
Syddansk Universitet

Baryogenesis in the two doublet and inert singlet extension of the Standard Model

Alanne, Tommi; Kainulainen, Kimmo; Tuominen, Kimmo; Vaskonen, Ville

Published in:
Journal of Cosmology and Astroparticle Physics

DOI:
10.1088/1475-7516/2016/08/057

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Document license
CC BY

Citation for pulished version (APA):
Alanne, T., Kainulainen, K., Tuominen, K., & Vaskonen, V. (2016). Baryogenesis in the two doublet and inert
singlet extension of the Standard Model. Journal of Cosmology and Astroparticle Physics, 2016(8), [57]. DOI:
10.1088/1475-7516/2016/08/057

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. aug.. 2017

http://dx.doi.org/10.1088/1475-7516/2016/08/057


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 130.226.87.174

This content was downloaded on 26/05/2017 at 09:49

Please note that terms and conditions apply.

Baryogenesis in the two doublet and inert singlet extension of the Standard Model

View the table of contents for this issue, or go to the journal homepage for more

JCAP08(2016)057

(http://iopscience.iop.org/1475-7516/2016/08/057)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

A strong electroweak phase transition from the inflaton field

Tommi Tenkanen, Kimmo Tuominen and Ville Vaskonen

Scalar representations in the light of electroweak phase transition and cold dark matter

phenomenology

Shehu S. AbdusSalam and Talal Ahmed Chowdhury

Detectable gravitational waves from very strong phase transitions in the general NMSSM

Stephan J. Huber, Thomas Konstandin, Germano Nardini et al.

A model for dark matter, naturalness and a complete gauge unification

Kimmo Kainulainen, Kimmo Tuominen and Jussi Virkajärvi

Signatures from scalar dark matter with a vector-like quark  mediator

Federica Giacchino, Alejandro Ibarra, Laura Lopez Honorez et al.

Asymmetric dark matter models and the LHC diphoton excess

Mads T. Frandsen and Ian M. Shoemaker

Lower bound on the electroweak wall velocity from hydrodynamic instability

Ariel Mégevand, Federico Agustín Membiela and Alejandro D. Sánchez

Fermi Bubbles under Dark Matter Scrutiny Part II: Particle Physics Analysis

Wei-Chih Huang, Alfredo Urbano and Wei Xue

The electroweak phase transition in the Inert Doublet Model

Nikita Blinov, Stefano Profumo and Tim Stefaniak

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1475-7516/2016/08
http://iopscience.iop.org/1475-7516
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1475-7516/2016/09/037
http://iopscience.iop.org/article/10.1088/1475-7516/2014/05/026
http://iopscience.iop.org/article/10.1088/1475-7516/2014/05/026
http://iopscience.iop.org/article/10.1088/1475-7516/2016/03/036
http://iopscience.iop.org/article/10.1088/1475-7516/2015/07/034
http://iopscience.iop.org/article/10.1088/1475-7516/2016/02/002
http://iopscience.iop.org/article/10.1088/1475-7516/2016/05/064
http://iopscience.iop.org/article/10.1088/1475-7516/2015/03/051
http://iopscience.iop.org/article/10.1088/1475-7516/2014/04/020
http://iopscience.iop.org/article/10.1088/1475-7516/2015/07/028


J
C
A
P
0
8
(
2
0
1
6
)
0
5
7

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Baryogenesis in the two doublet and
inert singlet extension of the Standard
Model

Tommi Alanne,a Kimmo Kainulainen,b,d Kimmo Tuominenc,d and
Ville Vaskonenb,d

aCP3-Origins, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark
bDepartment of Physics, University of Jyväskylä,
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cDepartment of Physics, University of Helsinki,
P.O. Box 64, FI-00014 Helsinki, Finland
dHelsinki Institute of Physics, University of Helsinki,
P.O. Box 64, FI-00014 Helsinki, Finland

E-mail: alanne@cp3.sdu.dk, kimmo.kainulainen@jyu.fi,
kimmo.i.tuominen@helsinki.fi, ville.vaskonen@jyu.fi

Received July 13, 2016
Accepted August 21, 2016
Published August 25, 2016

Abstract. We investigate an extension of the Standard Model containing two Higgs doublets
and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order
phase transition and give rise to the observed baryon asymmetry of the Universe, consistent
with all experimental constraints. In particular, the constraints from the electron and neutron
electric dipole moments are less constraining here than in pure two-Higgs-doublet model
(2HDM). The two-step, first-order transition in 2HDSM, induced by the singlet field, may
lead to strong supercooling and low nucleation temperatures in comparison with the critical
temperature, Tn � Tc, which can significantly alter the usual phase-transition pattern in
2HD models with Tn ≈ Tc. Furthermore, the singlet field can be the dark matter particle.
However, in models with a strong first-order transition its abundance is typically but a
thousandth of the observed dark matter abundance.
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1 Introduction

The matter-antimatter asymmetry in the universe presents one of the major quests for particle
cosmology. Due to cosmic inflation, such asymmetry cannot be an initial condition for
the thermal history of the universe, but calls for a dynamical explanation. The Standard
Model (SM) of elementary particle interactions fails in providing a successful mechanism for
baryogenesis, and one must look at different extensions of the SM. In this paper we address
these issues in the context of a 2HDSM featuring an extended scalar sector with two gauged
Higgs doublets and an extra singlet.

Generation of the matter-antimatter asymmetry in connection with the electroweak
phase transition, i.e. electroweak baryogenesis, is a particularly appealing scenario due to the
possibility of connecting it with the collider experiments. Generic 2HDMs have been studied
earlier in connection with the electroweak baryogenesis problem [1–9]. They provide both
a new source of CP violation arising from complex parameters in the 2HDM potential and
a strong first-order phase transition arising from the one-loop effective potential. However,
observational constraints are placing stringent limits also on 2HDMs [8]. Here we show that
these constraints are alleviated when the model is further extended by a real scalar singlet
field.

A generic feature of 2HDM, also inherited by the 2HDSM, is the danger of generating
large flavour changing neutral currents. To avoid these, one has to constrain the Higgs-
fermion couplings in one way or the other. Here we choose to work in the context of universal
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Yukawa alignment, which may be argued for by a requirement that the whole Lagrangian is
invariant under the group GL(2,C) of linear reparametrization transformations in the doublet
space. We also use the reparametrization invariance to develop an elegant way explore the
vacuum stability and the phase-transition pattern in the model.

In the 2HDM context large CP violation requires that scalar couplings have large com-
plex phases and strong transition requires that couplings are large in magnitude. When
combined, these requirements tend to give too large electron and neutron electric dipole mo-
ments (EDMs). We will show that the presence of the additional scalar allows for a strong
two-step electroweak phase transition, which does not rely on large radiative corrections to
the effective potential. This alleviates the burden on the scalar self-couplings and significantly
increases the phase space consistent with EDM constraints in the 2HDSM.

The singlet scalar can also be a dark matter (DM) candidate when a discrete Z2 symme-
try is imposed to stablize it. However, we will find that a strong first-order phase transition
is not consistent with a dominant singlet scalar DM particle. The problem is that a strong
two-step transition requires a large coupling between the singlet and doublet sectors and this
implies so large annihilation rate for the DM that its relic abundance becomes too small to
account for the full observed DM density. This conclusion is generic for all models of this type.

We observe that two-step transitions may also give rise to too strong transitions. It is
possible that fields get trapped in the metastable minimum so that electroweak symmetry
remains unbroken. Also, the latent heat released in the transition may be so large that the
transition walls necessarily become supersonic. However, we find also parameters for which
walls may be subsonic, consistent with the electroweak baryogenesis scenario. Overall, we
are able to find models that satisfy all observational and experimental constraints and can
also give rise to a successful electroweak baryogenesis, accompanied by a subleading DM in
the 2HDSM context.

The structure of the paper is as follows: in section 2 we introduce the model and
discuss the most general GL(2,C)-reparametrization invariant 2HDSM Lagrangian including
Yukawa couplings. Here we also develop methods to study the vacuum stability and the
phase-transition patterns in the theory. In section 3 we first go through the experimental
constraints on the model and evaluate the DM relic abundance and the DM search limits on
model parameters. We then evaluate the strength of the transition and compute the baryon
asymmetry created in the electroweak phase transition. The section is concluded by a study
of bubble nucleation in the 2HDSM and in the singlet extension of the SM. In section 4 we
conclude and outline some directions for future research.

2 The model

We start from the most general two-Higgs-doublet and inert-singlet extension of the SM with
the scalar field Lagrangian:

Lscalar = Zij(DµHi)
†DµHj +

1

2
(∂µS)2 − V (H1, H2, S) , (2.1)
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where Zij is an arbitrary Hermitian 2× 2 matrix and the most general potential is given by

V (H1, H2, S) = −m2
1|H1|2 −m2

2|H2|2 −
(
m2

12H
†
2H1 + h.c.

)
− 1

2
m2
SS

2

+ λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4(H†1H2)(H†2H1)

+
(
λ5(H†2H1)2 + λ6|H1|2(H†2H1) + λ7|H2|2(H†2H1) + h.c.

)
+

1

4
λSS

4+
1

2
λS1S

2|H1|2+
1

2
λS2S

2|H2|2+

(
1

2
λS12S

2H†2H1+h.c.

)
.

(2.2)

Both doublets Hi are assumed to be gauged under SU(2)L × U(1)Y , while the scalar S
is a singlet under all SM gauge interactions. The singlet S is a crucial ingredient in the
model because it will disentangle the source of a strongly first-order transition from that of
sufficiently strong CP violation.

The Lagrangian (2.1) is invariant under a reparametrization transformation Φ→ Φ′ ≡
PΦ (and a simultaneous rescaling of S), where P is an element of the general linear group
GL(2,C), and Φ is the Higgs hyperdoublet:

Φ ≡ (H1, H2)T . (2.3)

GL(2,C) is the semidirect product of special linear transformations SL(2,C) and multiplica-
tive group of dilatations C×. We can always use the dilatation and a hyperbolic SL(2,C)
transformation to bring the kinetic term into the canonical form, Zij → diag(1, 1), i.e.

Zij(DµHi)
†DµHj → |DµH1|2 + |DµH2|2 .

The resulting Lagrangian is still invariant under elliptic SL(2,C) transformations, i.e. the
usual SU(2) rotations of the doublets.

A generic 2HDM gives rise to unacceptably large flavour-changing neutral currents
(FCNCs) and the presence of a singlet does not change the situation. One way to avoid
FCNCs is the Yukawa alignment [10], which assumes that both doublets couple to fermions
with the same matrix structure (since S is a singlet under SM gauge interactions its couplings
to charged SM fermions are excluded):

LYukawa = yuC
i
uQ̄LH̃iuR + ydC

i
dQ̄LHidR + y`C

i
`L̄LHieR + h.c, (2.4)

where H̃2 ≡ iσ2H
∗
2 . Here ya are flavour matrices independent of the doublet index, and Cai

are doublet-index dependent complex numbers. In general the alignment may be different
in different fermion sectors: Cai 6= Cbi . However, for simplicity, we choose to work in the
special case of universal Yukawa alignment, where Cai ≡ Ci. In this case we can, without a
further loss of generality, choose the basis where only the H2 field couples to fermions. This
corresponds to setting C1 = 0 and C2 = 1,1 so that:

LYukawa = yuQ̄LH̃2uR + ydQ̄LH2dR + y`L̄LH2eR + h.c . (2.5)

1This actually involves a rotation and a redefining of the scale of ya matrices.
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The choice of basis leading to (2.5) can be effected by an SU(2) rotation of Φ, and it exhausts
our remaining freedom to perform elliptic SL(2,C)-reparametrization transformations after
diagonalizing the kinetic term.2

Let us stress that while the Yukawa sector (2.5) appears to be of type-I 2HDM, we did
not impose any discrete symmetry to derive it. This is why we have kept the λ6 and λ7

terms in the scalar potential. Note that renormalization does not change the form of the
theory; while it both re-introduces a kinetic mixing between doublets and a coupling of H1

to fermions, these changes can be countered by another GL(2,C) transformation. Also, we
point out that the universal Yukawa alignment can be argued for based on reparametrization
invariance: only in the context of universal alignment is the complete Lagrangian including
the 2HDM and Yukawa sectors invariant under GL(2,C) transformations.

Interestingly, the universal alignment structure arises as a low-energy effective theory in
models of dynamical electroweak symmetry breaking [11–18]. In the bosonic technicolor [11–
13], the ultraviolet theory contains a new gauge theory responsible for dynamically breaking
the electroweak symmetry and an elementary scalar doublet H, which communicates the
symmetry breaking to the SM fields through its renormalizable Yukawa couplings. At low
energies the strong technicolor dynamics is described in terms of an effective Lagrangian for a
composite Higgs doublet, which couples with the elementary one through a Lagrangian of the
form (2.1), including the non-trivial kinetic mixing. Only the elementary scalar couples to SM
fermions, which naturally introduces Yukawa alignment. Moreover, when the kinetic mixing
is removed by a non-unitary transformation, the Yukawa Lagrangian becomes naturally of the
universally Yukawa-aligned form with Cai = Ci. After a final SU(2) rotation, the model has a
diagonal kinetic term, type-I Yukawa sector (2.5), and the most general potential of eq. (2.2).

2.1 Reparametrization invariance and tree-level vacuum stability

The original Lagrangian with the most general potential, kinetic term, and the universally
aligned Yukawa sector has 27 real parameters (not counting the parameters entering the
Yukawa-flavour-mixing matrices). We removed the four arbitrary parameters from kinetic
terms and three from the complex Yukawa coefficients Ci by the use of the GL(2,C) invariance
of the theory. This still leaves us with 15 real couplings and five real mass parameters in the
model potential V (H1, H2, S). Our next task is to find out which sets of these parameters
correspond to physically viable models with a stable potential.

We can use the reparametrization invariance to our advantage in constructing the stable
potentials. To this end, it is convenient to rephrase the invariance in terms of Lorentz in-
variance of the potential, written in terms of bilinears formed from hyperdoublets. Following
the analysis of ref. [19–21], we define

rµ ≡ Φ†σµΦ , where σµ = (1, σi) . (2.6)

The bilinear four-vector rµ is positive definite.3 That is, rµ vectors span the future light
cone, LC+, of a Minkowski space. Thus, in bilinear representation the elliptic and hyperbolic
SL(2,C) basis transformations of fields Φ → Φ′ ≡ PΦ correspond to proper orthochronous

2Note that in the case of general Yukawa alignment, where Cai 6= Cbi , one could still use the SU(2) rotation
to set Cu1 = 0, so that up-type quarks couple only to H2. Most of our subsequent analysis would hold also
for this scenario, because it is mostly sensitive only to the large top-quark coupling. The only exception is
the electron EDM, for which our analysis covers only a part of the full phase space available in the context of
general alignment.

3Clearly r0 =
∑
i |Hi|

2 ≥ 0. Also rµr
µ = 4(|H1|2|H2|2 − (H†1H2)(H†2H1)) ≥ 0 , by Schwartz inequality.

– 4 –
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Lorentz transformations rµ → r′µ = (ΛP )µνr
ν , where (ΛP )µν ∈ SO(1, 3)+. In this notation

one can rewrite the Higgs potential (2.2) in a very compact form:

V = −1

2
m2
SS

2 − 1

2
M2
µr

µ +
1

4
rµλµνr

ν +
1

4
λSµr

µS2 +
1

4
λSS

4 , (2.7)

where we defined mass and coupling four-vectors

M2
µ ≡

(
m2

1 +m2
2, 2m2

12R, −2m2
12I , m

2
1 −m2

2

)
,

λSµ ≡ (λS1 + λS2, 2λS12R, −2λS12I , λS1 − λS2) (2.8)

and a symmetric coupling tensor

λµν ≡


λ1 + λ2 + λ3 λ6R + λ7R −λ6I + λ7I λ1 − λ2

λ6R + λ7R λ4 + 2λ5R −2λ5I λ6R − λ7R

−λ6I + λ7I −2λ5I λ4 − 2λ5R −λ6I − λ7I

λ1 − λ2 λ6R − λ7R −λ6I − λ7I λ1 + λ2 − λ3

 , (2.9)

where the subscripts R and I refer to the real and imaginary parts of the couplings, respec-
tively. The reparametrization invariance is manifest in eq. (2.7), because V depends only on
Lorentz-invariant products of vectors and tensors. This form is particularly suitable for a
study of the vacuum stability and phase-transition patterns of the model.

First consider the direction S = 0 in the potential (2.7). Here the term rµλµνr
ν must

be bounded from below. In [19] it was shown that this is the case precisely when λµν is
positive definite in the future light cone. That is, all stable potentials can be written as
λµν ≡ Λµ

αλDαβΛβν , where Λµ
α is an SO(1,3)+ transformation and

λDαβ = diag(λD00,−λD11,−λD22,−λD33), with λD00 > 0 and λD00 > λDii . (2.10)

Note that the four parameters in λDαβ together with the six parameters in Λβν add up to the
ten real degrees of freedom in the most general 2HDM potential. Second, if we set rµ = 0
(H1 = H2 = 0), we see that we must have

λS > 0 . (2.11)

Finally, we have to consider the directions where both S and Hi are nonzero. First, if the
vector λSµ of couplings which mix S and Hi lies in the future light cone, λSµ ∈ LC+, i.e.

λSµλ
µ
S = 4

(
λS1λS2 − |λS12|2

)
> 0 and λ0

S = λS1 + λS2 > 0 , (2.12)

then the mixing term 1
4λSµr

µS2 in the potential, eq. (2.7), is always positive, and no new
conditions arise. However, if λSµ /∈ LC+, there are always directions rµ ∈ LC+ along which
the product λSµr

µ is negative. If we in such cases rewrite the quartic part of the potential as

Vquartic =
1

4
rµ
(
λµν −

1

4λS
λSµλSν

)
rν +

1

4
λS

(
S2 +

λSµr
µ

2λS

)2

, (2.13)

we see that the potential is most negative as a function of S along direction 2λSS
2 = −λSµrµ.

In this subspace, the potential reduces to the form 4Vquartic = rµλSµνr
ν , with a new coupling

matrix:

λSµν ≡ λµν −
1

4λS
λSµλSν . (2.14)

– 5 –
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The matrix λSµν is not in general diagonalizable by an SO(1, 3)+ rotation, and it may have
also complex eigenvalues. Unfortunately we cannot restrict its properties like we did for λµν ,
because λSµν does not need not be positive definite in the entire future light cone, but only in
the subset of LC+ where λSµr

µ is negative. Instead of covering the full range of possibilities,
we will require a sufficient (but not necessary) condition that λSµν is positive definite in the
future light cone whenever λSµ /∈ LC+.

We now have the recipe to construct the space of stable potentials: we first choose a
λDαα which satisfies eqs. (2.10). Then we generate a vector λDSµ and check if it satisfies the
positivity constraint (2.12), or if the matrix λSµν in eq. (2.14) is positive definite in the subset
of LC+ where λSµr

µ < 0. Having found an acceptable set, we generate a random Lorentz
transformation and define

λµν ≡ Λµ
αλDαβΛβν and λµS ≡ Λµν(λDS )ν , (2.15)

where Λµν ∈ SO(1, 3)+.

Let us comment on the role of the kinetic and Yukawa terms in the above construction
of the potential. We implicitly assumed that kinetic term becomes diagonal, and the Yukawa
term becomes of type-I form in the final frame, after the Lorentz transformation. Thus, they
necessarily must be nontrivial in the original, diagonal frame. Indeed, the six degrees of
freedom “missing” in the diagonal potential are in this frame evenly divided between the Ci
coefficients in the Yukawa Lagrangian and the mixing parameters in the kinetic term, which
in the bilinear notation can be written as

Kµ(DαΦ)†σµ(DαΦ) . (2.16)

Here Kµ is some positive definite, but otherwise arbitrary four-vector of unit length (here
α refers to the usual space-time indices and µ to potential indices).4 It is amusing to see
that exactly a Lorentz boost (a hyperbolic SL(2,C) transformation on fields) is needed to
bring an arbitrary Kµ into the canonical form: Kµ → (1; 0, 0, 0), after which the kinetic term
is manifestly invariant under Lorentz rotations (elliptic SL(2,C) transformations on fields).
These boosts and rotations into the canonical frame activate the whole SO(1, 3)+ group
discussed above and thus create all physically viable Lagrangians with bounded potentials.

2.2 Spontaneus symmetry breaking

Since we are interested in the cases where the singlet scalar S is a DM candidate, we restrict
our considerations to the cases where the potential is unbroken in S direction and hence
Z2 symmetric at low temperatures. However, to enhance the strength of the latter phase
transition, we also need the S symmetry to be broken at high temperatures before the
symmetry breaks in the doublet direction. To this end, we must have negative quadratic
term in the S direction in the potential (m2

S > 0). This implies that there may be other
minima away from the 〈S〉 = 0 vacuum, and we must check that none of these minima is the
global one at zero temperature. The extremization conditions are:

∂V

∂S
= SζS = 0 , where ζS ≡ −m2

S + λSS
2 +

1

2
λSµr

µ , (2.17)

4In the most general case Kµ has four free parameters, but one parameter is here assumed to be removed
by a dilatation, used to bring the length of Kµ to unity.

– 6 –
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and
∂V

∂H†i
= σµijHjζµ = 0 , where ζµ = −1

2

(
M2
µ −

1

2
λSµS

2

)
+

1

2
λµνr

ν . (2.18)

Eqs. (2.18) are complex, so we have five equations relating vacuum fields to the parameters of
the theory. Our goal is to have an unbroken singlet and a broken neutral doublet vacuum at
zero temperature. In [19] it was shown that the neutral and charged vacua cannot coexist in
the pure 2HDM case. When S = 0, our potential reduces to the pure 2HDM case, and so the
above statement applies here as well. Therefore, if we find a neutral vacuum, we know it is
the global one in the doublet space and the charged extremum may at best be a saddle point.
Moreover, even with S 6= 0, the doublet-symmetry-breaking pattern is formally similar to
the pure 2HDM case, only with an effective mass parameter

−m2
µ ≡ −M2

µ +
1

2
λSµS

2. (2.19)

This implies that also any neutral minimum with S breaking is the lowest one in the doublet
space.

The most general neutral vacuum in 2HDM field space is given by

〈H1〉 =
1√
2

(
0

v1e
iθ1

)
, and 〈H2〉 =

1√
2

(
0

v2e
iθ2

)
. (2.20)

Of course the local SU(2)-gauge invariance guarantees that only the relative phase θ ≡ θ2−θ1

is physical, and one could rotate for example θ1 → 0. Explicitly we find that this corresponds
to

rµ0 = (v2
1 + v2

2, 2v1v2 cos θ, 2v1v2 sin θ, v2
1 − v2

2) , (2.21)

so that r2
0 = 0 as it should for a neutral vacuum [19]. This construction actually only ensures

that the special point (2.20) is an extremum of the potential. To check that this extremum
is a also a minimum, one needs to compute second derivative matrices of the potential
corresponding to scalar field masses and require that there are no negative eigenvalues. For
the mass of the physical excitation in the singlet direction, this corresponds to requiring that

d2V

dS2

∣∣∣∣
vev

= −m2
S +

1

2
λSµr

µ
0 ≡ M2

S > 0 , (2.22)

where the left hand side is evaluated at the extremum 〈S〉 = 0 and 〈Hi〉 6= 0 as defined
in eq. (2.20). These requirements on the spectrum allow one to set the Lagrangian mass
parameters in terms of physical masses and vacuum expectation values (vevs) of the fields.
However, it still remains to check that the vacuum with S = 0 is the global minimum for any
given set of parameters. It is straightforward to show that the value of the potential at the
desired 〈S〉 = 0, 〈Hi〉 6= 0 vacuum is

V (〈S〉 = 0, 〈Hi〉 6= 0) = −1

4
rµ0λµνr

ν
0 . (2.23)

In the direction Hi = 0, the potential has at least a directional minimum at 〈S〉2 = m2
S/2λS ,

and the value of the potential in this directional minimum is

V (〈S〉 6= 0, 〈Hi〉 = 0) = − 1

4λS

(
M2
S −

1

2
λSµr

µ
0

)2

. (2.24)
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We impose the condition that the minimum in eq. (2.23) is below that in eq. (2.24). Finally,
there is an extremum where both 〈S〉 6= 0 and 〈Hi〉 6= 0, but this is a local maximum.

In addition to the massive scalar S, the physical spectrum contains the usual states
arising from the two Higgs doublets: the three neutral scalars h0, H0 and A0, and two charged
scalars H±. The diagonalization of the mass matrices is presented in detail in appendix A.
The lightest neutral scalar state h0 is identified with the 125 GeV Higgs particle observed
LHC, while the masses of the heavier neutral and charged scalar states are constrained to lie
above the current limits.

2.3 Finite-temperature potential

The final ingredient we need for our analysis is the effective potential at finite temperature.
Here we only consider the leading corrections to the potential, which bring about the sym-
metry restoration at high temperatures. In the high-temperature limit, these corrections are
accounted for by the thermal masses:

m2
a(T ) = −m2

a + ca
T 2

12
, (2.25)

where (a = 1, 2, 12, S):

c1 = cSM + 6λ1 + 2λ3 + λ4 +
1

2
λS1

c2 = cSM + 6λ2 + 2λ3 + λ4 +
1

2
λS2

c12 = cSM + 3λ6R + λ7R +
1

2
λS12R − i

(
3λ6I − λ7I +

1

2
λS12I

)
cS = 3λS + 2(λS1 + λS2) , (2.26)

and

cSM =
9

4
g2
L +

3

4
g2
Y + 3y2

t (2.27)

is the common SM contribution from the SU(2)L and U(1)Y gauge fields and the top quark.

3 Results

We now test our model against experimental constraints and for the consistency of its cos-
mological predictions. We scan the parameter space by solving m2

1, m2
2 and m2

12 from the
vacuum conditions and create Monte Carlo chains in the coupling constant space by the al-
gorithm described in the previous section. We first subject the models to various theoretical
and experimental constraints. For models that pass these constraints, we compute the DM
abundance and the strength of the phase transition. We find that the model can provide
either the observed DM abundance or a strong transition, but not both simultaneously. For
the points providing a strong transition, we compute the prediction for the baryon-to-entropy
ratio ηB. We show that the parameter space where ηB is sufficiently large is strongly con-
strained but not excluded by the current experimental limit on the electric dipole moment of
the electron. Finally, we compute the nucleation temperatures Tn and show that typically,
and in particular for strong transitions, Tn is much smaller than the critical temperature Tc.
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3.1 Theoretical and experimental constraints

The couplings between scalar fields tend to run strongly, which typically leads to a relatively
low cut-off scale for the validity of the effective theory. To be specific, we demand that our
model is consistent up to Λ = 1.5 TeV, i.e. we check that the vacuum is stable and that all
couplings remain perturbative5 up to Λ. The 1-loop renormalization-group equations needed
for this calculation are summarized in appendix B. Moreover, at zero temperature we impose

|〈H1〉|2 + |〈H2〉|2 = v2
0, 〈S〉 = 0 (3.1)

and check that this choice gives the global minimum of the potential as detailed in previous
section.

Second, we address the current experimental constraints. We only accept points that
give a light scalar of mass mh0 = 125 GeV, and for which the heavy scalars satisfy the mass
limits from direct searches at LEP on charged particles, mH+ > 500 GeV [22], and at LHC
on heavy neutral scalars, mH0 ,mA0 > 600 GeV [23]. For consistency, we also constrain the
heavy scalar masses to be below the cut-off Λ = 1.5 TeV. We also take into account the
electroweak precision data using the S and T parameters [24]. The necessary formulae for
computing S and T can be extracted from [25], where the oblique parameters have been
calculated for models with extra doublets and extra singlets. The current values of S and T
parameters are S = 0.00± 0.08, T = 0.05± 0.07 with a correlation factor ρ = 0.90 [26]. We
accept points that lie within the 2σ region in the (S, T ) plane.

Moreover we take into account constraints on the Higgs boson couplings to SM particles
using the signal-strength data from the LHC and Tevatron experiments [27–29]. First, we
impose the constraint from the invisible width of the Higgs boson from LHC at 2σ level:

RI =
ΓI

ΓI + ΓSM, tot
< 0.020, (3.2)

which here implies Γh0→SS . 1.0 MeV. Second, we allow for modifications to the Higgs
couplings and parametrize the deviations from the SM with parameters af and aV ,

Leff = aV

(
2M2

W

v0
h0W

+W− +
M2
Z

v0
h0ZZ

)
− af

∑ mψ

v0
h0ψψ . (3.3)

We accept points which are within 2σ from the best fit values

aV = 0.993 , af = 0.968 , (3.4)

which we obtain by performing a χ2 fit to the Higgs boson signal strength data. We have
neglected the imaginary part of af and the h0H

+H− coupling in the fit, since we have checked
that these couplings are very small.6

3.2 Dark matter abundance and direct detection limits

We compute the relic abundance of the S bosons for all models passing the experimental
constraints described above. We assume that S is a thermal relic, i.e. we assume that at

5For perturbativity we use the upper limit (4π)2 on all scalar couplings. Over large portion of our data
points the couplings will remain small also at larger scales µ� Λ; the value 1.5 TeV is chosen for concreteness.

6As a comparison, we have performed the χ2 fit of af and aV with maximum values of the imaginary part of
af and h0H

+H− coupling for out data points, and we find that the best-fit value does not change significantly.
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least some the portal couplings λS1, λS2 and λS12 are sufficiently large (larger than about
10−7 [30]). We then apply the standard freeze-out formalism [31], employing the accurate
approximation scheme introduced in [32]. The relevant annihilation channels of our WIMP
candidate are

SS → h0h0, H0H0, A0A0, h0H0, h0A0, H0A0, H
+H−, W+W−, ZZ, f̄f. (3.5)

Cross-sections for all these processes are given in a very compact form in appendix C. To
treat cases where S is a subdominant DM candidate, we define the ratio [33]

frel =
ΩSh

2

0.12
, (3.6)

which expresses how large fraction of the observed DM abundance is in form of S bosons. All
annihilation channels are directly proportional to the couplings between the S boson and the
Higgs fields, although the precise dependence is rather complicated (see appendix C). Since
the relic abundance is roughly proportional to the inverse of the annihilation cross section,
large (small) couplings corresponds to a small (large) relic abundance.

Direct search limits for S follow from the bound on the spin-independent cross section
for S scattering off nucleons. It is given by

σSI =
λ2

efff
2
N

4π

µm2
Nv

2
0

m4
hM

2
S

, (3.7)

where mN = 0.939 GeV is the nucleon mass, µ = mNMS/(mN + MS) is the reduced mass
of the nucleon-scalar system, and fN ≈ 0.30 [32] gives the strength of the Higgs-nucleon
coupling: gh0NN̄ = fNmN/v0. Finally, the effective SSh0 coupling is given by

λeff ≡
1

2

[(
RN44 cosβ sin θ −RN42 cosβ cos θ +RN41 sinβ

)
λS12I

+
(
RN42 cosβ sin θ −RN44 cosβ cos θ −RN43 sinβ

)
λS12R

+ cosβ
(
RN43 cos θ +RN41 sin θ

)
λS1 − sinβRN44λS2

]
, (3.8)

where β is the vacuum mixing angle and θ the phase between the doublet vevs, and RNij
are the components of the 4 × 4-mixing matrix between the neutral scalar fields given in
eq. (A.8).

Currently the most stringent limit for σSI come from the LUX experiment [34]. However,
in the case of a subdominant DM, the LUX bound is not directly related to σSI shown in
eq. (3.7). Instead, assuming that all DM components cluster similarly, the actual signal
strength from S bosons is suppressed by the fraction frel. The relevant quantity to compare
with the LUX limit then is

σeff = frelσSI. (3.9)

We show the effect of this limit on the models passing all experimental bounds on figure 1.
Note that the scatter in σeff as a function of mS is much larger here than in the singlet
extension of the SM [33]. Note how also the models with relatively low abundance are
constrained by the LUX data.
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Figure 1. Shown is the LUX bound on a set of models passing all experimental constraints described
in section 3.1 and for which frel ≥ 0.01.

3.3 Electroweak phase transition

One of the necessary conditions for a successful baryogenesis scenario is the departure from
thermal equilibrium. In EWBG this is provided by a strong first-order phase transition. In
pure 2HDMs, with only leading thermal corrections (i.e. with thermal masses), the phase
transition is of second order. While full one-loop effects may induce a first-order transition,
it still tends to be rather weak [8, 9]. In a model with a singlet scalar, a strong transition
may take place with just the leading corrections (2.25), given a specific two-step symmetry-
breaking pattern [35]. This means that, when passing from high towards low temperatures, a
minimum of the potential is generated first along the singlet direction. At lower temperature,
then, the potential develops a minimum where the doublets have non-zero vevs while the
singlet symmetry is restored, (〈h1〉, 〈h2〉; 〈s〉) = (0, 0; 0) → (0, 0;w(T )) → (v1(T ), v2(T ); 0),
ensuing the actual electroweak phase transition. This pattern of minima should of course
develop in such a way that the true ground state at T = 0 is given by eq. (3.1).

Including the thermal mass corrections of eq. (2.25) to the potential, we find the tran-
sition temperatures. In particular the electroweak transition temperature, Tc, where the two
minima are degenerate is determined by

V (0, 0, wc, Tc) = V (v1c, v2c, 0, Tc), (3.10)

where wc = w(Tc) and vic = vi(Tc). To determine when the transition is strong enough, we
require, as usual, that

vc/Tc ≥ 1 , (3.11)

where vc =
√
v2

1c + v2
2c. It turns out not to be possible to have simultaneously strong tran-

sition and dominant DM candidate in the model with frel ≈ 1. This is because having a
strong transition requires that at least some of the mixing couplings λSi are large. However,
as we noted above, large mixing introduces large annihilation cross sections for S bosons and
hence small relic abundances. Qualitatively the behaviour is the same as in the pure singlet
model [32, 33]: a strong first-order EWPT and large frel ≈ 1 are realized in different portions
of the parameter space.
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Figure 2. Scanned data points which give a strong first-order EWPT. Yellow points are excluded by
direct DM searches.

Left panel of figure 2 shows the correlation between the DM particle mass MS and the
effective coupling λeff for models with strong EWPT. Accepted values of λeff increase as a
function of MS because both quantities are linearly proportional to the mixing couplings λSi.
Right panel of figure 2 shows the correlation between MS and the relative relic abundance
frel for the same set. Note that for MS between the Higgs resonance and MW , both a strong
transition and a relatively large DM abundance, frel ≈ 0.15 could be obtained, but this region
is now excluded by LUX.

The fact that LUX most strongly constrains models with small λeff is because frel is
roughly inversely proportional to the square of λeff , and this to large extent cancels the direct
λeff dependence in σSI. Larger mass region beyond the Higgs resonance is less constrained
because the DM-number density falls with increasing mass.

3.4 Electron EDM constraint

The non-observation of electric dipole moments (EDMs) of electrons, neutrons and atoms
gives stringent bounds on CP-violating interactions in multi-Higgs models. As shown in [36],
currently the most stringent bound for 2HDMs arises from the electron EDM, for which the
ACME experiment gives an upper limit

|de| < 8.7× 10−29ecm , (3.12)

with 90% confidence level [37]. We calculate de for the points which give a strong first-order
EWPT using the results from ref. [38], where Barr-Zee type contributions to fermionic EDM
were calculated in 2HDM. These results are directly applicable here as well, because the
singlet scalar S does not directly couple to gauge fields. In figure 3, we show the distribution
of models passing all previous cuts as a function of de and the neutral scalar mixing matrix
element RN42 , which expresses the projection of h0 to complex part of the second doublet:

RN42 ≡ 〈H0
2I |h0〉 ≡ sin ∆CP . (3.13)

sin ∆CP is given in terms of the various mixing angles in eq. (A.8). The red region is excluded
by the electron EDM constraint. Small de naturally correlates with small sin ∆CP, because
the size of sin ∆CP is proportional to the size of the CP-violating mixing in the model.
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Figure 3. Scatter plot of all models with strong enough EWPT as a function of the mixing parameter
sin ∆CP and the electron EDM de. The red region is excluded by the eEDM limit.

3.5 Baryogenesis

The actual baryogenesis mechanism in our model relies on CP-violating interactions of the
top quark with the expanding phase-transition walls. The CP violation comes directly from
the spatial evolution of the complex phases of the Higgs field H2, which renders the top mass
a complex-valued function of the spatial coordinate across the wall. The first step for us is
then to work out the evolution of the scalar fields over the bubble wall.

We shall approximate the true phase-transition-wall profile in the usual way, by the
stationary path that extremizes the Euclidean one-dimensional action∫

dz

(
|DzH1|+ |DzH2|+

1

2
|∂zS|+ V + . . .

)
, (3.14)

between two degenerate minima at critical temperature T = Tc, for which the condition (3.10)
holds. The covariant derivatives involve the classical Zµ field: Dµ = ∂µ − ig/(2 cos θW)Zµ.
We write the neutral components of the doublets as hje

iϕj and observe that the effective
potential can depend only on the relative phase ϕ ≡ ϕ1 − ϕ2. Following ref. [8], we work in
the gauge Zµ = 0, whereby we need to account for four fields: h1, h2, S and ϕ, while solving
the path. The relevant reduced action is

S1 =

∫
dz

(∑
i

1

2
(∂zhi)

2 +
1

2
(∂zS)2 +

1

2

h2
1h

2
2

h2
1 + h2

2

(∂zϕ)2 + V (h1, h2, S, ϕ, Tc)

)
. (3.15)

The invariance of the potential under the change of the total phase ϕ1 + ϕ2 implies a
conservation law, which in the Zµ = 0 gauge allows us to work out the phase ϕ2 in terms of
the relative phase ϕ [8]:

∂zϕ2 = − h2
1

h2
1 + h2

2

∂zϕ . (3.16)

The complex, spatially-varying top mass can now be constructed from the phase ϕ2(x) and
the modulus h2(z):

mt(z) =
yt√

2
h2(z)eiϕ2(z). (3.17)

In fact, one does not need to solve for the top phase, since only its derivative, given by
eq. (3.16), appears in the source term for the diffusion equations for chemical potentials:

St = ξw
(
K8,t(x

2
tϕ
′
2)′ −K9,tx

2
tx

2′
t ϕ
′
2

)
. (3.18)
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Figure 4. Left: shown is the correlation between the baryon-to-entropy ratio ηB and the mixing
matrix element sin ∆CP. Red dots correspond to models for which Tn cannot be found (in the thin-
wall approximation). Right: the correlation between ηB and de. The red region is excluded by the
eEDM limit and the black line shows the observed baryon-to-entropy ratio.

Here ξw is the wall velocity, primes denote ∂zT and Kn,t are dimensionless functions of
xt ≡ |mt|/T arising from phase-space averaging of certain kinematic variables defined in [39].

Given the source, one can calculate chemical potentials µj(z) for top, bottom, anti-top
and Higgs by solving a set of transport equations defined in [7]. Finally the baryon-to-entropy
ratio ηB ≡ nB/s is given by

ηB =
405

4π2ξwg∗Tc

∫ ∞
0

dz Γsph(z)µBL(z)e−45Γsph(z)z/4ξw . (3.19)

We take ξw = 0.1 for the wall velocity and g∗ = 106.75 for the number of degrees of freedom
in the plasma. The left-chiral baryon chemical potential is

µBL =
1

2
(1 + 4K1,t)µt +

1

2
(1 + 4K1,b)µb − 2K1,tcµtc . (3.20)

For the sphaleron rate we use a formula interpolating between the symmetric and the broken
phase [8],

Γsph(z) = min(10−6Tc, 2.4Tce
−40v(z)/Tc), (3.21)

where v(z)2 = h1(z)2 + h2(z)2.
In the left panel of figure 4 we show how the baryon-to-entropy ratio relative to the

observed value ηobs
B = 8.7 × 10−11 [40] correlates with the CP-violation-sensitive parameter

sin ∆CP defined in (3.13). Shown are only the points which survive the eEDM bound. As
expected, the size of sin ∆CP correlates with the size of ηB. This trend is similar to the
correlation between sin ∆CP and de shown in figure 3. However, a large ηB does not always
imply a large de, as is clear from the right panel of figure 4, where we show the correlation
between de and ηB, again for points that pass the EDM bound. Apparently, while both
quantities are sensitive to the CP-violating parameters in the model, they can be sensitive
to different linear combinations of them, so that large ηB may be obtained simultaneously
with a small enough de.

Figure 5 shows the distributions of various physical parameters in our parametric scan.
Orange colour refers to models that pass all experimental cuts described in sections 3.1
and 3.2, and give a strong EWPT, blue to models that in addition satisfy EDM constraint and
green to models which also give large baryon-to-entropy ratio ηB/η

obs
B ∈ [0.5, 2]. These plots
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Figure 5. Shown are the frequency distributions of the vevs of the scalar fields and the critical
temperature as well as scatter plots for the masses of the new heavy scalar particles in our parameter
scan. For details see the text.

must be interpreted with care, since our scans were partly tuned by hand. Nevertheless, we
see that none of the vevs can be very large and in particular both v1 and v2 need to be nonzero.
Also the critical temperature is bounded from above: Tc . 100 GeV. Finally for the models
with large ηB, the new scalar masses are in general bound from above: mH ,mA0 ,mH± .
1.4 TeV and mS . 400 GeV, which is encouraging from the point of view of experimental
verifiability of the model.

3.6 Bubble nucleation

So far we have implicitly assumed that the bubble nucleation takes place at a temperature not
too different from the critical temperature. This is typically the case in models where the first-
order phase transition is effected by cubic corrections to potential from infrared modes, which
leads to rather mild supercooling and small latent heat release. Here the situation is different,
because the barrier between the degenerate minima is essentially due to a tree-level term.
Thus a stronger supercooling and more latent heat release may be expected, or even a possibil-
ity of a formation of a metastable vacuum where the electroweak breaking never takes place.

We study the nucleation problem in the thin-wall limit [41]. The bubble nucleation rate
is given by

Γ ∼ T 4

(
S3(T )

2πT

)3/2

exp

(
−S3(T )

T

)
, (3.22)

where S3(T ) is the three-dimensional action for an O(3)-symmetric bubble. In the thin-wall
limit, it is given by

S3(T ) =
16π

3

σ3

∆V (T )2
, (3.23)

where ∆V (T ) is the potential energy difference between the electroweak-symmetric and
electroweak-broken minima and σ is the surface tension,

σ =

∫
dφ
√

2V , (3.24)

integrated along the path from the symmetric to the broken minimum at temperature T = Tc.
The bubble nucleation temperature Tn is defined as the temperature at which creating at
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Figure 6. Left: shown is the baryon asymmetry ηB as a function of the ratio of the nucleation and
critical temperatures Tn/Tc. Right: shown is the bound for finding a deflagration wall. Only models
below the line α/αmax = 1 are allowed. For yellow points the nucleation temperatures were rescaled
by κ = 0.7. See text for details. We used αmax = 0.38, corresponding to ξw ≈ 0.1.

least one bubble per horizon volume is of order one. This condition can be written as

S3(Tn)

Tn
= − log

(
3

4π

(
H(Tn)

Tn

)4( 2πTn
S3(Tn)

)3/2
)
. (3.25)

We show the results of the nucleation-temperature calculation for our data set on the
left panel of figure 6. Obviously, a large number of points displayed in figure 4 are missing in
figure 6. The reason is that for these models, indicated by red dots in figure 4, no solution to
eq. (3.25) was found. In these cases, in the thin-wall approximation, the fields were trapped
in the false vacuum. Moreover, of the surviving models only four give large ηB.

The situation is actually more dire than this: another implicit assumption in our baryon
asymmetry calculation is that the transition walls are subsonic deflagrations, which is required
for efficient diffusion of particle asymmetries across the bubble wall. However, with a large
latent heat release the walls tend to be supersonic detonations instead. A full microscopic
analysis of wall dynamics including a computation of the wall friction is beyond the scope of
this paper. However, a deflagration wall must necessarily satisfy a condition [42]

α ≡ ∆V (Tn)

ρ(Tn)
<

1

3
(1− ξw)−13/10 ≡ αmax , (3.26)

where ρ(Tn) is the radiation energy density in the symmetric phase. We show this condition
in the right panel of figure 6 (blue dots) for the set of models shown in the left panel. As ex-
pected, for the models with the lowest nucleation temperatures, deflagrations are not possible.
This applies in particular to all four surviving models with a large baryon-to-entropy ratio.

There are two issues that ameliorate the situation. First, the validity of the thin-wall
limit actually requires a small latent heat and/or a large surface tension, which is often not
the case here. When not applicable, thin-wall limit tends to overestimate the action S3(T ),
and hence underestimate the nucleation rate and eventually Tn. Accurate calculation of the
nucleation rate is quite complicated in the full model, however, and we do not pursue it here.
Instead, we compare the nucleation temperatures found in the thin-wall limit and in the full
calculation in the simpler, singlet extension of the SM, studied for example in [32, 33]. In
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Figure 7. Shown are the nucleation temperatures in a scan over the parameters of the singlet
extension of the SM. Blue dots correspond to the thin-wall temperature and the yellow dots to a full
calculation. Gray lines connect pairs corresponding to the same physical parameters. The dotted line
corresponds to Tn = Tc.

practice we minimize the action

S3(T ) = 4π

∫
r2dr

(
1

2

(
dh

dr

)2

+
1

2

(
dS

dr

)2

+ VSSM(h, S, T )

)
, (3.27)

where h is the SM-Higgs field, and VSSM(h, S, T ) is the singlet-model potential.
The results of this analysis are shown in figure 7. The blue dots show the nucleation

temperature in the thin-wall approximation and the yellow dots the same quantity found
from the solving minimizing the action (3.27) . As expected, the thin-wall approximation
underestimates nucleation temperatures significantly. We find that the true nucleation tem-
perature Tn and the thin-wall value T tw

n are related by Tn = Tc − κ (Tc − T tw
n ), where the

coefficient κ to some extent depends on MS and λS , but is less than 0.7. We anticipated this
result in the deflagration limit shown in the right panel of figure 6, where the yellow dots
were found by redefining all thin-wall nucleation temperatures by the above equation with
κ = 0.7. We believe that this scaling conservatively represents the effect of going beyond
thin-wall approximation in the full 2HDM and singlet model, and hence shows that most
parameter sets may in fact be deflagrations.

We can also tune our search to prefer models with a higher critical temperatures. Indeed,
as is clearly seen from figure 7, the nucleation temperature approaches the critical tempera-
ture when Tc gets higher in the singlet extension of the SM and this feature persists also in the
full 2HDSM. Hence, we made a new parametric scan, where we accept only models with Tc >
80 GeV. The result of this scan is seen in figure 8, where the left panel again shows the baryon-
to-entropy ratio and in the right panel the deflagration bound. We now found more points
with large asymmetry and, in particular after one rescales the thin-wall nucleation tempera-
tures as explained above, these points are now well below the deflagration bound eq. (3.26).

4 Conclusions and outlook

We have studied the viability of a two-Higgs-doublet and inert-singlet model for EWBG and
for DM, taking into account also all existing observational and collider constraints. Our model
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Figure 8. Left: shown is the baryon asymmetry ηB as a function of Tn/Tc for the new scan with
Tc > 80GeV (here Tn is the thin-wall nucleation temperature). Right: the deflagration bound for the
set displayed in the left plot as a function of Tn/Tc. We again used αmax = 0.38.

is based on the maximal GL(2,C) reparemetrization symmetry. This implies a universal
Yukawa-alignment scheme, where both Higgs fields couple similarly to all fermions and there
are no FCNCs. Exploiting the GL(2,C) symmetry, the the model can, in a particular basis, be
written with a type-I Yukawa sector combined with the most general CP-violating potential.

Following [19–21] we implemented a novel way to construct potentials with a tree-
level stability and to study the symmetry breaking patterns at finite temperatures. This
construction was based on the Lorentz symmetry induced by the reprametrization symmetry
on bilinears formed from Higgs doublets. These techniques are applicable to all 2HDM
models, and they proved extremely useful when performing large-scale parametric scans over
the multidimensional phase space of the model.

Dark matter and the strength of the electroweak phase transition in the model follow a
similar pattern to the pure singlet extension: in accordance with [33], we find that strong two-
step phase transitions are easily found, but they are consistent only with a subleading DM.
Likewise, we find that experimental and observational constraints are fairly easy to avoid,
with the outstanding exception of the electron-EDM bound, which strongly constrains the
CP-violating parameters on the model. EDM constraints are particularly important because
creating a large baryon asymmetry during the electroweak phase transition requires large
CP-violating parameters; we found that the electron EDM indeed strongly constrains the
phase space consistent with baryogenesis. Yet the bounds are not as strong here as in the
pure 2HDM case [8], and we found a number of models consistent with all requirements.

Finally, we observed that two-step transitions may suffer from an unexpected problem
of providing a too strong phase transition. We found that fields may get trapped in the
metastable minimum, and transition walls may not be subsonic as required by a successful
baryogenesis scenario. However, our analysis in the full model was restricted to the thin-wall
approximation. We then studied the bubble nucleation in full generality in the case of a pure
singlet extension of the SM. While the generic problem of too strong transitions remained,
we found that thin-wall limit tends to overestimate the strength of the transition. Based on
these results we argued that, when corrected for the thin-wall bias, the walls may well remain
subsonic in the full 2HDSM. In a revised scan concentrating to models with a large critical
temperature, we found many models potentially consistent with all available constraints.

While our results are not a definite proof, they provide a strong indication of a success
of baryognesis in the 2HDM and an inert singlet model. Settling the issue beyond any doubt
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would require two significant improvements. First is a detailed analysis of the bubble wall
dynamics, including a microscopic computation of the friction on the wall. Second is going
beyond the Tc-bounce solution, when solving the scalar field profiles over the bubble wall to
compute the top quark mass profile and eventually the baryogenesis source. These are both
very interesting topics that deserve to be studied in detail in the future.
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A Diagonalization of mass matrices

In this appendix we show in detail the diagonalization of the scalar mass matrices. Follow-
ing [43], we write

rµ = φxΣµ
xyφy , (A.1)

where

φ =
(
H+

1I , H
+
2I , H

+
1R, H

+
2R, H

0
1I , H

0
2I , H

0
1R, H

0
2R

)
, (A.2)

where the subscripts R and I again denote the real and imaginary parts, respectively, and
the matrices Σµ are block diagonal matrices consisting of 4× 4 elements

Σ0 = 14 , Σ1 =

(
σ1 0
0 σ1

)
, Σ2 =

(
0 −iσ2

iσ2 0

)
, Σ3 =

(
σ3 0
0 σ3

)
. (A.3)

Now the (a, b) element of the mass matrix is

∂2V

∂φa∂φb

∣∣∣∣
φ=〈φ〉

= −Σµ
abMµ + Σµ

abλµν〈r
ν〉+ 2Σµ

ax〈φx〉λµν〈φy〉Σν
yb , (A.4)

and the minimum conditions are

∂V

∂φa

∣∣∣∣
φ=〈φ〉

= (−Σµ
axMµ + Σµ

axλµν〈rν〉) 〈φx〉 = 0 . (A.5)

Let us consider the neutral part of the mass matrix. The eigenstate corresponding to eigen-
value zero is G0 = NGΣ5〈φ0〉 , where Σ5 = Σ0Σ1Σ2Σ3 and NG is the normalization factor.
Now

G0 = cosβ cos θH0
1R + sinβ H0

1I − cosβ sin θH0
2R , (A.6)

where

β = arctan
v2

v1
. (A.7)
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Hence we can diagonalize the neutral mass matrix by

RN =


1 0 0 0
0 cycz −cysz sy
0 sxsycz + cxsz cxcz − sxsysz −sxcy
0 sxsz − cxsycz cxsysz + sxcz cxcy




cβcθ sβ −cβsθ 0
−sβcθ cβ sβsθ 0
sθ 0 cθ 0
0 0 0 1

 , (A.8)

where we have used the short-hand notations sα ≡ sinα, cα ≡ cosα, and the neutral mass
eigenstates are 

G0

A0

H0

h0

 = RN


H0

1I

H0
2I

H0
1R

H0
2R

 . (A.9)

On the charged sector there are two eigenstates with eigenvalue zero: G1 = NG1Σ5〈φ0〉
and G2 = NG2〈φ0〉 . Now

G1 = cosβ sin θH+
1R + cosβ cos θH+

1I + sinβ H+
2I ,

G2 = cosβ cos θH+
1R − cosβ sin θH+

1I + sinβ H+
2R .

(A.10)

Hence charged Goldstone bosons are G± = cosβe±iθH±1 + sinβH±2 . The charged mass
matrix in the basis {H+

1 , H
+
2 } can be diagonalized by

RC =

(
cβe

iθ sβ
−sβeiθ cβ

)
, (A.11)

and charged mass eigenstates are

(
G+

H+

)
= RC

(
H+

1

H+
2

)
. (A.12)

B 1-loop beta functions for scalar couplings

For completeness we show the 1-loop beta functions,

βλi ≡
dλi

d lnµ
, (B.1)
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we used to compute the perturbativity limits on the model parameters:

16π2βλ1 = 24λ2
1 + 2λ2

3 + 2λ3λ4 + λ2
4 + 4|λ5|2 + 12|λ6|2

+
1

2
λ2
S1 − 3

(
3g2

L + g2
Y

)
λ1 +

3

8

(
3g4

L + 2g2
Lg

2
Y + g4

Y

)
,

(B.2)

16π2βλ2 = 24λ2
2 + 2λ2

3 + 2λ3λ4 + λ2
4 + 4|λ5|2 + 12|λ7|2 +

1

2
λ2
S2

− 3
(
3g2

L + g2
Y

)
λ2 +

3

8

(
3g4

L + 2g2
Lg

2
Y + g4

Y

)
+ 12y2

t λ2 − 6y4
t ,

(B.3)

16π2βλ3 = (λ1 + λ2)(12λ3 + 4λ4) + 4λ2
3 + 2λ2

4 + 8|λ5|2 + 4|λ6|2

+ 16Re (λ∗6λ7) + 4|λ7|2 + λS1λS2

− 3
(
3g2

L + g2
Y

)
λ3 +

3

4

(
3g4

L − 2g2
Lg

2
Y + g4

Y

)
+ 6y2

t λ3,

(B.4)

16π2βλ4 = 4(λ1 + λ2)λ4 + 8λ3λ4 + 4λ2
4 + 32|λ5|2 + 10

(
|λ6|2 + |λ7|2

)
+ 4Re (λ∗6λ7) + |λS12|2 − 3

(
3g2

L + g2
Y

)
λ4 + 3g2

Lg
2
Y + 6y2

t λ4,
(B.5)

16π2βλ5 = (4λ1 + 4λ2 + 8λ3 + 12λ4)λ5 + 5λ2
6 + 2λ6λ7 + 5λ2

7

+
1

2
λ2
S12 − 3

(
3g2

L + g2
Y

)
λ5 + 6y2

t λ5,
(B.6)

16π2βλ6 = (24λ1 + 6λ3 + 8λ4)λ6 + (6λ3 + 4λ4)λ7 + (20λ∗6 + 4λ∗7)λ5

+ λS1λS12 − 3
(
3g2

L + g2
Y

)
λ6 + 3y2

t λ6,
(B.7)

16π2βλ7 = (6λ3 + 4λ4)λ6 + (24λ2 + 6λ3 + 8λ4)λ7 + (4λ∗6 + 20λ∗7)λ5

+ λS2λS12 − 3
(
3g2

L + g2
Y

)
λ7 + 9y2

t λ7,
(B.8)

16π2βλS = 18λ2
S + 2λ2

S1 + 2λ2
S2 + 4|λS12|2, (B.9)

16π2βλS1 = (12λ1 + 6λS)λS1 + (4λ3 + 2λ4)λS2 + 4λ2
S1 + 12Re (λ∗6λS12)

+ 4|λS12|2 −
3

2

(
3g2

L + g2
Y

)
λS1,

(B.10)

16π2βλS2 = (4λ3 + 2λ4)λS1 + (12λ2 + 6λS)λS2 + 4λ2
S2 + 12Re (λ∗7λS12)

+ 4|λS12|2 −
3

2

(
3g2

L + g2
Y

)
λS2 + 6y2

t λS2,
(B.11)

16π2βλS12 = (2λ3 + 4λ4 + 6λS + 4λS1 + 4λS2)λS12 + 12λ5λ
∗
S12

+ 6λ6λS1 + 6λ7λS2 −
3

2

(
3g2

L + g2
Y

)
λS12 + 3y2

t λS12.
(B.12)

C Singlet scalar annihilation cross sections

Here we give compact expressions for singlet pair annihilation rates used in the computation
of the DM abundances. In the mass eigenbasis, the relevant Lagrangian may be written as

L =
∑
j,k

(
c0S

2HjHk +
∑
i

cijkHiHjHk

)
+
∑
i

ciS
2Hi +

∑
i,f

(
yifHifRfL + h.c.

)
+
∑
i

(
gWiW

+W−Hi + gZiZZHi

)
,

(C.1)
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where H = (A0, H0, h0, H
+) . Now the singlet scalar annihilation cross section to scalars is

given by:

σ(SS → HjHk) =
1

16πs2vs

(
A2
jkI0,j,k + 2AjkBjkI1,j,k +B2

jkI2,j,k

)
. (C.2)

The rate into fermion-antifermion pairs is given by:

σ(SS → ff) =
I0,f,f

4πs2vs

∑
i,j

cicj
(s−m2

i )(s−m2
j )
×

×
(

(yifRyjfR − yifIyjfI)
s

2
− 2yifRyjfRm

2
f

)
, (C.3)

and the annihilation to vector bosons is:

σ(SS → V V ) =
I0,V,V

4πs2vs

∑
i,j

cicjgV igV j
(s−m2

i )(s−m2
j )

(
3 +

s(s− 4M2
V )

4M2
V

)(
1−

δV,Z
2

)
, (C.4)

where

I0,j,k =
√
s2 + (m2

j −m2
k)

2 − 2s(m2
j +m2

k) ,

I1,j,k =
4I0,j,k

m2
j +m2

k − s
,

I2,j,k =
2I0,j,k

m2
jm

2
k −M2

S(2m2
j + 2m2

k − s) + M2
s
s (m2

j −m2
k)

2
+

8I0,j,k

(m2
j +m2

k − s)2
,

(C.5)

and

Ajk = 2(1 + δjk)c0 + 2
∑
i

(1 + δij + δjk + δki + 2δijδjk)
cicijk
s−m2

i

,

Bjk = 4cjck .

(C.6)
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