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Abstract: The potential of graphene in plasmonic electro-optical 
waveguide modulators has been investigated in detail by finite-element 
method modelling of various widely used plasmonic waveguiding 
configurations. We estimated the maximum possible modulation depth 
values one can achieve with plasmonic devices operating at telecom 
wavelengths and exploiting the optical Pauli blocking effect in graphene. 
Conclusions and guidelines for optimization of modulation/intrinsic loss 
trade-off have been provided and generalized for any graphene-based 
plasmonic waveguide modulators, which should help in consideration and 
design of novel active-plasmonic devices.

© 2016 Optical Society of America
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1. Introduction

Graphene is a material possessing numerous unique properties, of which unexpectedly high
opacity combined with its tuneabilty by gating promises interesting applications in graphene-
based optical modulators. Conventional simple transverse modulator configurations (where
radiation is incident on and transmitted through a graphene layer) cannot fully utilize graphene’s
potential because of a very small interaction volume, i.e. the volume of the propagating
radiation affected by graphene. A most straightforward way to increase interaction volume
is to guide radiation to be modulated along graphene layer [1, 2]. This approach can be
advantageously utilized in plasmonics dealing with electromagnetic modes which naturally
propagate along and are greatly enhanced at the boundaries between metal and dielectric,
where it is convenient to place a graphene layer. We have recently made several hybrid
graphene-plasmonic modulators working at telecom wavelengths with some promise for
applications [3, 4].

The purpose of this paper is to consider various plasmonic waveguide configurations and
analyze their potential for graphene-based modulators. We evaluate numerically the maximum
modulation depths one can achieve with the use of a single graphene layer as an absorbing
material. For simplicity, in calculations we assume full graphene gating, i.e., full switch
from non-absorbing to maximum absorbing state with the use of the optical Pauli blocking
effect [5,6], providing hereby the maximum value of modulation one can expect in the selected
configuration.

To begin with, we consider simplified analytical estimations of the modulation depth for
several basic configurations that can be considered as elementary building blocks of any
plasmonic waveguide. Such analysis should reveal the main physics involved and hint on the
most promising plasmonic mode for the realization of graphene-based modulators. We then
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continue with accurate finite-element modelling of more complicated geometrical structures
and suggest several candidates for the practical realization of modulators, which are analyzed
in detail.

2. Analytic consideration

In the following, we assume that a plasmonic mode propagates in the z direction of the
coordinate system. A single layer of pristine graphene covers completely the metal surface,
thereby introducing additional absorption ΔW of energy of the propagating plasmonic mode.
The absorption in graphene can be switched off using optical Pauli blocking [5], i.e., by
graphene gating. Thus, the modulation of plasmonic mode is achieved by switching absorption
in graphene on and off.

For simplicity of analytical derivations, we do not assume in our estimations any isolating
layer between graphene and the metal constituting the plasmonic waveguide, even though one
would need to introduce such a layer in experiments to realize graphene gating. This simplifying
assumption modifies slightly the modulation value, but does not change the general description
of the system and facilitates understanding of the requirements posed on the most efficient
configuration.

As we explained above, we further assume that gating changes the state of graphene from
maximum absorbing to completely non-absorbing, i.e. the modulation is maximum that can be
achieved for the chosen configuration. In this case, the additional absorption of energy along
the propagation direction Δz per time Δt induced by a graphene layer can be evaluated as [7]

ΔW = Re(σ)ΔzΔt
∫

E2
‖dl, (1)

where Re(σ) is the real part of graphene electrical conductivity, which for visible and near-

infrared optical excitations approximately equals to Re(σ) = e2

4h̄ = cα
4 with α being the fine-

structure constant (and for far-infrared frequencies is affected by intraband contribution),
and E‖ is the tangential electric field on the metal surface (field in the plane of a graphene
layer). The integration is done along graphene layer in the direction perpendicular to the mode
propagation. For most of the considered below configurations, E‖ is constant along integration
direction, and Eq. (1) reduces to a simple product ΔW ≈ Re(σ)E2

‖ΔlΔzΔt. Here Δl is either
the plasmonic mode width or the length of graphene layer in the direction perpendicular to
the mode propagation—depending on what is narrower. In other words, Δl is the overlap
length between the graphene layer and the mode field in transversal direction. Comparing the
additional absorption of energy ΔW with the energy flow W through a cross-sectional area
perpendicular to the mode propagation direction, we obtain the relative mode absorption as
ΔW/W , and the modulation per unit length of propagation (in logarithmic dB units):

M =
−10log10(1−ΔW/W )

Δz
∼ 10

ln(10)
ΔW
WΔz

. (2)

In the following subsections, we will use Eqs. (1) and (2) in order to evaluate the maximum
achievable modulation for three basic geometrical configurations of graphene-based plasmonic
modulators—namely, for surface plasmon polariton (SPP) mode [Fig. 1(a)] and for a mode of
a metal nanowire with a graphene sheet either wrapping the waveguide [Fig. 1(b)] or touching
it [Fig. 1(c)].

2.1. Surface plasmon polariton (SPP)

Surface plasmon polariton is a poorly confined plasmonic mode with most of the energy
concentrated in dielectric. Moreover, the longitudinal electric-field component in dielectric

#259224 Received 9 Feb 2016; revised 3 Apr 2016; accepted 5 Apr 2016; published 8 Apr 2016
© 2016 OSA 18 Apr 2016 | Vol. 24, No. 8 | DOI:10.1364/OE.24.008266 | OPTICS EXPRESS 8268 



Fig. 1. Simplified geometry of three basic graphene-based plasmonic modulators:
a) graphene sheet on top of a planar metal surface supporting surface plasmon polaritons;
b) graphene sheet wrapping a metal nanowire; c) metal nanowire touching planar graphene
sheet. Graphene is denoted by a dashed line. Assuming that plasmonic mode propagates in
z direction, the arrows show transverse electric field of the waveguided mode.

is negligible (especially at telecom wavelengths) compared to transversal one [Fig. 1(a)].
Therefore, we can write the average amount of energy flow W per time Δt as follows:

W ≈ εd

8π
vgΔtΔl

∫ ∞

0
E2
⊥(y)dy ≈ ncΔtΔlη

16π
E2
⊥,0, (3)

where εd and n are material constants of dielectric, vg is the mode group velocity, c is the speed
of light, E⊥,0 is the transversal electric field in dielectric at the surface of metal, and η is the
field penetration depth in dielectric. Using Eqs. (1) and (3), we find the relative mode absorption
per unit length:

ΔW
WΔz

=
4πα
nη

(
E‖

E⊥,0

)2

. (4)

Using SPP properties, we note that η−1 = ky =
√

k2
spp − εdk2

0 and E⊥,0 =
ikspp√

k2
spp−εdk2

0

E‖, where

kspp = k0
√

εdεm/(εd + εm), εm is the real part of metal permittivity, and k0 is the free-space
k-vector. Since for visible and near-infrared wavelengths |εm| � εd , we can further simplify
Eq. (4) and write the modulation M using Eq. (2) as follows:

M =
10

ln(10)
8π2α

λ

(
εd

|εm|
)3/2

. (5)

For telecom wavelength λ = 1.5 μm, εd � 1, and |εm| � 100, we obtain M � 1.7 ×
10−3 dB/μm. This suggests that at telecom wavelength, one can realistically achieve
modulation by optical Pauli blocking in graphene at the level of 0.002 dB/μm. However,
the perspectives of practical applications are rather bleak, because this value is an order of
magnitude lower than the intrinsic SPP attenuation due to Ohmic loss.

2.2. Cylindrical surface plasmon polariton (CySPP), full graphene wrapping

For the configuration with graphene layer wrapping a metal-nanowire waveguide [Fig. 1(b)],
we can significantly simplify our derivations by considering such mode as a planar SPP mode
wrapped around the nanowire. This allows us to use Eq. (4), where we again assume E⊥,0 =
iksppηE‖ = ik0NηE‖ with N being the mode effective index, and field penetration depth in
dielectric is proportional to wavelength, η = ζ λ . The dimensionless coefficient ζ depends
mostly on the radius of nanowire and to lower extent on the wavelength, and varies from ∼ 0.15
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for a 20-nm radius to ∼ 0.55 for a radius of 150 nm. Substituting the above relations into
Eqs. (2) and (4), we obtain:

M =
10

ln(10)
α

πnλN2ζ 3 . (6)

For telecom wavelength range (λ � 1.5 μm, n � N � 1), Eq. (6) reduces to M ≈ 6.7×
10−3ζ−3 dB/μm. For reasonably thick nanowires of radius 150 nm, the maximum achievable
modulation is about M ≈ 0.04 dB/μm. For much thinner nanowires of radius 20 nm, the
modulation depth could reach 2 dB/μm, which is commensurable with the CySPP absorption
by metal. Note that compared to the modulator based on SPP, the enhanced value of modulation
M in this case is due to tighter mode confinement. This leads to enhancement of the longitudinal
component of electric field, which is aligned along the graphene layer and contributes to
absorption.

2.3. Cylindrical surface plasmon polariton (CySPP), flat continuous graphene sheet

In the case of a metal nanowire touching a flat graphene layer [Fig. 1(c)], the absorption
of energy in graphene is given by Eq. (1), where electric field E‖ is no longer a constant
and has to be carefully integrated along the graphene layer. Contrary to the configurations
considered above, the in-plane electric-field component E‖ is the strong transverse CySPP field
component projected on the graphene plane. For this reason, we neglect the contribution from
the relatively weak longitudinal component. Assuming that 2r ≤ η , where r is the nanowire
radius (which holds true even for μm-thick nanowires), the absorption integral in Eq. (1)
evaluates to ΔW = Re(σ)2rΔzΔtE2

⊥,0K1(
2r
η ) ≈ Re(σ)ηΔzΔtE2

⊥,0, where K1 is the modified
Bessel function of the second kind. Taking this expression of absorption and the energy flow
from Eq. (3) with Δl = 2πr (assuming that SPP is “wrapped” around the nanowire), we obtain
the maximum modulation per unit length from Eq. (2):

M =
10

ln(10)
2α
nr

. (7)

Again, calculating this value for reasonably thick nanowires of radius 150 nm in air (n = 1),
we get an order-of-magnitude increase of modulation compared to the previous configuration:
M ≈ 0.4 dB/μm. For much thinner nanowires of radius 20 nm, the modulation depth is only
slightly larger than in the wrapped CySPP configuration, M ≈ 3.2 dB/μm, which might be
because we neglected the longitudinal electric-field component, being noticeably stronger for
tightly confined modes.

We note that in this last configuration, the physical contact between the graphene layer
and the waveguide is substantially narrower. Nevertheless, the modulation is comparable to or
sometimes substantially larger than that in the previous configurations. The latter emphasizes
the importance of aligning the graphene layer along the strongest electric-field components
of the mode (or at least having large projections of those), sacrificing in some cases a good
wrapping of the waveguide with graphene. This somewhat counter-intuitive result might help
us finding optimum configurations for a graphene-based plasmonic modulator.

3. Numeric modelling of basic structures

After establishing the main features of three basic plasmonic modulators, we are going to take
a closer and more precise look at them as well as at one additional structure, which is difficult
to study analytically—dielectric-loaded surface plasmon polariton waveguide (DLSPPW). It
is necessary to note that we simplified the geometry of structures in the previous section, and
assumed that graphene layer touches the metal surface of the waveguide, whereas graphene
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gating requires a dielectric spacer between them. The presence of such spacer moves graphene
away from the enhanced electric fields of a plasmonic waveguide and can strongly reduce
the achievable modulation depth. Therefore, in this section we consider precise finite-element
method (FEM) modelling of the same structures where we introduced an isolating layer of
hexagonal boron nitride (hBN). The choice of this material is governed by its large resistivity,
good elastic properties, high breakdown field strength, and a feasibility to fabricate atomically-
flat layers [8–10]—properties that make hBN a good candidate as a dielectric in capacitors, and
hence for graphene gating.

As a first configuration, we consider SPP propagating along a gold–air interface. A single
atomic layer of graphene spans the gold surface through a layer of hBN, whose thickness
is a variable parameter in simulations. Overall, the considered configuration is a four-layer
structure: gold–hBN–graphene–air without gaps between layers. In simulations (accomplished
using COMSOL Multiphysics), we do not create a medium corresponding to graphene, because
introducing material (macroscopic) parameters for a single atomic layer cannot be fully
justified. Instead, to accurately take absorption in graphene into account, we calculate the
mode-field distribution, and, similar to Eq. (1), integrate the value Re(σ)E2

‖ over hBN–air
interface (cf. supplementary information in [7]). For evaluation of energy flow W , we also
use the calculated mode-field distribution and group velocity in the form vg = c/(N − λ ∂N

∂λ ),
where N is the effective mode index and λ is the free-space wavelength. We accomplish all the
following simulations and evaluation of achievable modulation depth using the same procedure.
For the refractive index of hBN, we take the value of 1.8, whereas the gold permittivity value
is taken from Palik [11]. All numerical simulations are done for a fixed telecom wavelength of
1500 nm.

The results of simulations for SPP mode show a presence of modulation maximum for a
particular hBN thickness [Fig. 2(a,b)]. For the selected wavelength of 1500 nm, it lies at around
180 nm. One can understand the existence of the maximum from the following reasoning. For a
very large thickness of hBN layer, the considered mode resembles a mode of SPP at an interface
of two semi-infinite gold and hBN media, whose field decays exponentially away from the
interface. Therefore, the field at hBN–air interface (where the graphene layer is applied) is low,
and so is the modulation. With a decrease of hBN thickness, the mode undergoes compression
and is partially pushed inside the metal, which results in increased loss. At the same time, the
modulation grows as well, because progressively more energy is stored inside hBN layer, and
the field at hBN–air interface and inside graphene increases. At a certain thickness of hBN,
the energy of the mode can no longer be stored inside it, and with the further decrease of hBN
thickness, the field is pushed out into air. This leads to a decrease of the field in graphene and
therefore to a decreased modulation depth. The loss decreases as well, because part of the mode
energy redistributes from metal into air. This primitive description explains also the proximity
of modulation and mode loss maxima: They have the same physical origin.

From the graph on Fig. 2(b), one can also see that the mode loss is quantitatively larger
than modulation depth at the most of hBN thicknesses. There, however, exists an interval of
thicknesses (∼ 100–200 nm), at which modulation is larger than loss, and the dominance of
modulation is maximum at the middle of the interval (at ∼ 150 nm of hBN thickness), where
it exceeds loss by slightly more than 10%. This configuration due to its simplicity might be
interesting for practical applications.

Another configuration worth being considered is DLSPPW mode, because it provides a much
more practical laterally confined mode with good propagation length [12]. Moreover, a large set
of passive and a few active plasmonic components have been developed for this geometry [13–
18]. Similar to the previous structure, we introduce a layer of hBN of variable thickness on top
of the gold surface, beneath the dielectric waveguide made of acrylic glass (PMMA), whose
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Fig. 2. Modelling of modulation depth and mode loss for graphene-based devices exploiting
(a),(b) surface plasmon polariton (SPP) and (c),(d),(e),(f) dielectric-loaded SPP waveguide
(DLSPPW) modes. In finite-element method (FEM) calculations, the thickness t of the
isolating layer — hexagonal boron nitride (hBN) — was the varying parameter. Electric-
field plots (a),(c), and (e) show field amplitude distribution for the case of hBN thickness
that gives maximum modulation depth in the corresponding configuration [denoted by
dashed circles on panels (b) and (d)]. White dashed lines on field plots denote the location
of graphene layer. Dimensions of the DLSPPW are as follows: (c) width – 500 nm, height
– 550 nm, (e) width – 140 nm, height – 150 nm.
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geometry is optimized for mode confinement at telecom wavelength [12]: 500 nm in width and
550 nm in height [Fig. 2(c)]. Again, we simulate the graphene layer on top of hBN medium
below the PMMA waveguide.

As in the case of the regular SPP mode, the dependencies of the DLSPPW mode loss and
modulation depth on the hBN thickness show a maximum at around 200 nm (235 nm for loss
and 195 nm for modulation), which is of the same physical origin [Fig. 2(d)]. However, several
features are substantially different from those observed for the SPP mode. One can see that for
very small (or absent, as the limiting case) thicknesses of hBN, the modulation is noticeably
higher exceeding that of the SPP mode by a factor of 5. This is indeed expected, as DLSPPW
mode is well confined, and hence have larger longitudinal component of electric field, which
contributes to absorption in graphene. This advantage is quickly lost though with an increase of
hBN thickness, because the mode loses its confinement, and the modulation at its maximum has
considerably lower value. Contrary to the SPP mode, modulation depth of the DLSPPW mode
never exceeds absorption. This last result is disappointing, as well as somewhat unexpected,
but can be attributed to the deterioration of the mode profile through the introduction of a
planar layer of isolating medium, i.e., the whole idea of introducing a layer of hBN spoils the
DLSPPW mode structure.

We would also like to briefly consider how geometrical parameters of the DLSPPW affect
the modulation depth with respect to intrinsic mode loss. One can immediately notice that
decreasing the waveguide width and/or height gradually converts DLSPPW mode into planar
SPP by decreasing the mode lateral confinement. In this respect, there is no optimum width
of the waveguide that maximizes the modulation: The modulation gradually increases with
decreasing the DLSPPW width to zero. In practice, however, the width of the waveguide is
roughly limited by its height, as it is hard to fabricate tall narrow polymer ridges with aspect
ratio below one. Thus, for any given DLSPPW height, it is most reasonable to use a waveguide
with aspect ratio close to unity, and one is faced with the usual for plasmonics trade-off between
mode confinement and any other useful property (modulation in our case). As an example, we
provide the results of numerical modelling of a scaled-down DLSPPW of 140 nm in width and
150 nm in height [Fig. 2(e,f)]. Comparing with the previous DLSPPW, one can see that the
mode became substantially broader, and the dependences of modulation depth and mode loss
on hBN thickness resemble those of the SPP mode.

Let us now consider a mode of metal nanowire with two possible wrappings by a graphene
layer: (i) fully wrapped configuration and (ii) a nanowire on a planar surface. In both
configurations, a layer of hBN (either wrapped or planar) of variable thickness isolates graphene
sheet from the metal structure. Another variable parameter in the modelling is the radius of the
nanowire. A fully wrapped configuration is hardly feasible in experimental implementation
and is only interesting from theoretical point of view as an elementary building block for
more complicated geometries. For this reason and for the sake of easier comparison with
other configurations, we will use material parameters of gold for the metal structure, even
though for a practical realization of plasmonic metal-nanowire waveguide, silver would be a
better choice. Precise FEM modelling of the structure with the smallest reasonable radius of
the nanowire (20 nm) and thickness of hBN layer varying from 5 to 100 nm gives a tightly
confined mode [Fig. 3(b)] and dependencies of modulation depth and mode loss versus hBN
thickness [Fig. 3(a)] very similar to those obtained for regular SPP mode [Fig. 2(b)]. With a
sweep of the hBN thickness, both quantities feature a maximum, which are reached at close
thicknesses of the isolating layer (55 and 85 nm, respectively). One can notice though that the
values of modulation and absorption are an order of magnitude larger than those for the SPP
mode, and that the modulation depth never exceeds loss. With an increase of the nanowire
radius, this quasi-resonant dependence gets wider, whereas the absolute values of modulation
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Fig. 3. (a) Modelling of modulation depth and mode loss for graphene-based device
exploiting a mode of gold nanowire with graphene layer fully wrapping the waveguide.
The variable parameters in the FEM calculations are nanowire radius r changing from 20
to 150 nm with a step of 10 nm and hBN thickness t, varying from 5 to 100 nm for each
radius. (b) Electric-field plot for the geometry, giving the maximum modulation: r = 20 nm,
t = 55 nm [denoted by a dashed circle in panel (a)]. White dashed line denotes the location
of graphene layer. (c) Calculated mode loss and modulation depth for r = 150 nm and an
extended range of hBN thicknesses [denoted by a dashed circle in panel (a)].

and loss decrease and should finally converge to the case of the flat SPP mode. Simulation
for a wider range of hBN thicknesses for the largest nanowire radius (150 nm) shows that
the modulation and loss curves never cross each other [Fig. 3(c)] in the whole range of the
considered nanowire radii. This is a result of unfortunate trade-off between the extent of
plasmonic mode confinement and the degree of overlap between the graphene layer and the
electric field. Indeed, better mode confinement produces stronger longitudinal electric field,
which is favorable for modulation. On the other hand, tighter confinement leaves less possibility
for graphene to probe the electric field due to the isolation layer.

Even though the tightly confined mode of a metal nanowire provides an enhanced
longitudinal (axial) electric-field component, the transversal (radial) component of electric field
is substantially stronger in the dielectric part of the waveguide. In the fully wrapped metal-
nanowire configuration, the graphene layer is always exactly perpendicular to the strongest
electric field component and cannot fully exploit the potential of this mode. This disadvantage
is alleviated to some extent in the case of the nanowire on top of a planar surface [Fig. 4(b,c)],
where most of the transverse electric-field lines have a projection on the graphene plane,
though the geometrical overlap is substantially smaller. We have already pointed this out in
the first section during approximate analytical consideration of the structure. In more precise
numerical FEM modelling, we take into account the hBN planar isolating layer. Moreover,
to make the structure more realistic, we assume that the whole geometry resides on a glass
substrate. Our simulations reveal some interesting details of this configuration [Fig. 4(a)].
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Contrary to the previous geometries, there is no optimum thickness of the isolating layer: The
dependencies of modulation depth and mode loss on hBN thickness are monotonous curves
without extrema, with the minimum (ideally, zero) thickness giving the best conditions, i.e.,
maximum modulation at the minimum mode loss. Interestingly, for the smallest and several
largest considered radii of the nanowire (r = 20 nm and r ≥ 100 nm), modulation exceeds
loss for isolating layer thicknesses below ∼ 10–15 nm, which are feasible in experiment. It is
important to note that depending on the fabrication conditions, the same structure with gold
substituted by silver can provide considerably lower absorption in metal and moderately lower
confinement [19–21], which will result in both lower mode loss and higher modulation depth,
making hereby this geometry more attractive.

Fig. 4. (a) Modelling of modulation depth and mode loss for graphene-based device
exploiting a mode of gold nanowire with a planar graphene sheet below the isolating layer
of hBN. The variable parameters in the FEM calculations are nanowire radius r changing
from 20 to 150 nm with a step of 10 nm and hBN thickness t, varying from 5 to 100 nm
for each radius. (b),(c) Electric-field plots for two geometries [denoted by dashed circles
in panel (a)] yielding the modulation depth, which is comparable to intrinsic mode loss:
(b) r = 20 nm, t = 15 nm and (c) r = 150 nm, t = 15 nm. White dashed lines on field plots
denote the location of graphene layer.

4. Modelling edge-based waveguides

We have established in the previous section that among various basic plasmonic waveguiding
modes, the mode of a metal nanowire under certain conditions is the most promising for
modulation by absorption in graphene. The main condition to be fulfilled is that the electric
field that drives electrons in graphene and hence being absorbed must be primarily the mode’s
transversal component, rather than its generally week longitudinal one. This can be guaranteed
by finding a proper geometry of the waveguide and/or the way graphene is introduced into
the system. The latter can be especially challenging if one aims at an experimentally feasible
configuration, not imposing very hard limits on the fabrication procedure. In this section, we
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will investigate three waveguides that bear similarity with the above-mentioned mode of the
nanowire, but provide more flexibility in fabrication and allow easier integration with other
nano-optic components, such as in- and out-couplers, passive waveguiding components, other
waveguiding structures, etc.

Fig. 5. Graphene-based modulator based on edge plasmon mode: Spatially limited planar
gold film deposited on a dielectric substrate supports a plasmonic mode bound to its edge,
whereas graphene flake covers the edge through an isolation layer of hBN. The variable
parameters in the FEM calculations are gold-film thickness h changing from 20 to 150 nm
with a step of 10 nm and hBN thickness t, varying from 5 to 100 nm for each value of
h. Smooth wrapping of the edge with a hBN layer is approximated by an s-curve with two
bends of radius 200 nm. The gold-edge corners are rounded by a curvature of 10-nm radius.
a) Modeled electric-field distribution of plasmonic edge mode supported by a gold film of
thickness 90 nm covered with a 20-nm-thick layer of hBN. White dashed line denotes
the location of graphene layer. b) Calculated mode modulation (blue curves) and loss (red
curves) for a set of geometrical parameters: Gold thickness varies from 20 to 150 nm with
a step of 10 nm, and for each gold-film thickness, the thickness of hBN varies from 5 to
100 nm.

Metallic edges, both planar and in the form of a wedge, are known to support a confined
propagating surface plasmon mode, which is very similar to the mode of a nanowire in that its
field has axial symmetry [22–24] along the curved part of the edge. Thus, a gold stripe with
smooth edges or just an edge of a large planar structure (e.g., a film) can guide a spatially
confined plasmonic mode. Fabrication of such a waveguide and subsequent covering with
layers of hBN and graphene should be relatively easy, and provide a good approximation to
the configuration described in the previous section. Indeed, in the assumption that a graphene
sheet on top of an hBN layer covers a gold-film edge fabricated on a glass substrate, the FEM
modelling results [Fig. 5] resemble those of a metal nanowire waveguide [Fig. 4]. The absolute
values of the mode loss decreased approximately by half [Fig. 5(b)] due to lower confinement
of the mode, since it partially spans the flat parts of the metal surface. However, the decrease
of the modulation depth is more pronounced, so that the modulation is lower than the mode
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loss for any combination of gold and hBN thicknesses. One can easily understand this drop
of efficiency by noticing that the modulator utilizes only half of the space [the left half on
Fig. 5(a)] of the geometry, whereas the right part of metallic structure is a planar film without
curvature and hence does not participate in modulation.

Fig. 6. Graphene-based modulator based on strip plasmon mode: a gold strip supported
by a dielectric substrate and covered by a graphene flake through an isolation layer of
BN. The parameters of hBN bending and rounded corners of the gold are the same as in
Fig. 5. a) Modeled electric-field distribution of plasmonic strip mode supported by a gold
waveguide of thickness 90 nm and width 200 nm covered with a 20-nm-thick layer of hBN.
White dashed line denotes the location of graphene layer. b) Calculated mode modulation
depth (blue curves) and intrinsic loss (red curves) for a set of geometrical parameters: gold
thickness varies from 30 to 150 nm with a step of 30 nm, and for each gold-film thickness,
the thickness of hBN varies from 5 to 100 nm. Each set of gold and hBN thicknesses is
considered for the strip width changing from 100 to 500 nm with a step of 100 nm.

The latter disadvantage can be eliminated by supplementing the left edge with a completely
symmetric right one, making hereby a stripe waveguide with a graphene surface absorbing
the mode’s energy doubled [Fig. 6(a)]. As expected in this case, the gap between modulation
and loss curves decreases, bringing those values close to each other. Varying the stripe width
and metal-film thickness, one can tune parameters of the mode, such as propagation length,
confinement (and hence bend loss), and efficiency of modulation [Fig. 6(b)]. As in previous
cases, however, the decisive parameter in determining the modulation depth relative to the mode
loss is the thickness of the isolating hBN layer. It should be as thin as possible to decrease the
intrinsic mode absorption in metal and to bring its absorption in graphene to maximum.

In order to fully explore the potential of edge-based plasmonic waveguides, we have to
consider geometry complementary to a stripe, i.e. a slot waveguide [Fig. 7(a)]. This structure
has similar to a stripe waveguide physical contact with graphene, because there are also two
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Fig. 7. Graphene-based modulator based on slot plasmon mode: a slot cut through a gold
film supported by a dielectric substrate and covered by a graphene flake through an isolating
layer of hBN. Corners of the gold edge are rounded by a curve of 10-nm radius. a) Modelled
electric-field distribution of plasmonic slot mode supported by a slot width 100 nm cut in
gold film of thickness 90 nm covered with a 20-nm-thick layer of hBN. White dashed line
denotes the location of graphene layer. b) Calculated mode modulation depth (blue curves)
and intrinsic loss (red curves) for a set of geometrical parameters: gold thickness varies
from 30 to 150 nm with a step of 30 nm, and for each gold-film thickness, the thickness of
hBN varies from 5 to 100 nm. Each set of gold and hBN thicknesses is considered for the
slot width changing from 100 to 500 nm with a step of 100 nm.

edges contributing with transversal electric-field components into interaction. However, if the
slot between the two edges is narrow enough, the electric-field lines are more homogeneous and
aligned horizontally across the gap, parallel to the plane of graphene. This should result in an
increase of the modulation depth relative to mode absorption. Our FEM simulations of the slot
waveguide with the slot width, gold-film and hBN thicknesses being the variable parameters,
confirm these conclusions [Fig. 7(b)]. For the hBN thickness below 15–20 nm, most of the
combinations of the slot width and gold thickness yield a modulation depth, which is higher
than the intrinsic mode loss. One can also notice from the graphs for 200- and 300-nm-wide
slots that the gold film should not be too thin, neither too thick, i.e., there is an interval of
optimum thickness. One can understand this again by considering the field in the gap between
edges. When the gold layer is too thin, the field in the gap is very inhomogeneous and therefore
its alignment with graphene plane is poor. Contrary, when the gold-film thickness is too large,
the gap resembles an efficient capacitor with most of the field concentrated inside the gap, so
that at the plane of graphene, which is above and outside the gap, the field has mostly proper
orientation, but is very weak.

We would like to point out that we used 10-nm rounding for metal edges in the described
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waveguides. While this number is commonly used in modelling of plasmonic structures, the
edge sharpness can hardly be controlled during fabrication. Fortunately, losses of edge-based
modes (which are similar to the mode of metal nanowire) grow faster than modulation depth
does with the decrease of radius of edge curvature. The latter can be understood by extremely
fast (super-exponential) and infinite grows of mode absorption in metal nanowire with its
vanishing radius [25]. This means that waveguides with larger radii of edge rounding should
show modulation properties superior to those presented in this section.

5. Conclusions

In summary, we have considered analytically several very basic surface plasmon waveguiding
configurations and investigated their potential for the realization of graphene-based plasmonic
modulators, which exploit absorption in graphene, tunable through the optical Pauli blocking
effect. While it is in general very difficult to obtain modulation depth values larger than intrinsic
mode loss, we showed that for the efficient modulation, electric currents in graphene have to
be driven primarily by the transversal electric-field component of the modulated plasmonic
mode, and therefore it is crucial to guarantee its large projection onto the graphene plane.
Contrary, the longitudinal electric-field component is too weak to induce appreciable mode
absorption in graphene, even when being perfectly aligned with its plane. The latter applies
to both poorly and very tightly confined plasmonic modes, i.e., universally applicable to all
plasmonic configurations.

Having established this, we performed accurate FEM modelling of seven plasmonic configu-
rations operating at telecom wavelengths, for which we carefully took into account the details
of geometry, such as the necessary presence of an isolating layer between metal and graphene,
rounded corners of metallic structures, and realistic (i.e., feasible in experiment) wrapping of
structures with graphene layer. Among all considered configurations, we found a particularly
promising one, with which it is possible to achieve modulation depth that exceeds the intrinsic
mode loss. Even though the available set of surface-plasmon waveguides is very rich and not
limited by the considered structures, one can analyze or approximate those not discussed in this
work by one of our basic configurations. They represent the building blocks reflecting the main
features of other waveguides in terms of mode confinement, mode-field symmetry, geometrical
shape, used materials, etc. We therefore believe that our results can help in consideration
and designing of novel active-plasmonic modulators that exploit graphene as a medium with
controllably variable absorption.
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