns associated with transferability such as precisely how the findings of a particular

239

study could be replicated or applied in different settings. One way to overcome this

concern is to use many cases (participants) in studies to enhance replicability (Marshall

& Rossman, 2006). Also, providing a detailed description report (“thick description”) on

the interpretation of a particular research sample (such as choosing of data collection

methods and participants, quotations from interviews, analysis methods, process of

analysis, and the inferences the researcher has come) helps other researchers to decide for

themselves the extent to which the findings of a particular study can be transferred to their

own research (Davis, 1995). A detailed description increases the chances of

transferability in qualitative research. However, it must be noted that it is up to the reader

to judge if the data is rich enough to make any comparisons.

Transferability has been ensured in this research through a thick description in the

following ways. An in-depth detailed description was made to ensure that the group of

students investigated, the choice of participants for the think aloud sessions, the course

content of the programming course they studied, the programming tasks they solved, the

research approach taken in collecting the data, and the analyses performed were described

in as much detail as possible. Moreover, an in-depth discussion and interpretation of the

relevant aspects of the cognitive theories considered in the research was presented along

with a detailed interpretation of the observations and how these related to these cognitive

theories.

3. Dependability

A third criterion of major concern in qualitative research is its dependability.

Dependability refers to the degree of consistency and reliability of the data and the

interpretation of the results of a study. Lincoln and Guba write it is argued that if

credibility is achieved, dependability is also achieved: “Since there can be no validity

without reliability (and thus no credibility without dependability), a demonstration of the

former is sufficient to establish the latter” (p. 317). Techniques related to credibility, thus

ensure that dependability is achieved.

4. Confirmability

The forth criterion of concern in qualitative research is confirmability. Confirmability

includes the confirmation that the results of a particular data are related to the study

conducted. This issue can be overcome if a researcher is able to provide a detailed

description of the data collected - “tracked to its source” (Mertens, 2005, p.257). This

would enable other researchers to modify, confirm, or reject the interpretations and

inferences that are made (Mertens, 2005).

240

In the present study the difficulty framework was used to inform the design of the think

aloud tasks, and therefore, an interpretative qualitative approach was adopted to extract

patterns of behaviour arising from the relationship between verbalization (cognitive

processes) and the task solution (final product quality).

Analysis in studies of cognitive processes is always subjective because a researcher

influences both the collection and the interpretation of the data. The level of subjectivity

was mitigated by adopting the following practices:

 A fixed coding schema was used to categorise the transcribed.

 A verbal protocol was specified and used in order to understand and interpret the

meanings of the actions of participants under study.

 The researcher provided a detailed account of how data was collected from the

participants, the intervention model used, and a synthesis of limitations of the

findings and conclusions reached.

8.6. Implications for Teaching

The difficulty framework developed in this research should provide educators with a way

of estimating the difficulty of novice code writing tasks. This framework can be used to

appropriately sequence and design learning tasks to promote schema development in

novice programmers. Moreover, using programming tasks designed this way supported

with explicit teaching of metacognitive techniques to make students aware of how their

knowledge is effectively adapted and expanded, should improve student learning.

The adoption of Sfard’s concept of developmental phases and the cyclical nature of

concept development contributes to deeper understanding of novice programmers’ ways

of developing schemas and reusing them in solving another programming task. This

indicates the ability to view a current problem in terms of old problems. The results of

this research therefore suggest a number of core principles which could be applied to the

teaching and learning of programming that help promote concept development. These

are:

1. Consider what are the critical or core concepts in the course/paper.

2. Consider sequences of tasks. Teach simple concepts first in isolation and ensure

that the students are exposed to sufficient examples so that the concept is reified

before moving onto a new concept.

3. Ensure that examples and tasks related to a concept include variation. Tasks that

are in essence the same as an original example or task can be presented differently.

241

4. When designing assessments and exercises, carefully consider the number of

concepts that are actually involved in each task – educators are prone to

underestimating the number of concepts and the number of linkages between

concepts.

In teaching novice programmers it is recommended that assessments be designed which

establish each students individual ZPD and that students are provided with individualised

formative code writing tasks which are intended to expand their ZPD. If students are not

provided with tasks which incrementally and slowly expand their ZPD, it is likely that

they will eventually give up or never move forward from the point in the course where

the tasks fell outside of their ZPD. While providing them with tasks that expand their

ZPD, it is also important to ensure that some tasks are within their CZ in order for students

to develop a level of confidence.

The participants who were able to recognise similarities and differences in the tasks

presented to them were more able to retrieve relevant prior mental schemas and apply

them to new tasks. Teaching students in a way which allows them to develop an

awareness of the different ways in which code may be written to solve the same and

similar problems should also improve learning. Thompson (2010) discussed the

importance of the use of variation theory to assist learners to understand threshold or core

concepts and designed programming tasks using variation theory. The research

undertaken in this thesis gives weight to Thompson’s conjecture that teaching with

variation is important for concept development.

It is clear from this study that appropriate scaffolding is critical to student learning in the

early stages of learning to program. It is the view of the researcher that developing a set

of guiding principles for assisting students in order to promote independent learning

capability in novice programmers is essential for effective teaching especially in practical

programming laboratories. The scaffolding guidelines used in this research (section 3.7)

should provide a useful starting point for teachers.

Software tools, debugging and code tracing play an important role in learning to program

and their use must be taught as an important aspect of programming for novice

programmers – too often as in this course in which this research was undertaken such

aspects are expected to evolve naturally and are never explicitly taught. Such tools can be

valuable for scaffolding learning once students have been taught how to use them

effectively.

242

8.7. Future Research

The difficulty metric for this research was developed using code writing tasks from on-

line examinations of a course in Java and applied to designing questions in Java and in

the context of the Java based Robot World used as an instructional tool in P1 at the time

of this research. The applicability of the framework to both programming contexts

suggests that the framework should be generalizable to other programming languages and

pedagogical approaches. One possible limitation of the framework is the fact that it was

developed for a course which used a procedural-first programming pedagogy. For courses

adopting an objects-first pedagogy additional software metrics may be required for the

objective dimension of the difficulty framework. Further research that explores the

objective metric with respect to different pedagogies and programming languages is

warranted.

It would be interesting to extend this study to other aspects of programming, including

aspects of design. Most empirical studies have focused on the difficulties that novices

have when trying to understand object-oriented concepts, but we do not understand, in

terms of cognitive processes, why they have difficulties with such concepts. Future

research could focus on knowledge acquisition of novice programmers learning in the full

object-oriented programming or objects-first paradigm.

It is important that instructors are mindful of the type of scaffolding/assistance they give

students in order to promote independent learning while keeping momentum in learning.

Thus, one other interesting avenue of research would be to empirically investigate in more

depth the effects of the intervention model employed in this study and the impact of the

various interventions on student learning.

Understanding where each students ZPD lies would be useful. Research investigating a

more accurate measure of a student’s ZPD would clearly be useful in planning courses

and programing tasks. Eventually it might lead to a means of providing each student with

personally tailored programming exercises targeted at progressing their learning and

promoting concept development.

Finally, further research as to how the ZPD and Sfard’s phases of concept development

relate to each other and might be combined could result in a new refined cognitive

framework that describes the ways in which novice programmers integrate new

knowledge into their cognitive schema.

243

References

Ambrose, S. A., Bridges, M. W., Dipietro, M., Lovett, M. C., & Norman, M. K. (2010).

How learning works: Seven research based principles for smart teaching. JOSSEY-

BASS: A Wiley Imprint. Retrieved from www.josseybass.com

Anderson, J., Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cognitive

Science, 8(2), 87–129.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E.,

Pintrich, P. R., … Wittrock, M. C. (2001). A taxonomy for learning, teaching, and

assessing: A Revision of Bloom’s taxonomy of educational objectives. New York:

Longman.

Atman, C. J., & Bursic, K. M. (1998). Verbal protocol analysis as a method to document

engineering student design processes. Journal of Engineering Education, 87(2),

121–132.

Barker, R., & Unger, E. (1983). A predictor for success in an introductory programming

class based upon abstract reasoning development. SIGCSE Bull., 15(1), 154–158.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The Goal Question Metric

approach. Encyclopedia of Software Engineering, 2, 1–10.

Bennedsen, J., & Caspersen, M. (2008). Abstraction ability as an indicator of success for

learning computing science? In Proceedings of the 4th International workshop on

Computing Education Research (ICER’08) (pp. 15–26). Sydney, Australia: ACM.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO

taxonomy (Structure of the Observed Learning Outcome). New York. Academic

Press.

Black, T. R. (2006). Helping novice programming students succced. Journal of

Computing Sciences in Colleges, 22(2), 109–114.

Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1956). Taxonomy of educational

objectives the classification of educational goals, Handbook 1: Cognitive Domain.

New York: Longmans, Green & Co.

Bogdan, R. C., & Biklen, S. K. (2006). Qualitative research for education: An

introductory to theory and methods (5th Ed.). Needham Heights, MA: Allyn and

Bacon.

Bormuth, J. R. (1971). Development of standards of readability: Toward a rational

criterion of passage performance. Final report, U.S. Office of Education, Project

No. 9-0237. Chicago: University of Chicago.

Börstler, J., Caspersen, M. E., & Nordström, M. (2007). Beauty and the beast — Toward

a measurement framework for example program quality.

Bower, M. (2008). A taxonomy of task types in computing. SIGCSE Bull., 40(3), 281–

285.

Braarud, P. (2001). Subjective task complexity and subjective workload: Criterion

validity for complex team tasks. International Journal of Cognitive Ergonomics,

5(3), 261–273.

Branch, J. L. (2000). Investigating the information-seeking processes of adolescents: The

value of using think alouds and think afters. Library & Information Science

Research, 22(4), 371–392.

244

Briand, L. C., Morasca, S., & Basili, V. R. (1996). Property-based sotware engineering

measurment. IEEE Transactions on Software Engineering, 22(1), 68–86.

Brown, J. D., & Rodgers, T. (2002). Doing second language research. Oxford University

Press.

Bruce, B., Rubin, A., & Starr, K. (2015). Why readability formulas fail. IEEE

Transactions on Professional Communication, 24(1), 50–52.

Brush, T. A., & Saye, J. W. (2002). A summary of research exploring hard and soft

scaffolding for teachers and students using a multimedia supported learning

environment. Journal of Interactive Online Learning, 1(2), 1–12.

Bryman, A. (1984). The debate about quantitative a question of method qualitative

research : or epistemology ? British Journal of Sociology, 35(1), 75–92.

Cafolla, R. (1988). Piagetian formal operations and other cognitive correlates of

achievement in computer programming. Journal of Educational Technology

Systems, 16(1), 45–55.

Campbell, D. (1988). Task Review Complexity : A review and analysis. Academy of

Management Review, 13(1), 40–52.

Cardell-Oliver, R. (2011). How can software metrics help novice programmers? In

Proceedings of the 13th Australasian Computing Education Conference (ACE’11)

(pp. 55–62). Darlinghurst, Australia: Australian Computer Society, Inc.

Carnegie Mellon University. (2006). What is Alice and what is it good for? Retrieved

November 16, 2015, from http://www.alice.org/index.php?page=what_is_alice/

what_is_alice

Caswell, R., & Nisbet, S. (2005). Enhancing mathematical understanding through self-

assessment and self-regulation of learning: The value of meta-Awareness. In

Proceedings of the 28th conference of the Mathematics Education (pp. 209–216).

Sydney: MERGA Inc.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction.

Cognition and Instruction, 8(4), 293–332.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–

81.

Checkstyle. (2016). Checkstyle. Retrieved February 17, 2016, from

http://checkstyle.sourceforge.net/

Chi, M., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In Advances in the

psychology of human intelligence (Vol. 1, pp. 7–75). Hillsdale, NJ: Erlbaum.

Chi, M. T. H., & Bassok, M. (1989). How students study and use examples in learning to

solve problems. Cognitive Science, 13, 145–182.

Clear, T., Whalley, J. L., Lister, R., Carbone, A., Hu, M., Sheard, J., … Thompson, E.

(2008). Reliably classifying novice programmer exam responses using the SOLO

taxonomy. In Proceedings of the 21st Annual NACCQ Conference of the National

Advisory Committee on Computing Qualifications (NACCQ’08) (pp. 23–30).

Auckland, New Zealand.

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds & Machines,

17, 169–184.

Cole, M. (1997). Cultural psychology: A once and future discipline. Cambridge: The

Belknap Press of Harvard University.

245

Collins, A. M., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making

thinking visible. American Educator, 15, 6–11.

Commons, M. L., Richards, F. A., & Armon, C. (1984). Beyond formal operations: Late

adolescent and adult cognitive development. NY: Praeger.

Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on

mathematical problem-solving transfer. Journal of Educational Psychology, 79(4),

347–362.

Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining.

Journal of Experimental Psychology, 7(1), 68–82.

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some empirical results for Neo-

Piagetian reasoning in novice programmers and the relationship to code explanation

questions. In Proceedings of the 14th Australasian Computing Education

Conference (ACE’12) (Vol. 123, pp. 77–86). Melbourne, Australia: Australian

Computer Society Inc.

Creswell, J. W. (1995). Research design: Qualitative and quantitative approaches. SAGE

Publications.

Creswell, J. W. (2009). Editorial: Mapping the field of mixed methods research. Journal

of Mixed Methods Research, 3(2), 95–108.

Davidson, C. (2009). Transcription: Imperatives for qualitative research. International

Journal of Qualitative Methods, 8(2), 35–52.

Davies, S. P. (1991). Characterizing the program design activity: neither strictly top-

down nor globally opportunistic. Behaviour & Information Technology, 10(3), 173–

190.

Davis, K. A. (1995). Qualitative theory and methods in applied linguistics research.

TESOL Quarterly, 29, 427–453.

Denny, P., Luxton-Reilly, A., & Simon, B. (2008). Evaluating a new exam question:

Parsons problems. In Proceedings of the 4th international workshop on Computing

Education Research (ICER’08) (pp. 113–124). Sydney, Australia: ACM.

Dijkstra, E. W. (1997). A Discipline of programming (1st Ed.). Prentice Hall PTR, Upper

Saddle River, NJ, USA.

Dougherty, J. P. (2007). Concept visualization in CS0 using Alice. Journal of Computing

Sciences in Colleges, 22(3), 145–152.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), 57–73.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O.

Tall (Ed.), Advanced Mathematical Thinking (pp. 95–123). Dordrecht: Kluwer.

Eckerdal, A., & Berglund, A. (2005). What does it take to learn “Programming

Thinking”? In Proceedings of the 1st International workshop on Computing

Education Research (ICER’05) (pp. 135–142). Seattle, WA, USA: ACM.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data.

Cambridge, MA: Massachusetts Institute of Technology.

Falkner, K., Vivian, R., & Falkner, N. J. G. (2013). Neo-piagetian forms of reasoning in

software development process construction. In Proceedings of the 2013 Learning

and Teaching in Computing and Engineering (LATICE’13) (pp. 31–38). IEEE

Computer Society.

246

Field, A. (2009). Discovering statistics using SPSS (3rd Ed.). SAGE Publications.

Fink, A. (2003). How to sample in surveys (2nd Ed.). SAGE Publications.

Fischer, G. (1986). Computer programming: A formal operational task. In 16th Annual

Symposium of the Piaget Society. Philadelphia, PA, USA.

Fitzgerald, B., & Howcroft, D. (1998). Competing dichotomies in IS research and

possible strategies for resolution. In Proceedings of the International Conference on

Information systems (ICIS’98) (pp. 155–164). Atlanta, GA, USA: Association for

Information Systems.

Fix, V., Wiedenbeck, S., & Scholtz, J. (1993). Mental representations of programs by

novices and experts. In Proceedings of the INTERACT ’93 and CHI “93 Conference

on Human Factors in Computing Systems (CHI”93) (pp. 74–79). Amsterdam,

Netherlands: ACM.

Flavell, J. H. (1977). Cognitive development. Englewood Cliffs, NJ: Prentice Hall.

Flavell, J. H., & Piaget, J. (1963). The developmental psychology of Jean Piaget.

Princeton, NJ: D Van Nostrand Company.

Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32, 221–

233.

Fleury, A. E. (2000). Programming in Java. ACM SIGCSE Bull., 32(1), 197–201.

Flower, L., & Hayes, J. R. (1980). The cognition of discovery: Defining a rhetorical

problem. In Landmark Essays on Writing Process (Vol. 31, pp. 63–74). College

Composition and Communication.

Fuchs, L. S., Fuchs, D., Prentice, K., Burch, M., Hamlett, C. L., Owen, R., … Jancek, D.

(2003). Explicitly teaching for transfer: Effects on third-grade students’

mathematical problem solving. Journal of Educational Psychology, 95(2), 293–305.

Fuller, U., Johnson, C. G., Cukierman, D., Hernán-losada, I., Rey, U., Carlos, J., …

Thompson, E. (2007). Developing a computer science-specific learning taxonomy.

SIGCSE Bull., 39(4), 152–170.

Gagné, R. M., Briggs, L. J., & Wager, L. J. (1992). Principles of instructional design (4th

Ed.). Harcourt Brace College.

Ginat, D., & Menashe, E. (2015). SOLO Taxonomy for assessing novices’ algorithmic

design. In Proceedings of the 46th ACM Technical Symposium on Computer Science

Education (SIGCSE’15) (pp. 452–457). Kansas City, Missouri, USA: ACM.

Gluga, R., Kay, J., Lister, R., Kleitman, S., & Lever, T. (2013). Coming to terms with

Bloom : an online tutorial for teachers of programming fundamentals, 147–156.

Gómez-Albarrán, M. (2005). The teaching and learning of programming: A survey of

supporting software tools. Computer Journal, 48(2), 130–144.

Gray, E., & Tall, D. (2007). Abstraction as a natural process of mental compression.

Mathematics Education Research Journal, 19(2), 23–40.

Gray, S., Clair, C., James, R., & Mead, J. (2007). Suggestions for graduated exposure to

programming concepts using fading worked examples. In Proceedings of the 3rd

International workshop on Computing Education Research (ICER’07) (pp. 99–110).

Atlanta, Georgia, USA: ACM.

Griffin, J. (2016). Learning by taking apart: deconstructing code by reading, tracing, and

debugging. In Proceedings of the 17th Annual Conference on Information

247

Technology Education (SIGITE’16) (pp. 148–153). Boston, Massachusetts, USA:

ACM.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended

computer science course for middle school students. Computer Science Education,

25(2), 199–237. Retrieved from http://www.tandfonline.com/doi/full/

10.1080/08993408.2015.1033142

Guba, E. G., & Lincoln, Y. S. (1989). Fourth generation evaluation. SAGE Publications.

Gunning, R. (1952). The technique of clear writing. McGraw-Hill.

Haaster, K. V., & Hagan, D. (2004). Teaching and learning with BlueJ: an Evaluation of

a pedagogical tool. In Information Science + Information Technology Education

Joint Conference (pp. 455–470). Rockhampton, Queensland, Australia.

Hall, A. (1970). A conversation with Jean Piaget and Bärbel Inhelder. Psychology Today,

May, 3, 25-32-56.

Halstead, M. H. (1977). Elements of software science (Operating and programming

systems series). New York, NY, USA: Elsevier Science Inc.

Hannafin, M., Land, S., & Oliver, K. (1999). Open learning environments: Foundations,

methods, and models. In C. Reigeluth (Ed.), Instructional design theories and

models (Vol. 2, pp. 115–140). Mahway, NJ: Erlbaum.

Harwell, M. R. (2011). The SAGE handbook for research in education : Pursuing ideas

as the keystone of exemplary inquiry. SAGE Publications.

Hattie, J., & Purdie, N. (1998). The SOLO model : Addressing fundamental measurement

issues. Teaching and Learning in Higher Education, 145–176.

Hogarty, K. Y., Hines, C., Kromrey, J., Ferron, J., & Mumford, K. (2005). The quality of

factor solutions in exploratory factor analysis: The influence of sample size,

communality, and overdetermination. Educational and Psychological Measurement,

65(2), 202–226.

Hook, P. (2016). The learning process. Retrieved February 22, 2016, from

http://pamhook.com/wiki/The_Learning_Process.

Hsued, Y. (2005). The lost and found experience: Piaget rediscovered. Retrieved

November 18, 2015, from https://sites.google.com/site/assocforconstructteaching/

journal/the-constructivist- archive.

Huber, L. N. (1988). Computer learning through Piaget’s eyes. Classroom Computer

Learning, 6(2), 39–43.

Hudak, M. A., & Anderson, D. E. (1990). Formal operations and learning style predict

success in statistics and computer science courses. Teaching of Psychology, 17(4),

231–234.

Hunkins, F. P. (1995). Teaching thinking through effective questioning (2nd Ed.). Boston:

Christopher-Gordon Publishers.

Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist: Introductory

statistics using generalized linear models. Sage Publications.

ISO. (2001). Software Engineering - Product Quality-Part 1 Quality model Geneva:

International Organization for Standardization.

Izu, C., Weerasinghe, A., & Pop, C. (2016). A study of code design skills in novice

programmers using the SOLO taxonomy. In Proceedings of the 16th International

248

workshop on Computing Education Research (ICER’16) (pp. 251–259). Melbourne,

Australia: ACM.

Jakoš, F., & Lokar, M. (2015). A language independent assessment of programming

concepts knowledge. In Proceedings of International Conference on Informatics in

Schools: Situation, Evolution and Perspectives (ISSEP’15) (pp. 13–20). Münster,

Germany: Springer-Verlag.

Jeffries, R., Turner, A. A., Polson, P. G., & Atwood, M. E. (1981). The processes involved

in designing software. In J. R. Anderson (Ed.), Cognitive Skills and Their

Acquisition (pp. 255–283). Hillsdale NJ: Lawrence Erlbaum.

Johnson, B. E. (2011). The speed and accuracy of voice recognition software-assisted

transcription versus the listen-and-type method: A research note. Qualitative

Research, 11(1), 91–97.

Johnson, C. G., & Fuller, U. (2006). Is Bloom’s taxonomy appropriate for computer

science? In Proceedings of the 6th Baltic Sea conference on Computing Education

Research (Baltic Sea’06) (pp. 120–123). Koli National Park, Finland: ACM.

Joppe, M. (2014). The research process. Retrieved February 20, 2017, from

http://www.htm.uoguelph.ca/MJResearch/ResearchProcess/home.html

Jordan, B., & Henderson, A. (2015). Interaction analysis : Foundations and practice.

Journal of the Learning Sciences, 4(1), 39–103.

Kaiser, Henry, F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis.

Educational and Psychological Measurement, 20(1), 141–151.

Kaner, C., Member, S., & Bond, W. P. (2004). Software engineering metrics : What do

they measure and how do we know? In Proceedings of the 10th International

Software Metrics Symposium(METRICS’04) (pp. 1–12). IEEE Computer Society.

Kasto, N., & Whalley, J. (2013). Measuring the difficulty of code comprehension tasks

using software metrics. In Proceedings of the 15th Australasian Computer

Education Conference (ACE’13) (Vol. 136, pp. 59–65). Adelaide, South Australia:

Australian Computer Society Inc.

Kester, L., Paas, F., & Van Merriënboer, J. (2010). Instructional control of cognitive load

in the design of complex learning environments. In Cognitive Load Theory (pp. 109–

130).

Kintsch, W., Teun, A., & Van, D. (1978). Towards a model of text comprehension and

production. Psychological Review, 85(5), 363–394.

Klemola, T. (1978). Software comprehension: theory and metrics. Concordia University,

Montreal, Canada.

Klemola, T., & Rilling, J. (2003). A cognitive complexity metric based on category

learning. In Proceedings of the 2nd IEEE International Conference on Cognitive

Informatics (ICCI’03) (pp. 160–165). Bangkok: IEEE Computer Society.

Kölling, M. (1999). Teaching object orientation with the Blue environment. Journal of

Object-Oriented Programming, 12(2), 14–23.

Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java.

In Proceedings of the 6th conference on Innovation and Technology in Computer

Science Education (ITiCSE’01) (pp. 1–4). Canterbury, United Kingdom: ACM.

Kuhn, D. (2008). Formal operations from a twenty-first century perspective. Human

249

Development, 51, 48–55.

Kuittinen, M., & Sajaniemi, J. (2004). Teaching roles of variables in elementary

programming courses. In Proceedings of the 9th annual SIGCSE conference on

Innovation and Technology in Computer Science Education (ITiCSE’04) (pp. 57–

61). Leeds, United Kingdom: ACM.

Kumar, A. N. (2013). A study of the influence of code-tracing problems on code-writing

skills. In Proceedings of the 18th conference on Innovation Technology in Computer

Science Education (ITiCSE’13) (pp. 183–188). Canterbury, United Kingdom: ACM.

Kurtz, B. (1980). Investigating the relationship between the development of abstract

reasoning and performance in an introductory programming class. SIGCSE Bull.,

12(1), 110–117.

Lahtinen, E. (2007). A Categorization of novice programmers : A cluster analysis study.

In Proceedings of the 19th annual Workshop of the Psychology of Programming

Interest Group (PPIG’07) (pp. 32–41). Joensuu, Finland: University of Joensuu

Department of Computer Science and Statistics, Joensuu, Finland.

Letovsky, S. (1987). Cognitive processes in program comprehension. Journal of Systems

and Software, 7(4), 325–339.

Letovsky, S., & Soloway, E. (1986). Delocalized plans and program comprehension.

IEEE Software, 3, 41–49.

Li, X., & Atkins, M. (2004). Early childhood computer experience and cognitive and

motor development. Journal of Education Computing Reserach, 113(6), 1–8.

Lifelong Kindergarten Group. (2007). Creating with Scratch. Retrieved November 16,

2015, from http://llk.media.mit.edu/projects/scratch/papers/Creating-with Scratch1

.pdf

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE Publications.

Lister, R. (2011). Concrete and other Neo-Piagetian forms of reasoning in the novice

programmer. In Proceedings of the 13th Australasian Computing Education

Conference (ACE’11). Perth, Australia: Australian Computer Society, Inc.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., … Thomas,

L. (2004). A Multi-National study of reading and tracing skills in novice

programmers. In Working group reports from ITiCSE on Innovation and Technology

in Computer Science Education (ITiCSE-WGR’04) (pp. 119–150). Leeds, United

Kingdom: ACM.

Lister, R., Clear, T., Simon, Bouvier, D. J., Carter, P., Eckerdal, A., … Thompson, E.

(2009). Naturally occurring data as research instrument : Analyzing examination

responses to study the novice programmer. SIGCSE Bull., 41(4), 156–173.

Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship between

explaining, tracing and writing skills in introductory programming. In Proceedings

of the 9th conference on Innovation and Technology in Computer Science Education

(ITiCSE’09) (Vol. 41, pp. 161–165). Leeds, United Kingdom: ACM.

Lister, R., & Leaney, J. (2007). First year Programming : Let all the flowers bloom. In

Proceedings of the 5th Australasian Computing Education Conference - Volume 20

(ACE’03) (pp. 221–230).

Lister, R., Schulte, C., Whalley, J. L., Berglund, A., Clear, T., Bergin, J., … Sanders, K.

(2006). Research perspectives on the objects-early debate. SIGCSE Bull., 34(4),

146–165.

250

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the

forest for the trees : Novice programmers and the SOLO taxonomy. In Proceedings

of the 11th annual SIGCSE conference on Innovation and Technology in Computer

Science Education (ITICSE’06) (pp. 118–122). Bologna, Italy: ACM.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading,

tracing and writing skills in introductory programming. In Proceedings of the 14th

International workshop on Computing Education Research (ICER’08) (pp. 101–

112). Sydney, Australia: ACM.

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor

analysis. Psychological Methods, 4(1), 84–99.

MacLean, L., Meyer, M., & Estable, A. (2004). Improving accuracy of transcripts in

qualitative research. Qualitative Health Research, 14(1), 113–123.

Magel, K. (1981). Regular expressions in a program complexity metric. SIGPLAN Not.,

16(7), 61–65.

Marshall, C., & Rossman, G. B. (2006). Designing qualitative research. SAGE

Publications.

Marzano, R. (2000). Designing effective projects: Thinking skills frameworks Marzano’s

new txonomy. Retrieved November 18, 2015, from http://www.intel.com/

content/dam/www/program/education/apac/ph/en/documents/project/design/marzo.

pdf

Mathias, K. S., J.H, C., Hendrix, T. D., & Barowski, L. A. (1999). The role of software

measures and metrics in studies of program comprehension. In Proceedings of the

37th annual Southeast regional conference (CD-ROM) (ACM-SE 37). ACM.

Mayer, R. E. (1977). The sequencing of instruction and the concept of assimilation-to-

schema. Instructional Science, 6(4), 369–388.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning?

The case for guided methods of instruction. American Psychologist, 59(1), 14–9.

Mayrhauser, A. V., & Vans, A. M. (1998). Program understanding behavior during

adaptation of large scale software. In Proceedings of the 6th International Workshop

on Program Comprehension (IWPC’98) (pp. 164–172). Ischia: IEEE.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software

Engineering, SE-2(4), 308–320.

McCracken, M., Almstrum, V., Diaz, D., Thomas, L., Guzdial, M., Utting, I., & Hagan,

D. (2001). A multi-national , multi-institutional study of assessment of programming

skills of first-year CS students A framework for first-year learning objectives.

SIGCSE Bull., 33(4), 125–140.

McIver, L., & Conway, D. (1996). Seven deadly sins of introductory programming

language design. In Proceedings of the 1996 International Conference on Software

Engineering: Education and Practice (SEEP’96) (pp. 309–316). Washington, DC,

USA: IEEE Computer Society.

McLaughlin G. H. (1969). SMOG grading: A new readability formula. Journal of

Reading, 12(8), 639–646.

Mcnaughton, S., & Leyland, J. (1990). The shifting focus of maternal tutoring across

different difficulty levels on a problem-solving task. British Journal of

Developmental Pychology, 8, 147–155.

251

Meerbaum-Salant, O., Armoni, M., & Ben-Ari. (2013). Learning computer science

concepts with Scratch. In Proceedings of the 6th International workshop on

Computing Education Research (ICER’10) (pp. 69–76). Aarhus, Denmark: ACM.

Mertens, D. M. (2005). Research and evaluation in education and psychology:

Integrating diversity with quantitative, qualitative, and mixed methods (2nd Ed.).

SAGE Publications.

Miller, G. a. (1956). The magical number seven, plus or minus two: some limits on our

capacity for processing information. Psychological Review, 63(2), 81–97.

Moreno, R., & Park, B. (2010). Cognitive Load Theory-Roxana. In J. L. Plass, R. Moreno,

& R. Brünken (Eds.), Cognitive Load Theory (pp. 9–28).

Muller, O. (2005). Pattern oriented instruction and the enhancement of analogical

reasoning. In Proceedings of the 5th International workshop on Computing

Education Research (ICER’05) (pp. 57–67). Seattle, WA, USA: ACM.

Murphy, L., Fitzgerald, S., Lister, R., & McCauley, R. (2012). Ability to “Explain in Plain

English” linked to proficiency in computer-based programming. In Proceedings of

the 9th International workshop on Computing Education Research (ICER’12) (pp.

111–118). Auckland, New Zealand: ACM.

Newman, I., & Benz, C. R. (1998). Qualitative-quantitative research methodology:

Exploring the interactive continuum. Carbondale: Southern Illinois University Press.

Ojose, B. (2008). Applying Piaget ’s theory of cognitive development to mathematics

instruction. The Mathematics Educator, 18(1), 26–30.

Oliver, D., Dobele, T., Greber, M., & Roberts, T. (2004). This course has a Bloom rating

of 3.9. In Proceedings of the 6th Australasian Computing Education Conference-

Volume 30 (ACE’04) (pp. 227–231). Dunedin, NZ: Australian Computer Society,

Inc.

Olsen, M. E., Lodwick, D. G., & Dunlop, R. E. (1992). Viewing the world Ecologicaly

Boulder. Boulder, CO: Westview Press.

Olson, G. . M., Duffy, S. A., & Mack, R. L. (1984). Thinking-out-loud as a method for

studying real-time comprehension processes. In M. A. Kieras & M. A. Just (Eds.),

New methods in reading comprehension research (pp. 253–286). Hillsdale, NJ:

Erlbaum.

Olson, G., Catrambone, R., & Soloway, E. (1987). Programming and Algebra word

problems: A failure to transfer. In G. Olson, S. Sheppard, & E. Soio-Way (Eds.),

Empirical Studies of Programmers: Second Workshop (pp. 1–13). Norwood, N.J.:

Ablex.

Onwuegbuzie, A. J., & Leech, N. L. (2005). On becoming a pragmatic researcher: The

importance of combining quantitative and qualitative research methodologies.

International Journal of Social Research Methodology, 8(5), 375–387.

Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994). Variability of worked examples

and transfer of geometrical problem-solving skills: A cognitive-load approach.

Journal of Educational Psychology, 86, 122–133.

Palumbo, D. B. (1990). Programming language/Problem-solving research: A review of

relevant issues. Review of Educational Research, 60(1), 65–89.

Paperblanks. (2012). Paper vs. Computers: Which is better to write with? Retrieved

December 2, 2015, from http://blog.paperblanks.com/2012/04/better-to-write-with-

journals-or-computers

252

Parker, J. R., & Becker, K. (2003). Measuring effectiveness of constructivist and

behaviourist assignments in CS102. In Proceedings of the 8th conference on

Innovation and Technology in Computer Science Education (ITiCSE’03) (pp. 40–

44). Thessaloniki, Greece: ACM.

Pattis, R. E. (1981). Karel the robot: A gentle introduction to the art of programming.

Paperback (2nd Ed.). New York, NY, USA: John Wiley & Sons, Inc.

Patton, M. (1990a). Qualitative evaluation and research methods. In Designing qualitative

studies (pp. 169–186). Beverly Hills, CA: Sage.

Patton, M. (1990b). Qualitative evaluation and research methods. In Designing

qualitative studies (pp. 169–186). SAGE Publications.

Pea, R. D. (2013). The social and technological dimensions of scaffolding and related

theoretical concepts for learning, education, and human activity. Journal of the

Learning Sciences, 13(3), 423–451.

Pegg, J., & Tall, D. (2002). Fundamental cycles in learning Algebra : An analysis. In

Proceedings of the 26th conference of the International Group for the Psychology

of Mathematics Education. Norwich, UK: University of East Anglia, School of

Education and Professional Development.

Pennington, N. (1987a). Comprehension strategies in programming. In Empirical studies

of programmers: second workshop (pp. 100–113). Norwood, NJ, USA: Ablex

Publishing Corp.

Pennington, N. (1987b). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology, 19(3), 295–341.

Perkins, D. N., Hancock, C., Hobbs, M., Fay, S., & Rebecca. (1989). Conditions of

learning in novice programmers. In E. Soloway & J.C. Spohrer (Eds.), Studying the

novice programmer.Hillsdale, NJ: Lawrence Erlbaum.

Perkins, D. N., & Martin, F. (1985). Fragile knowledge and neglected strategies in novice

programmers. In Soloway and S. Lyengar (Eds.), Empirical studies of programmers.

Hillsdate, NJ: Ablex.

Perkins, D. N., & Salomon, G. (1994). Transfer of learning. In International

Encyclopaedia of Education, Oxford: Elsevier (pp. 6452–6457).

Petersen, A., Craig, M., & Zingaro, D. (2011). Reviewing CS1 exam question content. In

Proceedings of the 42nd ACM technical symposium on Computer science education

(SIGCSE’11) (pp. 631–636). Dallas, TX, USA: ACM.

Philpott, A., Robbins, P., & Whalley, J. (2007). Assessing the steps on the road to

relational thinking. In Poster paper in the 20th Annual NACCQ. Nelson NZ.

Piaget, J. (1970). Genetic epistemology. W. W. Norton, New York.

Piaget, J., & Inhelder, B. (1969). The psychology of the child. London, UK: Routledge &

Kegan Paul.

Pikulski, J. K. (2002). Readability. Retrieved November 18, 2015, from

http://www.eduplace.com/state/ author/pikulski.pdf.

Pirolli, P. (1986). A Cognitive model and computer tutor for programming recursion.

Human – Computer Interaction, 2(4), 319–355.

Pirolli, P., & Anderson, J. R. (1985). The role of learning from examples in the acquisition

of recursive programming skills. Canadian Journal of Psychology/Revue

Canadienne de Psychologie, 39(2), 240–272.

253

Piwowarski, P. (1982). A nesting level complexity measure. SIGPLAN, 17(9), 44–50.

PMD. (2016). PMD. Retrieved February 17, 2016, from https://pmd.github.io/

Pohl, M. (2000). Learning to think, thinking to learn: models and strategies to develop a

classroom culture of thinking. Cheltenham, Vic.: Hawker Brownlow.

Ragonis, N., & Ben-Ari, M. (2005). On understanding the statics and dynamics of object-

oriented programs. In Proceedings of the 36th SIGCSE technical symposium on

Computer Science Education (SIGCSE’05) (pp. 226–230). St. Louis, Missouri,

USA: ACM.

Rationale Software Analyzer tool. (2016). Rationale® Software Analyzer tool. Retrieved

February 17, 2016, from http://www.ibm.com/developerworks/rational/library/08/

0429_gutz1/

Reeves, T., & Hadberg. (2003). Interactive learning system evaluation. Educational

technology publication Inc. Englewood Cliffs, New Jersey.

Reges, S. (2006). Back to basics in CS1 and CS2. In Proceedings of the 37th SIGCSE

technical symposium on Computer Science Education (SIGCSE’06) (pp. 293–297).

Houston, Texas, USA: ACM.

Reiser, B. J. (2002). Why scaffolding should sometimes make tasks more difficult for

learners. In Proceedings of the Conference on Computer Support for Collaborative

Learning Foundations for a CSCL Community (CSCL’02) (p. 255). Morristown, NJ,

USA: Association for Computational Linguistics.

Rilling, J., & Klemola, T. (2003). Identifying comprehension bottlenecks using program

slicing and cognitive complexity metrics. In Proceedings of the 11th IEEE

International Workshop on Program Comprehension (IWPC’03). Portland, Oregon,

USA: IEEE Computer Society.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389–414.

Rist, R. S. (1991). Knowledge creation and retrieval in program design : A comparison

of novice and intermediate student programmers. Human – Computer Interaction,

6, 1–46.

Robins, A. (2010). Learning edge momentum: a new account of outcomes in CS1.

Computer Science Education, 20(1), 37–71.

Rogoff, B. (1984). Introduction: Thinking and learning in social context. In B. Rogoff &

J. Lave (Eds.), Everyday Cognition: Its Development in Social Contexts. Cambridge,

MA: Harvard University Press.

Role of variables. (2015). Fundamentals of programming: The role of variables. Retrieved

March 20, 2015, from https://en.wikibooks.org/wiki/A- level_Computing/AQA/

Problem_Solving,_Programming,_Data_Representation_and_Practical_Exercise/F

undamentals_of_Programming/The_Role_of_Variables

Rossman, G., & Wilson, B. L. (1985). Numbers and words: Combining quantitative and

qualitative methods in a single large-scale evaluation study. Evaluation Review, 9.

Rowland, G. (1992). What do instructional designers actually do? An initial investigation

of expert practice. Performance Improvement Quarterly, 5(2), 65–86.

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level

procedural programs. In Proceedings of the IEEE 2002 Symposia on Human Centric

Computer Languages and Environments. IEEE Computer Society (pp. 37–39).

Virginia, USA.

254

Sakhnini, V., & Hazzan, O. (2008). Reducing abstraction in high school computer science

education : The case of definition , implementation , and use of abstract data types.

Journal on Education Resource Computing, 8(2), 1–13.

Salomon, G., & Perkins, D. (1989). Rocky roads to transfer: Rethinking mechanism of a

neglected phenomenon. Educational Psychologist, 24(2), 113–142.

Samurçay, R. (1989). The concept of variable in programming: Its meaning and use in

problem- solving by novice programmers. In E. Soloway, & J. C. Spohrer (Eds.),

Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum Associates.

Scholtz, J., & Wiedenbeck, S. (1990). Learning second and subsequent programming

languages: A problem of transfer. International Journal of Human-Computer

Interaction, 2(1), 51–72.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J. H. (2010). An

introduction to program comprehension for computer science educators. In

Proceedings of the 2010 ITiCSE working group reports (ITiCSE-WGR’10) (pp. 65–

86). Bilkent, Ankara, Turkey: ACM.

Schunk, D. H. (2012). Learning theories - An educational prespective (6th Ed.). Boston :

Pearson.

Seiter, L. (2015). Using SOLO to classify the programming responses of primary grade

students. In Proceedings of the 46th ACM Technical Symposium on Computer

Science Education (SIGCSE’15) (pp. 540–545). Kansas City, Missouri, USA: ACM.

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on

processes and objects as different sides of the same coin. Educational Studies in

Mathematics, 22(1), 1–36.

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of

reification-the case of function. In G. Harel & E. Dubinsky (Eds.), The concept of

function: Aspects of epistemology and pedagogy (pp. 59–84). Washington DC:

Mathematical Association of America.

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one.

Educational Researcher, 27(2), 4–13.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., Grove, H., … Whalley, J.

(2008). Going SOLO to assess novice programmers. SIGCSE Bull., 40(3), 209–213.

Shepperd, M. (1988). A critique of cyclomatic complexity as a software metric. Software

Engineering, 3(2), 30–36.

Shuhidan, S., Hamilton, M., & Souza, D. D. (2009). A Taxonomic study of novice

programming summative assessment. In Proceedings of the 11th Australasian

Computing Education Conference - Volume 95 (ACE’09) (pp. 147–156).

Darlinghurst, Australia: Australian Computer Society, Inc.

Simon, H. A. (1979). Problem solving and education. In D. Tuma & F. Reif (Eds.),

Problem solving and education: Issues in teaching and research. Hillsdale, NJ:

Erlbaum.

Simon, H. A., & Hayes, J. R. (1976). The understanding process : problem isomorphs.

Cognitive Psychology, 8(2), 165–190.

Simon, Lopez, M., Sutton, K., & Clear, T. (2009). Surely we must learn to read before

we learn to write ! In Proceedings of the 11th Australasian Computing Education

Conference (ACE’09) (pp. 165–170). Darlinghurst, Australia: Australian Computer

Society, Inc.

255

Simon, & Sheard, J. (2012). Exams in computer programming : what do they examine

and how complex are they? In Proceedings of the 14th Australasian Computing

Education Conference (ACE’12) (pp. 283–291). Melbourne, Australia: Australian

Computer Society, Inc.

Simon, Sheard, J., Carbone, A., Clear, T., Raadt, M. De, Souza, D. D., … Warburton, G.

(2012). Introductory programming : examining the exams. In Proceedings of the

14th Australasian Computing Education Conference (ACE’12) (pp. 61–70).

Melbourne, Australia: Australian Computer Society, Inc.

Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.

Soloway, E. (1986). Learning to program = Learning to construct mechanisms.

Communications of the ACM, 29(9), 850–858.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE

Transactions on Software Engineering, 10(5), 595–609.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1983). What do novices know about

programming ? Directions in Human--Computer Interactions, 6(1), 27–54.

Soloway, E., & Spohrer. (1989). Studying the Novice Programmer. Hillsdale, NJ,

Lawrence Erlbaum Associates.

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: are the folk wisdoms correct?

Communications of the ACM, 29(7), 624–632.

Spohrer, J., Soloway, E., & Pope, E. (1985). A goal/plan analysis of buggy Pascal

programs. Human – Computer Interaction, 1, 163–207.

Starsinic, K. (1998). Perl Style. The Perl Journal, Fall 1998, 3(3), 1998.

Strauss, S. (1993). Theories of learning and development for academics and educators.

Educational Psychologist, 28(3), 191–203.

Sudol-Delyser, L. A. (2015). Expressions of abstraction: Self-Explanation in code

production. In Proceedings of the 46th ACM Technical Symposium on Computer

Science Education (SIGCSE’15) (pp. 272–277). Kansas City, Missouri, USA: ACM.

Sweller, J. (1994). Cognitive Load Theory, learning difficulty, and instructional design.

Learning and Instruction, 4, 295–312.

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and

Instruction, 12(3), 185–233.

Teague, D., & Lister, R. (2014a). Longitudinal think aloud study of a novice programmer.

In D. D’Souza & J. Whalley (Eds.), Proceedings of the 16th Australasian Computing

Education Conference - Volume 148 (ACE ’14) (pp. 41–50). Auckland, New

Zealand: Australian Computer Society, Inc.

Teague, D., & Lister, R. (2014b). Manifestations of preoperational reasoning on similar

programming tasks. In Proceedings of the 16th Australasian Computer Education

Conference (ACE’14) (Vol. 148, pp. 30–40). Auckland, New Zealand: Australian

Computer Society, Inc.

Teague, D., & Lister, R. (2014c). Programming: reading, writing and reversing. In

Proceedings of the 2014 conference on Innovation and Technology in Computer

Science Education (ITiCSE’14) (pp. 285–290). Uppsala, Sweden: ACM.

Thomas, L., Ratcliffe, M., & Thomasson, B. (2004). Scaffolding with object diagrams in

first year programming classes. In Proceedings of the 35th SIGCSE technical

symposium on Computer Science Education (SIGCSE’04) (pp. 250–254). Norfolk,

256

Virginia, USA: ACM.

Thompson, E. (2008). How do they understand ? Practitioner perceptions of an object-

oriented program. PhD thesis Massey University, New Zealand.

Thompson, E. (2010). Using the principles of variation to create code writing problem

sets. In Proceedings of the 11th conference of the Higher Education Academy -

Information and Computer Sciences (pp. 11–16). Durham University: HEA ICS.

Thompson, E., Grove, H., Luxton-reilly, A., Whalley, J., & Robbins, P. (2008). Bloom’s

taxonomy for CS assessment. In Proceedings of the 10th Australasian Computer

Education Conference - Volume 78 (ACE’08) (Vol. 78, pp. 155–161). Wollongong,

Australia: Australian Computer Society, Inc.

Thorndike, E. L. (1923). The influence of First-Year Latin upon ability to read English.

School & Society, 17, 165–168.

Trafton, J. ., & Reiser, B. (1993). Studying examples and solving problems: Contributions

to skill acquisition. In Proceedings of the 15th conference of the Cognitive Science

Society (pp. 1017–1022). Colorado: Lawrence Erlbaum Associates.

Van Merriënboer, J. G. (1990). Strategies for programming instruction in high school:

program completion vs. program generation. Journal of Educational Computing

Research, 6, 265–287.

Van Merriënboer, J. G. (1997). Training complex cognitive skills: A Four- Component

instructional design model for technical training. Englewood Cliffs, NJ: Educational

Technology Publications.

Van Merriënboer, J. G., & De Croock, M. (1992). Strategies for computer-based

programming instruction: Program completion vs. program generation. Journal of

Educational Computing Research, 8, 365–394.

Van Merriënboer, J. G., Kirschner, P. A., & Kester, L. (2003). Taking the load off a

Learner’s mind : instructional design for complex learning, 38(1), 5–13.

Van Merriënboer, J. G., & Krammer, H. (1987). Instructional strategies and tactics for

the design of introductory computer programming courses in high. Instructional

Science, 16, 251–285.

Van Merriënboer, J. G., & Paas, F. (1990). Automation and schema acquisition in

learning elementary computer programming : Implications for the design of practice.

Computers in Human Behavior, 6, 273–289.

Van Solingen, R., & Berghout, E. (1999). The Goal/Question/Metric Method: a practical

guide for quality improvement of software development. McGraw-Hill Publishing

Company.

Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud

method a practical guide to modelling cognitive processes. Academic Press,

London.

Venables, A., Tan, G., & Lister, R. (2009). A closer look at tracing, explaining and code

writing skills in the novice programmer. In Proceedings of the 5th International

workshop on Computing Education Research (ICER’09) (pp. 117–128). Berkeley,

CA, USA: ACM.

Vosniadou, S., & Ortony, A. (1989). Similarity and Analogical Reasoning: A Synthesis.

In S. Vosniadou & A. Ortony (Eds.), Similarity and Analogical Reasoning (pp. 1–

18). NY: Cambridge University Press.

257

Vygotsky. (1978). Interaction between learning and development. From: Mind and

Society. Cambridge, MA: Harvard University press.

Vygotsky, L. (1981). The genesis of higher mental functions. In J. V. Wertsch (Ed.), The

concept of activity in Soviet psychology (pp. 144–188). Armonk, NY: Sharpe (J. V.

Wertsch, trans.).

Vygotsky, L. (1986). Thought and language. Cambridge, MA: MIT (A. Kozulin, trans.).

Werth, L. (1986). Predicting student performance in a beginning computer science class.

In Proceedings of the 17th SIGCSE Technical Symposium on Computer Science

Education (SIGCSE’86) (pp. 138–143). Cincinnati, Ohio, USA: ACM.

Whalley, J., Clear, T., Robbins, P., & Thompson, E. (2011). Salient elements in novice

solutions to code writing problems. In Proceedings of the 13th Australasian

Computing Education Conference - Volume 114 (ACE’11) (pp. 37–46).

Darlinghurst, Australia: Australian Computer Society, Inc.

Whalley, J., & Kasto, N. (2014). A qualitative think-aloud study of novice programmers’

code writing strategies. In Proceedings of the 2014 conference on Innovation and

Technology in Computer Science Education (ITiCSE’14) (pp. 279–284). Uppsala,

Sweden: ACM.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P., & Prasad, C. (2006). An

Australasian study of reading and comprehension skills in novice programmers,

using the Bloom and SOLO Taxonomies. In Proceedings of the 8th Australasian

Computing Education Conference - Volume 52 (ACE ’06) (Vol. 52, pp. 243–252).

Darlinghurst, Australia: Australian Computer Society, Inc.

Whalley, J., & Philpott, A. (2011). A unit testing approach to building novice

programmers’ skills and confidence. In Proceedings of the 13th Australasian

Computing Education Conference - Volume 114 (ACE’11) (pp. 113–118).

Darlinghurst, Australia: Australian Computer Society, Inc.

White, G. L., & Sivitanides, M. P. (2002). A theory of the relationships between cognitive

requirements of computer programming languages and programmers ’ cognitive

characteristics. Journal of Information Systems Education, 13(1), 59–66.

Wille, A. M. (2010). Steps towards a structural conception of the notation of variables. In

Proceedings of Congress of the European Society for Research in Mathematics

Education (CERME) 6 (pp. 659–668).

Winslow, L. E. (1996). Programming pedagogy-a psychological overview. ACM SIGCSE

Bull., 28(3), 17–22.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving.

Journal of Child Psychology and Psychiatry, 17(2), 89–100.

Wu, Q., & Anderson, J. R. (1990). Problem-solving transfer among programming

languages. Pittsburgh, U.S.A.

Xinogalos, S. (2010). An interactive learning environment for teaching the imperative

and Object-Oriented Programming. In Knowledge management, information

systems, E-Learning, and sustainability research (pp. 512–520). Springer.

Yamamoto, M., Sekiya, T., Mori, K., & Yamaguchi, K. (2012). Skill hierarchy revised

by SEM and additional skills. In proceedings of the International Conference on

Information Technology Based Higher Education and Training (ITHET’12) (pp. 1–

8). Istanbul: IEEE.

Yousoof, M., & Sapiyan, M. (2015). Optimizing instruction for learning computer

258

programming – A novel approach. In Intelligence in the Era of big data (Vol. 516,

pp. 128–139).

259

Glossary

Term Explanation / Definition

Course (paper) A unit of teaching that typically lasts one academic term.

Décalage A French term meaning a shift, or gap.

Pattern Is a recurring schema or plan which is used so often that

it becomes a generalised or abstract notion which can be

applied to different problems.

Plan A set of steps used to solve a programming task. Typically

a plan will consist of more than one schema.

Salient element This term used was used by Whalley et al. (2011) .

Syntactic elements in novice code. For example FOR-

loops, IF-statement or variable declaration these are the

simple elements which combined form code patterns and

schemas.

Schema Existing mental structures in long term memory. They

represent an organisation and linking of knowledge.

Strategies for

gluing

programming plans

together (adapted

from Soloway,

1986, p.856).

Abutment Two plans are glued together back to front, in sequence.
Merging At least two plans are interleaved

Nesting One plan is completely surrounded by another plan.

Tailoring Sometimes recalled a programming plan that has already

been developed is not quite what is needed in a problem.

It must be modified to fit the particular needs of the

situation.

The role of

variables (adapted

from Role of

variables, 2015).

Follower variable Used to keep track of a previous value of a variables, so

that a new value can be compared.

Gatherer variable A variable that accumulates or tallies up set of data and

inputs. It is very useful for calculating totals or totals that

will be used to calculate averages.

Most wanted

holder variable

A variable that keeps track of the lowest or highest value

in a set of inputs.

Stepper variable A variable used to move through an array or other data

structure, often heading towards a fixed value and

stepping through elements in an array.

260

Appendix A. Think Aloud Data

Andre: Counting the Number of Beepers in a Single Corridor (Seq2 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Familiar first

Activities Planning

Tracing Visual debugging

Unit test

Time on task 9 minutes and 2 seconds

of compilation 2

of execution 2

Intervention Clarify scaffolding – provided on request

Timing Week four of the P1 course

Important observations with

respect to prior sessions

Andre solved this question after solving counting the length of corridor

(Seq1 – Q1, Chapter 6). For solving Seq1 – Q1, Andre did not read the

unit test messages to fix his code.

Data

1. Think aloud:

After reading the question, Andre verbalised:

Andre: “Can I run the test first to see the position”

Interviewer: “Yes”

As he completed the above utterance, Andre run the first unit test (Robot World scenario with

length 5), then he started writing his code while verbalising (see Figure A.1, step1 (A&B)):“While

item on the ground pickup item, we just [pause], no the first location is not, just set the WHILE

loop”

Then Andre asked for help “I need your help”– he needed the task requirements clarified.

2. Scaffolding:

Andre: “Is more than one beeper at each locations”

Interviewer: “More than one”

3. Think aloud:

Andre verbalised: “So I need to define variable to store number of beepers”

After the above utterance, Andre defined the gatherer variable and set it value to zero, followed

by Java command to increment the gatherer variable by one (see Figure A.1, steps2&3). After a

long pause, Andre added a WHILE-statement followed by a robot method call that allowed the

robot to move forward one step (see Figure A.1, steps4&5). Then Andre verbalised: “Let me

check a bit, after counting beepers, I need forwards, [pause] I need to print”.

261

Figure A.1 Andre’s screen image for counting the number of beepers in a single corridor

After the above utterance, Andre added PRINT-statements as shown in Figure A.1, step6. On

testing his code, Andre discovered that all tests failed. He lined up the Robot World windows so

he could examine all the test results at the same time. Then he verbalised: “For the last one he

cannot pick up item what can I do after he facing wall, I can figure out statement, so, ammm, I do

not know, ah [pause], ah”.

Andre started to update his code as shown in Figure A.1, step7. Finally, Andre compiled and ran

the supplied unit tests to verify the correctness of his solution.

Andre: Comparing the Length of Two Corridors (Seq1 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning Verbalise

Tracing Mental tracing

Unit test

Time on task 17 minutes and 24 seconds

of compilation 1

of execution 1

Intervention None

Timing Week five of the P1 course

Important observations with

respect to prior sessions

Andre solved the counting the length of the corridor (see Chapter 6)

with the interviewer’s assistance

Data

1. Think aloud:

Andre began by reading the problem and then he verbalised his plan for solving the question

before he attempted to write the code on the computer: “The corridor one it is long seven, and

the robot should count both and check which the largest, first is, we need to declare two variables

like”.

Andre started with initialising two gatherer variables one for each corridor, and set both of them

to zero, followed by a WHILE-loop block for moving the robot and counting the length of the

first corridor before closing the WHILE-loop block bracket. Andre started to read his code and

Step1A

Step1B

Step2

Step3

Step4A

Step4B

Step5

Step6

Step7

262

verbalise: “The number now the length of corridor should be, should be the ah[pause] should be

[pause] I should add one to the length because the initial location should be counted, as well, and

so, ah [pause] and now let me check it [pause] plus, plus, then the corridor”.

Therefore, at the end of the while block, Andre closed the bracket and added the Java command

that increased the gatherer variable for the first corridor by one. After that, Andre multitasked

viewing the image of the robot on the paper and writing a sequence of commands. The functions

of these commands were returning the robot to its starting position, changing the robot’s

orientation to face north, moving the robot forwards two steps to the next corridor, and finally

changing the robot’s orientation to face east. He then copied and pasted the Java commands for

counting the length of the first corridor and renamed the gatherer variable to count the length of

the second corridor. Finally, Andre used three IF-blocks to compare the lengths of two corridors.

Again, Andre started to read his code for the second time and verbalise: “Let me check it, first

declare two integer values, length of integer corridor zero and length of integer corridor one,

zero is the lower and one is upper corridor, first I will check for corridor zero, while space in

front of robot clear, move robot forwards, and add one to the counter one, but the final value of

the length, ah let me see, should be let me see, I have got typo”.

Andre fixed the typo error but he lost his thought series therefore he decided to add comments

and start reading his code again and verbalise: “Check it again length of corridor one, length of

corridor two, the final value of the corridor one should be the final value plus one, count the first

location, and robot left, turn round, go ahead, and turn left, move forwards four time, no two

times, and check the corridor one, while is space in front of, move and count just the same, as the

corridor zero, finally compare two corridors, if length of corridor zero less than length of corridor

one, corridor one is the longest, it is the length, if length of corridor zero is larger than length of

corridor one, corridor zero is the longest, if they are equal”.

Andre ran the supplied unit tests and all tests passed from the first attempt.

2. Retrospection:

Interviewer: “Have you seen this question before?”

Andre: “No”

Interviewer: “What was the most difficult part for solving this question?”

Andre: “The most difficult part was more steps to go back and check the others and comparing

the length of corridor “

Interviewer: “Why didn’t you use the nested IF-ELSE block for solving this question?”

Andre: “How I could do it?”

263

Andre: Counting the Number of Beepers in each Beeper Stack across a Single

Corridor (Seq2 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing

Unit test

Time on task 9 minutes and 15 seconds

of compilation 1

of execution 1

Intervention None

Timing Week five of the P1 course

Important observations with

respect to prior sessions

Andre solved counting the number of beepers in a single corridor with

the interviewer’s assistance (Seq2 – Q2).

Data

Think aloud:

Andre immediately started to verbalise and write his solution as shown Figure A.2, steps18.

“I need to declare variable. I need to check the first location, after that to set the variable to zero

[pause]. I need to check the other locations, ammm, so I need WHILE loop then I need copy paste

counting the first the robot should facing wall. The question still need to print out the number of

beepers”.

Figure A.2 Andre’s screen image for counting the number of beepers in each beeper across in a single

corridor

After finishing writing his code, he started to add comments while reading his code (Figure A.2,

steps9& 10):“Count equal zero, while is item, pick up and add, pick up and add, print, set counter

to zero. While not facing wall. While is item pick up and add, print, set counter to zero”.

Step1

Step2

Step3

Step4

Step5A

Step5B

Copy

Paste

Step6

Step7

Step8

Step9

Step10

264

He then ran the supplied unit tests and all tests passed from first trial.

Andre: Smallest Stack of Beepers (Seq2 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Visual debugging, mental tracing

Unit test

Time on task 24 minutes and 49 seconds

of compilation 2

of execution 1

Intervention Clarify scaffolding – provided on request

Timing Week six of the P1 course

Important observations with

respect to prior sessions

Andre previously solved a far transfer question (the longest corridor,

Chapter 6). The code quality of his solution for the longest corridor

question may have hindered Andre’s ability to transfer knowledge.

Andre solved counting the number of beepers in a single corridor with

the interviewer’s assistance (Seq2 – Q2).

Data

1. Think aloud:

Andre began by reading the problem. This was followed by the method definition and then he

verbalised: “Counting the number of beepers in each stack so the image show below that may be

there are no beepers, so each, to compare find the smallest, ah, just from previous question ah, if

it is bigger than than that, if is smaller that, ah why, but if it is smaller than that, if there is no

beeper, so I need to [pause] let me see, firstly the return value should be assign, then I will set

smallest stack equal to zero”.

After that, Andre defined the most wanted holder variable smallestStack and set its value to

zero, followed by retrieving the schemas for picking up and counting all the beepers in the current

stack (see Figure A.3 (steps1step5)(left)). Then he verbalised: “Then the current stack will be

equal to the first stack, so the smallest stack, so if ah this is of course smallest stack is zero , we

can written no no, if there is zero and the current stack is bigger so now the smallest stack is zero,

but if we know that it is no zero, ah, no it is already ,if we always compare with that, with the

smallest is zero so it will not work, so is like we need to, it is different from longest corridor

[pause], longest is comparing ah corridors, no corridor its length zero, so the first one is to assign

the value to the smallest stack to ah yes, so, ah, so may be the first one is not the smallest stack,

so we can assign the current stack [pause], let us assume the smallest one but we need to compare

with it , ah”.

Andre’s above verbalisation indicates that he started to struggle again (i.e. how to compare – same

problem for solving longest corridor). Therefore he decided to continue with the program plans

that allowed the robot to move and pick up beepers if they existed in a corridor (as shown in

Figure A.3 (step6) (left)). Andre asked for help (clarify scaffold) at this stage.

265

Figure A.3 Andre’s first and second screen images for the smallest stack of beepers

2. Scaffolding:

Andre: “I have question, the smallest stack of the beeper, is like there is no beeper no beeper on

the ground”

Interviewer: “If there are no beepers at any of the locations, then the smallest will be zero,

otherwise, you need to decide what the smallest number of beepers in the stack should be”

3. Think aloud:

Based on the conversation between Andre and the interviewer, Andre immediately, started to

update his solution (as shown in Figure A.3 (right)) with verbalising his writing. Andre’s fragile

knowledge about the differences between iteration and section Java commands (as shown in

Figure A.3 (right)). And then he started to trace his code and verbalised: “The current stack

is zero, after counting the number of beepers in the first stack, the current stack will be let us say

five, so the smallest will be five and current will be zero [pause], counting the second location, let

us say the current will be six, and five less than six so current will still have five, but if the current

Step1A

Step1B

Step3A

Step3B

Step2

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step11

Step12

266

is zero so smallest stack will be zero and the robot will move forwards forwards until the end of

corridor”.

Andre compiled his code and he easily fixed the syntax error (see Figure A.3 (step9) (right)

Return without variable). Finally, Andre ran the supplied unit test and all tests passed

from the first trial.

4. Retrospection:

Interviewer: “Have you seen this question before?”

Andre: “No, at the beginning I though it is similar to counting the length of corridor, but the

problem um, if there is no beepers”

Interviewer: “That means you recall the program steps for counting the beepers at each

location?”

Andre: “Yes, yes, I solve heap of question counting the number of beepers but the problem was if

there is no beepers”

At the end of the session, the interviewer gave Andre a feedback about the quality of his code

and how he could further develop it.

Andre: Checking if Beeper Stacks are Sorted in Ascending Order by Size of the

Stack (Seq2 – Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Happy

Strategies Stepwise design

Activities Planning

Tracing

Unit test Read the code for the test

Time on task 15 minutes and 48 seconds

of compilation 3

of execution 2

Intervention None

Timing Week eleven of the P1 course

Important observations with

respect to prior sessions

In previous meeting sessions, Andre found no difficulty in using his

existing schemas for counting beeper and checking whether or not the

one-dimensional array was sorted.

Data

Think aloud:

Andre began by reading the problem. This was followed by the method definition. Andre

compiled his code for the first time and he easily fixed the syntax error by adding the RETURN

statement. Then he re-compiled and ran the supplied unit tests to visualise robot moving across

the corridor (two tests failed and one test passed). Andre started to open the unit test file code and

verbalised: “For the first test, the location 0 have two, the first location have seven beepers, the

second location have two beepers. So the method return false. For the second test, zero, one, two,

three, four six, six. The result is true. For the last one, two, five, four, false”.

267

After the above utterance, Andre focused on recalling the programming plan for pick up all the

beepers across a single corridor (see Figure A.4 (left)). Then Andre verbalised: “After pick up all

the beepers from the corridor. Now we need to count each, if we need to compare, we need to

count each”.

Therefore, Andre decided to define two gatherer variables presentStack and lastStack

and set both of them to zero. Then he started to update his code as shown in the Figure A.4

(step1step4) (right). After that Andre verbalised while continue writing his code Figure A.4

(step5) (right):“After that I need to compare. IF present stack [presentStack] less than last

stack [lastStack] [pause], return false”.

Figure A.4 Andre’s first and second screen images for beepers stack are in order

Finally, Andre re-ran the supplied unit tests and all tests passed.

Andre: Column in a 2D Which Contains a Smallest Number (Seq4 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning Verbalise

Tracing

Unit test

Time on task 5 minutes and 37 seconds

of compilation 1

of execution 1

Intervention None

Timing Andre solved this question directly after solving (Seq4 – Q2).

Important observations with

respect to prior sessions

Andre took 46 minutes and 13 seconds to solve the smallest element

in a one-dimensional array (Seq3 – Q2), while he took less time (9

minutes and 16 seconds) to solve the largest element in a two-

dimensional array (Seq4 – Q2, a far transfer problem).

Data

Think aloud:

Andre began by reading the problem and immediately started to plan his solution, and then he

verbalised: “It is about find the smallest one, the difference is like the first one is the largest while

this one is the smallest, and this one we need to return the index of the column of it, so ah let me

see, okay first we need ah”.

Step1

Step2

Step3

Step4

Step5

268

After that, he wrote the method name and the array of type integer as a passing parameter. Then

he added line by line Java commands as shown in Figure A.5 (left). After typing the word IF.

Ander paused and verbalised: “So if ah smaller, should I keep another value if ah maybe”.

Figure A.5 Andre’s first and second screen images for the column of smallest number in a 2D

As a result, Andre defined a second most wanted holder variable after the first most wanted holder

variable definition and without hesitating he set its value to zero, then he continued to type the

IF-block and the RETURN statement as shown in Figure A.5 (right). Finally Andre ran the unit

tests to verify the correctness of his solution.

Andre: Checking if Sorted Ascending Each Row of a 2D Array Elements (Seq4 –

Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing

Unit test Read test output and test code

Time on task 13 minutes and 27seconds

of compilation 3

of execution 3

Intervention None

Timing Week five of the P2 course

Important observations with

respect to prior sessions

Andre did not face any difficulties for solving (Seq3 – Q1, Chapter 6).

Data

1. Think aloud:

Andre began by reading the problem and immediately started to verbalised: “We need to print it

is sorted or not, okay [pause]”.

Andre wrote the method name and the array of type integer as a passing parameter. He expressed

doubt about the method returned value and finally he decided that the method did not return any

value. Then he verbalised:“Is sorted [pause], um, we need to check where the first is sorted or

not, okay, we need to check for each row”.

After the above utterance, Andre started to write a nested FOR-loops block while he verbalised

his writing. Then Andre verbalised: “Now we need to check if this row sorted or not”.

Step1

Step2

Step3

269

After a short pause, he verbalised while writing an IF-statement:“If ah [pause], let me see, if if a1

row and column [a1[row][col]] greater than a1 raw and column pulse one

[a1[row][col+1]], [pause], okay, so , ah if greater than, ah, [pause]”.

Then Andre decided to define a follower variable of type Boolean and set its value to true,

followed by adding a Java command inside the IF-block (Figure A.6, steps1 6). After a short

pause, Andre decided to add IF-ELSE block (see Figure A.6, step7)).

Before compiling his code, Andre started to read part of the code: “Let me check a1 row column

[a1[row][col]] greater than a1 row column plus one [a1[row][col]+1] , after reaching

the end go back to the column , then go to the row”.

Figure A.6 Andre’s scereen image for checking if sorted ascending each row of a 2D

Andre ran the supplied unit tests. He started to compare the terminal results with the results in the

question paper. Andre verbalised: “Oh, no, I will check it, not sorted, same, not sorted, not sorted,

let me see”.

Andre started to view one of the unit test file (isSortedElementRow(new int[][]

{{100,1,2},{3,4,7},{-1,2,3}})) and verbalise: “The first row not sorted, the second

one yes, the third one as well”.

After the above utterance, Andre added a PRINT Java command (see Figure A.6, step8). Andre

re-ran one of the supplied unit test and verbalised: “For the row zero not sorted, yes. For the row

one, not sorted wrong, for the row two not sorted wrong, I got it, I need every time to set sorted

to true”.

After the above utterance, Andre started to update his code, he changed the position of the

follower Boolean variable (see Figure A.6, step9).

2. Retrospection:

Interviewer: “Have you seen this question before?”

Andre: “Ah, check if sorted may be in assignment”

Interviewer: “In the assignment”

Step1A

Step1B

Step2A

Step2B

Step3A

Step3B

Step5

Step4

Step7

Step8

Step6

Step9

270

Andre: “It is similar, also similar to check if beepers are sorted beeper in the stack. I still

remember the image vivid about the robot moving and picking beepers.”

Andre: Sum of all the Odd Marks for Each Student in a Collection of Student

Objects (Seq5 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing

Unit test

Time on task 7 minutes and 7 seconds

of compilation 1

of execution 1

Intervention None

Timing Week seven of the P2 course

Important observations with

respect to prior sessions

In previous meeting sessions, Andre found no difficulties in using his

existing schemas for ArrayList. Also, he found no difficulties for

solving summation of odd and even numbers in a one and two-

dimensional array.

Data

Think aloud:

Andre started to write his solutions without hesitation or verbalisation line by line as shown in

Figure A.7 (left).

Figure A.7 Andre’s first and second screen images for sum of all the odd marks for each student in a

collection of Student objects

Andre started to read part of his code: “FOR statement, I need for each student. Then For int

[integer] j equal zero, less than student mark [st.studentMark], j plus plus. IF statement to

compare, sum plus student mark, [pause] then I need to print”.

After a short pause, Andre updated his code by adding gatherer variable and set its value to zero

(see Figure A.7 (right)). Andre ran the supplied unit tests, all tests passed from first trial.

271

Andre: Students’ Marks Sorted in a Collection of Student Objects (Seq5 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning Verbalise

Tracing

Unit test

Time on task 10 minutes and 20 seconds

of compilation 2

of execution 2

Intervention None

Timing Week seven of the P2 course

Important observations with

respect to prior sessions

In previous meeting sessions, Andre found no difficulties in using his

existing schemas for the ArrayList and checking whether or not the

one-dimensional and two-dimensional array were sorted.

Data

Think aloud:

Andre began by reading the problem and verbalised: “First I need to compare the first with the

second, second with the third. If all of them in ascending order, the marks is sorted [pause]. I

think we need to Boolean”.

After the above utterance, Andre started to verbalise while writing his code (see Figure A.8 (left)):

“Student mark sorted each [studentMarkSortedEach()], FOR-statement, I need for each

student. Similar to 1D array. Boolean sort equal true. For each student. For int [integer] j equal

zero, less than student mark [st.studentMark], the last not included so dot length minus one

[st.studentMark.length-1], j plus plus. IF-statement to compare the mark, each with

the next. If greater than false. At the end of FOR-loop. I need to check if sorted or not. If sorted

print ascending. If not print descending [pause], not sorted”.

Andre ran the supplied unit tests. He started to compare the terminal results with the results in the

question paper. Andre verbalised: “Sorted, not sorted, not sorted, yes sorted, ah, [pause] I forgot

to print the students’ names”.

Andre updated his code by adding the PRINT-statement and re-ran the supplied unit tests (see

Figure A.8 (right)).

Figure A.8 Andre’s first and second screen images for students’ mark sorted in a collection of student

object

272

Luke: Counting the Length of One Corridor (Seq1 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing

Unit test

Time on task 3 minutes and 5 seconds

of compilation 2

of execution 1

Intervention None

Timing Week four of the P1 course

Important observations with

respect to prior sessions

Data

1. Think aloud:

Luke started by a WHILE-loop statement, followed by a Robot World command that allowed the

robot to move across the corridor, then he verbalised: “I need to start to declare variable int

[integer] n, and after move the robot forward and WHILE loop, I need to increment the variable,

let n equal to [pause] one because I need to count the square it start”.

As he completed this utterance, he defined a gatherer variable and set its value to one, as

the first Java command, after that he continued to write a Java command that increased

the gatherer value by one inside the WHILE-loop block, then he started to trace his code

and verbalise: “And that should move to end of corridor, each time should increment, at the end

we need to print out”.

Then, he added a PRINT statement after the WHILE-loop block. Luke forgot the correct

syntax for the PRINT message; as a result, he got a syntax error when he compiled his

code and he easily fixed the error after reading the syntax error message. Luke’s code ran

from the first attempt.

2. Retrospection:

Interviewer: “Have you seen this question before?”

Luke: “No”

Interviewer: “Have you seen something similar to this?”

Luke: “Yes, counting the beepers”

Interviewer: “Counting the beepers in a single stack, is that right?”

Luke: “Yes”

Interviewer: “Did you try to compare and contrast between what you have been seen before and

newly presented information?”

Luke: “No”

273

Luke: Comparing the Length of Two Corridors (Seq1 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning

Tracing Mental tracing

Unit test

Time on task 9 minutes and 34 seconds

of compilation 1

of execution 1

Intervention None

Timing Week six of the P1 course

Important observations with

respect to prior sessions

Luke did not encounter any significant difficulties in solving (Seq1 –

Q1).

Data

1. Think aloud:

Luke began by reading the problem and then he verbalised: “Start with doing, two integer

values”.

After the above utterance, Luke started writing his code by initialising two gatherer variables, one

for each corridor, and setting both of them to zero. He followed this with a WHILE-loop block

for moving the robot and counting the length of the first corridor. Then he verbalised: “[Pause] I

just realised that this should be equal to 1”.

Then he updated the gatherer variables and set both of them to one. Then Luke continued to type

the rest of Java commands line by line as shown in Figure A.9 while he verbalised his writing.

He gave no indication that he read or traced his code. Luke’s code ran from the first attempt.

2. Retrospection:

Interviewer: “Have you seen this question before?”

Luke: “No”

Interviewer: “What was the first plan when you started?”

Luke: “I know I need to check the length of the top one and the bottom one, and compare them”

Interviewer: “What was the most difficult part for solving this question?”

Luke: “I found it ah an easy question.”

The interviewer asked Luke about changing the value of both counters from zero to one

Luke: “I remembered that it gonna move forwards and not counting the first square it is started

with”

Interviewer: “That means you track you solution while writing the program?”

Luke: “Yep”

274

Figure A.9 Luke’s final screen image for comparing the length of two corridors

Luke: Counting the Number of Beepers in Each Stack along the Single Corridor

(Seq2 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning

Tracing

Unit test

Time on task 8 minutes and 4 seconds

of compilation 2

of execution 1

Intervention None

Timing Week six of the P1 course

Important observations with

respect to prior sessions

Luke struggled to solve (Seq2 – Q1, Chapter 6) in week four and he

was provided with an exact solution by the interviewer.

Data

1. Think aloud:

Luke began by reading the problem and immediately started to code his solution without

hesitation or verbalisation. Luke initially set the gatherer variable to zero, followed by a nested

WHILE-loop block that allowed the robot to count the number of beepers at its location, print the

number of beepers, set the gatherer variable again to zero, and then move the robot forwards until

the robot reached the last location. Finally, he added an iteration block for counting and printing

the beepers at the last location. Luke forgot to close one of the brackets; as a result, he got a syntax

error when he compiled his code and he could easily fix the error. Then he ran the supplied unit

tests and all tests passed from the first trial.

275

2. Retrospection:

The interviewer asked Luke if he had solved a similar question. Luke’s response was positive.

Also, he added that he had practised in a homework assignment a more complex program that

allowed a robot to move in a two-dimensional world, counting the number of beepers at each

location, and printing * if the number of beepers were even, otherwise printing #.

Luke: Checking if integers in a 1D Array are sorted in Descending Order (Seq3 –

Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental tracing

Unit test Read messages and test code

Time on task 20 minutes and 47 seconds

of compilation 8

of execution 7

Intervention 1. Clarify scaffolding – provided on request

2. Hint scaffolding – provided on request

Timing Week eleven of the P1 course

Important observations with

respect to prior sessions

Prior to encountering this problem, Luke had undertaken a similar

exercise checking to see if numbers in an array were ascending as part

of his P1 course work. Luke did not solve his homework assignment.

Data

1. Think aloud:

Luke began by reading the problem and immediately started to verbalise while writing his code

line by line (Figure A.10 (left)):“Boolean is sorted [isSorted] int [integer] int array

[intArray], then ah for int [integer] i equal zero, i less than int array [intArray], i plus plus,

if int array i [intArray [i]] [long pause] plus one equal equal int array [intArray+1]

[pause] not equal [Luke change == to !=] return false. If not return true”.

Luke compiled his code and he easily fixed the syntax error (cannot find symbol –

variable I, Figure A.10 (right), step1). Then Luke ran the supplied unit tests and verbalised:

“There are one error and two. One of the errors say one, array of index out of bound of exception,

so I need to go back and update my code”.

Figure A.10 Luke’s first and second screen images for checking whether or not the integers were

sorted in descending order

Step1 – Insert

Step2 – Add

Step3– Add

Step4 – Update

Step5– Add

Step6– Add

276

After a short pause, he started to read his code then he viewed the test error message and

verbalised: “Array of index out of bound of exception [long pause]. If length of the array more

than one this will work so I need IF”.

After the above utterance, Luke started to update his code as shown in Figure A.10 (right), step2.

Luke re-ran the supplied unit tests and reasoned about his code’s correctness: “Two of the tests

failed. Assertion error, assertion error”.

He started to read his code again. Then he started to update his code as shown in Figure A.10

(right), steps3 6. Luke re-ran the supplied unit tests and verbalised: “That cause more problem

six tests failed [six out of eight unit tests], I need your help”.

2. Scaffolding:

Interviewer: “What do we mean about descending order?”

Luke: “Descending means sequence of numbers in descending order; is that right?”

Interviewer: “Give me an example of descending numbers.”

Luke: “Ten, nine, eight, seven, six, five, four, three, two, one, zero”

Interviewer: “Descending means the first place is bigger than the second one, the second one is

bigger than the third one as shown in the test file.”

3. Think aloud:

Luke started to update his code as shown in Figure A.11, step7. Luke re-ran the supplied unit

tests. He was surprised when six supplied unit tests failed. Luke opened the supplied unit test file

and started to read one of the test methods that consists of the following integer values {100, 99,

88, 77, 6,1}. Luke viewed his code: “Hundred, ninety nine, eighty eight, seventy seven, six, one.

Compare first with second, second with third, [pause], ah, the result should be true. I need you

help”.

Figure A.11 Luke’s third screen image for checking whether or not the integers were sorted in

descending order

4. Scaffolding:

The interviewer suggested to Luke to read all the unit test messages: “Array index out of bounds

exception, but I already checked if the array length greater than one”.

After the above utterance, the interviewer suggested to Luke updating the termination

condition for the FOR-statement (hint scaffolding).

Step7– Update

Step8– Insert

Step9– Delete

277

5. Think aloud:

Luke updated the termination condition for the FOR-statement (Figure A.11, step8). He re-ran

the supplied unit tests. Luke re-opened the supplied unit test file and started to read one of the test

methods that consists of the following integer values {100, 100, 100, 99,100, 99}. Luke

verbalised: “True, true, true, true, false, true, ah”.

After the above utterance, Luke updated his code (Figure A.11, step9).

Luke: Checking if Sorted Ascending Each Row of a 2D Array Elements (Seq4 – Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Pen and paper tracing, and PRINT debugging

Unit test Read test code

Time on task 17 minutes and 5 seconds

of compilation 5

of execution 4

Intervention “General prompt” scaffolding – provided on request

Timing Week six of the P2 course

Important observations with

respect to prior sessions

Luke solved check whether or not the one-dimensional array elements

were sorted in descending order (Seq3 – Q1) with interviewer’s

assistance (clarify and hint scaffolding).

Data

1. Think aloud:

Luke began by reading the problem and immediately started to verbalise while writing his code

(Figure A.12 (left), steps14):“So method void, is sorted element row

[isSortedElementRow], also I need to define two-dimensional array, for int [integer] i, i

should be less than int array dot length [intArray.length], i plus plus. If [after typing the

word If], I’m going to add Boolean sorted equal true, I need another for loop”.

Luke continued to verbalise while writing Java commands (Figure A.12 (left), steps57):“If

array x i [intArray[i][x]] less than int array i x minus one [intArray[i][x-1]], sorted

equal false. Then I need to print the result of each row”.

Figure A.12 Luke’s first and second screen images for checking sorted ascending each row of a 2D

array

Step1A

Step1B

Step2A

Step2B

Step3

Step4

Step6

Step7

Step5 – Update

278

When Luke compiled his code, he got a syntax error (cannot find symbol – variable

i). Luke self-corrected his error by changing the position of the PRINT statement (see Figure

A.13, step8). He ran the supplied unit tests and all tests were failed. He then without hesitation

updated the initial value of stepper variable from 0 to 1 (Figure A.13, step9). He re-ran the

supplied unit tests, starting by comparing the terminal results with the results in the question

paper. He discovered that the output did not match the output given to him in the question paper.

Luke verbalised while writing Java commands (see Figure A.13 steps10&11):“I need to add

PRINT statement the check the result”. Luke re-ran the supplied unit tests — “I need a pen”.

Figure A.13 Luke’s third screen image for checking sorted ascending each row of a 2D array

Luke selected one of the unit test cases and draw a two-dimensional array (see Figure A.14). Luke

started to trace his code and verbalised: “One less than hundred, ah sorted equal false. Two and

one, so the output still false. Four and three, sorted true. Seven less than four, true, but false why

[pause]? I think, I need your help”.

Figure A.14 Luke’s doodle for checking whether or not the integers in 1D were sorted in ascending

order

2. Scaffolding:

Interviewer: “Have you seen this question before?”

Luke: “I think so, it is similar to sort ascending one-dimensional array “

The interviewer redirected Luke to write an algorithm for sorting the elements in a one-

dimensional array using smartpen and paper (“general prompt” scaffolding – Figure A.15).

After, Luke finished writing his code, he started self-correcting his code by changing the position

of the Boolean variable definition and initialisation.

Step8

Step9 – Update

Step10

Step11

279

Figure A.15 Luke’s doodle for is sorted ascending each row of a 1D array

Luke: Sum of all the Odd Marks for Each Student in a Collection of Student Objects

(Seq5 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning

Tracing

Unit test

Time on task 4 minutes and 3 seconds

of compilation 2

of execution 1

Intervention None

Timing Week seven of the P2 course

Important observations with

respect to prior sessions

In previous meeting sessions, Luke found no difficulties in using his

existing schemas for ArrayList. Also, he found no difficulties for

solving summation of odd and even numbers in a one and two-

dimensional array.

Data

Think aloud:

Luke began by reading the problem and immediately started to verbalise while writing his code

(see Figure A.16):“For integer i equal zero, i less than student size [student.size()], plus

plus. sum odd equal zero [sumOdd=0], Another For int [integer] [pause]. For int [integer] j

equals 0, j less than [pause], student dot length

[students.get(i).studentMark.length, plus plus j. If student mark 2 [modulo 2]

not equal zero [students.get(i).studentMark[j]%2 != 0], sum odd plus student

mark [sumOdd= sumOdd+ students.get(i).studentMark[j]]. I need also to

print the students’ names and the result”.

Figure A.16 Luke’s screen image for sum of all the odd marks for each student in a collection of

student objects

Add int

280

Luke compiled his code and was able to identify the syntax error (cannot find symbol -

variable sumOdd). Then he re-compile and ran the supplied unit tests and all tests passed.

Luke: Students’ Marks Sorted in a Collection of Student Objects (Seq5 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test Read test output and test code

Time on task 6 minutes and 46 seconds

of compilation 2

of execution 2

Intervention None

Timing Week seven of the P2 course

Important observations with

respect to prior sessions

Luke solved check whether or not sorted 1D with interviewer

assistance (Clarify, and hint scaffolding). Then he solved whether or

not sorted 2D with interviewer assistance (“general prompt”

scaffolding).

Data

Think aloud:

Luke began by reading the problem and immediately started to verbalise while writing his code

(see Figure A.17, steps 1 4):“Boolean sort, sort should be true. For integer i equal zero, i less

than student size [student.size()], plus plus. Another For int [integer] [pause]. For int

[integer] j equals 0, j less than [pause], j should be less than students dot student mark and dot

length [students.get(i).studentMark.length], plus plus j. If student i dot student

mark j [students.get(i).studentMark[j]] grater that student i student mark j

[students.get(i). studentMark [j+1]] , sort false. If sort true I need to print

ascending. If true I need to print not sort. I need also to print the students’ names”.

Figure A.17 Luke’s screen image for checking whether or not Students’ Marks sorted in a collection of

student objects

Luke ran the supplied unit tests. He started to compare the terminal results with the results in the

question paper. Then Luke verbalised: “Nadia’s marks sorted, yes. Zain’s marks, not sorted, yes.

Tom’s marks not sorted, yes. Sally not sorted. But It should be sorted. Why? [Pause] Let me see

Step 1

Step 2

Step 3

Step 4

Step 5

281

[pause]. Boolean sort true, for loop to check all the students. The second FOR loop for all marks.

Then If greater sort false. Ah. I remember I need to set sort to true before comparing the marks

for the second student”.

Luke update his code by adding PRINT Java command as shown in Figure A.17, step5. He re-ran

the supplied unit tests to verify the correctness of his solution.

Kasper: Counting the Number of Beepers in a Single Corridor (Seq2 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Familiar first

Activities Planning

Tracing Visual debugging

Unit test

Time on task 14 minutes and 55 seconds

of compilation 3

of execution 3

Intervention None

Timing Week four of the P1 course

Important observations with

respect to prior sessions

Kasper solved this question after solving counting the length of

corridor (Seq1 – Q1, Chapter 6). Kasper was not confident about

counting the length of the corridor – he was confused and this

confusion led to a trial and error approach to programming.

Data

Think aloud:

Kasper began by reading the problem. For this question a method header had been provided so it

is possible to run the unit tests before any code has been written. Kasper ran the supplied unit tests

to see the initial robot scenarios. After examining the starting Robot Worlds, he started with nested

iteration statements that allowed the robot to pick beepers at its location and then move while

counting beepers, followed by an iteration statement for picking the beepers at the last location

(see Figure A.18, steps 12). He then verbalised: “I need to count, [pause]. Also, I need to

print”.

Figure A.18 Kasper’s screen image for counting the number of beepers in a single corridor

Step1

Step2

Step3

Step4

Step5

Step6

282

After a short pause, Kasper started to update his code as shown in Figure A.18, steps 35. Kasper

ran the supplied unit tests one test out of two failed (the Robot Word scenario with beepers at the

last stack). Kasper verbalised: “I did not count the last beeper”.

Kasper started to update his code as shown in Figure A.18, step6 without any evidence that he

tried to mentally trace or read his code. Kasper ran the supplied unit tests to verify the correctness

of his solution.

Kasper: Counting the Number of Beepers in each Beeper Stack across a Single

Corridor (Seq2 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Visual debugging and pen and paper tracing

Unit test Read test output

Time on task 11 minutes and 49 seconds

of compilation 4

of execution 4

Intervention “General prompt” scaffolding – provided on request

Timing Week six of the P1 course

Important observations with

respect to prior sessions

Kasper did not encounter any significant difficulties solving counting

the number of beepers in a single corridor (Seq2 – Q1).

Data

1. Think aloud:

Kasper started with nested iteration statements that allowed the robot to count the number of

beepers at its location and then move while counting beepers, followed by PRINT statement (see

Figure A.19 (left)). Kasper ran the supplied unit tests. Kasper then focused on one of the robot

scenarios (Robot World scenario of corridor length 5), ignored the test’s messages, and

verbalised: “Pick up all the beepers in the first position without move the robot”.

Kasper changed the position of the PRINT statement as shown in Figure A.19 (right), step1

followed by adding a robot method call that allowed the robot to move forward one step (see

Figure A.19 (right), step2). Kasper re-ran the supplied unit tests. Kasper again focused on one of

the robot scenarios (Robot World scenario of corridor length 5), ignored the test’s messages, and

verbalised: “Why test does not work. Another WHILE loop for the last one”.

Kasper updated his code as shown in see Figure A.19 (right), step3. Kasper re-ran the supplied

unit tests for the third time “Wrong answer”.

Kasper directly asked for help.

283

Figure A.19 Kasper’s first and second screen images for counting the number of beepers in each

beeper stack across a single corridor

2. Scaffolding:

The interviewer gave Kasper a robot image scenario, and a trace table with two columns headed

numOfBeepers, and PRINT statement. The number of beepers at each location was recorded

by the interviewer as [2, 1, 1, 2]. Kasper was asked to complete the trace table. Figure A.20 shows

what he wrote in the trace table. Desk checking his code helped Kasper identify the problem and

he was able to update his code changing the position of PRINT statement and and then reset the

gatherer to zero before counting the beepers in the next stack.

Figure A.20 Trace-table for Kasper’s code for counting the number of beepers in each stack across a

single corridor

Kasper: Checking if integers in a 1D Array are sorted in Descending Order (Seq3 –

Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing Mental and pen and paper tracing

Unit test Read the unit test message

Time on task 11 minutes and 22 seconds

of compilation 4

of execution 4

Intervention “General prompt” – provided on request

Timing Week eleven of the P1 course

Important observations with

respect to prior sessions

Kasper correctly solved a similar question in the homework

assignment that takes an integer array as an input parameter, and

returns true if the values in the array are in ascending numerical order.

Kasper showed evidence many times during the meeting sessions that

he found difficulty in using a nested IF-ELSE block (Seq1 – Q2 and

Seq1 – Q3, Chapter 6).

Step2

Copy

Paste

Step3

284

Data

1. Think aloud:

Kasper started by declaring a method header including parameter and return type, and then he

wrote the FOR-loop statement. Then, he decided to define a Boolean variable sorted before the

FOR-statement and set its value to true. Inside the FOR-loop block, Kasper added an IF-ELSE

block followed by the RETURN statement (as shown in Figure A.21 (left)).

Figure A.21 Kasper’s first and second screen images for whether or not an integer 1D array were

sorted

When Kasper ran the supplied unit tests, he discovered that only two tests passed out of eight.

Then he verbalised: “If the first one is less than the second [pause], if I assumed the first element

5 less than 3 sorted false”.

After the above utterance, he started to update his code. Kasper used two IF-blocks inside of IF-

ELSE block (see Figure A.21 (step5) (right)). Kasper’s fragile knowledge about IF-ELSE block

perform the same fundamental logic as two IF-blocks is exemplified here (Figure A.21). Kasper

re-ran the supplied unit tests. Kasper started to read on of the unit test messages and verbalised:

“Array index out of bound exception”

After that Kasper updated the termination condition for the FOR-loop (see Figure A.21 (step6)

(right)). Kasper re-ran the supplied unit tests for the third time. He discovered that only

four tests passed. After a long pause, Kasper asked for help.

2. Scaffolding:

The way Kasper wrote his code made the interviewer doubt about his understanding the difference

between ascending and descending. Therefore, the interviewer draw two one-dimensional arrays

(Figure A.22). These two one-dimensional arrays examples were selected from the unit test file.

The following is part of the conversation between the interviewer and Kasper:

Interviewer: “Did you see this question before?”

Kasper: “No”

Interviewer: “Even in the homework assignment?

Kasper: “I might see the question, but I do not remember the word ascending or descending”

After that the interviewer requested Kasper to trace his code, but as usual Kasper decided to use

PRINT statement. Figure A.22 shows how he updated his code using PRINT statement. After re-

running the supplied unit isSorted(new int[] { 100, 99, 88, 77, 6,1}.

Step 1A

Step 1B

Step 2A

Step 2B

Step 3

Step 4

Step 5 - Update

Step 6 - Update

285

Kasper started to read the result of PRINT-statement. Without any verbalisation, Kasper started

to update his code.

Figure A.22 Kasper’s third screen image for whether or not an integer 1D array were sorted

Kasper: Smallest Element in a 1D Array (Seq3 – Q2)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test

Time on task 7 minutes and 2 seconds

of compilation 1

of execution 1

Intervention None

Timing After he had finished the P1 course.

Important observations with

respect to prior sessions

For Seq1 – Q4 (Chapter6), Kasper was clearly outside of his ZPD, and

he was supplied with the model answer for this question. Kasper was

then able to solve this question, which suggests that he learnt from the

model answer and was able to apply that learning to new situations.

Data

1. Think aloud:

Kasper began by reading the problem and immediately started to verbalise and write his solution:

“Do not return everything, void find smallest, and it does take any array of integers. Let us call

it array of int [integer]”.

After Kasper wrote the method signature, he changed his mind about the method type and

verbalised: “Oh, it does return the element of the smallest”.

After the above utterance, he wrote the FOR-loop statement that consisted of the stepper variable

x. At this stage, he hesitated about the syntax of FOR-statement - using , or ;, after a short pause

he made his decision to use ;. Then, he decided to define the most wanted holder variable

smallest before the FOR-statement and set its value to zero:

“So, array int x [pause], I assumed the first element has the smallest element, so I will call it

integer smallest equal zero”.

Inside the FOR-block, Kasper added the assignment Java command (see Figure A.23 (left)). After

a pause, Kasper expressed doubt about the initial value of the gatherer variable: “Integer smallest

equal zero [pause], so integer smallest equal to array int zero [arrayInt[0]]”.

Step 7

286

As he completed his utterance, he started to update the value of the gatherer variable from zero to

the first element of the array, followed by updating the body of the FOR-loop block, and adding

an IF-statement. Finally he added the RETURN statement as the last Java command (see Figure

A.23 (right)). When Kasper ran the supplied unit tests, they all passed at the first trial.

Figure A.23 Kasper’s first and second screen images for smallest element in a 1D array

2. Retrospection:

Interviewer: “Have you seen this question before?”

Kasper: “I see similar one”

Interviewer: “Which question was similar?”

Kasper: “Shortest corridor”

Interviewer: “Did you try to compare and contrast between what you had seen before and newly

presented information?”

Kasper: “Yes”

Interviewer: “Does this mean that the whole plan was in your mind?”

Kasper: “Ah, the first plan was to use array because I forget it. Then I started to think should I

use it with FOR-loop or WHILE- loop, then I remembered in the homework assignment we always

use array with FOR-loop”

Interviewer: “Did you remember, how you solved the smallest corridor task?

Kasper: “I remembered, when I started to think about it. I remembered”

Interviewer: “You initialised your counter by zero then you changed your mind, why?”

Kasper: “Because, I remember that wrong, ah. I remember your advice that we can’t compare

with zero, I should make the first value equal to the smallest”

At the end of the session, the interviewer discussed the quality of his code with Kasper and how

he could further develop it.

Step1A

Step2A

Step3

Step4

Step1 B

Step2B

Step5 - Update

Step6A

Step6B

Step7

287

Kasper: Index of the Largest Element in a 1D Array (Seq3 – Q3)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test

Time on task 14 minutes and 47 seconds

of compilation 2

of execution 1

Intervention None

Timing After he had finished the P1 course. He solved this question directly

after solving found the smallest element in a one-dimensional array

(Seq3 – Q2).

Important observations with

respect to prior sessions

Kasper did not encounter any difficulties in solving Seq3 – Q2.

Data

1. Think aloud:

Kasper started to verbalise and write his solution shown in Figure A.24 (left) line by line in

sequential order. “Asking for an index of array, int [integer] find largest integer, so, um, int

[integer] array largest index. This similar as before. Make the first the largest. So I need to make

variable integer largest equal to the first index zero, and then FOR loop, integer x equal 0, x less

than largest index length, x plue plus. Find now, which one the largest, which index have the

largest. So um, just I need to compare [pause] if um…[pause]. If largest index x

[largeIndex[x]] greater than largest then [pause] x is the largest. Return x”.

Figure A.24 Kasper’s first and second screen images for find the largest index

Kasper compiled his code and was able to identify the syntax error (cannot find symbol

- variable x). Kasper verbalised and updated his solution: “Variable x not defined. We

should make another variable integer index equal zero. Also I need to updated the IF block”.

Also, Kasper updated the last Java command (RETURN statement) (see Figure A.24 (right)).

Finally when he ran the supplied unit tests, all the tests passed.

2. Retrospection:

Interviewer: “Did you try to compare and contrast between what you have been seen before and

newly presented information?”

Step 1

Step 2

Step 4

Step 3

288

Kasper: “My focus was how to return the index, when I compare how I could return the index

therefore at the beginning I solve it in a wrong way.”

At the end of the session, the interviewer discussed the quality of his code with Kasper how he

could further develop it.

Kasper: Sum of Even Numbers Stored in a 1D (Seq3 – Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test

Time on task 8 minutes and 07 seconds

of compilation 2

of execution 1

Intervention None

Timing After he had finished the P1 course. He solved this question directly

after solving found the smallest element in a one-dimensional array

(Seq3 – Q2).

Important observations with

respect to prior sessions

Kasper did not find any difficulties using a one-dimensional array

concept.

Data

Think aloud:

Kasper started with the method header with an array of type integer as the parameter and which

returned an integer followed by the FOR-loop that consisted of a stepper variable called x. Inside

the FOR-loop block, Kasper added an IF-statement (see Figure A.25, steps1 3). After changing

the symbol / to % as shown in Figure A.25, step4. Kasper verbalised: “I gonna define integer

variable”.

As he completed this utterance, he defined a gatherer variable and set its value to zero. He then

continued to writing his code as shown in Figure A.25, steps5 7.

Figure A.25 Kasper’s screen image Sum of even numbers stored in a 1D

Kasper compiled his code which generated a syntax error – he had forget to add ; as shown in

Figure A.25, steps6. Kasper could easily updated the syntax error. Kasper ran the supplied unit

tests and all the tests passed.

Step1A

Step1B

Step2A

Step2B

Step4 - Edit %

Step3A

Step3B

Step5

Step6

Step7

Step8 - Edit ;

289

Kasper: Checking if Beeper Stacks are sorted in Ascending Order by Size of the

Stack (Seq2 – Q4)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Familiar first

Activities Planning

Tracing PRINT debugging and pen and paper tracing (doodle)

Unit test

Time on task 15 minutes and 22 seconds

of compilation 4

of execution 3

Intervention 1- Clarify scaffolding – provided on request

2- “General prompt” scaffolding – provided on request

Timing After he had finished the P1 course.

Important observations with

respect to prior sessions

The scaffolding given to Kasper during the meeting session (Seq3 –

Q1) were effective and enable him to move forward.

Data

1. Think aloud:

Kasper started problem solving with a mistake in the method definition. He assumed that the

method did not return any value, then he decided the method should return a Boolean value,

followed by WHILE-block. After that, Kasper decided to define a new method, he call it

countBeeper(). The function of that method was to count the beepers in a single stack (see

Figure A.26 (left)).

Figure A.26 Kasper’s first and second screen images for check whether or not beepers stacks are

sorted

After a long pause, Kasper continued to type his code while he verbalised his writing (see Figure

A.26 (right)). After yet another long pause he verbalised while writing his code: “Count two

[count2] less than count. Can I use pen and paper?”

Kasper immediately started to draw a one-dimensional array (as shown in Figure A.27). Then

he asked for help (clarify scaffold).

Step1

Step2

Step3

Step4

290

Figure A.27 Kasper’s doodle for check whether or not beepers stacks are sorted

2. Scaffolding:

Kasper: “Could I add RETURN at this position [Kasper pointed at the last statement in his

code]?”

Interviewer: “What is the function of RETUN Java command?”

Kasper: “To terminate the execution”

Interviewer: “That is right”

After the above conversation, Kasper updated his code (see Figure A.28 (step5) (left)).

Figure A.28 Kasper’s third and fourth screen images for check whether or not beepers stacks are

sorted

3. Think aloud:

Kasper compiled his code and was able to identify the syntax error (missing return

statement) and quickly self-updated his code by adding return true as the last Java

command. Kasper ran the supplied unit tests, He discovered that only two tests passed and one

test failed (the test failed the Robot World scenario which contained beepers stacks not sorted).

Then he verbalised: “One test fail. [Pause], I think I need your help”.

4. Scaffolding:

The interviewer redirected Kasper to trace his code.

Kasper: “Could I add print statement?”

Interviewer: “As you like”

Kasper updated his code by adding Java command PRINT before IF-statement. After re-ran the

supplied unit test case for the failed solution:

Step5

Step6

Step7

Step8

291

Kasper: “Ah, what, the value of count equal to the number of beepers at first location”

After the above utterance, Kasper self-updated his code (see Figure A.28 (step2) (right)).

Kasper: Sum of all the Elements Stored in Odd Indexed Rows of the 2D (Seq4 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test

Time on task 4 minutes and 07 seconds

of compilation 2

of execution 1

Intervention None

Timing Week eight of the P2 course

Important observations with

respect to prior sessions

Kasper did not encounter any difficulties in solving sum of even

numbers stored in a one-dimensional array.

Data

Think aloud:

This question was the first using a two-dimensional array concept. During the meeting session,

Kasper requested he use a paper that contains the syntax of a two-dimensional array. Kasper began

by writing the method header with an array of type integer as a parameter. He then defined a

nested FOR-loop block, followed by an IF-block, and finally he defined a gatherer variable

toReturn at the beginning of the method and set its value to zero (see Figure A.29, steps1 4).

During writing his code, Kasper was observed from time to time using the paper checking Java

commands.

Kasper compiled his code which gave him one error. He easily fixed the syntax error by adding

the missing RETURN statement (Figure A.29, step5). He re-compiled and ran the supplied unit

tests; all the tests passed.

Figure A.29 Kasper’s screen image for sum of all elements stored in odd indexed rows of the 2D

Step1A

Step1B

Step2A

Step2B

Step3

Step4

Step5

292

Kasper: Check Whether or not Each Row of a Two-Dimensional Array Elements

are Sorted in Ascending Order (Seq4 – Q4)

Encoding

Question Not solved

Behaviours Stopper

Emotion Indiscernible

Strategies Stepwise design

Activities Planning

Tracing

Unit test

Time on task 10 minutes and 20 seconds

of compilation 0

of execution 0

Intervention Exact solution – provided on request

Timing Week nine of the P2 course

Important observations with

respect to prior sessions

The scaffolding given to Kasper during the meeting session (Seq4 –

Q2) were effective and enable him to move forward (the interviewer

intervened with syntax help) For solving this question, Kasper found

difficulties to recall his existing schema for whether or not a one-

dimensional array is sorted because until this stage the schema for

sorting is not condense as a single entity.

Data

1. Think aloud:

Kasper started with the method name and array of type integer as a passing parameter, and then

he defined nested FOR-loop blocks followed by IF-block. Then Kasper verbalised while

continued writing his code (see Figure A.30):“We need to call the first one and check if it sorted

so we store the first [pause], the first value. I need to compare it with the next one. I need to check

[long pause]. If array two D x y [arr2D[x][y]]greater than first value [firstValue]”.

After the above utterance, Kasper asked for help.

Figure A.30 Kasper’s first screen image for check whether or not each row of a 2D array elements are

sorted

2. Scaffolding:

Directly Kasper asked for help. The interviewer redirected Kasper to write an algorithm that check

the elements of a one-dimensional array sorted ascending (“general prompt” scaffolding). Kasper

composed the list of programming processes listed in (Figure A.31). As shown in Figure A.31,

Kasper failed to recall the correct code. The interviewer started to use a stepwise refinement

technique to explain the code to Kasper.

293

Figure A.31 Kasper’s doodle for whether or not an integer 1D array were sorted

Matthew: Counting the Length of One Corridor (Seq1 – Q1)

Encoding

Question Solved

Behaviours Mover

Emotion Indiscernible

Strategies Sequential

Activities Planning

Tracing Mental tracing

Unit test Read the unit test message

Time on task He took 7 minutes and 39 seconds to solve the task.

of compilation 2

of execution 2

Intervention None

Timing Week six of the P1 course

Important observations with

respect to prior sessions

Data

1. Think aloud:

After reading the question, Matthew verbalised: “So first one, ah, I need to create integer”.

Then he started to define a gatherer variable and set it value to zero, as the first Java command,

followed by a WHILE-loop block that allowed the robot to move across the corridor, then he

verbalised (see Figure A.32 (left)):“The length should be, ah, I should count where the robot is

stand, should the length should be one”.

Figure A.32 Matthew’s first and screen images for counting the length of one corridor

After the above utterance, he updated the gatherer variable and set its value to one. He then

verbalised while adding the Java command that increased the value of the gatherer variable by

one, as shown in Figure A.32 (right):“I will continue the while loop after moving the robot

forwards, ah, It will plus one to the length”.

Finally, he ran the supplied unit tests and all tests failed. He then started to read one of the unit

test messages and update his code according: “Output should be length five. The length is not

display so I have to write a statement for this one”.

He then added the PRINT Java command. Matthew ran the unit tests and all tests passed.

Step1 - Update

Step2 - Add

Step3 - Add

294

2. Retrospection:

Interviewer: “Have you seen this question before?”

Matthew: “Ah, yep in the homework.”

Interviewer: “The same question?”

Matthew: “As I remember different, was moving the robot around the corners and counting the

number of squares.”

Interviewer: “You started the problem solving by defining the variable length and set its value to

zero, then you changed your mind to one, why?”

Matthew: “Ah, because I need to count the first square the robot started with it.”

Interviewer: “Which means you were tracing your code while you were writing your code?”

Matthew: “Yes”

295

Appendix B. AUTEC Ethics Approval

A U T E C

S E C R E T A R I A T

22 March 2013

Jacqueline Whalley

Faculty of Design and Creative Technologies

Dear Jacqueline

Re: 13/32 Learning to Program: The development of knowledge in novice programmes.

Thank you for submitting your application for ethical review. I am pleased to confirm that the Auckland

University of Technology Ethics Committee (AUTEC) has approved your ethics application for three years until

18 March 2016.

AUTEC commends the applicant and researcher on the quality of the application.

As part of the ethics approval process, you are required to submit the following to AUTEC:

 A brief annual progress report using form EA2, which is available online through
http://www.aut.ac.nz/researchethics. When necessary this form may also be used to request an
extension of the approval at least one month prior to its expiry on 18 March 2016;

 A brief report on the status of the project using form EA3, which is available online through
http://www.aut.ac.nz/researchethics. This report is to be submitted either when the approval expires
on 18 March 2016 or on completion of the project;

It is a condition of approval that AUTEC is notified of any adverse events or if the research does not

commence. AUTEC approval needs to be sought for any alteration to the research, including any alteration of

or addition to any documents that are provided to participants. You are responsible for ensuring that

research undertaken under this approval occurs within the parameters outlined in the approved application.

AUTEC grants ethical approval only. If you require management approval from an institution or organisation

for your research, then you will need to obtain this. If your research is undertaken within a jurisdiction

outside New Zealand, you will need to make the arrangements necessary to meet the legal and ethical

requirements that apply within their.

To enable us to provide you with efficient service, we ask that you use the application number and study title

in all correspondence with us. If you have any enquiries about this application, or anything else, please do

contact us at ethics@aut.ac.nz.

All the very best with your research,

Dr Rosemary Godbold

Executive Secretary

Auckland University of Technology Ethics Committee

Cc: Nadia Kasto nkasto@aut.ac.nz

AUTEC Ethics Approval Certificate

Registered Committee Number: Whalley

13332-22032013

http://www.aut.ac.nz/researchethics
http://www.aut.ac.nz/researchethics
mailto:ethics@aut.ac.nz
mailto:nkasto@aut.ac.nz

296

A U T E C

S E C R E T A R I A T

30 October 2013

Jacqueline Whalley

Faculty of Design and Creative Technologies

Dear Jacqueline

Re: Ethics Application: 13/32 Learning to Program: The development of knowledge in novice

programmes.

Thank you for your request for approval of amendments to your ethics application.

I have approved the minor amendment to your ethics application allowing the use of a ‘smart pen’ with video.

I remind you that as part of the ethics approval process, you are required to submit the following to AUTEC:

 A brief annual progress report using form EA2, which is available online through
http://www.aut.ac.nz/researchethics. When necessary this form may also be used to request an
extension of the approval at least one month prior to its expiry on 18 March 2016;

 A brief report on the status of the project using form EA3, which is available online through
http://www.aut.ac.nz/researchethics. This report is to be submitted either when the approval expires
on 18 March 2016 or on completion of the project.

It is a condition of approval that AUTEC is notified of any adverse events or if the research does not

commence. AUTEC approval needs to be sought for any alteration to the research, including any alteration of

or addition to any documents that are provided to participants. You are responsible for ensuring that

research undertaken under this approval occurs within the parameters outlined in the approved application.

AUTEC grants ethical approval only. If you require management approval from an institution or organisation

for your research, then you will need to obtain this. If your research is undertaken within a jurisdiction

outside New Zealand, you will need to make the arrangements necessary to meet the legal and ethical

requirements that apply there.

To enable us to provide you with efficient service, please use the application number and study title in all

correspondence with us. If you have any enquiries about this application, or anything else, please do contact

us at ethics@aut.ac.nz.

All the very best with your research,

Kate O’Connor

Executive Secretary

Auckland University of Technology Ethics Committee

Cc: Nadia Kasto nkasto@aut.ac.nz

AUTEC Ethics Approval Certificate

Registered Committee Number: Whalley 13332-

22032013

http://www.aut.ac.nz/researchethics
http://www.aut.ac.nz/researchethics
mailto:ethics@aut.ac.nz

297

Consent Form

Project Title: Investigating Aspects of the Learning and Teaching of Novice

Programmers

Project Supervisor: Dr. Jacqueline Whalley

Researcher: Anne Philpott, Andrew Smith, Nadia Kasto, Dr. Jiamou Liu, Dr. James

Skene, Dr. Stefan Marks
o I have read and understood the information provided about this research project in the

Information Sheet dated 18th January 2012.

o I have had an opportunity to ask questions and to have them answered.

o I understand that I may withdraw myself or any information that I have provided for this project

at any time prior to completion of data analysis, without being disadvantaged in any way.

o I understand that the data collected will be course work submitted such as exam scripts, test

scripts, programmers logbooks, programme tasks and in class activities.

o If I withdraw, I understand that all relevant information stored for research purposes will be

destroyed.

o I agree to take part in this research (please, tick one) : Yes No

o I wish to receive a copy of the report from the research:- Yes No

Date:

__

Participant’s Signature:

__

Participant’s Name:

__

Participant’s Contact Details (if you wish to receive a copy of the

report):______________________

__

Approved by the Auckland University of Technology Ethics Committee on 5th March 2012 AUTEC

Reference number Whalley1230_05032012

Note: The participant should return a copy of this form

298

Participant Information Sheet

Date Information Sheet Produced:

18th January 2012

Project Title:

Investigating Aspects of the Learning and Teaching of Novice Programmers

An Invitation:

I am Dr. Jacqueline Whalley a Senior Research Lecturer in the School of Computing and Mathematical
Sciences at AUT and one of a group of lecturers and postgraduate students' who are interested in
education research and who wish to improve the way that we teach you computer programming. I would
like to invite you to participate in a research study that investigates the ways that students learn to
program. Additionally, this study aims to evaluate tools and techniques that are designed assist you in
learning to read and write computer programs. Your participation in this research will contribute to the
postgraduate student researchers PhD theses and Honours dissertations. Participation in this study is
voluntary and does not involve any additional time or work on your part. You may withdraw, without
giving reasons or being disadvantaged, at any time prior to the completion of data collection.
What is the purpose of this research?

During this study extracts of coursework you complete (for example exam scripts, test scripts,
programmers logbooks, programming tasks and in class activities) will be gathered and all data that
identifies you will be removed. These extracts will be combined with other students' answers to the same
questions, and the resulting data will be analysed. The results of studying how you read, write and debug
code, or answer questions about code, should enable us to develop a model of the steps involved in
learning to program. We will be seeking your feedback and asking you your opinions about the tools we
use to teach you and their usefulness. The information you contribute will allow us to determine how to
improve our teaching and your learning. The results of this research will be published in the graduate
student researchers ‘theses/dissertations and may be published in academic journals or presented at
conferences.
How was I identified and why am I being invited to participate in this research?

You have been invited to participate in this research because you are taking a computer programming
course. All students who are enrolled in introduction to Programming (405708) or Programming 1
(405701') or Programming 2 (4057O4) have been invited to participate.
What will happen in this research?

All you need to do is complete the consent form supplied, stating whether or not you are willing to allow
the researchers to analyse your course work (for example exam scripts, test scripts, programmers
logbooks, programme tasks and in class activities). The questionnaires and any tasks will be completed in
class time because they form part of your normal required course work for your programming paper. You
do not have to do anything else.
What are the discomforts and risks?
Because some of the researchers are your lecturers we need to ensure that that you are protected
whether or not you decided to participate in the research.

The RESEARCH TEAM are all from the school of Computing and Mathematical Sciences at AUT:
STAFF: Anne Philpott [Senior Lecturer, teaches Programming 2l; Dr. Stefan Marks [Lecturer, teaches
Programming 2l; Dr. James Skene, [Lecturer, teaches Programming 1], Dr. Jiamou Liu, [Lecturer]
STUDENTS: Your anonymised data will be included in their research & theses, they will not be able to
identify you individually; Nadia Kasto [PhD student] and Andrew Smith [Honours Student]

299

Consent Form

Project Title: Learning to Program: The Development of Knowledge in Novice

Programmers

Project Supervisor: Dr. Jacqueline Whalley

Researcher: Nadia Kasto

o I have read and understood the information provided about this research project in the

Information Sheet.

o I have had an opportunity to ask questions and to have them answered.

o I understand that I may withdraw myself or any information that I have provided for this project

at any time prior to completion of data analysis, without being disadvantaged in any way.

o If I withdraw, I understand that the data I contributed up to the date of my withdrawal from the

study may be included in the study if it has already been included in an analysis. If analysis has

not yet taken place my data will be destroyed at the time of my withdrawal. I am under no

obligation to continue attending the think aloud interview sessions when I choose to withdraw.

o I understand that the data collected will be recordings of me thinking-out-loud while performing

programming tasks

o I understand that all relevant information stored for research purposes will be destroyed after

six years.

o I agree to take part in this research (please, tick one) :- Yes No

o I wish to receive a copy of the report from the research:- Yes No

Date:

__

Participant’s Signature:

__

Participant’s Name:

__

Participant’s Contact Details (if you wish to receive a copy of the

report):______________________

Approved by the Auckland University of Technology Ethics Committee on 22nd March 2013 AUTEC

Reference number Whalley1332_22032013

Note: The participant should return a copy of this for

300

Participant Information Sheet

Date Information Sheet Produced:

25th February 2013

Project Title:

Learning to Program: The Development of Knowledge in Novice Programmers

An Invitation:

I am Nadia Kasto, a postgraduate student in the School of Computing and Mathematical Science at AUT. I

am interested in education research; my PhD thesis focuses on the way that students learn computer

programming. I would like to invite you to participate in the research study that investigates the ways

that students learn to program.

What is the purpose of this research?

The aim of this research is to investigate how you integrate new programming structures or elements into

your current understanding of code. It is anticipated that the results of this study will inform the way in

which we teach computer programming and design learning tasks.

How was I identified and why am I being invited to participate in this research?

You have been invited to participate in this research because you are taking a computer-programming

course. All students who are enrolled in Introduction to Programming (405708) or Programming 1

(405701) or Programming 2 (405704) have been invited to participate.

What will happen in this research?

During this study, you will be asked to fill in a questionnaire about your prior learning of computer

programming. If you volunteer for this study, you will be asked to attend twelve to sixteen 40 minute

sessions out of class time over two semesters in your first year of learning to program. These sessions will

be scheduled in consultation with you. In these sessions, you will be asked to undertake small

programming tasks and to talk to me about what you are thinking as you work on the tasks. The tasks you

are asked to undertake are timed so that you will have already covered the concepts in your programming

course.

What are the discomforts and risks and how will these discomforts and risks be alleviated?

In the interview session, you may be feeling embarrassed if you find it difficult to solve the programming

task. We will assist you to clarify your thinking and your strategy for solving the program task will neither

be criticising nor providing negative evaluation of your existing practice.

What are the benefits?

The information you contribute will allow us to determine how to improve our teaching and your learning.

The results of this research will be published in the graduate student researchers’ theses and may be

published in academic journals or presented at conferences. It will also likely improve your programming

skills.

How will my privacy be protected?

Participants will not be identified in final report, thesis and resulting publication. Any conversation as a

result interviews process will be treated in a strictly confidential manner. All data will be stored in a secure

manner in an anonymised format.

301

What are the costs of participating in this research?

After you have completed 30 minutes interview session, you will be given the opportunity to have a ten

minute tutoring session as a form of koha (a Maori tradition of giving a gift as a thank you for your

contribution to the research) which focuses on the tasks and related programming concepts that you have

just completed.

What opportunity do I have to consider this invitation?

After you have been provided with the information sheet you have a week to respond. If later, you would

like to participated place contact the project supervisor. Depending on the stage of the research, it may

be possible to join the study.

How do I agree to participate in this research?

If you agree to participate in this research, you need to complete the attached Consent Form or download
it using the blackboard course.

Will I receive feedback on the results of this research?

If you want to receive a copy of this research, you need to tick the appropriate box in the Consent Form.

What do I do if I have concerns about this research?

Any concerns regarding the nature of this project should be notified in the first instance to the Project
Supervisor, Dr. Jacqueline Whalley, jwhalley@auit.ac.nz, 921 9999 ext. 5203.

Concerns regarding the conduct of the research should be notified to the Executive Secretary, AUTEC, Dr
Rosemary Godbold, rosemary.godbold@aut.ac.nz , 921 9999 ext 6902.

Whom do I contact for further information about this research?

Researcher Contact Details:

Nadia Kasto, nkasto@aut.ac.nz, 921 9999 ext. 5852.

Project Supervisor Contact Details:

Dr. Jacqueline Whalley, jwhalley@auit.ac.nz, 921 9999 ext. 5203.

Approved by the Auckland University of Technology Ethics Committee on 22nd March 2013 AUTEC

Reference number Whalley1332_2203201

mailto:nkasto@aut.ac.nz

302

Appendix C. Prior Knowledge Questionnaire

Part 1: Personal Information

Name ------------------ Student ID ------------

(Please, tick the correct choice below)

Part 2: Background

2. Do you have any programming experience? Yes No

If the answer is ‘Yes’ please answer 2.1 and the following sections

2.1. Where did you first learn to program?

 Before Higher School High School self-taught

 University other please explain --------

2.2. What programming language do you know?

 C

 C++

 Java

 Java Script

 Pascal

 Delphi

 Perl

 Basic

 Visual Basic

 Alice Scratch PHP

 Python

 Others please explain

2.3. If you have learnt programming, how well do understand the following concepts
 Concepts low High

1- Assignment concept

2- Selection concept

3- Iteration concept

4- Functions

5- Array

6- Objects

7- Inheritance

 Others please explain

303

Appendix D. The Learning Outcomes of the P1 Course

The learning outcomes of the P1 course are that the students be able to15:

1. Write syntactically correct program statements.

2. Assemble a program from statements that control the order in which tasks are

performed.

3. Assemble a program from statements that control the representation and processing

of data.

4. Read programs and predict what they do.

5. Design and write programs to solve simple problems.

6. Find and fix errors in programs.

7. Write programs that interact with the user and the execution environment.

8. Use tests to control program quality.

9. Apply programming and documentation standards.

15 Taken from AUT website course descriptor

304

Appendix E. The Learning Outcomes of the P2 Course

The learning outcomes on successful completion of P2 course is for students to be able

to16:

1. Explain inheritance and polymorphism.

2. Explain the concept and uses of abstract classes.

3. Explain the concept and uses of interfaces.

4. Explain and apply recursion in an appropriate context.

5. Use inheritance in the correct programming context.

6. Use abstract classes in the correct programming context.

7. Use interfaces in the correct programming context.

8. Employ exception handling and create exception classes.

9. Apply the principles of serialization.

10. Interpret software requirements.

11. Develop software with a modular design.

12. Demonstrate the skills used in effective software testing.

13. Explain the processes involved in software testing.

14. Design and write automated unit tests.

15. Develop a simple graphical user interface.

16. Evaluate and use a variety of data structures.

17. Design, evaluate and implement efficient algorithms.

16 Taken from AUT website course descriptor

305

Appendix F. Questions for Developing of Writing Difficulty

Metric

1. This question asked the students to write a method that made the robot clean the

room. The robot must pick up all the beepers left lying around and if there were

enough beepers to fully load the beeper wash, then they should be loaded into the

beeper washer (at location (2,12)) any remaining beepers should be neatly placed

at the location (2,0). The students were supplied with the method signature and the

Unit tests to test that the beepers have been dropped at the appropriate location(s).

The tests included starting worlds with 0, 5, 9, 10, 15 and 20 beepers.

2. This question asked the students to write a method called advanceRobot() that had

two parameters a robot name and a distance to travel (the number of cells that the

robot should advance). The robot should only be able to move if it is alive and if

the distance to travel is positive if it is unable to move an appropriate exception

should be thrown. If the robot encountered a wall before moving the full distance

it should stop rather than crashing. The method should return true only if the robot

moved the full distance.

3. In this question the students were asked to write a code to move the robot from a

set starting location at (4, 0) to a fixed exit at location (4, 6). In order to do this, the

robot must choose one of two paths. If there was a beeper at the first intersection

(4, 2) then the robot must follow the eastern path otherwise it should follow the

western path.

306

4. In this scenario, there were two corridors with a gap between them. The length of

each of the corridors changes randomly every time the world is created. The

question asked the students to compare the length of two corridors and print out a

message that either states the corridors were of equal length or gave the length of

the longest corridor.

5. The students were provided with a method header and asked to write a summing

algorithm that made a robot move forwards until it reaches a wall while picking up

any beepers that it encounters and then print out the total number of beepers the

robot collected.

6. This question asked the students to complete the method findBeeper() that moved

the robot through a spiral maze until it reaches a beeper. They should also count

how many steps the robot navigates to the beepers and return the number of steps

required.

7. A robot starts in one of two possible initial states, as shown in the figures below:

This question asked the students to write a program to move the robot to the end of

the corridor. If the robot started at location (0, 0), it must finish at location (4, 4)

307

facing north. If the robot started at location (0, 5), it must finish at location (4, 1)

facing south.

8. In this question, the students were provided with a robot in a cell that contains a

number of beepers. The students were asked to write a method called

pickUpNBeepersCheckIfAll() that took an integer parameter, and made the most

recently created robot pick up that number of beepers from the beeper stack at its

current location. The student should assume that there were enough beepers in the

stack for the robot to do this safely. The method should return true if the robot has

picked up all the beepers at its current location, or false if there are still beepers on

the ground.

9. This question asked the students to write a method called pickUpBeeperStack() that

made the most recently created robot pick up all the beepers at its current location.

The method should return no value and take no parameters.

10. For this question, the students were supplied with the method header. They were

asked to complete the method body so that the robot turns left, then if there is no

wall in the way moves forward one cell.

11. For this question, the students were supplied with the method header. They were

asked to complete the method body by writing a sequence of three statements to

make the robot drop the beeper it is carrying, then move the robot forward one cell

and turn the robot left once.

308

Appendix G. Participants Categorisation According to Their Ability to Solve the Programming Tasks

 Andre Luke Chen Isaac Harry Kasper Matthew

Seq1 Q1 Prompt (O) Solve Hint Not solved Solve Solve Solve

Seq2 Q1 Clarify Not solved Solve Not solved Solve Solve Not solved

Seq1 Q2 Solve Solve Hint, Hint Clarify, Clarify, Hint Solve Solve Solve

Seq2 Q2 Solve Solve Solve Solve Hint, Hint, Hint Prompt (T) Prompt (T)

Seq1 Q3 Hint, Prompt (O) Not solved Not solved Not solved Prompt (T) Hint Hint, Prompt (O)

Seq2 Q3 Clarify Solve Not solved Solve Not solved Prompt (#) Prompt (T),Prompt (T)

Seq1 Q4 Solve Prompt (T) Solve Prompt (T) Solve Not solved Not solved

Seq3 Q1 Solve Clarify, Hint Hint, Prompt (T) Not solved Not solved Prompt (T) Not solved

Seq3 Q2 Prompt (#) Solve Prompt (#) Solve Prompt (T) Solve Prompt (#)

Seq3 Q3 Solve Solve Hint, Hint, Prompt (T) Solve Not solved Solve Not solved

Seq3 Q4 Solve Solve Prompt (T) Prompt (#) Solve Solve Prompt (T)

Seq2 Q4 Solve Solve Not solved Solve Prompt (T) Clarify, Prompt (T) Not solved

Seq4 Q1 Solve Hint Hint Solve Clarify Solve Prompt (T)

Seq4 Q2 Solve Solve Hint Clarify,Prompt (T) Not solved Clarify, Hint Not solved

Seq4 Q3 Solve Solve Solve Hint Hint Solve Not solved

Seq4 Q4 Solve Prompt (#) Not solved Prompt (T) Not solved Not solved Not solved

Seq5 Q1 Solve Solve Prompt (T) Clarify Solve Not solved Not solved

Seq5 Q2 Solve Solve Clarify, Prompt (#) Clarify,Prompt (#) Solve Not solved Not solved

Seq5 Q3 Solve Solve Solve Solve Solve Not solved Not solved

Solve: Programming task solved by participant independently with or without hard scaffolding.

Not solved: Programming task not solved by participant.

Clarify, Prompt, and Hint: Programming task solved with assistance. T for tracing scaffolding, # for stepwise refinement scaffolding, O for other types of prompts scaffolding

309

Appendix H. Summary of Think Aloud Recording Sessions

Table H.1 is a summary of the think aloud recording sessions undertaken during this

longitudinal study of novice programmers.

Table H.1 Summary of think aloud sessions

Participants

Hours of video recoding Hours of audio recoding

Andre 6 2

Luke 5 3

Chen 7 3

Isaac 7 4

Harry 7 3

Kasper 5 4

Matthew 6 6

Other participants 22 10

Seq1 – Q4

 Solve

Seq3 – Q1

 Solve

Seq3 – Q2

 Prompt (#)

Seq3 – Q3

 Solve

Seq3 – Q4

 Solve

Meeting4 – Week8 Meeting5 – Week10

Seq4 – Q1

 Solve

Meeting 7 – Week5

Seq4 – Q2

Solve

Seq4 – Q3

 Solve

Seq4 – Q4

Solve

Seq1 - Q1

Prompt (O)

Seq2 - Q1

Clarify

Seq1 – Q2

 Solve

Seq2 – Q2

 Solve

Seq1 – Q3

Hint, Prompt(O)

Seq2 – Q3

Clarify

Meeting2 – Week5Meeting1 – Week4 Meeting3 – Week6

Seq5 – Q1

Solve

Seq5 – Q2

 Solve

Seq5 – Q3

 Solve

Meeting 8 – Week7

Seq2 – Q4

 Solve

Meeting6 – Week11

Figure H.1 Andre’s think aloud sessions

17

17 Clarify, Prompt, and Hint: Programming task solved with assistance. T for tracing scaffolding, # for

stepwise refinement scaffolding, O for other types of prompts scaffolding.

310

Seq1 – Q4

Prompt(T)

Seq3 – Q1

Clarify, Hint

Seq3 – Q2

 Solve

Seq3 – Q3

 Solve

Seq3 – Q4

Solve

Meeting4 – Semester break Meeting5 – Week 11

Seq4 – Q1

 Hint

Meeting7 – Week6

Seq4 – Q2

 Solve

Seq4 – Q3

 Solve

Seq4 – Q4

 Prompt(#)

Seq1 - Q1

 Solve

Seq2 - Q1

 Not solved

Seq1 – Q2

 Solve

Seq2 – Q2

 Solve

Seq1 – Q3

 Not Solved

Seq2 – Q3

 Solve

Meeting2 – Week6Meeting1 – Week4 Meeting 3 – Semester break

Seq5 – Q1

 Solve

Seq5 – Q2

 Solve

Seq5 – Q3

 Solve

Meeting8 – Week7

Seq2 – Q4

Solve

Meeting6 – Finish P1 course

Figure H.2 Luke’s think aloud sessions

Seq1 – Q4

Not solved

Seq3 – Q1

 Prompt(T)

Seq3 – Q2

 Solve

Seq3 – Q3

Solve

Seq3 – Q4

 Solve

Meeting4 – Week9 Meeting5 – Week11 Meeting 6 – Finish P1 course

Seq4 – Q1

 Solve

Meeting 8 – Week9

Seq4 – Q2

Clarify, Hint

Seq4 – Q3

 Solve

Seq4 – Q4

Not solved

Seq1 - Q1

 Solve

Seq2 - Q1

 Solve

Seq1 – Q2

 Solve

Seq2 – Q2

 Prompt(T)

Seq1 – Q3

 Hint

Seq2 – Q3

 Prompt(#)

Meeting2 – Week6Meeting1 Week4 Meeting3 – Semester break

Seq5 – Q1

Not solved

Seq5 – Q2

Not solved

Seq5 – Q3

Not Solved

Meeting9 – Week10 & Week11

Seq2 – Q4

Clarify,

Prompt(T)

Meeting7 – Finish P1 course

Figure H.3 Kasper’s think aloud sessions

311

Seq1 – Q4

Not solved

Seq3 – Q1

Not solved

Seq3 – Q2

 Prompt(#)

Seq3 – Q3

Not solved

Seq3 – Q4

Prompt(T)

Meeting4 – Week9 Meeting5 – Week11 Meeting6 – Week12

Seq4 – Q1

 Prompt(T)

Meeting 8 – Week8

Seq4 – Q2

 Not solved

Seq4 – Q3

 Not solved

Seq4 – Q4

 Not solved

Seq1 - Q1

 Solve

Seq2 - Q1

Not solved

Seq1 – Q2

Solve

Seq2 – Q2

 Prompt(T)

Seq1 – Q3

Hint, Prompt(O)

Seq2 – Q3

Prompt(T),

Prompt(T)

Meeting2 - Week7Meeting1 – Week6 Meeting 3 – Semester break

Seq5 – Q1

Not solved

Seq5 – Q2

Not solved

Seq5 – Q3

Not solved

Meeting9 – Week9

Seq2 – Q4

Not solved

Meeting 7 – Finish P1 course

Figure H.4 Matthew’s think aloud session

