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On the Uniqueness of the Injective III1 Factor

Uffe Haagerup

Received: August 2, 2016

Communicated by Joachim Cuntz

Abstract. We give a new proof of a theorem due to Alain Connes,
that an injective factor N of type III1 with separable predual and with
trivial bicentralizer is isomorphic to the Araki–Woods type III1 factor
R∞. This, combined with the author’s solution to the bicentralizer
problem for injective III1 factors provides a new proof of the theorem
that up to ∗-isomorphism, there exists a unique injective factor of
type III1 on a separable Hilbert space.

2010 Mathematics Subject Classification: 46L36

Preamble by Alain Connes

Uffe Haagerup solved the hardest problem of the classification of
factors, namely the uniqueness problem for injective factors of type
III1. The present paper, taken from his unpublished notes, presents
a direct proof of this uniqueness by showing that any injective fac-
tor of type III1 is an infinite tensor product of type I factors so that
the uniqueness follows from the Araki–Woods classification. The
proof is typical of Uffe’s genius, the attack is direct, and combines
his amazing control of completely positive maps and his sheer ana-
lytical power, together with his solution to the bicentralizer prob-
lem. After his tragic death, Hiroshi Ando volunteered to type the
manuscript1. Some pages were missing from the notes, but eventu-
ally Cyril Houdayer and Reiji Tomatsu suggested a missing proof
of Lemma 3.4 and Theorem 3.1. We heartily thank Hiroshi, Cyril
and Reiji for making the manuscript available to the community.
We also thank Søren Haagerup for giving permission to publish his
father’s paper.

1The manuscript is typed by Hiroshi Ando (Chiba University) in cooperation with Cyril
Houdayer (Université Paris-Sud), Toshihiko Masuda (Kyushu University), Reiji Tomatsu
(Hokkaido University), Yoshimichi Ueda (Kyushu University) and Wojciech Szymanski (Uni-
versity of Southern Denmark).
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1 Introduction

The problem, whether all injective factors of type III1 on a separable Hilbert
space are isomorphic, has been settled affirmatively. The proof of the unique-
ness of injective III1 factors falls in two parts, namely (see §2.3 for the definition
of the bicentralizer):

Theorem 1.1 ([Con85]). LetM be an injective factor of type III1 on a separable
Hilbert space, such that the bicentralizer Bϕ is trivial (i.e., Bϕ = C1) for some
normal faithful state ϕ on M , then M is ∗-isomorphic to the Araki–Woods
factor R∞.

Theorem 1.2 ([Haa87]). For any normal faithful state ϕ on an injective factor
M of type III1 on a separable Hilbert space, one has Bϕ = C1.

In this paper we give an alternative proof of Theorem 1.1 above, based on
the technique of our simplified proof [Haa85] of Connes’ Theorem [Con76]
“injective⇒hyperfinite” in the type II1 case2. The key steps in our proof of
Theorem 1.1 are listed below:

Step 1

By use of continuous crossed products, we prove that the identity map on an
injective factor N of type III1 has an approximate factorization

R
Tλ

  @
@@

@@
@@

N
idN

//

Sλ

>>~~~~~~~

N

2Typewriter’s note: Haagerup used this technique to give a new proof of the uniqueness
of injective type IIIλ (0 < λ < 1) factor. This result has been published in [Haa89].
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Uniqueness of the Injective III1 Factor 1195

through the hyperfinite factor R of type II1, such that (Sλ)λ∈Λ and (Tλ)λ∈Λ are
nets of normal unital completely positive maps, and for a fixed normal faithful
state ϕ on N (chosen prior to Sλ and Tλ), there exist normal fatihful states
(ψλ)λ∈Λ on R, such that for all t ∈ R and λ ∈ Λ,

ϕ ◦ Tλ = ψλ, ψλ ◦ Sλ = ϕ,

σϕt ◦ Tλ = Tλ ◦ σψλ

t ,

σψλ

t ◦ Sλ = Sλ ◦ σϕt ,

and ‖Sλ ◦ Tλ(x)− x‖ϕ λ→∞→ 0 for all x ∈ N , where ‖y‖ϕ := ϕ(y∗y)
1

2 (y ∈ N).

Step 2

From Step 1, we deduce that a certain normal faithful state ϕ (Q-stable state
defined in §4) on an injective factor N of type III1 has the following property:
for any finite set of unitaries u1, . . . , un in N and for every γ, δ > 0, there
exists a finite-dimensional subfactor F of N such that

ϕ = ϕ|F ⊗ ϕ|F c ,

and such that there exist unitaries v1, . . . , vn in F and a unital completely
positive map T : F → N such that

ϕ ◦ T = ϕ,

‖σϕt ◦ T − T ◦ σϕ|Ft ‖ ≤ γ|t|, t ∈ R,

and
‖T (vk)− uk‖ϕ < δ, k = 1, . . . , n.

Step 3

We prove that if N,ϕ, F, u1, . . . , un, v1, . . . , vn are as in Step 2, then for every σ-
strong neighborhood V of 0 in N , there exists a finite set of operators a1, . . . , ap
in N such that

(a)

p∑

i=1

a∗i ai ∈ 1 + V and

p∑

i=1

a∗i ai ≤ 1,

(b) εF,ϕ

(
p∑

i=1

aia
∗
i

)
∈ 1 + V and εF,ϕ

(
p∑

i=1

aia
∗
i

)
≤ 1,

(c)

p∑

i=1

‖aiξϕ − ξϕai‖2 < δ′,

(d)

p∑

i=1

‖aiuk − vkai‖2ϕ < δ′, k = 1, . . . , n.
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1196 Uffe Haagerup

Here ξϕ denotes the unique representing vector of ϕ in a natural cone. The
above δ′ > 0 depends on γ and δ in Step 2, and δ′ is small when γ and δ
are small. Here, εF,ϕ is the ϕ-invariant conditional expectation of N onto F .
Moreover in (c), the standard Hilbert space H of N is regarded as a Hilbert
N -bimodule, by putting ηa := Ja∗Jη (a ∈ N, η ∈ H).

Assume now that the bicentralizer of any normal faithful state on N is trivial.
Then by an averaging argument, we can exchange (b) by

(b’)

p∑

i=1

aia
∗
i ∈ 1 + V and

p∑

i=1

aia
∗
i ≤ 1.

Step 4

From (a), (b’), (c) and (d) above, we derive that there exists a unitary operator
w ∈ N such that

‖wξϕ − ξϕw‖ < ε

and
‖wuk − vkw‖ϕ < ε, k = 1, . . . , n,

where ε is small when δ′ is small and V is a small σ-strong neighborhood of 0
in N . The key part of Step 4 is a theorem about general Hilbert N -bimodules,
which was proved in [Haa89].

Step 5

From Step 4, we get that for every finite set of unitaries u1, . . . , un ∈ N and
every ε > 0, there exists a finite dimensional subfactor F1 (namely w∗Fw) of
N and n unitaries v′1, . . . , v

′
n in F1 (namely w∗vkw, k = 1, . . . , n), such that

(i) ‖v′k − vk‖ϕ < ε

and
(ii) ‖ϕ− ϕ|F1

⊗ ϕ|F c

1
‖ < ε.

The last inequality follows from the fact, that when w almost commutes with
ξϕ, it almost commutes with ϕ too. The properties (i) and (ii) above show that
ϕ satisfies the product condition of Connes–Woods [CW85] and thus N is an
ITPFI factor. But it is well-known that R∞ is the only ITPFI factor of type
III1 (cf. [AW68] and [Con73]).

2 Preliminaries

2.1 Notation

We use M,N, . . . to denote von Neumann algebras and ξ, η, . . . to denote vec-
tors in a Hilbert space. Let M be a von Neumann algebra. U(M) denotes the

Documenta Mathematica 21 (2016) 1193–1226



Uniqueness of the Injective III1 Factor 1197

unitary group of M . For a faithful normal state ϕ on M , we denote by ∆ϕ

(resp. Jϕ) the modular operator (resp. modular conjugation operator) asso-
ciated with ϕ, and the modular automorphism group of ϕ is denoted by σϕ.
The norm ‖x‖ϕ = ϕ(x∗x)

1

2 defines the strong operator topology (SOT) on the
unit ball of M . The centralizer of ϕ is denoted by Mϕ.

2.2 Connes–Woods’ characterization of ITPFI factors

Recall that a von Neumann algebraM with separable predual is called hyperfi-
nite if there exists an increasing sequence M1 ⊂M2 ⊂ · · · of finite-dimensional
*-subalgebras such that M = (

⋃∞
n=1Mn)

′′. A factor M is called an Araki–
Woods factor or an ITPFI (infinite tensor product of factors of type I) factor,
if it is isomorphic to the factor of the form

⊗

i∈I

(Mi, ϕi),

where I is a countable infinite set and each Mi (resp. ϕi) is a σ-finite type I
factor (resp. a faithful normal state). Araki and Woods classified most ITPFI
factors:

Theorem 2.1 ([AW68]). There exists a unique ITPFI factor with separable
predual for each type I∞, II1, II∞ and IIIλ, λ ∈ (0, 1]. In particular, all ITPFI
factors of type III1 are isomorphic to

R∞ :=
⊗

n∈N

(M3(C),Tr(ρ · )),

where ρ := 1
1+λ+µdiag(1, λ, µ) and 0 < λ, µ satisfies log λ

logµ /∈ Q.

It is clear that an ITPFI factor with separable predual is hyperfinite. The
converese is also true for factors not of type III0, but false in general. Namely,
Connes–Woods [CW85] characterized hyperfinite factors of type III0 with sepa-
rable predual which are isomorphic to ITPFI factors by the approximate tran-
sitivity of their flow of weights, while the existence of hyperfinite factors of
type III0 with separable predual which are not isomorphic to ITPFI factors
had been shown in [Con72]. Let N be a von Neumann algebra, and let F be a
finite dimensional subfactor of N with relative commutant F c := F ′ ∩N in N .
Then it is elementary to check, that the map

n∑

i=1

xi ⊗ yi 7→
n∑

i=1

xiyi, xi ∈ F, yi ∈ F c (1 ≤ i ≤ n)

is an isomorphism of F ⊗ F c onto N . If ω1 is a normal state on F and ω2 is a
normal state on F c, we let ω1 ⊗ ω2 denote the corresponding state on N , i.e.,

(ω1 ⊗ ω2)(xy) = ω1(x)ω2(y), x ∈ F, y ∈ F c.

Documenta Mathematica 21 (2016) 1193–1226



1198 Uffe Haagerup

In our proof of

[N injective III1 and Bϕ = C1] ⇒ N ∼= R∞,

we shall need the following criterion for a factor to be ITPFI:

Proposition 2.2 ([CW85, Lemma 7.6]). Let N be a factor on a separable
Hilbert space. Then N is ITPFI if and only if N admits a normal faithful state
ϕ with the following property: for every finite set x1, . . . , xn of operators in N ,
for every ε > 0, and every strong* neighborhood V of 0 in N , there exists a
finite dimensional subfactor F of N , such that

xk ∈ F + V , k = 1, . . . , n

and
‖ϕ− ϕ|F ⊗ ϕ|F c‖ < ε.

2.3 Bicentralizers on type III1 factors

In this subsection, we recall Connes’ bicentralizers. Let M be a σ-finite von
Neumann algebra, and let ϕ be a normal faithful state on M . We denote
by AC(ϕ) the set of all norm-bounded sequences (xn)

∞
n=1 in M such that

limn→∞ ‖ϕxn − xnϕ‖ = 0 holds.

Definition 2.3 (Connes). The bicentralizer of ϕ is the set Bϕ of all x ∈ M
such that limn→∞ ‖xan − anx‖ϕ = 0 holds for all (an)

∞
n=1 ∈ AC(ϕ).

Since Bϕ is a von Neumann subalgebra of M [Haa87, Proposition 1.3], it holds
that limn→∞ ‖xan − anx‖♯ϕ = 0.
It was conjectured by Connes that for all factors of type III1 with separable
predual, the bicentralizer Bϕ of any normal faithful state ϕ on M is trivial,
i.e., Bϕ = C1 holds. This is still an open problem. We will need the following
result on type III1 factors, known as the Connes–Størmer transitivity:

Theorem 2.4 ([CS78]). Let M be a type III1 factor with separable predual.
Then for every faithful normal states ϕ, ψ on M and ε > 0, there exists a
unitary u ∈ U(M) such that ‖uϕu∗ − ψ‖ < ε holds.

Connes showed that by the Connes-Størmer transitivity, for a type III1 factor
M with separable predual, the triviality of Bϕ for one fixed faithful normal
state ϕ on M implies the triviality of Bψ for every faithful normal state ψ
(see [Haa87, Corollary 1.5] for the proof). He also showed that the triviality of
the bicentralizer is equivalent to the following property (the proof is given in
[Haa87, Proposition 1.3 (2)]):

Proposition 2.5 (Connes). Let M be a von Neumann algebra with a normal
faithful state ϕ. Then Bϕ = C1 holds, if and only if the following condition is
satisfied: for every a ∈M and δ > 0,

conv{u∗au;u ∈ U(M), ‖uϕ− ϕu‖ ≤ δ} ∩ C1 6= ∅,
where conv is the closure of the convex hull in the σ-weak topology.

Documenta Mathematica 21 (2016) 1193–1226



Uniqueness of the Injective III1 Factor 1199

We will use the following variant of Proposition 2.5.

Proposition 2.6. Let M be a type III1 factor with separable predual, and let ϕ
be a normal faithful state on M whose modular automorphism group σϕ leaves
a finite-dimensional subfactor F globally invariant. Let εF,ϕ : M → F be the
normal faithful ϕ-preserving conditional expectation. Assume that Bϕ = C1.
Then for every δ > 0 and a ∈M , we have

εF,ϕ(a) ∈ conv{u∗au; u ∈ U(F c), ‖uξϕ − ξϕu‖ ≤ δ}. (1)

Here, ξϕ is the representing vector of ϕ in the natural cone.

Proof. The proof is essentially the same as Proposition 2.5, so we only indicate
the outline. Note that by Araki-Powers-Størmer inequality, for every u ∈ U(M)
one has:

‖ξϕ − uξϕu
∗‖2 ≤ ‖ϕ− uϕu∗‖ ≤ ‖ξϕ − uξϕu

∗‖ · ‖ξϕ + uξϕu
∗‖.

Therefore in the arguments below, we may replace the condition “‖uξϕ−ξϕu‖ ≤
δ” in Proposition 2.6 with the condition “‖uϕ − ϕu‖ ≤ δ”, as we take δ > 0
to be arbitrarily small. As was pointed out in [Haa87, Remark 1.4], it follows
from the proof of Proposition 2.5 that the condition Bϕ = C1 is equivalent to
the next condition that for all a ∈M and δ > 0,

ϕ(a)1 ∈
⋂

δ>0

conv{u∗au;u ∈ U(M), ‖uξϕ − ξϕu‖ < δ}. (2)

Let a ∈M . Since M ∼= F ⊗F c with ϕ = ϕ|F ⊗ϕ|F c , we may now apply (2) to
F c(∼=M) and ϕ|F c to obtain

εF,ϕ(a) = idF ⊗ ϕ|F c(a) ∈ conv{u∗au; u ∈ U(F c), ‖uξϕ − ξϕu‖ ≤ δ}.
Note that we used the fact that ‖ϕu− uϕ‖ = ‖ψu− uψ‖, where ψ := ϕ|F c and
u ∈ U(F c) thanks to the existence of a normal faithful ϕ-preserving conditional
expectation from M onto F c.

2.4 Almost unitary equivalence in Hilbert N-bimodules

We recall a result about almost unitary equivalence in Hilbert bimodules es-
tablished in [Haa89] which is a generalization of [Haa85, Theorem 4.2]. Let N
be a von Neumann algbera, and H be a normal Hilbert N -bimodule, i.e., H is
a Hilbert space on which there are defined left and right actions by elements
from N :

(x, ξ) 7→ xξ, (x, ξ) 7→ ξx, x ∈ N, ξ ∈ H

such that the above maps N ×H → H are bilinear and

(xξ)y = x(ξy), x, y ∈ N, ξ ∈ H.

Moreover, x 7→ Lx, where Lxξ := xξ (ξ ∈ H) is a normal unital ∗-
homomorphism, and x 7→ Rx, where Rxξ := ξx (ξ ∈ H) is a normal unital
∗-antihomomorphism.

Documenta Mathematica 21 (2016) 1193–1226



1200 Uffe Haagerup

Definition 2.7. Let N be a von Neumann algebra, let (N,H) be a normal
Hilbert N -bimodule, and let δ ∈ R+. Two n-tuples (ξ1, . . . , ξn) and (η1, . . . , ηn)
of unit vectors in H are called δ-related, if there exists a family (ai)i∈I of
operators in N , such that

∑

i∈I

a∗i ai =
∑

i∈I

aia
∗
i = 1

and ∑

i∈I

‖aiξk − ηkai‖2 < δ, k = 1, . . . , n.

We will use the following result which relates the δ-relatedness to approximate
unitary equivalence in Hilbert N -bimodules:

Theorem 2.8 ([Haa89, Theorem 2.3]). For every n ∈ N and ε > 0, there
exists a δ = δ(n, ε) > 0, such that for all von Neumann algebra N and δ-
related n-tuples (ξ1, . . . , ξn) and (η1, . . . , ηn) of unit vectors in a normal Hilbert
N -bimodule H, there exists a unitary u ∈ U(N) such that

‖uξk − ηku‖ < ε, k = 1, . . . , n.

Remark 2.9. As can be seen in the proof of [Haa89, Theorem 2.3], in order to
show that the conclusion of Theorem 2.8 holds, it suffices to show the following:
for every σ-strong neighborhood V of 0 in N , there exist a1, . . . , ap ∈ N such
that

p∑

i=1

‖aiξk − ηkai‖2 < δ, k = 1, . . . , n (3)

p∑

i=1

a∗i ai ≤ 1,

p∑

i=1

aia
∗
i ≤ 1 (4)

p∑

i=1

a∗i ai ∈ 1 + V ,
p∑

i=1

aia
∗
i ∈ 1 + V . (5)

This is because we can obtain the conclusions of [Haa89, Lemma 2.5] out of (3),
(4) and (5), which is enough to prove Theorem 2.8. We will use this variant in
the proof of Lemma 5.6.

3 Completely positive maps from m×m-matrices into an injective

factor of type III1

The main result of this section is:

Theorem 3.1. Let N be an injective factor of type III1 with separable predual,
and let ϕ be a faithful normal state on N . Then for every finite set u1, . . . , un
of unitaries in N , and every ε, δ > 0, there exists m ∈ N, a unital completely
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Uniqueness of the Injective III1 Factor 1201

positive map T : Mm(C) → N , and n unitaries v1, . . . , vn in Mm(C), such that
ψ = ϕ ◦ T is a normal faithful state on Mm(C), and

‖σϕt ◦ T − T ◦ σψt ‖ ≤ δ|t|, t ∈ R,

‖T (vk)− uk‖ϕ < ε, k = 1, . . . , n.

In the following we let M = N ⋊σϕ R be the crossed product of N by σϕ with
generators πσϕ (x) (x ∈ N) and λ(s) (s ∈ R). We identify πσϕ (x) with x ∈ N .
Let a be the (unbounded) self-adjoint operator for which λ(s) = exp(isa) (s ∈
R). For f ∈ L1(R), we define the Fourier transform f̂ by

f̂(s) =
1√
2π

∫ ∞

−∞

e−istf(t) dt, s ∈ R.

In the sequel, von Neumann algebra-valued integrals are understood to be the
σ-weak sense. Let (θϕs )s∈R be the dual action of σϕ on M . By [Haa79-2], there

exists a normal faithful semifinite operator-valued weight P : M+ → N̂+ (N̂+

is the extended positive part of N) given by

P (x) =

∫ ∞

−∞

θϕs (x) ds, x ∈M+. (6)

Following [CT77], if we put

m := span

{
x ∈M+; sup

c>0

∥∥∥∥
∫ c

−c

θϕt (x) dt

∥∥∥∥ <∞
}
,

then the formula (6) for x ∈ m makes sense and P (x) ∈ N . Moreover, m ∋
x 7→ P (x) ∈ N defines a positive linear map.
For all x ∈ m, the σ-weak integral

∫ c
−c
θϕt (x) dt is σ-strongly convergent as

c → ∞. The range of P is contained in πσϕ(N), because πσϕ(N) is the fixed
point algebra in M under the dual action.

Lemma 3.2. Let t 7→ x(t) be a σ-strongly* continuous function from R to N
such that t 7→ ‖x(t)‖ is in L1(R) ∩ L∞(R). Put

x :=

∫ ∞

−∞

λ(t)x(t) dt ∈M.

Then x∗x ∈ m, and

P (x∗x) = 2π

∫ ∞

−∞

x(t)∗x(t) dt.

Proof. Note first, that

x∗x =

∫∫

R2

x(s)∗λ(t− s)x(t) dsdt

=

∫∫

R2

x(s)∗λ(t)x(s + t) dsdt.
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1202 Uffe Haagerup

Put fn(s) = e−s
2/(4n) (s ∈ R), and

gn(t) =
1

2π

∫ ∞

−∞

fn(s)e
−its ds =

(n
π

) 1

2

e−nt
2

(t ∈ R).

Using that θϕs (y) = y (s ∈ R, y ∈ N), θϕs (λ(t)) = e−istλ(t) (s, t ∈ R)3 and the
Fubini Theorem, we have for every ψ ∈M∗,

〈ψ,
∫ ∞

−∞

θϕu (x
∗x)fn(u) du〉 =

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−itufn(u)ψ(x(s)
∗λ(t)x(s + t)) dsdtdu

=

∫ ∞

−∞

gn(t)

(∫ ∞

−∞

2πψ(x(s)∗λ(t)x(s + t))ds

)
dt.

Since t 7→
∫∞

−∞ ψ(x(s)∗λ(t)x(s + t))ds is in C0(R) and gn
n→∞→ δ0 (weak∗ in

C0(R)
∗), we have

lim
n→∞

〈ψ,
∫ ∞

−∞

θϕu (x
∗x)fn(u) du〉 = 〈ψ, 2π

∫ ∞

−∞

x(s)∗x(s) ds〉.

Since ψ ∈M∗ is arbitrary, θϕu (x
∗x) ≥ 0 and fn ր 1 uniformly on compact sets,

it follows that

lim
n→∞

∫ ∞

−∞

θϕu (x
∗x)fn(u)du = 2π

∫ ∞

−∞

x(s)∗x(s) ds (σ-strongly).

Therefore x∗x ∈ m, and P (x∗x) = 2π

∫ ∞

−∞

x(t)∗x(t) dt.

Lemma 3.3. Let a be the (unbounded) self-adjoint operator affiliated with M
for which exp(ita) = λ(t) (t ∈ R) holds. Let α > 0, and let eα be the spectral
projection of the operator a corresponding to the interval [0, α]. Then for each
x ∈ N , one has eαxeα ∈ m and

P (eαxeα) =

∫ ∞

−∞

σϕt (x)
1 − cosαt

πt2
dt, x ∈ N. (7)

Proof. It is sufficient to consider the case x ≥ 0, so we can assume that x =
y∗y (y ∈ N). For f ∈ L1(R) ∩ L∞(R) ∩ C(R), we have

yf̂(a) =
1√
2π

∫ ∞

−∞

yλ(−t)f(t)dt = 1√
2π

∫ ∞

−∞

λ(−t)σϕt (y)f(t) dt

=
1√
2π

∫ ∞

−∞

λ(t)σϕ−t(y)f(−t) dt.

3Typewriter’s note: Haagerup used the convention θ
ϕ
s (λ(t)) = eistλ(t). However, since

the negative sign convention is widely accepted, we decided to change the definition.
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Uniqueness of the Injective III1 Factor 1203

Hence by Lemma 3.2, f̂(a)∗xf̂(a) ∈ m, and

P (f̂(a)∗xf̂(a)) =

∫ ∞

−∞

σϕt (x)|f(t)|2 dt.

For n > 2
α , let gn be the continuous function on R for which

gn(t) = 0, t ≤ 0, t ≥ α,

gn(t) = 1, t ∈ [ 1n , α− 1
n ],

and for which the graph is a straight line on [0, 1
n ] and [α− 1

n ,
1
n ]. Since a has

no point spectrum, gn(a) ր eα (n → ∞). It is elementary to check that each

gn is of the form gn = f̂n for a function fn ∈ L1(R) ∩ L∞(R) ∩ C(R) (use, for
example, the fact that gn = n1

[0,
1
n ]

∗ 1[0,α− 1

n
]). Hence gn(a)

2 ∈ m, and by the

Plancherel Theorem, we get

P (gn(a)
2) = P (f̂n(a)

∗f̂n(a)) = ‖fn‖221 = ‖f̂n‖221.

Since supn ‖f̂n‖22 = α < ∞, we have eα ∈ m and P (eα) = α1. Therefore
eαMeα ⊆ m, and the restriction of P to eαMeα is a positive normal map.
Hence for x ∈ N ,

P (eαxeα) = lim
n→∞

P (gn(a)xgn(a)) = lim
n→∞

∫ ∞

−∞

σϕt (x)|fn(t)|2 dt (σ-strongly).

Since ‖gn−1[0,α]‖2 n→∞→ 0, it follows that fn converges in L2(R) to the function

f(t) =
1√
2π

∫ ∞

−∞

1[0,α](s)e
ist ds

= − i

t
√
2π

(eiαt − 1).

Hence |fn|2 n→∞→ |f |2 in L1(R), with |f |2(t) = 1
πt2 (1−cosαt) (t ∈ R). Therefore

(7) holds.

Lemma 3.4. Let N be an injective factor of type III1 with separable predual,
ϕ be a faithful normal state on N and let R be the hyperfinite II1 factor with
tracial state τ . For every finite set u1, . . . , un of unitaries in N and every
ε > 0, there exist x1, . . . , xn in the unit ball of R, a normal unital completely
positive map T : R → N , such that ψ = ϕ ◦ T is a normal faithful state on R,
and

σϕt ◦ T = T ◦ σψt , t ∈ R, (8)

‖T (xk)− uk‖ϕ < ε, k = 1, . . . , n. (9)

Moreover, the spectrum of h = dψ/dτ is a closed interval [λ1, λ2], 0 < λ1 <
λ2 <∞, and h has no eigenvalues.
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Proof. 4 Let M = N ⋊σϕ R. By [Tak73-2], M has a normal faithful semifinite
trace τ , such that

τ ◦ θϕs = e−sτ (s ∈ R).

The trace τ can be constructed in the following way: Let ϕ̃ be the dual weight
of ϕ onM (cf. [Haa79]). Let a be the self-adjoint operator for which exp(ita) =
λ(t) (t ∈ R). Then a is affiliated with the centralizer Mϕ̃ of ϕ̃ and

τ = ϕ̃(e−a · )

in the sense of Pedersen-Takesaki [PT73]. By [Haa79-2], ϕ̃ is on the subspace
m given by

ϕ̃(x) = ϕ ◦ P (x), x ∈ m.

Let α > 0, and let eα = 1[0,α](a). Then by Lemma 3.3, eα ∈ m and P (eα) = α1.
Hence ϕ̃|eαMeα is a positive normal functional, and ϕ̃(eα) = α. Finally,

τ(eα) = ϕ̃(e−aeα) =

∫ α

0

e−t dt = 1− e−α <∞,

because

e−aeα =

∫ α

0

e−λ de(λ),

where

a =

∫ ∞

−∞

λde(λ)

is the spectral resolution of a, and dϕ̃(e(λ)) = dλ.
Since N is of type III1, M is a type II∞ factor, and therefore eαMeα is a II1
factor. Moreover, the injectivity of N implies that M is also injective, so that
eαMeα is isomorphic to the hyperfinite factor R of type II1 by [Con76].

Claim. For any x ∈ N , we have

lim
α→∞

∥∥∥∥
1

α
P (eαxeα)− x

∥∥∥∥
ϕ

= 0.

This follows from a basic property of the Fejér kernel (see e.g., [Kat68, Chapters
I and VI]), but we include the proof for completeness. Let ε > 0. Choose
t0 > 0 small enough so that ‖σϕt (x) − x‖ϕ ≤ ε for all t ∈ [−t0, t0]. Moreover,

by

∣∣∣∣
1− cos(αt)

παt2

∣∣∣∣ ≤
2

πα
· 1

t2
, we have

lim
α→∞

∫

|t|≥t0

1− cos(αt)

παt2
dt = 0.

4Typewriter’s note: Since some pages were missing from the original notes, we could not
find all parts of the proofs of Lemma 3.4 and Theorem 3.1. We include the following proof
for the reader’s convenience.
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By Lemma 3.3, we have

lim sup
α→∞

∥∥∥∥
1

α
P (eαxeα)− x

∥∥∥∥
ϕ

≤ lim sup
α→∞

∫ ∞

−∞

‖σϕt (x)− x‖ϕ
1− cos(αt)

παt2
dt

≤ ε+ 2‖x‖ϕ lim sup
α→∞

∫

|t|≥t0

1− cos(αt)

παt2
dt

= ε.

Since ε > 0 is arbitrary, we obtain the conclusion.

Let n ≥ 1, u1, . . . , un ∈ U(N) and ε, δ > 0 be given. By the above claim, we
may choose α > 0 large enough so that

∥∥∥∥
1

α
P (eαukeα)− uk

∥∥∥∥
ϕ

< ε, 1 ≤ k ≤ n. (10)

Define T := α−1P |eαMeα : R = eαMeα → N and

ψ := ϕ ◦ T =
1

α
ϕ ◦ P (eα · eα) =

1

α
ϕ̃(eα · eα).

Then T is a normal unital completely positive map, and ψ is a normal faithful
state on R. By (10) we have

‖T (xk)− uk‖ϕ < ε, 1 ≤ k ≤ n,

where xk := eαukeα (1 ≤ k ≤ n) are in the unit ball of R. Moreover, since

eα ∈Mϕ̃ and since σϕt ◦ P = P ◦ σϕ̃t (t ∈ R), we have σϕt ◦ T = T ◦ σψt (t ∈ R).
By construction, we have

h :=
dψ

dτ
=

1− e−α

α
exp(a)eα,

which has no atoms and the spectrum of h is a closed bounded interval in
R∗

+ = (0,∞).

Lemma 3.5. Let B ⊂ A be an inclusion of unital C∗-algebras and E : A → B
be a unital completely positive map. Let h ∈ A be a self-adjoint element with
σ(h) ⊂ [λ1, λ2], where σ( · ) denotes the spectrum and λ1 < λ2 are reals. Then
σ(E(h)) ⊂ [λ1, λ2].

Proof. Let λ < λ1. Then h−λ is positive and invertible. Take a nonzero x ∈ A
such that (h− λ)

1

2x = 1, so that E((h − λ)
1

2 xx∗(h− λ)
1

2 ) = 1. The left hand
side is dominated by ‖x‖2E(h− λ), whence E(h− λ) ≥ ‖x‖−21, showing that
E(h) − λ1 is invertible. Thus λ /∈ σ(E(h)). Similarly, σ(E(h)) ∩ (λ2,∞) = ∅
holds. Therefore σ(E(h)) ⊂ [λ1, λ2].
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Proof of Theorem 3.1. We may assume that 0 < ε < 1. By Lemma 3.4, there
exist a normal unital completely positive map T : R → N and x1, . . . , xn in the
unit ball of R satisfying σϕt ◦ T = T ◦ σψt , (t ∈ R), where ψ := ϕ ◦ T : R → N
and

‖T (xk)− uk‖ϕ <
ε2

16
, 1 ≤ k ≤ n. (11)

Let h := dψ/dτ ∈ R+. Then by Lemma 3.4, σ(h) = [λ1, λ2] for some positive
reals λ1 < λ2 and h does not have a point spectrum. Since log( · ) is continuous
on [λ1, λ2], continuous functional calculus guarantees that there exists δ′ > 0
such that for all a, b ∈ R+, we have the following implication

σ(a), σ(b) ⊂ [λ1, λ2] and ‖a− b‖ < δ′ ⇒ ‖ log a− log b‖ < δ

4
. (12)

By using the spectral decomposition of h, we can choose a partition of unity
{pi}ℓi=1 in R and {µi}ℓi=1 in R∗

+ such that

τ(pi) =
1

ℓ
, hpi = pih,

‖(log h)pi − (log µi)pi‖ < 1
4δ,

‖hpi − µipi‖ < δ′,

for all (1 ≤ i ≤ ℓ). Let h0 :=
∑ℓ
i=1 µipi, and we have

‖h− h0‖ < δ′ and ‖ log h− log h0‖ <
1

4
δ. (13)

Moreover, we may arrange {µi}ℓi=1 so that h0 =
∑ℓ

i=1 µipi satisfies

σ(h0) ⊂ [λ1, λ2]. (14)

Since R is hyperfinite, there exists a type I subfactor F of R so that pi ∈ F (1 ≤
i ≤ ℓ) and

‖xk − EF (xk)‖ϕ <
ε2

16
, 1 ≤ k ≤ n, (15)

where EF : R → F denotes the τ -preserving conditional expectation. Put
TF := T |F : F → N and yk := EF (xk) (1 ≤ k ≤ n). Combining (11) and (15),
for all 1 ≤ k ≤ n, we have (use the Schwarz inequality for completely positive
maps)

‖TF (yk)− uk‖ϕ ≤ ‖T (yk)− T (xk)‖ϕ + ‖T (xk)− uk‖ϕ
≤ ‖yk − xk‖ψ + ‖T (xk)− uk‖ϕ

<
ε2

8
. (16)

Then we follow the argument of [Haa89, Lemma 6.2]. Take v1, . . . , vk ∈ U(F )
such that

yk = vk|yk|, |yk| := (y∗kyk)
1

2 , 1 ≤ k ≤ n.
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Then again by the Schwarz inequality for completely positive maps and (16),

‖yk‖ψ ≥ ‖TF (yk)‖ϕ > ‖uk‖ϕ − ε2

8
.

Since ‖(y∗kyk)
1

2 ‖ψ = ‖yk‖ψ and |yk|2 + (1 − |yk|)2 ≤ 1 (because 0 ≤ |yk| ≤ 1),
we have

‖vk − yk‖2ψ = ‖1− |yk|‖2ψ ≤ 1− ‖ |yk| ‖2ψ
< 1− (1 − ε2

8 )
2

<
ε2

4
.

Therefore since ε2 < ε,

‖TF (vk)− uk‖ϕ ≤ ‖TF (vk − yk)‖ϕ + ‖TF (yk)− uk‖ϕ

< ‖vk − yk‖ψ +
ε2

8
< ε.

Next, set χ := τ(h0 · ) ∈ (R∗)+. Note that σ
χ|F
t = σχt |F (t ∈ R), since h0 ∈ F .

Then by (13), we have

‖hit − hit0 ‖ =

∥∥∥∥
∫ 1

0

d

ds
eist log hei(1−s)t log h0 ds

∥∥∥∥

≤
∫ 1

0

‖eist log h(t log h− t log h0)e
i(1−s)t log h0‖ ds

≤ ‖ logh− log h0‖ |t|

≤ δ|t|
4
. (17)

On the other hand, hF := dψ|F /dτ |F ∈ F+ is equal to EF (h). Therefore by
Lemma 3.5, σ(hF ) ⊂ [λ1, λ2]. Moreover, since EF (h0) = h0, we have

‖hF − h0‖ = ‖EF (h− h0)‖ ≤ ‖h− h0‖ < δ′.

This shows by (12) and (14) that ‖ log hF − logh0‖ < δ
4 . Therefore by the same

argument, we have

‖hitF − hit0 ‖ ≤ δ|t|
4
, t ∈ R. (18)

For all t ∈ R and x ∈ F ,

‖σϕt ◦ TF (x) − TF ◦ σψ|Ft (x)‖ = ‖T (σψt (x) − σ
ψ|F
t (x))‖

≤ ‖σψt (x)− σ
ψ|F
t (x)‖

≤ ‖σψt (x)− σχt (x)‖ + ‖σχ|Ft (x)− σ
ψ|F
t (x)‖.
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By (17), we have

‖σψt (x)− σχt (x)‖ = ‖hitxh−it − hit0 xh
−it
0 ‖

≤ (‖hit − hit0 ‖+ ‖h−it − h−it0 ‖)‖x‖

≤ 1

2
δ|t|‖x‖.

Similarly, by (18),

‖σχ|Ft (x) − σ
ψ|F
t (x)‖ ≤ (‖hit0 − hitF ‖+ ‖h−it0 − h−itF ‖)‖x‖

≤ 1

2
δ|t|‖x‖.

These altogether imply that ‖σϕt ◦ TF (x) − TF ◦ σψ|Ft (x)‖ ≤ δ|t|‖x‖.

4 Q-stable states on III1 factors

For technical reasons we shall consider a special class of normal faithful states,
which we call Q-stable states, because they have nice properties with respect
to certain operations involving rationals.

Definition 4.1. A normal faithful state ϕ on a von Neumann algebra N is
called Q-stable, if for every m ∈ N, there exist m isometries u1, . . . , um ∈ N
with orthogonal range projections, such that

m∑

i=1

uiu
∗
i = 1,

ϕui =
1

m
uiϕ, i = 1, . . . ,m.

Theorem 4.2. Every factor of type III1 with separable predual has a Q-stable
normal faithful state.

For the proof of Theorem 4.2, we shall need two lemmas:

Lemma 4.3. The Araki–Woods factor R∞ has a Q-stable normal faithful state.

Proof. Let Rλ (0 < λ < 1) be the Powers factor of type IIIλ, and let ϕλ
be the product state on Rλ. Then ϕλ is normal and faithful, and σϕλ has
period −2π/ logλ. Then the centralizer (Rλ)ϕλ

is a type II1 factor (cf. [Con73,
Théorème 4.2.6]), and there exists an isometry u ∈ Rλ such that

σϕλ

t (u) = λitu, t ∈ R.

This implies that σϕλ

t (uu∗) = uu∗ (t ∈ R), i.e., uu∗ ∈ (Rλ)ϕλ
. Moreover, by

[Tak73, Lemma 1.6], we have

ϕλu = λuϕλ,
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and hence ϕλ(uu
∗) = (ϕλu)(u

∗) = λϕλ(u
∗u) = λ.

Assume now, that λ = 1
m , m ∈ N,m ≥ 2. Then we can choose m equivalent

orthogonal projections p1, . . . , pm ∈ (Rλ)ϕλ
with sum 1, such that p1 = uu∗.

Next, choose partial isometries v1, . . . , vm ∈ (Rλ)ϕλ
such that

v∗i vi = p1, viv
∗
i = pi, i = 1, . . . ,m.

Put ui = viu, i = 1, . . . ,m. Then u1, . . . , um are m isometries in Rλ, such
that

∑m
i=1 uiu

∗
i = 1, and ϕλui = λuiϕλ, i = 1, . . . ,m. Put now

(P, ϕ) =

∞⊗

m=2

(R 1

m
, ϕ 1

m
).

Then it is clear from the above computations, that ϕ is a Q-stable normal
faithful state on P (observe that it is sufficient to consider m ≥ 2 case in
Definition 4.1). Moreover, P is an ITPFI factor for which the the asymptotic
ratio set r∞(P ) contains { 1

m ;m ∈ N}. Since r∞(P ) ∩ R+ is a closed subgroup
of R+, we have r∞(P ) ⊇ R+. Therefore by Araki–Woods’ Theorem [AW68,
Theorem 7.6], P ∼= R∞ holds.

Lemma 4.4. Let N be a factor of type III1 with separable predual. Then there
exists a normal faithful conditional expectation of N onto a subfactor P iso-
morphic to R∞.

Proof. 5 We can write R∞ as an infinite tensor product

R∞ =

∞⊗

k=1

(Pk, ωk),

where each Pk is a copy of the 2× 2 matrices M2(C) and (ωk)
∞
k=1 is a sequence

of normal faithful states on M2(C). Let ψ be a fixed normal faithful state
on N . Since N is properly infinite, we have N ⊗M2(C) ∼= N . Moreover, by
Connes-Størmer transitivity theorem [CS78], we can choose a ∗-isomorphism
Φ: N ⊗M2(C) → N such that

‖(ψ ⊗ ω1) ◦ Φ−1 − ψ‖ < 1

2
.

Put F1 = Φ(C ⊗ M2(C)), and ϕ1 = (ψ ⊗ ω1) ◦ Φ−1. Then F1 is a type I2
subfactor of N . Moreover, it holds that N ∼= F1 ⊗ F c

1 , where F
c
1 = F ′

1 ∩N is
the relative commutant, and ϕ1 = ϕ1|F1

⊗ ϕ1|F c

1
. Moreover, we have

(F1, ϕ1|F1
) ∼= (P1, ω1).

5Typewriter’s note: this result has been extended by Haagerup–Musat [HM09, Theorem
3.5], where the authors study more general embeddings of ITPFI type III factors into type
III factors as the range of normal faithftul conditional expectations.
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Using the same arguments to the type III1 factor F c
1 , we can find a type I2-

subfactor F2 ⊂ F c
1 , a normal faithful state ϕ′

2 on F c
1 , such that ‖ϕ′

2−ϕ1|F c

1
‖ <

1
4 ,

ϕ′
2 = ϕ′

2|F2
⊗ ϕ′

2|(F1⊗F2)c ,

and (F2, ϕ
′
2|F2

) ∼= (P2, ω2). Thus, if we put ϕ2 = ϕ1|F1
⊗ ϕ′

2, we have ‖ϕ1 −
ϕ2‖ < 1

4 ,
ϕ2 = ϕ2|F1

⊗ ϕ2|F2
⊗ ϕ2|(F1⊗F2)c ,

and

(F1, ϕ2|F1
) ∼= (P1, ω1),

(F2, ϕ2|F2
) ∼= (P2, ω2).

Proceeding in this way, we obtain a sequence (Fk)
∞
k=1 of mutually commuting

type I2-subfactors of N , and a sequence (ϕk)
∞
k=1 of normal faithful states on

N , such that
‖ϕk − ϕk−1‖ < 2−k, k ≥ 2,

and such that for fixed m ∈ N:

ϕm = ϕm|F1
⊗ ϕm|F2

⊗ . . .⊗ ϕm|Fm
⊗ ϕm|(F1⊗...⊗Fm)c ,

and
(Fi, ϕm|Fi

) ∼= (Pi, ωi) i = 1, . . . ,m.

Let ϕ be the norm limit in N∗ of the sequence (ϕk)
∞
k=1. Then ϕ is a normal

state, but it can fail to be faithful. From the properties of ϕk, we have for all
m ∈ N,

ϕ = ϕ|F1
⊗ ϕ|F2

⊗ . . .⊗ ϕ|Fm
⊗ ϕm|(F1⊗...⊗Fm)c ,

and
(Fm, ϕ|Fm

) ∼= (Pm, ωm).

Let rk be the ratio between the largest and the smallest eigenvalues of
dωk/dTr. Let u ∈ U(Pk). We may assume that ωk = Tr(hk · ), hk :=

1
1+rk

diag(rk, 1) (rk ≥ 1). Then if a =

(
x y
z w

)
∈ Pk is positive, then

uωku
∗(a) = Tr(hku

∗au) = Tr((u∗au)
1

2 hk(u
∗au)

1

2 )

≥ 1

1 + rk
Tr(u∗au) =

x+ w

1 + rk

≥ r−1
k (

rkx

1 + rk
+

w

1 + rk
)

= r−1
k ωk(a).

Similarly, uωku
∗(a) ≤ rkωk(a) holds. This shows that

r−1
k ωk ≤ uωku

∗ ≤ rkωk.
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Hence for all u ∈ U(Fk),

r−1
k ϕ ≤ uϕu∗ ≤ rkϕ.

Thus, ϕ and uϕu∗ have the same support projection in N , i.e., with e =
supp(ϕ), we have

ueu∗ = e, u ∈ U(Fk), k ∈ N.

This shows that e ∈ (
⋃∞
k=1 Fk)

′ ∩ N . Put Gk = eFk. Then (Gk)
∞
k=1 is a

sequence of commuting subfactors of eNe. Moreover, the restriction ϕe of ϕ to
eNe is a normal faithful state on eNe, and

(G1 ⊗ . . .⊗Gm, ϕe|G1⊗...⊗Gm
) ∼=

m⊗

k=1

(Pk, ωk)

for all m ∈ N. Let P be the von Neumann algebra generated by
⋃∞
k=1Gk.

Then

(P, ϕ|P ) ∼=
∞⊗

k=1

(Pk, ωk).

In particular, P ∼= R∞. Moreover, since

ϕe = ϕe|G1
⊗ . . . ϕe|Gm

⊗ ϕe|(G1⊗...⊗Gm)c ,

where (G1 ⊗ · · · ⊗ Gm)c denotes the relative commutant of
⋃m
k=1Gk in eNe,

we have
σϕe

t (G1 ⊗ · · · ⊗Gm) = G1 ⊗ · · · ⊗Gm, t ∈ R

for all m ∈ N, and hence also σϕe

t (P ) = P, t ∈ R. Thus by [Tak72], there
exists a normal faithful conditional expectation of eNe onto P . This completes
the proof, since eNe is isomorphic to N .

Proof of Theorem 4.2. Let N be a type III1 factor with separable predual. By
Lemmata 4.3 and 4.4, we can choose a normal faithful conditional expectation
E of N onto a subfactor P of N isomorphic to R∞. Moreover, we can choose
a Q-stable normal faithful state ω on P . Put ϕ = ω ◦ E. Then it follows from
the bimodule property of conditional expectations [Tom58, Theorem 1] that ϕ
is a Q-stable normal faithful state on N .

Theorem 4.5. Let ϕ be a Q-stable normal faithful state on a von Neumann
algebra N , let m ∈ N, and let q1, . . . , qm be m positive rational numbers with
sum 1. Then there exists a type Im subfactor F of N , such that

(a) ϕ = ϕ|F ⊗ ϕ|F c .

(b) ϕ|F c is Q-stable.

(c) dϕ|F /dTrF has eigenvalues (q1, . . . , qm).
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Here, TrF denotes the trace on F for which TrF (1) = m.

We prove first:

Lemma 4.6. Let ϕ be a Q-stable normal faithful state on a von Neumann
algebra N , and let q1, . . . , qm be positive rational numbers with sum 1. Then
there exist isometries u1, . . . , um ∈ N with orthogonal ranges, such that

m∑

i=1

uiu
∗
i = 1,

ϕui = qiuiϕ, i = 1, . . . ,m.

Proof. We can choose integers p, p1, . . . , pm ∈ N such that

qi =
pi
p
, i = 1, . . . ,m.

Note that
∑m

i=1 pi = p. By Definition 4.1, for each i ∈ {1, . . . ,m} we can
choose pi isometries vi1, . . . , vipi in N with orthogonal ranges, such that

pi∑

j=1

vijv
∗
ij = 1 and ϕvij =

1

pi
vijϕ, j = 1, . . . , pi.

Moreover, since the set {(i, j); 1 ≤ i ≤ m, 1 ≤ j ≤ pi} contains
∑m

i=1 pi = p
elements, we can also find isometries wij ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ pi) with
orthogonal ranges, such that

m∑

i=1

pi∑

j=1

wijw
∗
ij = 1 and ϕwij =

1

p
wijϕ, 1 ≤ i ≤ m, 1 ≤ j ≤ pi.

Put now

ui :=

pi∑

j=1

wijv
∗
ij , i = 1, . . . ,m.

Then

u∗i ui =

pi∑

j=1

vijv
∗
ij = 1,

m∑

i=1

uiu
∗
i =

m∑

i=1

pi∑

j=1

wijw
∗
ij = 1,

and since ϕwij =
1
pwijϕ and v∗ijϕ = 1

pi
ϕv∗ij for all (i, j), we get

ϕui =

pi∑

j=1

ϕwijv
∗
ij =

pi∑

j=1

pi
p
wijv

∗
ijϕ = qiuiϕ.

This proves Lemma 4.6.
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Proof of Theorem 4.5. Choosem isometries u1, . . . , um ∈ N satisfying the con-
ditions in Lemma 4.6. We can define a ∗-isomorphism Φ of N ⊗Mm(C) onto
N by

Φ




m∑

i,j=1

xij ⊗ eij


 :=

m∑

i,j=1

uixiju
∗
j ,

where (eij)
m
i,j=1 are the matrix units in Mm(C). Then using ϕui = λiuiϕ, we

get

(ϕ ◦ Φ)




m∑

i,j=1

xij ⊗ eij


 =

m∑

i,j=1

ϕ(uixiju
∗
j)

=

m∑

i,j=1

qiϕ(xiju
∗
jui)

=

m∑

i=1

qiϕ(xii).

Hence

ϕ ◦ Φ = ϕ⊗ ω,

where ω is the state on Mm(C) for which

dω

dTr
=




q1 0 · · · 0

0 q2
...

...
. . . 0

0 · · · 0 qm



.

Put now F := Φ(C ⊗ Mm(C)). Then the relative commutant of F in N is
Φ(N ⊗C). Since ϕ ◦Φ = ϕ⊗ ω, ϕ itself is a tensor product state with respect
to the decomposition

N = F · F c ∼= F ⊗ F c.

Moreover, dϕ|F /dTrF has eigenvalues (q1, . . . , qm). Let Φ0 be the isomorphism
of N onto F c given by

Φ0(x) = Φ(x⊗ 1), x ∈ N.

Then ϕ|F c ◦ Φ0 = ϕ. Therefore ϕ|F c is a Q-stable normal faithful state on
F c.

5 Proof of Main Theorem

In this section we prove the main result of the paper:

Documenta Mathematica 21 (2016) 1193–1226



1214 Uffe Haagerup

Theorem 5.1. Every injective factor N of type III1 on a separable Hilbert
space is isomorphic to the Araki–Woods factor R∞.

We need preparations. In this section, for each von Neumann algebra N , we
fix a standard form (N,H, J,P♮). For each ϕ ∈ (N∗)+, we denote by ξϕ the
unique representing vector in P♮ [Haa75].

Lemma 5.2. Let N be a properly infinite factor with separable predual and with
a normal faithful state ϕ, let F be a finite dimensional σϕ-invariant subfactor of
N , and let T : F → N be a unital completely positive map, such that ϕ ◦T = ϕ
and

‖σϕt ◦ T − T ◦ σϕ|Ft ‖ ≤ δ|t|, t ∈ R, (19)

where δ > 0 is a constant. Then there exists a norm-continuous map a : R → N
such that

(a)

∫ ∞

−∞

a(t)∗a(t) dt = 1 (σ-strongly),

(b)

∫ ∞

−∞

e−tεF,ϕ(a(t)a(t)
∗) dt = 1 (σ-strongly),

(c)

∫ ∞

−∞

‖a(t)ξϕ − e−t/2ξϕa(t)‖2 dt <
δ

8
,

(d)

∥∥∥∥T (x)−
∫ ∞

−∞

a(t)∗xa(t) dt

∥∥∥∥ ≤ δ
1

2 ‖x‖, x ∈ F ,

where εF,ϕ is the normal faithful conditional expectation of N onto F that leaves
the state ϕ invariant.

Proof. Let f be the function

f(t) := (πδ)−
1

4 exp

(
− 1

2δ
t2
)
, t ∈ R,

and let g be the Fourier-transformed of f :

g(s) :=

(
δ

π

) 1

4

exp

(
− δ
2
s2
)
, s ∈ R.

Note that ∫ ∞

−∞

f(t)2dt =

∫ ∞

−∞

g(s)2 ds = 1.

By [Haa85, Proposition 2.1], there exists an operator a ∈ N such that

T (x) = a∗xa, x ∈ F.
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In particular, a∗a = 1, i.e., a is an isometry. Put

a(t) =
1√
2π

∫ ∞

−∞

e−is(t−δ/4)g(s)σϕs (a) ds, t ∈ R.

Since t 7→ e−is(t−δ/4)g(s) is a continuous map from R to L1(R), the map
t 7→ a(t) is a norm-continuous map from R to N . Using the Plancherel formula
in L2(R, H), we get

∫ ∞

−∞

‖a(t)ξ‖2 dt =
∫ ∞

−∞

g(s)2‖σϕs (a)ξ‖2 ds = ‖ξ‖2

for all ξ ∈ H . Hence

∫ ∞

−∞

a(t)∗a(t) dt = 1 (σ-weakly).

Since the convergence of the integral is monotone, we get (a). Using again the
Plancherel formula, we get for ξ, η ∈ H and x ∈ F ,

∫ ∞

−∞

〈xa(t)ξ, a(t)η〉 dt =
∫ ∞

−∞

g(s)2〈xσϕs (a)ξ, σϕs (a)η〉 ds

=

∫ ∞

−∞

g(s)2〈σϕs ◦ T ◦ σϕ−s(x)ξ, η〉 ds.

Hence for x ∈ F ,

∫ ∞

−∞

a(t)∗xa(t) dt =

∫ ∞

−∞

g(s)2σϕs ◦ T ◦ σϕ−s(x) ds. (20)

Note that the left hand side of (20) converges σ-strongly, because F = span(F+)
and for x ∈ F+, the integral converges σ-weakly and the convergence is mono-
tone. Therefore by (19), for each x ∈ F we get

∥∥∥∥T (x)−
∫ ∞

−∞

a(t)∗xa(t)dt

∥∥∥∥ ≤ δ‖x‖
∫ ∞

−∞

|s|g(s)2 ds

=

(
δ

π

) 1

2

‖x‖

≤ δ
1

2 ‖x‖.

This proves (d). Since g(s) has the analytic extension to the function g : C → C,
and since the integrals

∫ ∞

−∞

|g(s+ iu)| ds =
(
4π

δ

) 1

4

e
δ
2
u2

, u ∈ R
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are uniformly bounded for u on bounded subsets of R, it follows that a(t) is
analytic with respect to σϕ (in the sense of [PT73]) and that

σϕα(a(t)) =
1√
2π

∫ ∞

−∞

e−i(s−α)(t−
δ
4 )g(s− α)σϕs (a) ds,

for all α ∈ C. To prove (c), we use the equality

ξϕa(t) = Jϕa(t)
∗ξϕ = ∆

1

2

ϕa(t)ξϕ = σϕ−i/2(a(t))ξϕ.

Hence

e−t/2ξϕa(t) =
e−

δ
8√
2π

∫ ∞

−∞

e−is(t−
δ
4 )g(s+ i

2 )σ
ϕ
s (a)ξϕ ds.

Using the Plancherel formula, we get

∫ ∞

−∞

‖a(t)ξϕ − e−t/2ξϕa(t)‖2 dt =
∫ ∞

−∞

|g(s)− e−
δ
8 g(s+ i

2 )|2‖aξϕ‖2 ds.

On the other hand, g(s+ i
2 ) is the Fourier–Plancherel transformed of et/2f(t).

Therefore the above integral is equal to

∫ ∞

−∞

f(t)2
(
1− e−

δ
8+

t
2

)2

dt.

It is easy to compute that for γ ∈ R,

∫ ∞

−∞

f(t)2eγt dt = exp(14γ
2δ).

Therefore

∫ ∞

−∞

f(t)2
(
1− e−

δ
8+

t
2

)2

dt = 2(1− e−
δ
16 )

<
δ

8
.

This proves (c). Put now

A(t) := e−tεF,ϕ(a(t)a(t)
∗), t ∈ R.

Since εF,ϕ is a normal faithful conditional expectation of N onto F that leaves
ϕ invariant, we have for x ∈ F , that

ϕ(A(t)x) = e−tϕ(a(t)a(t)∗x).

By the KMS-condition, it follows that if a, b ∈ N and a is σϕ-analytic, then

ϕ(ab) = ϕ(bσϕ−i(a))
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(cf. [Haa79, Theorem 3.2]). Hence for x ∈ F ,

ϕ(A(t)x) = e−tϕ(a(t)∗xσϕ−i(a(t))).

Using

e−tσϕ−i(a(t)) =
e−

δ
4√
2π

∫ ∞

−∞

e−is(t−
δ
4 )g(s+ i)σϕs (a) ds,

we get by the Plancherel formula, that
∫ ∞

−∞

ϕ(A(t)x) dt =

∫ ∞

−∞

〈x(e−tσϕ−i(a(t)))ξϕ, a(t)ξϕ〉 dt

= e−
δ
4

∫ ∞

−∞

g(s+ i)g(s)〈xσϕs (a)ξϕ, σϕs (a)ξϕ〉 ds.

Since ϕ ◦ T = ϕ, it holds that

〈xσϕs (a)ξϕ, σϕs (a)ξϕ〉 = ϕ ◦ σϕs ◦ T ◦ σϕ−s(x) = ϕ(x),

Hence ∫ ∞

−∞

ϕ(A(t)x) dt = e−
δ
4ϕ(x)

∫ ∞

−∞

g(s+ i)g(s)ds.

Since g(s+ i) is the Fourier–Plancherel transformed of f(t)et, we get
∫ ∞

−∞

g(s+ i)g(s)ds =

∫ ∞

−∞

|f(t)|2et dt = e
δ
4 .

Since F is finite-dimensional and ϕ is faithful on F , every ψ ∈ F∗ is of the form
ϕ( · x), x ∈ F . This shows that

∫ ∞

−∞

ψ(A(t)) dt = ψ(1), ψ ∈ F∗,

that is, we have ∫ ∞

−∞

A(t) dt = 1 (σ-weakly).

This proves (b).

Lemma 5.3. Let N,ϕ, F and εF,ϕ be as in Lemma 5.2. Let λ > 0 and assume
that c1, . . . , cs are operators in F c = F ′ ∩N such that

ϕci = λciϕ, i = 1, . . . , s,
s∑

i=1

c∗i ci = 1.

Then for all x ∈ N ,

εF,ϕ

(
s∑

i=1

cixc
∗
i

)
= λεF,ϕ(x).
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Proof. It is sufficient to check the formula for x ∈ N of the form x = ab, a ∈
F, b ∈ F c. For z ∈ F c, εF,ϕ(z) commutes with every element in F . Hence
εF,ϕ(z) is a scalar multiple of the identity. Using that εF,ϕ leaves ϕ invariant,
we get

εF,ϕ(z) = ϕ(z)1, z ∈ F c.

Therefore

εF,ϕ

(
s∑

i=1

cixc
∗
i

)
= εF,ϕ

(
a

(
s∑

i=1

cibc
∗
i

))

= ϕ

(
s∑

i=1

cibc
∗
i

)
a

= λϕ

(
s∑

i=1

bc∗i ci

)
a

= λϕ(b)a

= λεF,ϕ(x).

Lemma 5.4. Let ϕ be a Q-stable normal faithful state on an injective factor N
of type III1 with separable predual. Let u1, . . . , un ∈ U(N), let δ > 0. Then
there exist a finite dimensional σϕ-invariant subfactor F of N and unitaries
v1, . . . , vn ∈ U(F ), such that for every σ-strong neighborhood V of 0 in N , there
exists a finite set b1, . . . , br of operators in N with the following properties:

(a)
r∑

i=1

b∗i bi ∈ 1 + V and
r∑

i=1

b∗i bi ≤ 1.

(b) εF,ϕ

(
r∑

i=1

bib
∗
i

)
∈ 1 + V and εF,ϕ

(
r∑

i=1

bib
∗
i

)
≤ 1.

(c)

r∑

i=1

‖biξϕ − ξϕbi‖2 < δ.

(d)

r∑

i=1

‖biuk − vkbi‖2ϕ < δ, k = 1, . . . , n.

Proof. Put δ1 = min(δ2/16, δ). By Theorem 3.1, there exist m ∈ N, a unital
completely positive map T0 : Mm(C) → N and unitaries w1, . . . , wn ∈ Mm(C)
such that ψ := ϕ ◦ T0 ∈Mm(C)∗ satisfies

‖σϕt ◦ T0 − T0 ◦ σψt ‖ ≤ δ1
2
|t|, t ∈ R,

‖T0(wk)− uk‖ϕ < ε, k = 1, . . . , n.
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Let {q′1, . . . , q′m} be the spectrum of dψ/dTr ∈Mm(C)+ where the multiplicity
is taken into account. Let {q1, . . . , qm} be positive rationals with sum 1, and let
χ on Mm(C)+ such that dχ/dTr has the same spectral projections as dψ/dTr
but the eigenvalues replaced by {q1, . . . , qm}. Since ‖eia − eib‖ ≤ ‖a − b‖ for
self-adjoint operators a, b, (cf. (17) in Theorem 3.1), we may arrange qi’s so
that the following inequality holds:

‖σψt − σχt ‖Mm(C) ≤
δ1
2
|t|, t ∈ R.

Since ϕ is Q-stable and qi’s are rationals, by Theorem 4.5, there exists a
finite-dimensional subfactor F ⊂ N and a state-preserving ∗-isomorphism
Φ: (Mm(C), χ) → (F, ϕ|F ) such that ϕ|F c is Q-stable. Define T := T0 ◦
Φ−1 : F → N and vk := Φ0(wk) ∈ U(F )(1 ≤ k ≤ n). Then if x = Φ(y) (y ∈
Mm(C)) and t ∈ R, we have

‖σϕt ◦ T (x)− T ◦ σϕ|Ft (x)‖ = ‖σϕt ◦ T0(y)− T0 ◦ Φ−1 ◦ σϕ|Ft ◦ Φ(y)‖
= ‖σϕt ◦ T0(y)− T0 ◦ σχt (y)‖
≤ ‖σϕt ◦ T0(y)− T0 ◦ σψt (y)‖+ ‖T (σψt (y)− σχt (y))‖
≤ δ1|t|‖y‖.

Therefore we obtain

T (1) = 1, ϕ ◦ T = ϕ|F ,
‖σϕt ◦ T − T ◦ σϕ|Ft ‖ ≤ δ1|t|, t ∈ R,

‖T (vk)− uk‖ϕ < δ
1

2

1 , k = 1, . . . , n.

Choose now a norm-continuous function t 7→ a(t) of R into N , such that the
conditions (a), (b), (c) and (d) in Lemma 5.2 are satisfied with respect to δ1
instead of δ. Then using (d), we have

‖uk −
∫ ∞

−∞

a(t)∗vka(t) dt‖ϕ < 2δ
1

2

1 ≤ δ

2

for k = 1, . . . , n. Using that

∫ ∞

−∞

a(t)∗a(t) dt = 1, it follows that

∫ ∞

−∞

‖a(t)uk − vka(t)‖2ϕ dt = 2− 2Re

∫ ∞

−∞

〈a(t)ukξϕ, vka(t)ξϕ〉 dt

= 2− 2Re

(
〈ukξϕ,

∫ ∞

−∞

a(t)∗vka(t)ξϕ dt〉
)

≤ 2 ‖uk −
∫ ∞

−∞

a(t)∗vka(t) dt‖ϕ

< δ.

Let now V be a σ-strong neighborhood of 0 in N . It is no loss of generality to
assume that V is open. For sufficiently large γ ∈ R+, we have:
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(a’)

∫ γ

−γ

a(t)∗a(t)dt ∈ 1 + V and

∫ γ

−γ

a(t)∗a(t) dt ≤ 1.

(b’)

∫ γ

−γ

e−tεF,ϕ(a(t)a(t)
∗)dt ∈ 1 + V and

∫ γ

−γ

e−tεF,ϕ(a(t)a(t)
∗) dt ≤ 1.

(c’)

∫ γ

−γ

‖a(t)ξϕ − e−t/2ξϕa(t)‖2 dt <
δ1
8

≤ δ.

(d’)

∫ γ

−γ

‖a(t)uk − vka(t)‖2ϕ dt < δ.

Since t 7→ a(t) is norm-continuous, we can approximate (in norm) the above
N -valued Riemann integrals over [−γ, γ] to get the following statements: there
exists an h0 > 0 such that when 0 < h < h0, the operators

aj = h−
1

2 a(jh), j ∈ Z

satisfy the following relations:

(a”)

p∑

j=−p

a∗jaj ∈ 1 + V .

(b”)

p∑

j=−p

e−jhεF,ϕ(aja
∗
j ) ∈ 1 + V .

(c”)

p∑

j=−p

‖ajξϕ − e−
1

2
jhξϕaj‖2 < δ.

(d”)

p∑

j=−p

‖ajuk − vkaj‖2ϕdt < δ,

where p is the largest integer smaller than γ/h0. Moreover, since the Rie-
mann sum is norm-convergent, by multiplying a scalar c > 0 to aj ’s which is
sufficiently close to 1 if necessary, we may moreover assume that

p∑

j=−p

a∗jaj ≤ 1 (21)

p∑

j=−p

e−jhεF,ϕ(aja
∗
j ) ≤ 1. (22)

Choose now h ∈ (0, h0), such that exp(h) ∈ Q. This implies that the numbers
qj = e−jh, j ∈ Z are rational. Since the restriction of ϕ to F c is Q-stable,
there exists for each j ∈ Z a finite set of operators cj1, . . . , cjs(j) in F c such
that

ϕcji = e−jhcjiϕ, i = 1, . . . , s(j)

Documenta Mathematica 21 (2016) 1193–1226



Uniqueness of the Injective III1 Factor 1221

and
s(j)∑

i=1

c∗jicji = 1.

Here we use Lemma 4.6 together with the fact that ϕ = ϕ|F ⊗ ϕ|F c . Put

bji = cjiaj , |j| ≤ p, 1 ≤ i ≤ s(j).

Then by (21),

(a’”)

p∑

j=−p

s(j)∑

i=1

b∗jibji =

p∑

j=−p

a∗jaj ∈ 1+V and

p∑

j=−p

s(j)∑

i=1

b∗jibji ≤

1,

and by (22) and Lemma 5.3,

(b’”) εF,ϕ




p∑

j=−p

s(j)∑

i=1

bjib
∗
ji


 =

p∑

j=−p

e−jhεF,ϕ(aja
∗
j ) ∈ 1 + V ,

and εF,ϕ




p∑

j=−p

s(j)∑

i=1

bjib
∗
ji


 ≤ 1.

The equality ϕcji = e−jhcjiϕ implies that

ξϕcji = e−
1

2
jhcjiξϕ.

Therefore

(c’”)

p∑

j=−p

s(j)∑

i=1

‖bjiξϕ − ξϕbji‖2 =

p∑

j=−p

s(j)∑

i=1

‖cji(ajξϕ − e−
1

2
jhξϕaj)‖2

=

p∑

j=−p

‖ajξϕ − e−
1

2
jhξϕaj‖2

< ε.

Finally, using that vk ∈ F and cji ∈ F c, we get

(d’”)

p∑

j=−p

s(j)∑

i=1

‖bjiuk − vkbji‖2ϕ =

p∑

j=−p

s(j)∑

i=1

‖cji(ajuk − vkaj)‖2ϕ

=

p∑

j=−p

‖ajuk − vkaj‖2ϕ

< δ.

This completes the proof of Lemma 5.4.
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In the proof of the following lemma, it is essential that injective type III1 factors
(on a separable Hilbert space) have trivial bicentralizers.

Lemma 5.5. Let ϕ be a Q-stable normal faithful state on an injective factor
N of type III1 with separable predual. Let u1, . . . , un ∈ U(N), and let δ >
0. Then there exists a finite dimensional σϕ-invariant subfactor F of N and
v1, . . . , vn ∈ U(F ), such that for every σ-strong neighborhood V of 0 in N , there
exists a finite set a1, . . . , ap of operators in N with the following properties:

(a)

p∑

i=1

a∗i ai ∈ 1 + V and

p∑

i=1

a∗i ai ≤ 1.

(b)

p∑

i=1

aia
∗
i ∈ 1 + V and

p∑

i=1

aia
∗
i ≤ 1.

(c)

p∑

i=1

‖aiξϕ − ξϕai‖2 < δ.

(d)

p∑

i=1

‖aiuk − vkai‖2ϕ < δ, k = 1, . . . , n.

Proof. Choose an F and v1, . . . , vn ∈ U(F ) satisfying the properties of Lemma
5.4 with respect to (u1, . . . , un, δ), and let V be a σ-strongly open neighborhood
of 0 in N . By Lemma 5.4, there exists b1, . . . , br ∈ N such that

(a’)

r∑

i=1

b∗i bi ∈ 1 + V and

r∑

i=1

b∗i bi ≤ 1.

(b’) εF,ϕ

(
r∑

i=1

bib
∗
i

)
∈ 1 + V and εF,ϕ

(
r∑

i=1

bib
∗
i

)
≤ 1.

(c’)
r∑

i=1

‖biξϕ − ξϕbi‖2 < δ.

(d’)

r∑

i=1

‖biuk − vkbi‖2ϕ < δ, k = 1, . . . , n.

Let δ′ > 0 and h denote the operator
∑r
i=1 bib

∗
i . Since Bϕ = C1, by Proposition

2.6, we have

εF,ϕ(h) ∈ conv{whw∗; w ∈ U(F c), ‖wξϕ − ξϕw‖ < δ′}. (23)

Here, conv in (23) denotes the σ-strong closure. Hence there exist w1, . . . , ws ∈
U(F c), and scalars λ1, . . . , λs ∈ R+, with sum 1, such that

‖wjξϕ − ξϕwj‖ < δ′, j = 1, . . . , s
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and
s∑

j=1

λjwjhw
∗
j ∈ 1 + V .

Put
aij := λ

1

2

j wjbi, i = 1, . . . , r, j = 1, . . . , s.

Then

(a”)

r∑

i=1

s∑

j=1

a∗ijaij =

r∑

i=1

b∗i bi ∈ 1 + V and

r∑

i=1

s∑

j=1

a∗ijaij ≤ 1.

(b”)
r∑

i=1

s∑

j=1

aija
∗
ij =

s∑

j=1

λjwjhw
∗
j ∈ 1 + V and

r∑

i=1

s∑

j=1

aija
∗
ij ≤ 1.

Moreover, using

aijξϕ − ξϕaij = λ
1

2

j wj(biξϕ − ξϕbi) + λ
1

2

j (wjξϕ − ξϕwj)bi,

we obtain

(c”)




r∑

i=1

s∑

j=1

‖aijξϕ − ξϕaij‖2



1

2

≤

≤




r∑

i=1

s∑

j=1

λj‖biξϕ − ξϕbi‖2



1

2

+ δ′




r∑

i=1

s∑

j=1

λj‖bi‖2



1

2

=

(
r∑

i=1

‖biξϕ − ξϕbi‖2
) 1

2

+ δ′

(
r∑

i=1

‖bi‖2
) 1

2

.

Finaly, since vk ∈ F and wj ∈ F c, we have

(d”)

r∑

i=1

s∑

j=1

‖aijuk − vkaij‖2ϕ =

r∑

i=1

s∑

j=1

λj‖wj(biuk − vkbi)‖2ϕ

=

r∑

i=1

‖biuk − vkbi‖2ϕ

< δ.

Since δ′ > 0 was arbitrary (independent of δ,V , and b1, . . . , br), we can assume
that (

r∑

i=1

‖biξϕ − ξϕbi‖2
) 1

2

+ δ′

(
r∑

i=1

‖bi‖2
) 1

2

< δ
1

2 .

This proves Lemma 5.5.
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Lemma 5.6. Let N be an injective factor of type III1 with separable predual,
and let ϕ be a Q-stable normal faithful state on N . Let u1, . . . , un ∈ U(N) and
let ε > 0. Then there exist a σϕ-invariant finite dimensional subfactor F of N ,
v1, . . . , vn ∈ U(F ) and a unitary w ∈ U(N) such that

‖wξϕ − ξϕw‖ < ε,

and
‖w∗vkw − uk‖ϕ < ε, k = 1, . . . , n.

Proof. Let δ(n, ε) > 0 be the function in Theorem 2.8, and put δ1 = 1
16δ(n +

1, ε/2). Choose F and v1, . . . , vn ∈ U(F ), such that the conditions of Lemma
5.5 are satisfied with respect to (u1, . . . , un, δ1). Put

ξk = ukξϕ, ηk = vkξϕ, k = 1, . . . , n.

For every σ-strong neighborhood V of 0 in N , there exist a1, . . . , ap ∈ N , such
that (a), (b), (c) and (d) in Lemma 5.5 are satisfied. Since

aiξk − ηkai = (aiuk − vkai)ξϕ + vk(aiξϕ − ξϕai),

we have
(

p∑

i=1

‖aiξk − ηkai‖2
) 1

2

≤
(

p∑

i=1

‖aiuk − vkai‖2ϕ

) 1

2

+

(
p∑

i=1

‖aiξϕ − ξϕai‖2
) 1

2

< 2δ
1

2

1 .

Moreover, (
p∑

i=1

‖aiξϕ − ξϕai‖2
) 1

2

< δ
1

2

1 < 2δ
1

2

1 .

Since
∑p

i=1 a
∗
i ai ∈ 1+V ,∑p

i=1 a
∗
i ai ≤ 1,

∑p
i=1 aia

∗
i ∈ 1+V and

∑p
i=1 aia

∗
i ≤ 1,

the two (n+1)-tuples (ξ1, . . . , ξn, ξϕ) and (η1, . . . , ηn, ξϕ) satisfies the conditions

of Remark 2.9 with 4δ
1

2

1 instead of δ, so that the two (n + 1)-tuples are 16δ1-
related, or equivalently they are δ(n+1, ε2 )-related in the sense of Remark 2.9.
Hence by Theorem 2.8, there exists a unitary operator w ∈ U(N), such that

‖wξk − ηkw‖ <
ε

2
, k = 1, . . . , n.

and
‖wξϕ − ξϕw‖ <

ε

2
.

Therefore

‖w∗vkw − uk‖ϕ = ‖w∗(vkw − wuk)ξϕ‖
= ‖(wuk − vkw)ξϕ‖
= ‖(wξk − ηkw) + vk(ξϕw − wξϕ)‖
< ε,

which completes the proof of Lemma 5.6.
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Now we are ready to prove the main theorem of the paper.

Proof of Theorem 5.1. By [AW68, Theorem 7.6], it is sufficient to show that
N is an ITPFI-factor. Let ϕ be a Q-stable normal faithful state on N , let
u1, . . . , un ∈ U(N), and let ε > 0. Choose now F , v1, . . . , vn ∈ U(F ) and
w ∈ U(N) as in Lemma 5.6. Put

wk = w∗vkw, k = 1, . . . , n.

Then F1 := w∗Fw is a finite-dimensional subfactor of N , w1, . . . , wn ∈ U(F1)
and

‖wk − uk‖ϕ < ε, k = 1, . . . , n.

Hence if we put ϕ1 = w∗ϕw, then by ϕ = ϕ|F ⊗ ϕ|F c , we have

ϕ1 = ϕ1|F1
⊗ ϕ1|F c

1
.

Since the representing vector of ϕ1 in P♮N is w∗ξϕw, we have

‖ϕ− ϕ1‖ ≤ ‖ξϕ − w∗ξϕw‖‖ξϕ + w∗ξϕw‖
≤ 2‖wξϕ − ξϕw‖
< 2ε.

This shows that ϕ satisfies the product condition in Proposition 2.2, and thus
N is an ITPFI factor.
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