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SUMMARY

Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted

cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human

bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As

shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation

through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain

activity led to precocious OB differentiation and increased vertebralmineralization in zebrafish. Finally, we show that localized increased

expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients

with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bonemicroenvironment contrib-

utes to decreased bone mass in postmenopausal osteoporosis.

INTRODUCTION

Human bone marrow stromal cells (hBMSCs) are non-he-

matopoietic multipotent cells capable of differentiation

into mesodermal cell types such as osteoblasts (OBs) and

adipocytes (ADs) (Abdallah andKassem, 2008). It is increas-

ingly recognized that secreted factors have an important

role inmediating hBMSC function to activelymaintain ho-

meostasis of skeletal tissue. In addition, secreted proteins

mediate the observed therapeutic effects of hBMSCs on

enhancing regeneration of skeletal (Hernigou et al.,

2005), cardiac (Hare et al., 2009), dermal (Bey et al.,

2010), and neural (Yamout et al., 2010) tissues. Character-

izing the functions of proteins secreted by hBMSCs is a

pre-requisite for understanding the mechanisms of their

therapeutic effects and their role in tissue homeostasis in

normal and disease states.

We recently reported a profile of hBMSC-secreted factors

at different stages of ex vivo OB differentiation using a

quantitative proteomic analysis based on stable isotope la-

beling by amino acids in cell culture (Kristensen et al.,

2012). Among the differentially regulated proteins during

OB differentiation, we identified legumain as a secreted

protein that has not been previously implicated in hBMSC

biology.

Legumain (also known as asparaginyl endopeptidase,

AEP), encoded by the LGMN gene, is a broadly expressed

lysosomal cysteine protease that is secreted as inactive pro-

legumain (56 kDa) and processed into enzymatically active

46 and 36 kDa forms, as well as a 17 kDa enzymatically

inactive C-terminal fragment. Legumain directly regulates

diverse physiological and pathological processes by remod-

eling tissue-specific targets (e.g., extracellular matrix [ECM]

components, enzymes, receptors) (Chen et al., 2001; Clerin

et al., 2008; Deryugina and Quigley, 2006; Ewald et al.,

2008, 2011; Liu et al., 2003; Manoury et al., 1998; Mattock

et al., 2010;Miller et al., 2011;Morita et al., 2007; Papaspyr-

idonos et al., 2006; Sepulveda et al., 2009; Solberg et al.,

2015). In addition, legumain indirectly contributes to

atherosclerotic plaque instability through activation of

cathepsin L in the arterial ECM (Clerin et al., 2008; Kita-

moto et al., 2007; Mattock et al., 2010; Papaspyridonos

et al., 2006). Surprisingly, the non-enzymatic 17 kDa

C-terminal fragment is also biologically active and inhibits
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osteoclast differentiation through binding to an uncharac-

terized receptor (Choi et al., 1999, 2001).

Here we report the role of legumain in regulating the dif-

ferentiation fate of hBMSCs. Using cell-based and in vivo

studies we show that legumain inhibited OB differentia-

tion through degradation of fibronectin. During develop-

ment, legumain-deficient zebrafish exhibited precocious

bone formation and mineralization. Finally, abnormal

expression and cellular localization of legumain was

observed in bone biopsies obtained from patients with

postmenopausal osteoporosis. Together, the present study

reveals role of legumain in determining the differentiation

fate of BMSCs thereby regulating bone formation.

RESULTS

Legumain Expression and Activity Are Regulated

during hBMSC Differentiation In Vitro and In Vivo

To assess cellular localization and regulation of legumain

(LGMN) expression during OB differentiation under

normal physiological conditions, we first performed histo-

logical analysis of adult human iliac crest bone biopsies. Le-

gumain immunoreactivity was present in osteoprogenitors

near bone-forming surfaces which included perivascular,

canopy, and reversal cells (Figure 1A) (Delaisse, 2014; Kris-

tensen et al., 2014).We did not detect immunoreactivity in

mature OBs, osteocytes, or osteoclasts (Figure 1A). Legu-

main mRNA showed a similar expression pattern (Fig-

ure 1B). Next, we examined legumain expression and activ-

ity during ex vivo OB differentiation of hBMSCs. LGMN

mRNA expression increased (Figure 1C) and the mature

LGMN protein (36 kDa) accumulated (Figures 1D and 1E)

during the early commitment phase (days 1–6) and were

downregulated during the late maturation phase (days 6–

18) of OB differentiation. Correspondingly, legumain enzy-

matic activity was reduced in differentiatedOBs (Figure 1F).

In contrast, LGMN mRNA expression and protein levels

were increased during AD differentiation of hBMSCs (Fig-

ures 1G–1I).

Legumain Deficiency Enhances OB Differentiation

and Impairs AD Differentiation of hBMSCs

We employed lentiviral transduction to generate hBMSC

lines with stable expression of LGMN shRNA (shLGMN)

or a non-targeting control (shCtrl). shLGMN significantly

reduced legumain mRNA, protein, and activity levels (Fig-

ures 2A–2C). In addition, LGMN knockdown reduced

hBMSC proliferation (Figure S1A). After 6 days under oste-

ogenic culture conditions, LGMN knockdown did not alter

alkaline phosphatase (ALP) activity (Figure 2D), or expres-

sion of the early OB commitment markers ALP and

collagen 1 alpha 1 chain (Col1a1), but significantly upregu-

lated the expression of the late OB maturation markers

bone gamma-carboxyglutamate protein (BGLAP) and in-

tegrin binding sialoprotein (IBSP) (Figure 2E). Moreover,

LGMN knockdown enhanced the formation of mineralized

ECM, as shown by the increased extent and intensity of

alizarin red staining (Figure 2F). In contrast, LGMN knock-

down inhibited AD differentiation (Figures 2G and 2H) and

reduced expression of the AD maker genes: peroxisome

proliferator-activated receptor gamma 2 (PPARG2), fatty

acid binding protein 4 (FABP4) and adiponectin, C1Q

and collagen domain containing (ADIPOQ) (Figure 2I) un-

der adipogenic culture conditions. To determine whether

LGMN knockdown stimulated OB differentiation and

bone-forming capacity in vivo, shLGMN or shCtrl cells

were mixed with hydroxyapatite/tricalcium phosphate

granules as an osteoconductive carrier, and implanted sub-

cutaneously in immune-deficient mice. Histological anal-

ysis of the implants after 8 weeks revealed a significant

2-fold increase in the amount of heterotopic bone formed

by the shLGMN compared with the control (shCtrl) cells

(Figures 2J and 2K). Human-specific vimentin staining

showed that the heterotopic bone was generated by the

transplanted hBMSCs (Figure 2L).

Pharmacological Inhibition of Legumain Activity

Enhances OB Differentiation and Impairs AD

Differentiation of hBMSCs

To determine whether legumain proteolytic activity is

required for its effects on hBMSCs differentiation, we em-

ployed a small-molecule legumain inhibitor (SD-134) (Lee

and Bogyo, 2012). hBMSC cultures incubated for 24 hr

with SD-134 (50–500 nM) exhibited significant legumain

inhibition (Figure S1B), but no effect on cell number was

observed during 12 days treatment (Figure S1C). During

in vitro OB differentiation of hBMSCs, SD-134 (50 nM)

treatment did not induce significant changes in ALP activ-

ity (Figure S1D), but enhanced formation of mineralized

matrix (Figure S1E). In contrast, SD-134 treatment in-

hibited AD differentiation (Figures S1F and S1G).

Overexpression of LGMN Impairs OB Maturation and

Enhances AD Differentiation of hBMSCs

To determine whether increased LGMN activity actively

blocks OB differentiation, we employed a retroviral

transduction system to establish hBMSCs stably overex-

pressing full-length LGMN (hBMSC-LGMN) or an empty

vector control (hBMSC-EV). LGMN overexpression was

confirmed by mRNA, protein, and activity measurements

(Figures 3A–3C). The levels of fully processed and acti-

vated legumain protein (36 kDa) were increased in lysates

from hBMSC-LGMN cells (Figures 3B and 3C). In addition,

secreted prolegumain (56 kDa) was detected in the condi-

tioned media from hBMSC-LGMN cells (Figures 3D and
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Figure 1. Regulation of Legumain Expression during In Vitro and In Vivo Differentiation of Human Bone Marrow Stromal Cells
(A and B) Immunohistochemical (A) and RNA in situ hybridization (B) analysis of legumain expression and localization in normal human
iliac crest bone biopsies. n = 11 donors. Scale bar, 50 mm. Red arrows, canopy cells; black arrows, reversal cells; arrow heads, osteoclasts; v,
vessel.
(C) qRT-PCR analysis of LGMN expression during osteoblast (OB) differentiation of hBMSCs at 6, 12, and 18 days (D6–D18) after start of
differentiation (day 0, D0). Data represent mean ± SD from three independent experiments. *p% 0.05, **p% 0.01, two-tailed unpaired
Student’s t test.
(D) Western blot analysis of legumain expression in cell lysates from hBMSC cultures during OB differentiation.
(E) Quantification of the mature legumain (36 kDa) band intensity. Arbitrary units (ARBU). Data represent mean ± SD from three
independent experiments. *p % 0.05, **p % 0.01, two-tailed unpaired Student’s t test.
(F) Quantification of legumain activity in cell lysates from hBMSCs during OB differentiation. Data represent mean ± SD from three
independent experiments. *p % 0.05, two-tailed unpaired Student’s t test.
(G) qRT-PCR analysis of LGMN expression during adipocyte (AD) differentiation of hBMSCs. Data represent mean ± SD from three inde-
pendent experiments. **p % 0.01, two-tailed unpaired Student’s t test.
(H) Western blot analysis of legumain expression in cell lysates from hBMSC cultures during AD differentiation.
(I) Quantification of the mature legumain (36 kDa) band intensity. Data represent mean ± SD from three independent experiments.
*p % 0.05, two-tailed unpaired Student’s t test.
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Figure 2. Legumain Knockdown Enhanced Osteoblast Differentiation and In Vivo Bone Formation and Inhibited Adipocyte Dif-
ferentiation of Human Bone Marrow Stromal Cells
hBMSCs were stably transfected with control (shCtrl) or LGMN shRNA (shLGMN).
(A) qRT-PCR analysis of LGMN expression. Data represent mean ± SD from three independent experiments. *p% 0.05, two-tailed unpaired
Student’s t test.
(B) Western blot analysis of legumain and GAPDH control. Data represent three independent experiments.
(C) Quantification of legumain activity. Data represent mean ± SD from three independent experiments. **p% 0.01, two-tailed unpaired
Student’s t test.
(D) Quantification of alkaline phosphatase (ALP) activity in the presence of standard culture medium (SCM) or osteoblast induction
medium (OIM) (day 6). Data represent mean ± SD from three independent experiments. p > 0.05, two-tailed unpaired Student’s t test.
(E) qRT-PCR gene expression analysis of the early (ALP, Col1a1) and late (BGLAP, IBSP) OB marker genes. Data represent mean ± SD from
three independent experiments. *p % 0.05, **p % 0.01, two-tailed unpaired Student’s t test.
(F) Quantification of alizarin red staining at day 12. Data represent mean ± SD from three independent experiments. *p% 0.05, two-tailed
unpaired Student’s t test.
(G and H) Quantification of accumulated lipid droplets in the presence of AD induction medium using oil red O staining (day 12). Scale bar,
150 mm, Data represent mean ± SD from three independent experiments. *p % 0.05, two-tailed unpaired Student’s t test.
(I) qRT-PCR gene expression analysis of the AD marker genes PPARG2, FABP4, LPL, and ADIPOQ. Data represent mean ± SD from three
independent experiments. *p % 0.05, two-tailed unpaired Student’s t test.
(J) Histological analysis of in vivo bone formation by hBMSCs stably transfected with non-targeting control shRNA (shCtrl) or LGMN shRNA
(shLGMN), 8 weeks after implantation in immune-deficient mice. Arrows, hydroxyapatite; arrow heads, bone. Scale bars: top panels,
500 mm; bottom panels, 250 mm.

(legend continued on next page)
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3E). In contrast to LGMN knockdown, hBMSC-LGMN

exhibited increased cell proliferation (Figure S1H),

impaired OB maturation, demonstrated by decreased late

OB marker gene expression (BGLAP, IBSP), and decreased

mineralized matrix formation, whereas expression of early

OB commitment markers (ALP, Col1a1) was not altered by

LGMN overexpression (Figures 3F and 3G). hBMSC-LGMN

cells also exhibited enhanced AD differentiation (Figures

3H and 3I), and enhanced expression of AD marker genes

(PPARG2, FABP4, and ADIPOQ) (Figure 3J). Thus, increased

LGMN activity biases hBMSC differentiation to non-OB

fates.

Legumain Degrades Fibronectin during hBMSC

Differentiation

Since ECM proteins play an important role in OB differen-

tiation (Hoshiba et al., 2012) and fibronectin functions as a

master organizer of ECM biogenesis (Halper and Kjaer,

2014), we tested whether the effect of legumain on hBMSC

differentiation is mediated through regulation of fibro-

nectin levels. Lysates from legumain-deficient and legu-

main-overexpressing cells during in vitro OB differentia-

tion showed an inverse relationship between the protein

levels ofmature legumain (36 kDa) and fibronectin (Figures

4A–4F). FibronectinmRNA (FN1) levels did not change dur-

ing OB differentiation (Figure S2A), which is consistent

with post-transcriptional regulation. Incubation of purified

human fibronctin with lysates from legumain-overexpress-

ing HEK293 cells (Smith et al., 2012) confirmed that fibro-

nectin is degraded by a legumain-dependent process in a

dose- and time-dependent manner (Figure S2B). The fibro-

nectin-degrading activity was also present in lysates from

LGMN-overexpressing hBMSCs (Figure 4G). To determine

whether intact fibronectin is required for OB differentia-

tion, we blocked FN1 expression using siRNA, which

inhibitedOBmaturation and formation ofmineralizedma-

trix (Figure 4H). To determine whether fibronectin degra-

dation is sufficient to explain the inhibitory effects of legu-

main on OB maturation, we exposed osteogenic hBMSC

cultures to a panel of purified ECM proteins (gelatin,

collagen type 1, and fibronectin). Both gelatin and fibro-

nectin enhanced the formation of mineralized matrix by

control hBMSC (Figure 4I). However, only fibronectin

blocked the inhibitory effect of legumain on OB differenti-

ation and function (Figure 4J), suggesting that fibronectin

is an endogenous legumain target.

Legumain-Deficient Zebrafish Exhibit Precocious OB

Differentiation and Bone Mineralization

To examine the function of legumain during bone develop-

ment, we targeted the essential peptidase domain within

the zebrafish lgmn locus using transcription activator-like

effector nucleases (TALENs) (Figure 5A). High-resolution

melt analysis (HMRA) indicated that the lgmn gene was

extensively modified in lgmn-TALEN-injected animals (Fig-

ure 5B). To quantify the extent of lgmn disruption, we used

ON/OUT qPCR (Shah et al., 2015) and determined that

�84% of lgmn alleles were modified. We proceeded to

analyze OB differentiation and function in the lgmn-

TALEN-injected animals compared with non-targeted con-

trol-injected animals. At 5 days post-fertilization (dpf)

lgmn-deficient animals exhibited increased expression of

genes associated with OB differentiation, including alka-

line phosphatase (alp) and osteopontin (spp1), while the

expression of the adipogenic marker PPAR-gamma (pparg)

was unchanged (Figure 5C). By 7 dpf lgmn-deficient

zebrafish did not show any gross morphological defects

(Figure 5D). However, there were approximately twice

as many mineralized vertebrae in lgmn-TALEN-injected an-

imals compared with controls (Figures 5E and 5F). Next, we

tested whether post-embryonic OB progenitors remained

sensitive to legumain activity. Zebrafish embryogenesis is

complete by 3 dpf (Kimmel et al., 1995). Therefore, we

treated animals from 3 to 7 dpf with the legumain inhibitor

SD-134. Consistent with the osteogenic effect of genetic

lgmn disruption, SD-134-treated zebrafish exhibited an in-

crease in the number of mineralized vertebrae at 7 dpf

(Figure 5G).

Legumain Serum Levels Decrease with Aging, and

Local Expression of Legumain Is Increased in the Bone

Microenvironment of Osteoporotic Patients

Legumain has recently been identified as a biomarker for

diverse pathological states (Ashley et al., 2016; Guo et al.,

2013; Lin et al., 2014; Lunde et al., 2016; Wang et al.,

2012; Wu et al., 2014). We examined serum levels of legu-

main in 89 women aged 48–87 years and found an inverse

relationship between serum legumain levels and age (Fig-

ure 6A). To determine legumain-localized activity within

the bone microenvironment, we established primary

hBMSC cultures from iliac crest bone marrow aspirates. Le-

gumain levels were significantly higher in osteoporotic

patients compared with age-matched controls (Figures 6B

(K) Quantification of the heterotopic bone formation, n = 4 implants for each cell type, Data represent mean ± SEM. *p % 0.05, Mann-
Whitney test.
(L) Human-specific vimentin staining of shLGMN implants. Arrows, hydroxyapatite; arrow heads, bone. Scale bars: top panels, 500 mm;
bottom panels, 250 mm. ab, antibody.
See also Figure S1.
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and 6C). In addition, immunohistochemical analyses of

bone biopsies from postmenopausal osteoporotic patients

(n = 13) and age-matched controls (n = 11) revealed legu-

main overexpression in bonemarrowADs inmost osteopo-

rotic samples (8 out of 13) (Figure 6D). To determine

whether legumain-overexpressing ADs affected adjacent

Figure 3. Legumain Overexpression Inhibited Osteoblast and Enhanced Adipocyte Differentiation of Human Bone Marrow Stromal
Cells
See also Figure S1.
(A–C) Legumain (LGMN)-transduced hBMSCs was established using a retroviral transduction system and the successful overexpression of
legumain was confirmed using (A) qRT-PCR analysis of LGMNmRNA expression, (B) western blot analysis of legumain in cell lysate, and (C)
quantification of legumain activity. Data represent mean ± SD from three independent experiments. **p % 0.01, two-tailed unpaired
Student’s t test.
(D–G) Secretion of legumain in the conditioned medium (CM) was evaluated using (D) ELISA measurement (data represent mean from three
technical replicates) and (E) western blot analysis of legumain in the CM from hBMSC-LGMN-overexpressing cell line (LGMN-CM) (data
represent three independent experiments). To assess the effects of legumain on OB differentiation, control hBMSCs containing empty
vector (E.V.) and hBMSC-LGMN cell lines were cultured in OB induction medium, and expressions of OB marker genes were analyzed using
qRT-PCR (F) and mineralized matrix formation was determined by quantification of eluted alizarin red staining (G). Data represent mean ±
SD from three independent experiments. *p % 0.05, **p % 0.01, two-tailed unpaired Student’s t test.
(H and I) To assess the effect of legumain on AD differentiation, control hBMSCs and hBMSC-LGMN cell lines were cultured in AD induction
medium, and (H), (I) accumulation of lipid droplets was measured by quantification of the eluted oil red O staining, *p% 0.05, two-tailed
unpaired Student’s t test. Scale bar, 150 mm.
(J) Expressions of AD marker genes were measured by qRT-PCR (day 7). Data represent mean ± SD from three independent experiments.
*p % 0.05, two-tailed unpaired Student’s t test. E.V., empty vector; LGMN, legumain-overexpressing hBMSCs.
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Figure 4. Legumain Degrades Fibronectin in Human Bone Marrow Stromal Cell cultures
(A) Western blot analysis of legumain and fibronectin in cell lysates of hBMSC lines with stable knockdown of legumain (shLGMN) during
ex vivo OB differentiation (day 0–7).
(B and C) Quantification of protein band intensities in (A). *p % 0.05, **p % 0.01, two-tailed unpaired Student’s t test.
(D) Western blot analysis of legumain and fibronectin in cell lysates of hBMSC lines with stable overexpression of legumain (LGMN) during
ex vivo OB differentiation (day 0–7).
(E and F) Quantification of protein band intensities in (D). Data represent mean ± SD from three independent experiments. *p % 0.05,
**p % 0.01, two-tailed unpaired Student’s t test.
(G) Western blot analysis of human fibronectin degradation by purified legumain from bovine kidneys (bLeg; 10:1 w/w; control) and the
cell lysates from hBMSCs stably transfected with E.V. or legumain (LGMN; legumain overexpression).
(H) Quantitation of mineralized matrix formation on day 15 of OB differentiation, in the presence of siRNA against fibronectin (siFN) and
non-targeting control siRNA (siCtrl). Data represent mean ± SD from three independent experiments. **p % 0.01, two-tailed unpaired
Student’s t test.
(I and J) Effect of different ECM proteins (gelatin, collagen 1, or fibronectin) on mineralized matrix formation by hBMSCs visualized
by alizarin red staining and quantification. Data represent mean ± SD from three independent experiments. *p % 0.05, **p % 0.01,
two-tailed unpaired Student’s t test.
See also Figure S2.
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bone formation, we measured the trabecular bone volume

in 80 random regions of interest (ROI = 1mm2) in osteopo-

rotic bone biopsies. Regions with legumain-positive ADs

exhibited significantly reduced trabecular bone volume

and there was an inverse relationship between legumain

immunoreactivity in ADs and the local trabecular bone vol-

ume (Spearman r = �0.314, p = 0.004) (Figure 6E).

DISCUSSION

Our findings demonstrate a physiological role of legumain

in regulating bone formation and possibly bone mass, as

well as a role in the pathophysiology of reduced bone

mass observed in patients with postmenopausal osteopo-

rosis. In particular, we find that legumain functions in

the bone-remodeling microenvironment to inhibit OB dif-

ferentiation and to enhance AD differentiation of hBMSCs,

through regulation of ECM fibronectin deposition.

Our studies demonstrate that legumain inhibits late

stages of ex vivo OB differentiation and the formation of

mineralized ECM, suggesting that legumain regulates the

ECM-hBMSC interaction that is required for the expression

of the mature OB phenotype (Mathews et al., 2012). We

identified fibronectin degradation as a mediator of legu-

main effects, similar to its role in renal proximal tubular

cells, which is required for normal renal function (Morita

et al., 2007). Fibronectin is known to enhance OB

Figure 5. Legumain Inhibits OB Differentiation and Bone Mineralization In Vivo
(A) Conservation of zebrafish lgmn. I, amino acid identity; S, amino acid similarity.
(B) High-resolution melting analysis of pooled lgmn-TALEN and control-injected animals at 3 days post-fertilization (dpf).
(C) qRT-PCR analysis of OB and AD marker genes at 5 dpf. Data represent mean ± SEM of three pools of ten animals. *p% 0.05, two-tailed
unpaired Student’s t test.
(D and E) Control and lgmnmutant animals at 7 dpf. Scale bars, 500 mM. (D) Bright field and (E) fluorescent alizarin red staining. (E0 and E00)
Higher-magnification images of boxed regions. Arrowheads, whole vertebrae stained; arrows, partial vertebrae stained. Scale bars, 100 mM.
(F) Number of alizarin-red-stained vertebrae in lgmn and control animals at 7 dpf. Data represent mean ± SEM, n > 30 for each group.
*p % 0.05, ***p % 0.005 two-tailed unpaired Student’s t test.
(G) Animals were treated with SD-134 (500 mM) or 1% DMSO from 3 to 7 dpf. Number of alizarin-red-stained vertebrae at 7 dpf. Data
represent mean ± SEM, n = 12 for each group. ***p % 0.005 two-tailed unpaired Student’s t test.
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Figure 6. Effect of Aging and Osteoporosis on Legumain Protein Levels in Human Serum and Bone Microenvironment
(A) Serum legumain levels in 89 women, aged 48–87 years, p < 0.0001 using Spearman correlation analysis.
(B) Western blot analysis of mature legumain (36 kDa) and GAPDH in cell lysates from primary hBMSC cultures established from bone
marrow aspirates of osteoporotic patients (n = 5) and age-matched controls (n = 3).
(C) Quantification of western blot band intensities normalized to GAPDH. Data represent mean ± SD from three independent experiments.
***p % 0.005, two-tailed unpaired Student’s t test.
(D) Upper panel: legumain staining of bone biopsies from postmenopausal osteoporotic patients (n = 11) and age-matched control in-
dividuals (n = 13). Scale bars, 1 mm. Lower panel: higher-magnification images of the boxed regions. Scale bars, 50 mm.
(E) Correlation of trabecular bone area with legumain expression by adipocytes in biopsies from postmenopausal osteoporotic patients
(n = 80 random regions of interest [ROI] = 1 mm2), p = 0.004 using Spearman correlation analysis.
(F) Proposed mode-of-action of legumain for regulation of hBMSC lineage commitment.
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differentiation through interaction with the a5b1 integrin

receptor and is required for OB maturation, survival, and

matrix mineralization (Brunner et al., 2011; Linsley et al.,

2013; Mathews et al., 2012; Moursi et al., 1997). In

contrast, fibronectin exerts inhibitory effects on lipid accu-

mulation and AD differentiation (Antras et al., 1989; Rodri-

guez Fernandez and Ben-Ze’ev, 1989; Spiegelman and

Ginty, 1983).

Our data suggest that the proteolytic activity of legumain

is important for its effects on hBMSC differentiation and

bone formation. Legumain has been reported to regulate

bone resorption through inhibition of osteoclast formation

and function by its C-terminal fragment (17 kDa), which is

enzymatically inactive, suggesting that legumain exerts

protease-independent functions (Choi et al., 1999). In

addition, legumain exhibits carboxypeptidase (Dall and

Brandstetter, 2013) and peptide ligase activity (Dall et al.,

2015). The possible involvement of these actions of legu-

main in regulating skeletal homeostasis requires further

studies.

We observed that genetic loss- and gain-of-function of le-

gumain were associated with changes in BMSC prolifera-

tion. However, regulation of BMSC proliferation by legu-

main is independent of its enzymatic activity, since

small-molecule inhibition of legumain activity did not

alter BMSC proliferation. This observation corroborates

previous reports showing regulation of cell proliferation

by legumain, independent of its enzymatic activity (An-

drade et al., 2011). Further support of the potential role

of legumain in osteoprogenitor cell proliferation is based

on its colocalization with the proliferating osteoblastic

cells in human bone biopsies. The proliferation status of

osteoprogenitor cells near the bone-forming surfaces, as

determined by immunohistochemical analysis of Ki-67,

has been previously reported in human bone specimens

(Kristensen et al., 2014). Interestingly, the pattern of Ki-

67 immunoreactivity coincided with legumain expression,

as the legumain-positive osteoprogenitor cells (such as can-

opy cells) are also Ki-67 positive, whereas the mature oste-

oblastic cells (such as bone-lining cells) are both legumain

negative and Ki-67 negative.

We employed the zebrafish model to investigate the

developmental and pharmacological effects of legumain

inhibition in vivo. Zebrafish is an attractive model for

in vivo screening studies, due to the molecular and cellular

conservation of skeletal development and its predictive

value when studying human diseases (Fisher et al., 2003;

Grimes et al., 2016; Hayes et al., 2014; Li et al., 2009). For

example, mutations in zebrafish collagen type IA1 repro-

duce many aspects of osteogenesis imperfecta (Fisher

et al., 2003), and ptk7 mutant zebrafish have been identi-

fied as suitable models for scoliosis (Grimes et al., 2016).

We extend the usefulness of this model by showing that

late developmental events such as the mineralization of

vertebrae are amenable to analysis in TALEN-injected ani-

mals. Our finding that legumain-deficient zebrafish exhibit

enhanced OB differentiation and bone mineralization is

consistent with the in vitro effects of legumain knock-

down. In addition, we show that post-embryonic pharma-

cological inhibition of legumain recapitulates the osteo-

genic effects of genetic legumain ablation.

The serum levels of legumain decreased with aging,

which was counterintuitive in relation to the proposed

function of legumain in bone. However, the major tissue

source(s) of serum legumain are not known and the

decline in serum levels of legumain with aging may be

connected to age-related decrease in renal function that

may influence both clearance and production of legumain

(the kidneys could be a major source of circulating legu-

main, but this is not clear at the moment). Thus, direct ex-

amination of legumain within the bone microenviron-

ment is required for understanding its biological role in

skeletal homeostasis.

Osteoporosis is a systemic bone disease, characterized

by decreased bone formation, reduced bone mass, and

disruption of normal bone architecture, resulting in

bone fragility and increased risk of fractures (Compston,

2010). Legumain expression was elevated in hBMSCs

from osteoporotic patients and, at single-cell resolution,

legumain overexpression in ADs inversely correlated

with local trabecular bone volume. Bioinformatic analysis

revealed the presence of NF-kB binding sites in the legu-

main promoter, suggesting that the proinflammatory cy-

tokines (e.g., TNF-a and IL6), known to be upregulated

in osteoporotic bone marrow microenvironment (Char-

atcharoenwitthaya et al., 2007), could regulate legumain

expression.

In summary, our findings identified legumain as a ‘‘mo-

lecular switch’’ with opposing effects on bone and fat

formation by hBMSCs through degradation of the ECM

protein fibronectin (Figure 6F) and that altered expression

of legumain in the bone microenvironment contributes

to the pathophysiology of trabecular bone loss in osteopo-

rosis. Finally, our data suggest that inhibition of legumain

activity would be a promising approach to enhance bone

regeneration.

EXPERIMENTAL PROCEDURES

Cell Culturing, Differentiation, and siRNA

Transfection
We have employed our well-characterized hBMSC-TERT cell line

(as amodel of hBMSC) established by ectopic expression of the cat-

alytic subunit of human telomerase, as described previously (Ab-

dallah et al., 2005; Simonsen et al., 2002). Primary hBMSC cultures

were established from bone marrow aspirates of osteoporotic
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patients and age-matched control subjects, as described before (Lee

et al., 2004). Informed consent was obtained from all donors and

the study was approved by the Scientific Ethics Committee of

the Region of Southern Denmark (issue no. 2003-41-3206, 2008-

00-92). Cells were cultured in standard culture medium (SCM)

containingminimal essential medium (MEM) (Invitrogen) supple-

mented with 10% fetal bovine serum (FBS) and 1% penicillin/

streptomycin (P/S) (Gibco) at 37�C in a humidified atmosphere

containing 5% CO2. All employed cell types were regularly tested

for mycoplasma contamination.

Cell culture plates were coated with collagen type 1 (6 mg/cm2;

Sigma), gelatin (1 mg/cm2; Sigma), or fibronectin (1 mg/cm2; Sigma)

and incubated at room temperature for 1 hr. The solutionwas then

removed and the plates were air dried for 45 min, rinsed with PBS

(without Ca2+ or Mg2+) followed by seeding cells.

For OB differentiation, 20 3 103 cells/cm2 were seeded and

induced with OB induction medium (OIM) containing 10 mM

b-glycerophosphate (Calbiochem), 10 nM dexamethasone

(Sigma), 50 mg/ml L-ascorbic acid (Wako Pure Chemicals Indus-

tries), 10 nM 1,25-dihydroxyvitamin D3 (LEO Pharma) in MEM

supplemented with 10% FBS and 1% P/S. The medium was

changed every third day. Control cells were cultured in SCM.

Quantification of ALP activity and alizarin red staining were per-

formed as described previously (Jafari et al., 2015).

For AD differentiation, cells were plated at a density of 35 3

103 cells/cm2 and induced with adipogenic induction medium

containing 10% horse serum (Gibco), 100 nM dexamethasone

(Sigma), 500 nM insulin (Sigma), 1 mM BRL49653 (Sigma),

and 0.25 mM 3-isobutyl-1-methylxanthine (Sigma) in MEM

medium supplemented with 10% FBS and 1% P/S. The medium

was changed every third day. Control cells were cultured in

SCM. Oil red O staining of the accumulated lipid droplets

in mature ADs was performed as described previously (Jafari

et al., 2015).

Small interfering RNA (siRNA) transfection was carried out as

described previously (Jafari et al., 2015). In brief, Lipofectamine

2000wasusedas transfection reagentanda reverse-transfectionpro-

tocol was employed according to the manufacturer’s instructions

(Invitrogen) and OB differentiation was induced 48 hr after

siRNA transfection.Non-targetingno. 1 siRNA (Ambion) and siRNA

against fibronectin (sense: GGCUCAGCAAAUGGUUCAGtt) (Am-

bion) were used at 25 nM (Hammond and Kruger, 1988) (Schuck

et al., 2004).

Legumain Activity Assay
Cells were washed with PBS and lysed using lysis buffer containing

1 mM disodium EDTA, 100 mM sodium citrate, 1% n-octyl-b-D-

glucopyranoside (pH 5.8). The total protein concentration in the

lysates was measured using Bradford assay (Hammond and Kruger,

1988). To measure legumain activity, 10 mg total protein in a total

volumeof 20 mLwas added to 100 mL of assay buffer (39.5mMcitric

acid, 121 mM Na2HPO4, 1 mM Na2EDTA, 0.1% 3-[(3-cholamido-

propyl)dimethylammonio]-1-propanesulfonate, and 1 mM DTT)

in a dark 96-well plate, followed by adding 50 mL of peptide sub-

strate (Z-Ala-Ala-Asn-AMC; 10 mM final concentration) (Bachem)

in assay buffer as described previously (Johansen et al., 1999).

The plate was then incubated at 30�C for 1 hr and the fluorescent

intensity (380EX/460EM) was measured using a FLUOstar Omega

multimode microplate reader.

Heterotopic Bone Formation Assay In Vivo
To evaluate the in vivo bone formation, 5 3 105 cells of either

shLGMN or shCtrl cell lines were loaded on scaffolds containing

40 mg hydroxyapatite/tricalcium phosphate ceramic powder

(Zimmer Scandinavia), incubated at 37�C overnight, and im-

planted subcutaneously on the dorsal side of 8-week-old female

non-obese diabetic.CB17-Prkdcscid/J mice as described previously

(Abdallah et al., 2008). A simple randomization method was used

to assign mice to different groups. After 8 weeks, implants (n = 4

implants/cell line) were retrieved and fixed in 4% formaldehyde

for 24 hr, decalcified in formic acid for 3 days, and embedded in

paraffin. sections (4 mm, n = 9/implant) were cut and stained

with H&E(Bie & Berntsen). Bone volume per total volume was

blindly quantified using pixel scoring method as described previ-

ously (Abdallah et al., 2008). Human-specific vimentin staining

(Thermo Scientific, RM-9120) was used to show that the bone

formed in the implants was of human origin. Mice experiments

were carried out in accordance with permissions issued by the

Danish Animal Experiments Inspectorate (2012-DY-2934-00006).

Zebrafish Studies
Zebrafish (Danio rerio) were housed at 28�C, in a 14 hr light and

10 hr dark cycle. Embryos were collected by natural spawning

and raised at 28�C in E3 solution according to standard protocols

(Westerfield, 2007). A pair of TALENs recognizing exon 4 of the ze-

brafish lgmn gene were constructed by the platinum gate method

(Sakuma et al., 2013). lgmn_TAL1: NN-NG-NN-NG-NG-NG-NI-

NN-NG-NI-NI-HD-HD-HD-NG-NI-HD. lgmn_TAL2: HD-HD-NI-

NG-NG-NG-NN-NN-NG-HD-NG-NN-NG-NG. TALEN mRNA was

synthesized by in vitro transcription using the T7 mMESSAGE

mMACHINE Kit (Ambion). mRNA (125 pg) encoding each TALEN

heterodimer was injected into the cytoplasm of the cell of one-cell-

stage wild-type zebrafish embryos. Control injections used

lgmn_TAL1 and an irrelevant TAL2. TALEN efficiency was moni-

tored by HRMA using KAPA-HRM master mix (Kapa Biosystems)

on an Eco Real-Time PCR machine (Illumina). HRMA_F: 50-TGA

TTT GTC AGT TCT TGC TCC TT-30. HRMA_R: 50-ACT TAC GTC

CCC AAT GTA GTC C-30. ON/OUT PCR was performed as

described using HRMA_F + HRMA_R as outer primers and

HRMA_F + lgmn_ON: 50-CCA TTT GGT CTG TTT ATG ACC ACT-

30 for ‘‘ON’’ PCR (Shah et al., 2015). Total RNA was extracted

from cultured cells using TRIzol reagent (Invitrogen) and the

aqueous phase was isolated by column purification (Zymo

Research). qRT-PCRwas performed using a KAPAOne-Step Univer-

sal Master Mix (KAPA Biosystems) on an Eco Real-Time PCR ma-

chine (Illumina) using the DDCT method. Table S3 shows the

primers used for qRT-PCR. Alizarin red staining and blind quanti-

fications of the vertebrae were performed as described previously

(Westerfield, 2007) and imaged with a Leica M165 FC microscope.

SD-134 was added to E3medium at 500 mM in 1%DMSO from 3 to

7 dpf. Simple randomization was used to assign the fish to SD-134

or DMSO groups. The use and treatment of zebrafish in this project

were in accordance with and approved by the Animal Ethics Re-

view Committee, Garvan Institute of Medical Research.
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Immunohistochemical Analyses of Human Bone

Specimens
Bone biopsy specimens from 13 postmenopausal osteoporotic pa-

tients (mean age, 77 years; range, 68–86 years) and 11 age-matched

controls (mean age, 75 years; range, 67–83 years) were included in

the study (Kristensen et al., 2014). In accordance with approval

from theDanishNationalCommitteeonBiomedical Research Ethics

(journal no S-2007.01.21), formal consent was not required for the

controls, whose biopsies were included in the study retrospectively;

oral and written informed content was obtained from the osteopo-

rotic donors included in the study. Sections (3.5-mm thick) from the

decalcified paraffin-embedded bone specimens from postmeno-

pausal osteoporotic patients and controls were immunostained

with mouse anti-legumain (1:400, Santa Cruz, SC-133234, clone

B-8) antibodies, which were labeled with peroxidase-conjugated

anti-mouse IgG polymers (1:10; DPVM110HRP, BrightVision).

The signal was amplified with digoxigen-conjugated peroxidase-

reactive tyramide (1:900; NEL748B001KT, Perkin-Elmer), labeled

with alkaline-phosphatase-conjugated sheep anti-digoxigen (1:500;

11093274910, Roche), and visualized with Liquid Permanent Red

(DAKO). The stained sections were counterstained with Mayer’s he-

matoxylin and mounted with Aqua-Mount. The semi-quantitative

analyses estimated the prevalence of cells with either weak (+1),

moderate (+2), or strong (+3) staining within the different cell popu-

lations. We employed systematic random analysis for selection of

visual fields following the central axis in the biopsies. The H score

(range, 0–300) was calculated using the previously published equa-

tion (Andersen et al., 2013; Detre et al., 1995). H score =
P

Pi 3 i,

where i is the staining intensity (0–3) and Pi is the percentage of cells

stained with each intensity (0%–100%).

Statistical Analysis
Statistical analyses were performed using Prism 6.0 (GraphPad) or

Microsoft Excel 2010. Data are represented as mean ± SD of at least

three independent experiments, unless otherwise stated. Normal

distribution of the data was tested using the D’Agostino-Pearson

omnibus normality test. Testing for statistical differences between

variables was carried out using two-tailed unpaired Student’s t test

on the normally distributed data. Statistical differences between

variables that did not follow normal distribution were determined

using the Mann-Whitney test. Linear regression analysis and the

Spearman correlation coefficient (r) were employed for the correla-

tion analyses. p % 0.05 was considered statistically significant.
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