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RESEARCH Open Access

Marrow adipocytes inhibit the
differentiation of mesenchymal stem
cells into osteoblasts via suppressing
BMP-signaling
Basem M. Abdallah1,2,3

Abstract

Background: Reduced bone formation is associated with increased bone marrow fat in many bone-loss related
diseases including aging, post-menopause, and anorexia nervosa. Several lines of evidence suggested the
regulation of osteogenesis and adipogenesis of the bone marrow-derived mesenchymal (skeletal) stem cells
(BMSCs) by paracrine mediators. This study aimed to investigate the impact of adipocytes-secreted factors on the
cell proliferation and osteoblast differentiation of BMSCs.

Methods: Serum free conditioned medium (CM-Adipo) was collected from stromal ST2 cells-derived adipocytes.
Cell viability, quantitative alkaline phosphatase (ALP) activity assay, Alizarin red staining for matrix mineralization and
osteogenic gene array expression were performed to determine the effect of CM-Adipo on cell proliferation and
osteoblast differentiation of primary murine BMSCs (mBMSCs). Regulation of BMPs and NF-κB signaling pathways by
CM-Adipo were detected by Western blot analysis and gene reporter assay.

Results: CM-Adipo showed no effect on cell viability/proliferation of primary mBMSCs as compared to CM-control.
On the other hand, CM-Adipo significantly inhibited the commitment of mBMSCs into osteoblastic cell lineage in
dose-dependent manner. CM-Adipo was found to dramatically inhibit the BMP2-induced osteoblast differentiation
and to activate the inflammatory NF-κB signaling in mBMSCs. Interestingly, treatment of mBMSCs with the selective
inhibitor of NF-κB pathway, BAY11-770682, showed to retrieve the inhibitory effect of CM-Adipo on BMP2-induced
osteoblast differentiation in mBMSCs.

Conclusions: Our data demonstrated that the marrow adipocytes exert paracrine inhibitory effect on the osteoblast
differentiation of mBMSCs by blocking BMPs signaling in a mechanism mediated by adipokines-induced NF-κB
pathway activation.

Keywords: Mesenchymal stem cells, BMSCs, Osteoblast, Adipocyte, Paracrine factors, osteoblast differentiation

Background
Bone marrow-derived mesenchymal stem cells (BMSCs,
also known as bone marrow skeletal stem cells) reside in
the perivascular compartment of bone marrow and can
differentiate into osteoblast and adipocyte cell lineages
among other mesoderm cell types [1, 2]. BMSCs hold a

great promise in cell-based therapy for many degenerative
diseases including osteoporosis, due to their differenti-
ation potential, immune-modulatory functions and the
secretion of paracrine factors involved in endogenous
tissue regenerative capacity [3, 4].
Lineage-specific differentiation of BMSCs into either

osteoblasts or adipocytes is regulated by many paracrine
factors including cytokines/growth factors and hormones
that act to induce intercellular signaling and subsequently
activate the key transcriptional factors, core-binding factor
1(CBFA1/Runx2) [5], or peroxisome proliferator-activated
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receptor gamma 2 (PPARγ2) [6] for osteogenesis and
adipogenesis respectively.
Adipocytes-secreted adipokines and free fatty acids

affect both osteoblasts and osteoclasts formation/activity
and therefore mediate skeletal homeostasis [7, 8].
Marrow fat volume was observed to be increased in ani-
mal models of ovariectomy, aging and calorie restriction
and in human, it was inversely correlated with BMD in
the clinical conditions of aging, post-menopause, and
anorexia nervosa (for review, [9–14]. Several studies
attributed this increased marrow adiposity to the shifting
in the differentiation capacity of BMSCs towards adipo-
cyte versus osteoblast cell lineage, suggesting an inverse
relationship between these two lineages [10, 15–17]. In
vitro and in vivo studies reported a paracrine regulatory
mechanism for controlling this inverse relationship be-
tween osteoblast and adipocyte differentiation of BMSCs
[7, 9, 10]. For examples: adipocytes secrete factors that
inhibit osteoblastogenesis and favor adipogenesis, such
as sFRP-1 [18], sFRP-4, and chemerin [19] and pro-
inflammatory cytokines [20].
To answer the question whether increased marrow

adipocytes is one of the main contributing factor to
reduce osteoblast differentiation and bone formation in
osteoporosis, we aimed in this study to investigate the
impact of adipocyte-secreted factors on BMSCs prolifer-
ation and osteoblast differentiation. Thus, we studied
the paracrine effect of the serum free condition medium
collected from stromal ST2 cell line-derived adipocytes
(CM-Adipo) on the cell proliferation and differentiation
of murine BMSCs. Results showed the inhibitory effect
of adipocyte-secreted factors on the differentiation of
mBMSCs into osteoblastic cell lineage without affecting
their proliferation. Interestingly, CM-Adipo was found
to block BMP2-induced osteogenesis via activating the
inflammatory NF-κB pathway.

Methods
Cell culture
Mouse stromal cells ST2 was obtained from Leibniz
Institute DSMZ-German Collection of Microorganisms
and Cell Cultures (ACC 333, Braunschweig, Germany).
Cells were cultured in DMEM supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin
(P/S) (all purchased from Gibco Invitrogen, USA).
Mouse BMSCs were isolated from wild-type 8-weeks-

old male C57BL/6 J mice as previously described [21]. In
brief, the ends of mouse tibia and femur were cut and
placed in special adapted Eppendorf tubes, centrifuged
for 1 min at 400 g to collect the marrow cells. Cell were
filtrated through a 70-μm nylon mesh filter and cultured
in 175 cm2 flasks in RPMI-1640 medium supplemented
with 12% FBS (Gibco Invitrogen, USA), 12 μM L-glu-
tamine (Invitrogen) and 1% penicillin/streptomycin (P/S)

(Gibco Invitrogen, USA). Non-adherent cells were re-
moved after 24 h by washing with PBS, and adding 30 ml
of fresh medium. Every 3 to 4 day, cells were washed, and
fresh medium was added for a period of 4 weeks. After
4 weeks, cells were washed and trypsinized.
The NF-κB inhibitor, BAY11-7082, that inhibits IκBα

[inhibitor of NF-κB (nuclear factor κB)α] phosphoryl-
ation in cells [22] and insulin were from Sigma-Aldrich
ApS (Brondby, Denmark). Bone morphogenetic protein-
2 (BMP2), recombinant PDGF-BB and recombinant
murine WNT-3a were purchased from PeproTech
(London, UK). The concentrations of different growth
factors were selected as previously describe [23–25], or
based on manual instructions.

Collection of conditioned medium (CM)
ST2 cells and primary isolated murine BMSCs were
induced to differentiate into adipocytes for 12 days as
described below. To avoid any influence from the adipo-
genic inducer factors (i.e 1-methyl-3-isobutylxanthine
(IBMX), dexamethasone and insulin) in the collected
CM, medium was changed with serum free DMEM
containing 1% P/S, and the adipocyte-derived CM (CM-
Adipo) was collected after 24 h. Serum free control CM
(CM-Control) was collected from un-differentiated ST2
cells that cultured for 12 days in basal culture medium.
Collected CM was centrifuged for 10 min at 1000 rpm
and aliquoted into small aliquots for different experi-
ments. Based on the experimental setting, the serum free
CM was used at either 100% or diluted with DMEM at
25% or 50%. FBS and other osteogenic inducers were
added freshly to the CM upon studying the effect of
CM-Adipo on osteogenesis of mBMSCs. CM-Adipo
obtained from ST2 cells-derived adipocytes was used
throughout this study, except otherwise stated.

Cell proliferation study
Short-term in vitro cell growth was determined by
culturing the cells at 2000 cells/well in 4 well plates in
either CM-Adipo (100%) or CM-control (100%) supple-
mented with 2% FBS. Cells were trypsinized and counted
by the hemocytometer.

Real time-polymerase chain reaction (RT-PCR)
RNA was extracted using TRIzol according to the manu-
facturer’s instructions (Invitrogen) and the first strand
cDNA was synthesized from 1 μg of total RNA using a
Revert Aid™ H minus first strand cDNA synthesis kit
(Fermentas, St Leon-Rot, Germany). RT-qPCR was
performed using an ABI StepOne™ Real-TIME PCR ma-
chine (Life Technologies/Applied Biosystems) with using
Fast SYBR® Green Master Mix (Applied Biosystems,
California, USA). The targeted primers and reference
genes are shown in Additional file 1: Table S1. The data
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were normalized to the geometric means of the refer-
ence genes β-actin and HPRT. The relative expression
levels of each target gene were calculated using a
comparative CT method [(1/(2ΔCT ) formula, where ΔCT

is the difference between CT-target and CT-reference]
with Microsoft Excel 2007®.

PCR array analysis
Total RNA was extracted from mBMSCs induced to
osteoblast differentiation in either CM-Control or CM-
Adipo. Osteogenic RT2 Profiler™ PCR array, containing
84 osteoblast-related genes (Qiagen Nordic), was per-
formed for each sample in triplicates using SYBR® Green
quantitative PCR method on Applied Biosystems 7500
real-time PCR system and data were analyzed according
to the manufacturer’s instructions.

Adipocyte differentiation
Cells were plated at 15,000 cells/cm2 and cultured for
12 days in adipogenic-induction medium (AIM; DMEM
supplemented with 9% horse serum, 450 μM 1-methyl-
3-isobutylxanthine (IBMX), 100nM dexamethasone,
5 μg/mL insulin (Sigma-Aldrich) and 1 μM rosiglitazone
(BRL 49653, Cayman Chemical, Ann Arbor, Michigan).
The media was changed every three days.

Osteoblast differentiation
Osteoblast differentiation was performed in cells plated
at 10,000/cm2 in osteoblast-induction media (OIM) con-
taining DMEM supplemented with 10% FBS 10 mM
beta glycerophosphate (Calbiochem-Merck, Germany),
50 μg/mL L-ascorbic acid-2-phosphate (Wako Chemi-
cals GmbH, Germany) and 10nM dexamethasone
(Sigma-Aldrich, Denmark). The medium was changed
every three days during induction period.

Alkaline phosphatase (ALP) activity and quantification
ALP activity was performed after 6 days of osteoblastic
induction. Cell viability was determined using the Cell
Titer-Blue cell viability assay according to the manufac-
turer’s instructions (Promega, USA) and the viability
measured at 560Ex/590Em nm using a FLUO star Omega
plate reader (BMG Laboratories). ALP activity was deter-
mined following incubation with 1 mg/ml of P-nitro
phenyl phosphate in 50 mMNAHCO3 and 1 mM MgCl2
buffer (pH 9.6) at 37 °C for 20 min. The activity was
stopped by addition of 3 M NaOH. The reaction absorb-
ance was measured at 405 nm using a FLUO star Omega
plate reader and ALP activity corrected for cell viability.

Alkaline phosphatase (ALP) staining
After 6 days of osteoblast differentiation, cells were fixed
with acetone/10 mM citrate buffer pH4.2 (1.5:1 ratio) at
room temperature for 5 min and incubated for 1 h at

room temperature with ALP substrate staining solution
containing 0.2 mg/ml Naphtol-AS-TR-phosphate dis-
solved in distilled water (1:5) and 0.417 mg/ml Fast Red
dissolved in 0.1 M Tris buffer.

Oil Red O staining and quantification
At day 12 of adipocyte induction, cells were fixed in 4%
paraformaldehyde for 10 min at room temperature and
then stained with Oil Red O (0.5 g in 100% isopropanol)
(Sigma, USA). Lipid accumulations were quantified by
elution of Oil Red O in absolute isopropanol for 10 min
at room temperature. The absorbance of the extracted
dye was detected at 490 nm.

Alizarin Red S staining and quantification
Calcium deposition, at day 12 of osteoblastic differenti-
ation, was measured using Alizarin Red staining. Osteo-
blasts were fixed with 70% ice-cold ethanol for 1 h at
-20 °C before addition of AR-S (40 mM; Sigma-Aldrich)
dissolved in distilled water, pH 4.17. The cells were
stained for 10 min at room temperature. The level of
calcium deposition was quantified by elution of AR-S
following incubation in 10% cetylpyridinium chloride
(Sigma-Aldrich) for 1 h at room temperature. The
absorbance of the eluted dye was assessed at 570 nm in
a FLU Ostar Omega plate reader.

Western blot assays
Cells were collected at specific time points post treatment,
and washed in cold PBS buffer before being lysed in cell
lysis buffer supplemented with protease inhibitor cocktail
(Roche Diagnostics, Mannheim, Germany). Twenty μg of
protein was separated on 8 to 12% NuPAGE® Novex®
Bis-Tris gel systems (Invitrogen). The membrane was
blocked and probed with antibodies and incubated
with peroxidase-conjugated secondary antibody (Santa
Cruz Biotechnology, Aarhus, Denmark). Antibodies
for (total or phosphor) specific Smad1/5/8 and NF-κB
p65 were obtained from Cell Signaling Technology
(Leiden, Netherland).

Luciferase reporter assay
The activation of NF-κB pathway was determined by
using Cignal™ NF-κB luciferase Reporter Assay Kit
(QIAGEN Ltd., Manchester, UK). HEK 293 or mBMSCs
cells were cultured in 96-well plates and transfected with
a mixture of NF-κB luciferase reporter negative control
or positive control, along with Renilla construct (as an
internal control) using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions. After 24 h,
medium was changed with either CM-Adipo or CM-
Control and cells were cultured for 24 h. Luciferase ac-
tivities were determined using the Dual-Luciferase Assay
System (Promega, Southampton, UK). Reporter activities
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were represented as arbitrary units after normalization
to the internal Renilla reporter.

Statistical analysis
All experiments were performed in 3–6 replicates
and in at least 3 independent experiments. The data
were presented as the mean ± SD. Students t-test was
used for comparison between two groups. Differences
were considered statistically significant at *P <0.05,
and **P < 0.005.

Results
CM-Adipo does not affect the cell viability or cell
proliferation of mBMSCs
We aimed to use the adipocyte-derived CM to examine
the paracrine effect of adipocytes on mBMSCs prolifera-
tion and differentiation. For that purpose, the mouse
stromal cell line ST2 was induced to differentiate into
adipocytes for 12 days. As shown in Fig. 1a, more than
90% of ST2 cells were differentiated into adipocytes after

12 days of induction as assessed by Oil Red O staining
and its quantification. In addition, the increased adipo-
cytes formation in ST2 cells was associated with the
significant upregulation of the mRNA expression of the
early (Pparγ2 and C/ebpα) and late (aP2, Apm1, Lpl)
adipocytic markers (Fig. 1b). We then, studied the effect
of serum free collected CM-Adipo versus CM-Control
on both cell viability and cell proliferation of primary
mBMSCs. Neither cell viability (measured by Cell Titer-
Blue) nor cell proliferation (measured by cell number) of
mBMSCs was affected upon their culture for 12 days in
CM-Adipo compared to CM-control (Fig. 1c&d).

CM-Adipo inhibits the differentiation of mBMSCs into
osteoblastic cell lineage
As shown in Fig. 2a&b, CM-Adipo exerted dose-
dependent inhibitory effect on the osteogenesis of
mBMSCs compared to CM-Control as assessed by quan-
titative ALP activity and matrix mineralization. Similarly,
CM-Adipo obtained from primary mBMSCs-derived

Figure 1 Adipocytes-derived CM has no effect on the cell viability or the cell proliferation of mBMSCs. a Efficient differentiation of stromal mouse
ST2 cell line into adipocytes as measured by Oil red O staining and its quantification. b Quantitative real time RT-PCR (qPCR) analysis of the
adipogenic markers mRNA expression at day 12 of the adipocyte differentiation of ST2 cells. Each target gene was normalized to reference genes
and represented as fold change over non-induced control cells. c Effect of CM-Adipo (100%) versus CM-Control (100%) on cell viability and (d) cell
proliferation of cultured mBMSCs. Values are mean ± SD of three independent experiments, (*p < 0.05, **p < 0.005)
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adipocytes showed dose-dependent inhibitory effect on
ALP activity and matrix mineralization of mBMSCs
during their induction into osteoblast differentiation
(Additional file 2: Figure S1, A&B). Furthermore, CM-
Adipo down-regulated 76.4% (≥2 fold, p < 0.05) of the
differentially expressed osteoblastic genes during
mBMSCs differentiation compared to CM-Control as
measured by real time PCR-based osteogenic gene array
analysis (Fig. 2c, Table 1). The down-regulated genes by
CM-Adipo included, the key osteogenic transcriptional
factors; Runx2 and Sp7 and factors involved in osteoblast
differentiation and matrix mineralization, Alp, Col1a1,
Ocn and integrins. We also examined the effect of CM-
Adipo on the expression of the adipocytic markers of
mBMSCs. As shown in Additional file 2: Figure S2, CM-
Adipo did not affect the adipogenic markers of mBMSCs
during their adipogenic differentiation induction as
assessed by qPCR. These data support the paracrine

inhibitory effect of adipocytes on osteoblast differentiate
of mBMSCs, without affecting their switch between
osteoblast/adipocyte differentiations.

CM-Adipo inhibits BMP2-induced osteoblast differentiation
of mBMSCs
To get insight into the mechanism underlying the inhibi-
tory effect of CM-adipo on osteoblast differentiation in
bone marrow, we examined the inhibitory effect of CM-
Adipo on different signaling molecules known to induce
osteogenesis in mBMSCs. Interestingly, CM-Adipo
showed to significantly inhibit BMP2-induced ALP activity
in mBMSCs by 77.5%, while the inhibitory effects on the
ALP activity of other osteogenic factors including PDGF,
Wnt3a and insulin were 38.5, 44.15 and 41.7% respectively
(Fig. 3a). In consistent, the CM-Adipo significantly inhib-
ited the BMP2-induced matrix mineralization in mBMSCs
in dose dependent manner (Fig. 3b). Furthermore, CM-

Figure 2 CM-Adipo exerts paracrine inhibitory effect on osteoblast differentiation of mBMSCs. a Dose dependent inhibitory effect of the CM-Adipo on
the osteoblast differentiation of mBMSCs as measured by quantitative alkaline phosphatase activity (ALP) after 6 days of osteogenic induction and
(b) Alizarin red staining for matrix mineralization after 12 days of induction. Representative images of the ALP activity and ALZ red staining were shown
at 100% concentration of the CM. c Downregulated osteogenic genes in mBMSCs when cultured in CM-Adipo versus CM-Control after 6 days of
osteogenic induction. Gene expression was measured by qPCR using osteogenic RT2 profiler array as described in M&M. Values are mean ± SD of three
independent experiments, (*p < 0.05, **p < 0.005)

Abdallah Journal of Biomedical Science  (2017) 24:11 Page 5 of 10



Adipo down-regulated the mRNA expression of BMP2-
induced osteoblastic markers including Runx2, Msx2,
Dlx5,Ocn, Col1a1 and Alp in mBMSCs as measured by
qPCR analysis (Fig. 3c). Western blot analysis of BMP2
signaling revealed the impairment of the BMP2-
induced Smad1/5/8 phosphorylation in mBMSCs upon
treatment with CM-Adipo compared to CM-Control
(Fig. 3d). These results demonstrated the paracrine in-
hibitory effect of adipocytes on BMPs signaling-induced
osteogenesis in BMSCs.

The inhibitory effect of CM-Adipo on BMP2-induced
osteogenesis is mediated by NF-κB activation
Since NF-κB signaling was found to inhibit BMP2-
induced osteoblast differentiation [26], we hypothesized
that the activation of NF-κB signaling by adipokines [27]
is a plausible mechanism that mediating the inhibitory
effect of CM-Adipo on BMP2-induced osteogenesis.
Thus, we first examined whether NF-κB signaling path-
way is activated in mBMSCs by CM-Adipo. Interestingly,
western blot analysis showed the stimulation of the NF-
κB subunit p-65 phosphorylation in mBMSCs treated
with CM-Adipo compared with CM-Control (Fig. 4a).
Furthermore, CM-Adipo significantly stimulated the NF-
κB reporter luciferase activity by 2.7 and 4.15 folds at 50
and 100% concentrations respectively as compared to
CM-Control (Fig. 4b). Also, the same stimulatory effect
of CM-Adipo on NF-κB reporter luciferase activity was
obtained in transfected mBMSCs (Additional file 2:
Figure S3, A). We then examined the effect of the potent
NF-κB inhibitor, BAY 11-7082 (an irreversible inhibitor
of IKKα) on rescuing the inhibitory effect of CM-Adipo
on BMP2-induced ALP activity in BMSCs. As shown in
Fig. 4c&d, BAY11-7082 significantly retrieved the inhibi-
tory effect of CM-Adipo on BMP2-induced ALP activity
and matrix mineralization in mBMSCs by 2.6 and 2.3
folds respectively. These data suggested that the inhibi-
tory effect of CM-Adipo on BMP-induced osteogenesis
is at least in part mediated via activating the NF-κB
signaling.

Discussion
In this study, we demonstrated the paracrine inhibitory
effect of marrow adipocytes on the differentiation
potential of mBMSCs into osteoblasts by blocking
BMP2-induced osteogenesis. This effect is mediated via
a mechanism involved the activation of the NF-κB
signaling pathway by adipokines.
In this study, the ST2 cell line [28] was selected as a

source of adipocytes for collecting the CM-Adipo due to
the following reasons; a) ST2 cell line is a clone of
homogenous stromal cell population that derived from
the mouse bone marrow with a characteristics pheno-
type of pre-adipocytic cells; b) ST2 cells can efficiently
differentiate into homogenous population of adipocytes;
c) ST2 cells are suitable for collecting the serum free
conditioned medium due to their ability to maintain
their viability in serum free medium for up to 48 h.
To avoid any undesirable effects from the residual

amount of adipogenic inducers (i.e Dexamethasone, IBMX
and insulin) in the collected CM, we changed the adipo-
genic medium with serum and adipogenic inducers free
medium prior to the collection of CM. This strategy elimi-
nated the plausible competing effects between such adipo-
genic inducers (exist at relatively high concentrations) and

Table 1 Down-regulation of osteogenic genes expression in
mBMSCs treated with CM-Adipo as compared to CM-Control

Gene name Gene
symbol

Fold
change

Ossification and matrix molecules

Alkaline phosphatase, liver/bone/kidney Alpl −6.8

Bone gamma carboxyglutamate protein Bglap −3.2

Biglycan Bgn −4.5

Cadherin 11 Cdh11 −5.0

Chordin Chrd −4.3

Collagen type I alpha 1 Col1a1 −4.2

Collagen type I alpha 2 Col1a2 −2.4

Collagen type V alpha 1 Col5a1 −5.5

Secreted phosphoprotein 1 (Osteopontin) Spp1 −5.8

BMP signaling pathway

Bone morphogenetic protein 2 Bmp2 −6.8

Bone morphogenetic protein 7 Bmp7 −3.1

Bone morphogenetic protein receptor. type 1A Bmpr1a −4.5

MAD homolog 5 (Drosophila) Smad5 −3.2

Cell Adhesion Molecules

Fibronectin 1 Fn1 −6.2

Integrin beta 1 (fibronectin receptor beta) Itgb1 −2.1

Integrin alpha 2 Itga2 −3.7

Integrin alpha 2b Itga2b −3.1

Osteogenic growth factors

Fibroblast growth factor receptor 2 Fgfr2 −2.6

Insulin-like growth factor 1 Igf1 −9.2

Insulin-like growth factor I receptor Igf1r −4.1

Platelet derived growth factor. alpha Pdgfa −2.9

Osteogenic transcription factors

Distal-less homeobox 5 Dlx5 −7.7

Runt related transcription factor 2 Runx2 −6.2

Sp7 transcription factor 7 Sp7 −4.3

Cells were cultured in either 100% CM-Adipo or CM-Control and induced to
differentiate into osteoblasts as described in the Methods. Mouse osteogenesis
RT2 Profiler™ PCR array with 84 osteoblast genes was performed for each
cDNA sample using the SYBR® Green quantitative PCR method. Each target
gene was normalized to reference genes and the differentially down-regulated
genes by BMSCs in CM-Adipo were represented as fold change in the Table.
Values are mean of three independent experiments
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the adipocytes-secreted factors (exist at low concentra-
tions) on the osteoblast differentiation of mBMSCs. In
supporting to this notion, the high concentration of
dexamethasone-induced adipogenic differentiation of
BMSCs was reported to suppress the proliferation of
osteoblasts [29].
Our data demonstrated the paracrine inhibitory effect of

CM-Adipo on osteoblast differentiation of mBMSCs. Few
studies have investigated the paracrine effect of adipocytes
on osteoblast differentiation. For example, Benayahu et al.
[30] demonstrated the inhibitory effect of adipocyte CM
on osteogenesis of marrow-derived osteoblastic cells,
MBA-15 , while Maxson S, et al., [31] showed the stimula-
tory effect of adipocyte CM on the osteoblast differenti-
ation of BMSCs. On the other hand, mammary adipose
tissue-derived CM did not affect osteoblast differentiation
of primary human osteoblasts [32]. These contradictory
data can be attributed to the use of different sources of ad-
ipocytes for collecting CM. In addition, these studies apply
the traditional method for collecting CM, which does not
exclude the presence of adipogenic inducers. Indeed, when
such inducers were omitted in a co-culture system,

adipocytes were shown not only to inhibit osteoblast
differentiation of BMSCs [33, 34] but also to induce their
trans-differentiation into adipocytes [35].
Our data identified the BMPs signaling as the most dis-

tinct osteogenic pathway to be inhibited by the adipocytes
CM. In consistence with our finding, the impairment of
BMPs signaling was reported in BMSCs derived from
osteoporotic postmenopausal women (the condition of
increased marrow adipocytes) [36]. Recently, the activa-
tion of NF-κB was shown to suppress the BMP2-induced
osteogenesis. In this mechanism, the inflammatory
environment-stimulated NF-κB activity suppresses BMPs
pathway via either activating the Toll-like receptor-4 and
its intracellular adaptor protein My88 (TLR4/MyD88)
dependent pathway [26] or interfering with DNA binding
of the Smad complex [37, 38]. The interaction between
BMPs and NF-κB signaling pathways was further con-
firmed by demonstrating that the inhibition of local in-
flammation is effective to promote the BMP-2 induced
bone regeneration in vivo [39, 40]. Considering, that the
adipocytes secret several inflammatory cytokines including
IL-6, TNF-a, IL-1β, MCP1, CCL2 and PAI-1 known to be

Figure 3 CM-Adipo inhibits BMP2-induced osteoblast differentiation of mBMSCs. a Studying the effect of CM-Adipo versus CM-Control on different
osteogenic signaling pathways. Cultured mBMSCs were induced for osteogenesis without (control) or with regular osteogenic induction medium
(induced), PDGF-BB (100 ng/ml), Wnt3a (10 ng/ml), BMP2 (100 ng/ml) and insulin (10ug/ml) in 100% of either CM-Adipo or CM-Control. ALP activity
was quantified after 6 days of induction and represented as fold change over control non-induced cells. b Dose-dependent inhibitory effect of
CM-Adipo on BMP2-induced matrix mineralization in m BMSCs. Alizarine Red staining and its quantification were performed after 12 days of induction.
c qPCR analysis of osteoblastic gene expression in mBMSCs induced to osteoblast differentiation by BMP2 in either CM-Adipo or CM-Control for 6 days.
d Western blot analysis of Smad1/5/8 phosphorylation in BMP2 treated mBMSCs in either CM-Adipo or CM-Control for 5-20 min. Values are mean ± SD
of three independent experiments, (*p < 0.05, **p < 0.005)
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involved in the activation of the NF-κB [27, 41], our data
demonstrated the stimulatory effect of CM-Adipo on the
NF-κB signaling activation. In addition, we showed that
the blocking of NF-κB signaling in mBMSCs rescued the
inhibitory effect of CM-Adipo on BMP2-induced osteo-
genesis, suggesting that the inhibitory effect of CM-Adipo
on osteoblast differentiation is mediated at least in part by
NF-κB activation. Taken together, the inhibitory effect of
CM-Adipocyte on osteogenesis is mediated by a
group of secreted factors (Adipokines) rather than
one individual factor and targeting the inhibition of
adipocyte differentiation could be beneficiary for en-
hancing bone formation

Conclusions
Marrow adiposity is inversely correlated with bone mass in
many osteoporotic clinical conditions. The differentiation
potential of BMSCs into either osteoblastic or adipocytic
cell lineage was shown to be regulated by local and

secreted factors in bone marrow microenvironment.
Here, we studied the paracrine effect of adipocytes on
the differentiation capacity of mBMSCs into osteo-
blasts. Our data demonstrated the paracrine inhibitory
effect of adipocytes-secreted factors on the osteoblast
differentiation of mBMSCs by blocking BMPs signaling in
a mechanism mediated by the activation of NF-κB
pathway. This study identified a novel mechanism that
controlling the paracrine inhibitory effect of adipocytes on
osteoblast differentiation of BMSCs.
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Additional file 1: Table S1. List of primers used for qRT-PCR. (PDF 638 kb)

Additional file 2: Figure S1. CM-Adipo obtained from mBMSCs-derived
adipocytes exerts paracrine inhibitory effect on osteoblast differentiation
of mBMSCs. Figure S2. CM-Adipo does not affect the the adipogenic
markers expression in mBMSCs. Figure S3. The stimulatory effect of
CM-Adipo on NF-κb signaling pathway in mBMSCs. (PDF 937 kb)

Figure 4 The inhibitory effect of CM-Adipo on BMP2-induced osteogenesis is mediated by activating NF-κB signaling pathway. b Western blot
analysis of NF-κB subunit p-65 phosphorylation in mBMSCs cultured in CM-Adipo versus CM-Control. Cells were incubated with the CM for
30 min and cell laystes were subjected to western blot analysis. b CM-Adipo stimulates NF-κB signaling activity. HEK 293 cells were transfected
with Cignal NF-κB Reporter negative control, or positive control. Cells were incubated with 50% and 100% CM-Control or CM-Adipo for 24 h.
Dual-luciferase assays were performed, and reporter activity was represented as arbitrary units after normalization to the internal Renilla reporter.
c Effect of NF-κb inhibitor, BAY 11-7082 on retrieving the inhibition of BMP2-induced osteoblast differentiation, as measured by ALP activity
quantification and (d) Alizarin Red staining of matrix mineralization. Cells were treated with different concentrations of the inhibitor, 1 h prior the
treatment with BMP2. ALP activity was measured after 6 days and represented as fold change after normalization to the cell viability. Alizarin Red
was measured after 10 days. Values are mean ± SD of three independent experiments, (*p < 0.05, **p < 0.005)
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