
A Novel Method for Decentralised Peer-to-Peer Software License
Validation Using Cryptocurrency Blockchain Technology

Jeff Herbert
School of Computer and Mathematical Sciences

Auckland University of Technology
Auckland, New Zealand

Jeff.herbert@gmail.com

Alan Litchfield
Service and Cloud Computing Research Lab

Auckland University of Technology
Auckland, New Zealand

Alan.litchfield@aut.ac.nz

Abstract
Protecting software copyright has been an issue since the
late 1970’s, and software license validation has been a
primary method employed in an attempt to minimise
software piracy and protect software copyright. This
paper presents a novel method for decentralised peer-to-
peer software license validation using cryptocurrency
blockchain technology to ameliorate software piracy, and
to provide a mechanism for all software developers to
protect their copyrighted works.

Keywords: Cryptocurrency, blockchain, software,
license, validation

1 Introduction
Methods to maintain control of copyrighted software
have fallen into three main categories: software activation
using a paper based key code, software license validation
through an online registration (Peyravian, Roginsky, &
Zunic, 2003) and hardware devices (Morgan & Ruskell,
1987). Smaller vendors most often implement software
validation in the form of an activation key, whilst global
vendors such as Microsoft and Adobe use proprietary
centralised software license validation services using the
Internet as the primary medium.

Software license validation is growing in complexity
due to a combination of technological and economic
developments. Commercial models for software sales and
distribution have become more complex, with multiple
parties existing in the supply chain including software
owners, multiple levels of distributors and customers
(Sachan, Emmanuel, & Kankanhalli, 2009). Similarly,
software is becoming more complex as the scope of use
increases (Liu & Roychoudhury, 2012).

This paper proposes the utilisation of a cryptocurrency
blockchain similar to Bitcoin, to provide a method for
decentralised, peer-to-peer, publicly auditable software
license validation that could be used by anyone from an
independent software writer to a large software vendor.
We provide an overview of cryptocurrency blockchain
functions and discuss the benefit of a decentralised peer-
to-peer architecture. We then proceed to outline a
construct of a transaction message and processes for
blockchain-based software license validation, and explore
future possibilities and issues.

2 Software license validation

2.1 Software piracy
The Business Software Alliance (BSA) defines software
piracy as the unauthorised copying or distribution of
copyright software, including downloading, sharing,
selling, or installing multiple copies of licensed software.
The Internet has provided a convenient medium for
software piracy, enabling participants to easily download
copyright software, and globalising software piracy by
operating in difficult legal jurisdictions. The BSA
estimates that in 2013, 43% of software on home
computers around the world was not properly licensed,
with a commercial value of US$62.7 billion, and even
subscription based models such as cloud computing are
not expected to provide a significant impact on reducing
software piracy with 52% of online credentials being
shared (Business Software Alliance, 2014).

Methods to protect software creators’ copyright have
been in place since the early 1980’s with a variety of
methods proposed and implemented. Suhler,
Bagherzadeh, Malek, and Iscoe (1986) suggested that to
be successful, software authorisation (validation) needed
to be inexpensive, compatible with other systems, and
easy to implement. Similarly, Morgan and Ruskell (1987)
found various practical measures to deter or prevent
unauthorised copying, however the feasibility of these
measures depend on various factors such as cost of the
measure versus value of the software. Three primary
methods for software license authorisation are
considered: copy protection, software validation using a
distributed paper-based key and hardware-based keys. In
these nascent stages of computing, the more effective
methods of encryption and validation were limited due to
the relatively high cost of hardware devices, limited
computing power for encryption methods and no form of
easy distribution medium for software license validation.
Software copy protection was primarily restricted to

Copyright © 2015, Australian Computer Society, Inc.
This paper appeared at 38th Australasian Computer
Science Conference (ACSC 2015). Conferences in
Research and Practice in Information Technology, Vol.
159. Editors, David Parry. Reproduction for academic,
not-for profit purposes permitted provided this text is
included.

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

27

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUT Scholarly Commons

https://core.ac.uk/display/80334075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

alteration of disk sectors to prevent copying, which was
easily defeated with software tools and license keys that
were distributed with the software media and easily
duplicated. These did little to resolve the issue of
software piracy.

With the advent of the Internet, new methods became
possible. Peyravian et al. (2003) proposed a new client-
server software license validation method using the
Internet with a central database for software license
validation and detection of hardware platform
characteristics that the software is installed on. Using this
method, vendors need to manage end user information
and need an online validation process for activation of the
software after installation. Larger software corporations
such as Microsoft and Adobe have adopted the principles
of this method. However, online validation requires a
significant overhead in management of customers,
maintaining security of personal information and yet the
validation method is defeatable through easy means, such
as redirecting DNS to fake authentication servers, code
modification to remove software license validation
subroutines, or could be still circumvented through
duplication of keys as many license models and license
keys support installation on multiple devices.

2.2 Methods to comply with software licensing
Software license validation is growing in complexity due
to a combination of technological and economic
developments. Commercial models for software sales and
distribution have become more complex, with multiple
parties existing in the supply chain including software
owners, multiple levels of distributors and customers
(Sachan et al., 2009). Similarly, complying with software
licensing is becoming more complex as the scope of
software use increases, such as feature specific
enablement keys for software packages, geographical
diversity of where software is employed, size of customer
organisations, shifts to software as a service models and
an increasing use of embedded systems that leads to
Internet of Things (Liu & Roychoudhury, 2012).

The need for Software Asset Management (SAM) has
developed as organisations and users attempt to comply
with complex software licensing requirements.
Organisations can choose to manage their software
licenses through established SAM processes and
standards such as ISO/IEC19770, which provides
guidance for organisations to manage software, including
assessment of conformity, software identification, and
software entitlements (ISO/IEC, 2012). The BSA has
established Verafirm to assist organisations with the
management of their software licensing, that provides
SAM tools and solutions for SME’s and enterprises.

3 Requirements for a software license
validation method

As Suhler, Bagherzadeh, Malek, and Iscoe (1986) and
Morgan and Ruskell (1987) stress, a successful software
licence validation method needs to be inexpensive,
compatible with other systems, easy to implement, and
relevant to the value of the software. In addition, to be
effective against software piracy, a successful software

license validation method require several premises to be
met:

1) The license mechanism needs to be hard to copy
2) Rights to software licenses need to be easily

validated
3) Software licenses cannot be repeatedly generated
4) Validation needs to protect from Man-in-the-Middle

attacks

Therefore we need a mechanism that can generate

unique values that can’t be regenerated but can be easily
verified against the source engine at any time.
Cryptocurrencies such as Bitcoin already provide the
essential building blocks we need for software license
validation. Bitcoins are represented as cryptographically
validated digital signatures and as such, unfeasible to
copy, whilst the decentralised transaction feature prevents
double spending of the bitcoin, ensuring a bitcoin digital
signature cannot be repeatedly generated and used.
Finally bitcoin transactions are cryptographically secure
using public key cryptography to prevent Man-in-the-
Middle type attacks. Hence, to meet the premises listed
for software license validation, we propose a
cryptocurrency blockchain to create a novel method for
software license validation mechanism. The following
section introduces the cryptocurrency blockchain and
applies the blockchain concepts to software license
validation.

4 Cryptocurrencies and the blockchain
Cryptocurrencies are a new form of virtual currency, first
introduced with creation of Bitcoin, developed by Satoshi
Nakamoto (2008). A cryptocurrency is a purely
decentralised peer-to-peer electronic cash system, and is
the first technology to successfully overcome the
requirement for a centralised party to validate
transactions. The cryptocurrency architecture provides
several blended features including cryptographic
validation for all transactions, decentralised money, mint
and transactions, all stored on public ledgers within a
quasi-anonymous framework (Brikman, 2014).
Cryptocurrencies use public-key cryptography to validate
transactions between all participants, and digital
signatures to ensure transactional integrity and non-
repudiation (Peteanu, 2014). The cryptographic
mechanisms used by cryptocurrencies provide strong
confidentiality, data integrity and non-repudiation
services (NIST, 2001) and are in use by business,
government and military organisations globally. In a
cryptocurrency ecosystem, the public key can be
considered as the participant’s account number whilst the
private key represents the participant’s ownership
credentials. All participants have digital wallets that are
used to store the private keys, as well as the digital
signatures that represent the cryptocurrency entitlements
(coins) that the participants own. Wallets can be stored
privately, or online on websites or exchanges depending
on the requirements of the participant.

Cryptocurrencies as a currency and monetary system
have yet to prove their robustness in both a technological
and economic context, needing to be resilient to threats

CRPIT Volume 159 - Computer Science 2015

28

and attacks as well as being a stable and liquid currency.
However, the underlying feature of interest in respect to
the cryptocurrency architecture is the blockchain, which
is becoming the focal point of development of new
cryptocurrency based applications as developers seek to
use cryptocurrencies in more practical applications.

4.1 Transactions
Transactions are defined as a message between
participants, and consists of 3 segments:

1) Signature: the originator’s digital signature signed

with the originator’s private key so that other Bitcoin
nodes can verify the message really came from the
originating participant.

2) Inputs: this is a list of the signatures of transactions
already in the ledger where the originator was the
recipient of bitcoins. These are the funds the
originator is using in the transaction.

3) Outputs: this is a list of how the funds in the inputs
should be distributed. All the funds in the inputs
must be redistributed in the outputs, so the originator
will pay the recipient the required amount and return
the remainder as change.

A transaction must have exactly the same number of
bitcoins in the inputs and outputs. Hence if user U1 has
10 bitcoins, and wants to send 2 bitcoins to user U2, the
transaction will result in U1 receiving 8 bitcoins, and U2
receiving 2 bitcoins. This can be shown as follows:

U1.input(U1, 10)
U1.send(U2, 2)
U1.send(U1, 8)

The recipient is identified through their public key, so

cryptocurrency transactions can be traced throughout the
blockchain, to the beginning of the creation of the
cryptocurrency. This forms the mechanism for checking
the ownership of cryptocurrency bitcoins. Publicly
verifiable transactions by any node avoids double
spending and provides a high degree of certainty to the
participants of the cryptocurrency ecosystem.

4.2 The blockchain
The blockchain consists of a series of blocks where each
block contains:

1) transactions or messages sent between users;
2) a unique digest created when the new block is

discovered, called “Proof-of-work”;
3) the previous reference to the digest of the previous

block.

Figure 1 illustrates how each block has a proof-of-work
of the previous block, forming the blockchain. Unverified
transactions are placed in an unverified transaction
bucket, and will be inserted into the next block once it is
created.

4.3 Cryptocurrency and blockchain economics
The concept of a cryptocurrency is to overcome the
necessity of a centralised “trusted authority” (Nakamoto,
2008) and thus remove or significantly reduce transaction
fees associated with transactions such as those incurred
with commercial banking transactions.
A cryptocurrency, as a peer-to-peer decentralised
technology, relies on a network of low cost computers
running software that performs the primary functions of
the cryptocurrency. The computers running this software
are known as miners, who create bitcoins, validate bitcoin
transactions and maintain the integrity of the blockchain
public ledger. Miners are rewarded for their investment in
running the bitcoin software through creation of bitcoins,
and receiving a small transaction fee for their part in
validating bitcoin transactions. A cryptocurrency
ecosystem requires a significant number of miners to
manage the integrity of the blockchain and prevent
double spending of bitcoins. However, depending on the
implementation of the cryptocurrency ecosystem, miners
may not receive transaction fees. For example, Ripple and
Gridcoin cryptocurrency participants run the transaction
validation software on a voluntary non-profit basis,
offering their existing compute and storage resources to
run the mining software.

Most cryptocurrency ecosystems have a fixed number
of bitcoins that can be created, creating a deflationary
economic model due to the finite number of bitcoins as
bitcoin value inherently rises due to the limited supply of
bitcoins. Bitcoins can also only be created at a certain
rate, determined mathematically by the cryptocurrency
ecosystem to prevent an oversupply of bitcoins. However,
some cryptocurrencies such as Peercoin are established
on an inflationary economic model, with an unlimited
supply of bitcoins.

These approaches lead to cost effective cryptocurrency
and blockchain ecosystems through lower transaction fees
(Hochstein, 2014) for the cryptocurrency as a financial
instrument. Furthermore cryptocurrencies are found as
being considerably lower cost than fiat currencies when
comparing economic, environmental and socioeconomic
costs (McCook, 2014).

In the next section the characteristics of the blockchain
that will help provide a decentralised software validation
method are described.

Figure 1: Example of the blockchain (Brikman, 2014)

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

29

5 Decentralised software license validation
For the purposes of discussing decentralised software
license validation, the term bitcoin is used generically as
a descriptor for a virtual coin from an existing
cryptocurrency. Bitcoins are actually digital signatures
that are created and stored in user wallets, and have a full
publicly verifiable transaction history through the
blockchain transaction history. The characteristics of the
blockchain can be utilised to provide a record of all
software licenses owned by an end user. Through the
decentralised peer-to-peer blockchain architecture, any
software developer or vendor can allocate licenses to
users easily and cost effectively. The principle of
decentralised software license validation is to use bitcoins
held by the owner to represent entitlement to software.

Two primary methods to utilise a blockchain for
software license validation are the “Master Bitcoin
Model” and the “Bespoke Model”, discussed in the
following sections.

5.1 Master Bitcoin Model
The Master Bitcoin Model is a basic form of software
license validation proposed by Fortin (2011) and
implemented by Lebo (2014) in a proof of concept
project called “dissent”, using Namecoin as the
underlying blockchain. In this model, the vendor
address/bitcoin combination represents license
ownership, and if the user has a transaction showing the
bitcoin originated from a specific vendor address, the user
is considered to have ownership of the software. This
concept is demonstrated in the following example.

The entities:

Vendor1 (V1): owns the Software application S1
Software1 (S1): the particular Software application
MasterAddress1 (M1): the address representing S1

UserAddress1 (U1): the end user address for the
wallet that holds the bitcoin indicating software
entitlement

1) V1 creates the M1 “MasterAddress1” on the
blockchain, representing a particular Software
application.

2) V1 then adds some bitcoins to M1, loading it with
some bitcoins that when transferred will represent
entitlement to the Software application.

3) The end user purchases the Software application
through a non-cryptocurrency transaction.

4) V1 transfers a Master bitcoin from the M1 address to
the U1 address. The transaction itself confers the
ownership of the bitcoin, and the end user now has
the bitcoin from M1, the Master bitcoin, in the user’s
associated wallet. Hence, the user’s ownership of a
bitcoin from M1 confers entitlement to the Software
application, and is a transaction publically verifiable
on the blockchain.

5) The Software application then validates that U1 has
received a transaction from M1, and is the last
transaction in the chain of transactions.

The sequence of transactions can be shown as follows:

V1.create(M1)
V1.send(M1, 100) ‘V1 adds 100 bitcoins to M1
Software purchase
M1.send(U1, 1)
S1.validate(U1)

Ownership of the Master bitcoin can be transferred as

shown in Figure 2, so that the software vendor can be
guaranteed only a single user is using the software though
checking the blockchain “chain of title” for the Master
bitcoin originating address. Hence, U1 can now transfer
ownership to a new party, U2. Again, the transaction
itself confers the ownership, and any entity can verify the
chain of transactions from U2, to U1, and back to M1 to

Figure 2: Master Bitcoin Model transfer of ownership sequence example

CRPIT Volume 159 - Computer Science 2015

30

confirm that current ownership is held by U2, who will
have the last transaction in the chain of transactions.

M1.send(U1, 1), U1.send(U2, 1)

Since bitcoins do not have serial numbers, once a non-

Master bitcoin is combined with a Master bitcoin, the
originator of each specific bitcoin cannot be identified
because in reality, they are simply digital signatures that
have been combined to form a new digital signature.
However, in the Master Bitcoin Model, the value of the
Master bitcoin is not important, only the fact that there is
a transaction history from the originating Master bitcoin.
Fortin (2011) proposes that if a Master bitcoin is
combined with a non-Master bitcoin, the biggest recipient
is the one that holds the Master Bitcoin, or whoever has
the lowest address (alphanumerically) has precedence for
ownership of the Master bitcoin. This property establishes
non-divisible ownership of the Master bitcoin allowing
ownership to be transferred.

In summary, using a unique blockchain address to
represent a particular software application, the Master
Bitcoin Model can be used to provide non-repudiable
proof of ownership of a bitcoin that originated from a
specific address, thereby conferring the entitlement of the
software license to the user. However, the software
application will need to have the capability to read the
blockchain to establish the chain of title to the user.

5.2 Bespoke Model
As mentioned earlier, most cryptocurrencies are designed
with a currency in mind and so they create virtual coins
represented as digital signature that are stored in users’
wallets and have a full publically verifiable transaction
history that is stored on the blockchain. For the purposes
of discussing the Bespoke Model, we define a Token as a
digital signature that represents entitlement to a specific
software application, rather than a bitcoin, because the
license validation model is not using digital signatures to
represent a virtual currency. A user address that holds a
particular Token from a specific vendor address is
entitled to the software license, and therefore is entitled to
use the software. Hence, the vendor/token combination
represents the entitlement for use of the software.

Blockchain specifications vary from cryptocurrency to
cryptocurrency, and as such, cryptocurrencies can be
architected with unique characteristics to meet purpose
specific applications. The Bespoke Model uses a custom
blockchain transaction specification that includes
additional fields tailored to the requirements of a flexible
software license validation schema. This would provide
the scope needed for the wide range of users and license
models in the modern technology environment. We can
also provide several useful mechanisms using the
blockchain as the basis for license validation, license
upgrade, transfer of ownership and even software

integrity checking. A customised blockchain
specification, as shown in Figure 2, could include new
blockchain fields to improve software license validation
and prevent software piracy through software integrity
checks and protecting the software from reverse
engineering and executable code modification.

These fields are all stored on the blockchain as data,
encrypted using the in-built cryptocurrency public/private
key mechanisms. In principle, the software vendor
utilises the user’s public key to encrypt the data being
placed into the fields, with the user’s private key required
to decrypt the fields. The user can confirm the transaction
integrity signature with the vendor’s public key.

The custom fields outlined in the proposed
specification are described as follows.

The Token is used for standard license validation
mechanisms where the ownership of the Token
demonstrates entitlement. The Token can be used for
software license validation operations such as for
software upgrades, or to provide a unique attribute to the
transaction, such as “first 100 purchasers” that may have
collectible value in the future.

The License Key provides advantages over the Master
Bitcoin Model because many software applications have
specific features within the application that are activated
on a per feature basis. Having the License Key securely
held on the blockchain means software vendors can easily
enable “feature activation”, and have flexibility with
software application licensing models, where users could
rent software use for a small periods of time, rather than
purchasing or renting use on a month basis.

Similarly, the vendor can place a software hash of the
application on the blockchain. A bootstrap loader or the
software itself can read the hash and check the software
version. This hash can be updated with every new patch,
plus minor or major releases of the software. This could
protect software from malware infection or some forms of
reverse engineering.

Additional protection could be provided through a
bootstrap loader, which is a portion of executable code
that is used to pre-execute the software application or to
be used as an integral part of application execution. The
purpose of this is to further prevent reverse engineering
of the software application. At some stage the
unencrypted bootstrap code will be executed and stored in
memory, and thus susceptible to interception by reverse
engineering. This bootstrap code can change with every
patch, and minor and major release, making reverse
engineering a constant effort.

The signature field is a possible additional field that
can be used by the vendor to sign the entire transaction
contents using the private/public key pair of the software
MasterAddress.

Existing software validation uses digital signatures to
verify downloadable software and digital certificates to

Figure 3: Customised blockchain specification for License Validation

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

31

prevent Man-in-the-Middle attacks during the download
process. However the proposed custom specification
provides validation of installed software on the user’s
device on an ongoing basis, providing risk mitigation
against malware code injection attacks.

Exploring these concepts further, we look at the Token
feature. As already mentioned, the Token is used to
confer ownership, however in comparison to the Master
Bitcoin Model, the Bespoke Model presents significantly
more opportunities to use the Token for software license
validation purposes. In addition to validating that the user
owns the Token, it can be used for in mechanisms to
upgrade software versions or transfer of ownership. In the
first instance, license validation by reading the Token at
any time interval, say every 600 seconds, user
login/logoff, or software start-up. These examples read an
existing transaction on the blockchain, but don’t create a
transaction. For updating information on the blockchain
the mechanism is to create a transaction between the user
address and the software address that represents the
software application. Each transaction that occurs creates
a new user address with its own unique public/private
key, and a new transaction with data encrypted by the
user’s new public key. All addresses are unique, with
their own public/private key pair. For software license
validation purposes, a transaction process from a device
with S1 software installed could be like:
1) S1 reads the blockchain transaction for U1
2) S1 decrypts the token from blockchain data for U1
3) S1 checks the Token originates from M1
4) S1 continues to execute on the end user’s device

Shown as:

S1.read(UserAddress1.transaction)
S1.decrypt(UserAddress1.Token)
S1.validate(Token)
S1.execute

To upgrade Software application versions such as with
a patch update, the software application can periodically
request an update from the vendor. The use of a new U2
address for the upgraded software application is so that
entitlement to earlier software versions is maintained
through U1 in case of downgrade requirements. All Ux
addresses are stored in the user’s digital wallet, and as
such all entitlements are associated with the user. The
vendor could also transparently release new license keys
with minor releases such as patch updates further
reducing any risk of license keys duplication. Software
upgrades could be achieved by:

1) S1 sends a request to M1 with new U2 address
2) M1 checks the token came from U1 and is valid
3) M1 creates a new transaction with update data
4) S1 reads data to check if it needs an upgrade
5) S1 auto-upgrades

Shown as:

S1.send(MasterAddress1,UserAddress2,Token)
M1.validate(UserAddress1, Token)
M1.send(UserAddress2, Token)
S1.read(UserAddress2, Token, License, Hash)
S1.upgrade

Although this is similar to existing software version

checking mechanisms online such as Microsoft Update,
this process allows the software vendor to re-cut a license
key or hash code for the software upgrade, and have the
software automatically validated. Updating the previous
transaction process to include these fields as shown in
Figure 4. Both the previous software version and the
upgraded software version are available for use.

1) S1 send an update request to M1 with new U2

address

Figure 4: Bespoke blockchain software upgrade sequence example

CRPIT Volume 159 - Computer Science 2015

32

2) M1 checks token came from U1 and is valid
3) MasterAddress2 M2 created for the new transaction
4) M2 cuts new License Key for new software version
5) M2 creates Hash for new software version
6) M2 creates new bootstrap for new software version
7) M2 encrypts the new License Key, Hash and

Bootstrap using PublicKey(U2)
8) M2 signs the transaction with PrivateKey(M2)
9) M2 creates new transaction with the new data
10) S1 reads new transaction data for upgrade
11) S1 downloads software and auto-upgrades
12) S1 run itself

Shown as:

S1.send(MasterAddress1,UserAddress2, Token)
M1.validate(UserAddress1, Token)
M1.createaddress(M2)
M2.License(License.new)
M2.hash(S1.new)
M2.bootstrap(Bootstrap.new)
M2.encrypt(M2.License)
M2.encrypt(M2.hash)
M2.encrypt(Bootstrap.new)
M2.sign(Transaction.new)
M2.send(UserAddress2, Token)
S1.read(UserAddress2, Token, License, Hash)
S1.upgrade
S1.execute

Hence we have shown that license validation can be

easily achieved using the blockchain, and through the
same mechanism, additional integrity and security
protections can be added. Furthermore, blockchain scripts
allow for intelligent programming of actions within a
transaction. This provides a new level of dynamism as a
transaction may take different actions based on the inputs,
outputs, field contents and originating and destination
addresses. New blockchain protocols are being developed
that include full Turing completeness capability, allowing
anyone to write smart contracts and decentralised
applications with their their own arbitrary rules for
ownership, transaction formats and state transition
functions (Buterin, 2014).

5.3 Issues that are overcome
We can see that the Bespoke Model overcomes the
problems originally highlighted earlier in this paper, and
significantly improves on the Master Bitcoin Model.
However it does require a separate cryptocurrency
ecosystem to be developed and maintained, whilst the
Master Bitcoin Model can utilise and run in an existing
cryptocurrency ecosystem. While the Master Coin
Method meets the requirements outlined for a successful
software license validation method and it has been
demonstrated to be workable in proof-of-concept, it has
limitations that may detract from its usefulness. The
Bespoke Model overcomes these as follows:

1) Each software license is hard to copy because the

license is represented by a transaction between
vendor and user, is cryptographically verifiable, and
stored in the user’s blockchain wallet. An adversary

would require the password to the user’s wallet in
order to access the user’s private key. Already, multi-
factor authentication mechanisms are available to
further enhance user wallet security. In addition, the
license key does not even have to be disclosed to the
user, so it cannot be copied. Every transaction is
cryptographically secure and cannot be modified.

2) Software licenses are easily validated through the
blockchain “chain of title” and the data being held
within the blockchain itself. Furthermore, having on-
blockchain license keys allows the vendor to
distribute keys for specific feature activations, and
allows keys to be re-cut quickly and efficiently
without any intermediate parties involved.

3) Software licenses cannot be regenerated because the
software application is taking the license key directly
from the blockchain, requiring the user’s private key.
Even if the key generator at the vendor is
compromised, there is no way to get the license key
onto the blockchain without the vendor’s private key
to sign the transaction.

4) There is no Man-in-the-Middle attack possible using
the blockchain. An adversary cannot intercept any
data in the blockchain without the user’s private key,
and cannot redirect DNS or IP traffic to an
adversary’s custom server to provide software
validation.

There are additional benefits beyond the software

license validation method, with clear scope for software
vendors to provide integrity and protection for their
software applications. Furthermore, the blockchain peer-
to-peer architecture means that there is no single central
point of failure for software license validation. Licensing
validators can be run anywhere around the world, and
could be run on a not-for-profit basis or on some other
commercial model as appropriate. Vendors would run
vendor-specific software to manage a license creation
process and interaction with the blockchain but will not
need to maintain their own dedicated license validation
infrastructure with its associated overheads.

The proposed software license validation model
provides an opportunity for small developers through to
large software vendors to preserve their copyright in their
software, and prevent software piracy whilst having a
flexible mechanism to license their software.

5.4 Potential Issues
In order for the “Bespoke Model” to work, users will
need to provide some form of authentication to their user
wallet in order to access the private keys so that the
software application can complete its validation function.
This is a similar process to users needing to access their
blockchain wallet to conduct any transaction in any
cryptocurrency, so the action is commonplace. However,
if we are to achieve true user mobility where a user can
login to any installed application and be validated for use,
the wallet will require some portability. In addition, for
an automated authentication process to work, the software
application will need to access the private keys for the

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

33

user addresses to complete the license validation process.
Disclosing private keys is not desirable, so the wallet will
need to be an application and have the ability to decrypt
data on the blockchain and present that to the software
application through an API interface. Alternatively, the
user may be authenticated to an OpenID or OAuth
authorisation service provider such as Facebook or
Google, to prove their identity and allow authorised API
requests to the user wallet.

Other issues are the security threat model for loss of
data or the compromise of the system if a user loses
control of a wallet and user credentials are exposed, or a
vendor system is compromised. Multi-signature
authorisation already provides potential solutions to these
issues, similar to two (or more) parties being required to
sign a bank cheque. This may place an additional
overhead on the software license validation method, but it
could also significantly reduce the risk of compromise or
loss-of-ownership issues.

5.5 Further Opportunities
In this paper we deal with licensing on the basis of a
single user receiving a single license for a software
application and where a single user can have many
addresses representing software applications in their
wallet and on the blockchain. However, in a multi-user
corporate environment there are additional challenges,
such as licenses that are not permanently allocated to staff
and licenses that have to be transferable within the
organisation. For example, a staff member leaving the
organisation cannot be allowed to exit with a software
license in their personal blockchain wallet.

In the Bespoke Model, each license entitlement
requires a unique address belonging to the organisation to
be sent a Token, with multiple addresses defining the
number of Tokens the organisation has available. Hence
an organisation with 100 users would have 100 addresses
in a wallet dedicated to the organisation. The licenses
need to be allocated to users within the organisation and
also be revoked. Furthermore, users need to authenticate
using corporate login credentials, ideally using a single
sign-on approach to access the license from the
organisation’s wallet. This requires some form of
authentication service internally for the blockchain
software license validation with capability to integrate
into a service such as LDAP or Active Directory for
single sign on. An organisational level blockchain license
validation application is required to implement a
successful multi-user software license validation method
in a multi-user environment.

Additionally, the license validation blockchain method
provides an opportunity to manage licenses on non-
human operated devices. As the Internet-of-Things grows
and evolves, these connected devices will require
mechanisms to auto-update software and validate
software in a legitimate manner. For example, the
customer who owns 10,000 Internet-connected devices,
but only pays software maintenance on 2000 of these
devices, will only have license keys to update 2000
devices. This capability is easy to achieve in a peer-to-
peer decentralised software license validation ecosystem,
and hard to manage using any other type of process.

Perkins (2014) states that the Identity of Things is a
growing outcome of the Internet of Things. That is,
devices and data have a relationship with someone or
something that needs to be identified, and assets and users
associated with these need to be managed. The license
validation method meets the requirements as license
entitlement is essentially defined as a Token/source
object, providing the identities of the parties through the
blockchain address, and the types of activity between
parties through the transactional history.

6 Limitations
There are a number of limitations noted in this paper. The
blockchain depends on other participants in the
cryptocurrency ecosystem to create and validate
transactions. However, we do not explore the blockchain
ecosystem or business model because there exist myriad
types of stakeholders who may perceive various
implications or have vested interests in a blockchain
ecosystem outcome. These considerations are outside the
scope of this paper.

There are currently no standards for cryptocurrency or
blockchain technology available, although if the software
license validation mechanism was established, standards
such as ISO/IEC19770 could be revised to include
software validation blockchain technology.

Presently, there is limited peer reviewed work
available for cryptocurrency subject matter, and readings
are commonly taken from current industry sources and
leaders.

7 Conclusion
Software license validation has been one of the primary
mechanisms to prevent software piracy since the mid-
1970’s. The methods for software license validation
evolved with the Internet to include online license
validation in addition to the traditional paper based
license keys provided with software. Software pirates and
hackers are able to reverse engineer and remove
protection mechanisms whilst license keys are copied,
duplicated or regenerated to provide a valid license key.
We contend that software developers need a license
validation method that provides a unique license key that
cannot be copied or regenerated, associates the identity of
the user with the license key and is cost effective.

We show that a customised cryptocurrency blockchain
can be used to provide a decentralised peer-to-peer
software license validation method that meets the
requirements for software license validation in a cost
effective manner through the use of the cryptocurrency
theory. The blockchain offers many opportunities to
include software integrity and protection mechanisms,
providing additional value for software vendors and end
users. The blockchain software license validation method
can also be automated to provide license validation and
identity for Internet of Things devices.

8 References
Business Software Alliance. (2014). The Compliance

Gap.
http://goo.gl/9WZYz6. Access 24 August 2014.

CRPIT Volume 159 - Computer Science 2015

34

Buterin, V. (2014). A Next-Generation Smart Contract
and Decentralized Application Platform.

 http://goo.gl/enrFst. Accessed 24 Aug 2014.
Fortin, C. (2011). Master Bitcoin - The Proof of

Ownership.
http://goo.gl/Tpb0TD. Accessed 24 Aug 2014.

Hochstein, M. (2014). Why bitcoin matters for bankers.
American Banker, March 2014.

ISO/IEC. (2012). ISO/IEC 19770-1:2012 Information
technology — Software asset management.

Lebo, A. (2014). Implementation of a decentralized,
transferable, and open software license system using
the Bitcoin protocol.
http://goo.gl/VrFNby. Accessed 24 August 2014.

McCook, H. (2014). An Order-of-Magnitude Estimate of
the Relative Sustainability of the Bitcoin Network.

http://goo.gl/M8741r. Accessed 24 Aug 2014.
Morgan, M. J., & Ruskell, D. J. (1987). Software Piracy

— The Problems. Industrial Management & Data
Systems, 87(3/4), 8-12. doi: 10.1108/eb057469

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system.
http://goo.gl/QTnM0w. Accessed 24 August 2014.

NIST (2001). Introduction to Public Key Technology and
the Federal PKI infrastructure.

http://goo.gl/0j5l7N. Accessed 28 October 2014.
Perkins, E. (2014). The Identity of Things for the Internet

of Things.
http://goo.gl/v0Ko9l. Accessed 24 August 2014

Suhler, P. A., Bagherzadeh, N., Malek, M., & Iscoe, N.
(1986). Software Authorization Systems. IEEE
Software, 3(5), 34-41. doi: 10.1109/MS.1986.234396

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

35

