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Reveals Involvement of CD47 and
Syncytin-1 at Different Stages of
Nuclearity

ANAIS MARIE JULIE MOLLER, JEAN-MARIE DELAISSE, anp KENT SQE*
Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern

Denmark, Vejle, Denmark

Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are
performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the
number of nuclei per multinucleated cell or TRAcP activity. But end-point analyses do not show how the fusion came about. This would not
be a problem if fusion of osteoclasts was a random process and occurred by the same molecular mechanism from beginning to end.
However, we and others have in the recent period published data suggesting that fusion partners may specifically select each other and that
heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a
heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed individual fusion events using time-lapse and
antagonists of CD47 and syncytin-|. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion
events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending on the
nuclearity of fusion partners. VWhile CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-| promotes fusion of
two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47
seems to mediate fusion mostly through broad contact surfaces between the partners’ cell membrane while syncytin-I mediate fusion

through phagocytic-cup like structure.

J. Cell. Physiol. 232: 1396—1403, 2017. © 2016 Wiley Periodicals, Inc.

Fusion of osteoclasts (OCs) is an essential step during their
differentiation to ensure effective bone resorptive activity.
Numerous molecular factors have been identified over the
years, which primarily play a major role in the preparative steps
required for fusion. The most prominent of these is DC-
STAMP (dendritic cell-specific transmembrane protein)
(Kukita et al., 2004; Yagi et al., 2005; Iwasaki et al., 2008;
Mensah et al.,, 2010; Chiu et al., 2012; Chiu and Ritchlin, 2016),
which has been identified as one of the most essential single
factors supporting both differentiation and fusion. However,
also other factors such as CD47 (Han et al., 2000; Lundberg
et al., 2007; Maile et al., 201 |; Koskinen et al., 2013; Hobolt-
Pedersen etal., 2014), syncytin-1 (Soe etal., 201 1), OC-STAMP
(osteoclast stimulatory transmembrane protein) (Miyamoto
et al.,, 2012; Witwicka et al., 2015), dynamin (Shin et al., 2014;
Verma et al,, 2014), Pinl (peptidyl-prolyl cis-trans isomerase
NIMA-interacting |) (Islam et al., 2014; Cho et al., 2015), and
e-cadherin (Mbalaviele et al., 1995; Fiorino and Harrison, 2016)
are involved in OC fusion, but it is important to stress that this
list is not exhaustive. In order to identify the role of these
factors, a series of molecular techniques, and cellular model
systems have been employed, which in general are evaluated
through end-point measurements by counting the number of
multi-nucleated OCs, number of nuclei per OC, resorptive
activity, and so forth at the end of the incubation period. These
analyses are powerful, but are not able to elucidate on the
details of individual fusion events leading to this outcome.
However, recently analyses of OC fusion in real-time have
been used to identify novel details with regard to the individual
fusion partners, their molecular- and fusion-characteristics
(Takito and Nakamura, 2012; Takito et al., 2012; Levaot et al.,
2015; Soe et al., 2015; Wang et al., 2015; Fiorino and Harrison,
2016). We have recently published a study (Soe et al., 2015), in
which we analyzed a large quantity of time-lapse recordings
made over a period of 4 days. Using this technique we showed
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that multi-nucleated OCs preferred to fuse with mono-
nucleated cells, that fusion occurred primarily through a broad
contact surface or a phagocytic-cup like structure and that
fusion mostly occurred between fusion pairs with divergent
motility (Soe et al., 2015).

Previously, we reported that CD47 was primarily expressed
in small preOCs/OCs containing few nuclei and that inhibiting
CD47 through a blocking antibody primarily reduced the
relative presence of OCs with 2-5 nuclei while those with six
nuclei or more increased relative to the total number of OCs
formed in the presence of CD47 blocking antibody (Hobolt-
Pedersen et al., 2014). In contrast, inhibition of syncytin-|
mediated cell fusion resulted in a relative increase of preOCs
with two nuclei while the proportion of OCs in the culture with
six nuclei or more was markedly reduced (Soe et al., 201 I).
This suggested that CD47 may be involved in early fusion
events and syncytin-| rather in later events. However, since
analyses were done at the end of the culture, this remained a
speculation. In order to test the hypothesis that CD47 and
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CD47 AND SYNCYTIN-I:

syncytin-1 are truly involved in different stages during OC
maturation, we have in the present study analyzed the effect of
blocking CD47 and syncytin-| function through the analyses of
time-lapse recordings. This allowed us to investigate each single
fusion event and the characteristics of the fusion pairs. Our
data clearly demonstrate that CD47 promotes cell fusions
involving mono-nucleated preOCs, while syncytin-1 promotes
fusion of two multi-nucleated OCs, but also reduces the
number of fusions between mono-nucleated preOCs.
Furthermore, CD47 seems to mediate fusion mostly through
broad contact surfaces between the partners’ cell membrane
while syncytin-1 mediate fusion through phagocytic-cup like
structure.

Materials and Methods
Cell culture

CDI14" monocytes were isolated from blood of human donors
(approved by the local ethical committee, 2007-2019, and written
consent was obtained from each donor) by centrifugation through
Ficoll-Paque (Amersham, GE Healthcare, Little Chalfont, UK),
subsequently suspended in 0.5% BSA and 2 mM EDTA in PBS and
were purified using BD IMag™ Anti-Human CD 14 Magnetic
Particles —DM (BD Biosciences, San Jose, CA) according to the
instructions by the supplier.

CD147" cells were seeded in culture flasks (Greiner,
Frickenhauser, Germany) supplied with aMEM (Invitrogen,
Taastrup, Denmark) containing 10% FCS (Biological Industries,
Kibbutz Beit-Heamek, Israel) and 25 ng/ml human macrophage
colony-stimulating factor (M-CSF) (R&D Systems, Abingdon, UK)
and cultured at 37°C in 5% CO, in a humidified atmosphere (Soe
and Delaisse, 2010). After 2 days culture period, the cells were
reseeded into eight-wells of a Nunc Lab-Tek Il chambered cover-
glass (Nunc—Thermo Fisher Scientific, Roskilde, Denmark) at a
density of 1.0 x 10° cells/well in aMEM, 10% FCS, 25 ng/ml M-CSF
and 25 ng/ml human receptor activator of nuclear factor kappa-B
ligand (RANKL) (R&D Systems, Minneapolis, MN) (Soe et al.,
2015).

After 3 days with M-CSF and RANKL, the OCs reached an early
fusion stage (identified by light-microscopy) and time-lapse
recordings were initiated. Cells were at this stage supplemented
with fresh medium, M-CSF, RANKL, and supplied with either one
of the inhibitors or a corresponding control supplement as
described below.

Time-lapse recordings and analyses

In the CD47 blocking experiments, cells were cultured with either
| mg/ml CD47 antibody (clone B6H12; BD, Franklin Lakes, NJ) or
with | mg/ml mouse IgG1 isotype control antibody (BD) as
previously described (Hobolt-Pedersen et al., 2014). In the
syncytin-| blocking experiments, cells were cultured with 5 pg/ml
syncytin-1 blocking peptide or with the corresponding
concentration of scrambled syncytin- | -peptide (K] Ross-Petersen,
Klampenborg, Denmark) with daily medium change as described in
(Chang et al., 2004; Soe et al., 201 1).

The chambered cover-glass was subsequently placed in the
incubation chamber of a confocal Olympus Fluoview FV0i
microscope (Olympus Corporation, Shinjuku, Tokyo, Japan) with
5% CO, and 37°C for 4 days. Using the software of the
microscope, three random sites for each of the eight wells were
marked (total of 24 sites), and time-lapse images were made every
21 min for 23 h using phase contrast. This procedure was repeated
for 4 continuous days, and for each new recording three new sites
was chosen for each well.

Subsequently, the time-lapse recordings were analyzed by two
observers and the recordings were carefully investigated for fusion
events using the FV10-ASW 4.1/4.2 Viewer software (Olympus).
When a fusion event was identified it was characterized by the
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number of nuclei for each fusion partner and the type of fusion
(phagocytic cup, broad contact surface, filopodia/tube or from the
top) according to the definitions presented in (Soe et al.,, 2015).
The first observer went through the video material, identified the
individual fusion events, marked them on the video, and
documented the above-mentioned details for each fusion event.
The second observer verified the marked fusion events, inspected
the videos for further events that may have been missed by the first
observer and documented the above-mentioned details
separately, without having access to the first observer’s
documentation. Hereafter, the first observer compared the two
observer’s data and made the final categorization.

Data was collected from six separate experiments, performed
with cells isolated from six different donors. Three experiments
were performed for each antagonist. For each data set all four
wells per condition for each day were considered as a single data
point. Thus, n = |6 for each data set used in the statistical analyses.
There were no significant differences in the effects of inhibition
between days. For the CD47 blocking experiment, a total of 251
videos reflecting a total of 4,664 h were analyzed; a total of 831
fusion events (control: 483; CD47 antagonist: 348) were observed.
For the syncytin-| blocking experiment, a total of 235 videos
reflecting a total of 5,317 h were analyzed; a total of 987 fusion
events (control: 482; syncytin- | antagonist: 505) were observed. In
order to allow a direct comparison between all experiments, the
raw data were converted into the number of fusion events/mm?*h
and subsequently normalized to the respective control condition.

Software, data analyses, and statistics

All graphs and statistics were performed using GraphPad Prism
software, version 6.07 (GraphPad software, San Diego, CA), and
statistical significance was defined as P < 0.05. Data sets were
tested for normality by using the D’Agostino & Pearson omnibus
normality test and this determined whether parametric or non-
parametric tests were used. For the data sets shown in Figure 4
they were interpreted as being normally distributed since medians
and means were identical. Outlier analyses were performed using
the ROUT method (Q =0.1%) removing up to a maximum of
three data points. Please refer to figure legends for details on the
statistical tests used. All experiments were performed three times
independently form each other and with cells from different blood
donors all with the same outcome. All graphs shown represent
data from the same representative experiment.

Results
Inhibition of CD47 reduces the total number of fusion
events, but inhibition of syncytin-1 does not

When analyzing the total number of fusion events, we found
that inhibition of CD47 by a mono-clonal antibody reduced the
total number of fusion events by approximately 50% compared
to control condition (Fig. 1) in the presence of an isotype
control antibody. In contrast, we observed that inhibition of
syncytin-| by a specific peptide did not inhibit the total number
of fusion events (Fig. |) compared to a peptide with the same
composition of amino acids, but in a scrambled sequence.
These very different effects therefore suggest that the modes
of action of these two antagonists are different.

Inhibition of CD47 primarily affects fusion events
involving mononucleated preOCs while inhibition of
syncytin-1 selectively inhibits fusion of multinucleated
fusion partners

Based on the data shown in Figure | it could appear that

inhibition of syncytin-| does not affect fusion of OCs at all.
However, our previous study on OC fusion, also based on
time-lapse recordings (Soe et al., 2015), taught us that it is
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Fig. I. CDA47 blockage reduces the total number of fusion events,
but blockage of syncytin-1 does not. Fusions were identified by time-
lapse recording and their number in test conditions are shown
normalized relative to that in controls. Analyses were done by
combining data from each well (four) and for each day (four)
compared to their control. Statistics: Wilcoxon Signed Rank Test
testing against a median of 1.0 in the control (indicated with the
dashed line). **P < 0.01; ns, not significant. The box-plot shows the
25-75% quartiles and whiskers indicate the minimum and maximum
of the data set. The horizontal line within the box indicates the
median and “ + ” indicates the mean, a = antagonist. The graph
shown is representative of three experiments for each inhibitor.

important to look at the details in order to get a full overview.
We therefore analyzed each fusion pair with regard to their
nuclearity and categorized them as fusions occurring between
two mono-nucleated OCs (mono<>mono) (Fig. 2A), a mono-
nucleated and multi-nucleated (2 nuclei or more) OCs
(mono<>multi) (Fig. 2B) and two multi-nucleated OCs (multi
< >multi) (Fig. 2C). Figure 3A shows how the distribution of
fusion pairs was in control experiments, which matches well
data from our previous study (Soe et al., 2015). For the fusion
between two mono-nucleated fusion partners, we found that
inhibition of CDA47 resulted in a 65% reduction in these fusion
events while, surprisingly, inhibition of syncytin-| action caused
an upregulation by approximately 50% (Fig. 3B). Also fusion
between mono- and multi-nucleated partners were suppressed
by CD47 antibody by about 65% of the control level while
inhibition of syncytin-1 showed no effect (Fig. 3C). For two
multi-nucleated fusion partners inhibition of CD47 showed no
significant effect while syncytin-| clearly reduced the number of
fusions by 50% (Fig. 3D). Thus, the inhibition of CD47 only
affects fusions involving mono-nucleated preOCs (Fig. 3E)
while(whereas) it does not affect multi-nucleated OCs that fuse
(Fig. 3F). On the other hand blocking syncytin-1 selectively
inhibits multi-nucleated OCs involved in fusion (Fig. 3F) and
interestingly it seems to facilitate more fusions of mono-
nucleated preOCs (Fig. 3E). This raises the possibility that
syncytin-1 may facilitate one type of fusion but antagonize
another.

The smallest possible fusion pair, where both partners are
multi-nucleated, is when both have two nuclei resulting in an
OC with four nuclei. Thereafter, follows fusion pairs with two
and three nuclei to result in an OC with five nuclei, three and
three or four and two nuclei both result in an OC with six
nuclei and so forth. In Figure 4A and B the multi-multinucleated
fusion pairs were sub-split according to the nucleation of the
fusion product. In Figure 4A it is seen that inhibition of CD47
did not significantly block fusion of any multi-nucleated fusion
pairs whereas inhibition of syncytin-1 caused significant
reductions in those fusion events resulting in OCs with five and

JOURNAL OF CELLULAR PHYSIOLOGY

six or more nuclei (reduction by 55% in both cases) (Fig. 4B). In
the case of fusion between mono- and multi-nucleated
partners, CD47 inhibition only resulted in a small reduction (by
27%) of fusions of OCs with two nuclei with mono-nucleated
preOCs (Fig. 4C) while inhibition of syncytin-1 showed no
effect whatever the nuclearity (Fig. 4D).

With regard to the nuclearity of the fusion partner it can be
concluded that CD47 is only required when a mono-nucleated
preOCs is involved, while syncytin-1 specifically supports
fusion of multi-nucleated cells. It is also of interest that
syncytin-| appears to antagonize fusion between two mono-
nucleated preOCs.

Inhibition of CD47 and syncytin-1 differently affects the
morphological appearance of fusion partners

When analyzing the time-lapse recordings we have also been able
to categorize the morphological appearance of the fusion partners
at the site of fusion. As defined in our previous study (Soe et al,,
2015), we have categorized fusion phenotypes as: broad contact
surface, phagocytic cup, tube or fusion from top (examples of
these fusion phenotypes can be viewed in the illustrations and
supplementary videos of our prior publication Soe et al. (2015)).
Just as we previously reported, broad contact surface, and
phagocytic cup are by far the most common fusion phenotypes
with 45% and 43% of the fusion events, respectively (Fig. 5A).
Fusion through the tip of filopodias/tubes and where one cell
“crawls” on top of the fusion partner before fusion occurs (from
top) were far less common with only 6.7% and 5.2%, respectively
(Fig. 5A). In the presence of CD47 blocking antibody, the
frequency of the broad contact surface was specifically reduced by
60% compared to control (set to ) (Fig. 5B). In contrast, in the
presence of syncytin-| blocking peptide it was specifically the
frequency of fusions occurring through phagocytic cup that were
significantly reduced by 37% (Fig. 5C).

Discussion

In our present study, we have tried to overcome a fundamental
problem of research on cell—cell fusion, namely that the vast
majority of studies on fusion factors are based on measurements
using multi-nucleated cells as end-point. Unfortunately, this type
of approach only allows for speculation on how this end-point
was reached. But since fusion is a fast process and multinuclearity
can be obtained through different intermediate fusion routes, it
is very difficult to understand the precise involvement of any
relevant fusion-related factor based on end-point
measurements. Increasing awareness that OC fusion is not a
random process and that there is a stringent selection of the
fusion partner, apparently based on heterogeneity between
partners, makes it necessary to pay special attention to each
individual fusion event. We have therefore in our present study
tested the hypothesis of heterogenic involvement of different
fusion factors at different levels of the OC maturation process.
We have chosen to use two antagonists targeting fusions
mediated through CD47 and syncytin-|. These two candidates
were chosen because we have previously seen indications that
these two factors are active during different stages of OC fusion
and maturation (Soe et al., 201 |; Hobolt-Pedersen et al., 2014).
Using the time-lapse approach and these antagonists we now
demonstrate that CD47 and syncytin-| are indeed involved in
different processes during human OC fusion. Blocking of CD47
specifically had an effect on fusion involving mononucleated
preOCs in the fusion pair. In contrast, blocking syncytin- |
mediated fusion only inhibits fusion of two multinucleated OCs
resulting in five nuclei or more.

Inhibition or knock-out of CD47 was previously reported to
inhibit fusion of murine OCs (Lundberg et al., 2007; Maile et al.,
201 1) as well as macrophages (Han et al., 2000) in cell culture.
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Fig. 2. Examples of the different types of fusion pairs used in our analyses. A: Two examples of fusion between two mononucleated preOC
(mono/mono). B: Two examples of fusion between a mononucleated preOC and a multinucleated OC with more than six nuclei (example 1)
and two nuclei (example 2) (mono/multi). C: Two examples of fusion between two multinucleated OCs (multi/multi). Example I, fusion

between two OCs with three nuclei each; example 2, fusion between an OC with four and an OC with three nuclei. The hours () and minutes

() between the images in the time-lapse series are noted above each image. Black arrows point to the fusion pairs in each image series and
white arrows point to the nuclei in the fusing cells.

In these studies, the total number of OCs with three nuclei or In our recent study (Hobolt-Pedersen et al., 2014), we used a
more was analyzed at the end of the culture, but without CD47 blocking-antibody and evaluated at the end of the culture
reporting details on the actual number of nuclei per cell the number of nuclei in all OCs both in control condition as

(Lundberg et al., 2007; Maile etal., 201 I; Koskinen et al., 201 3). well as in the presence of the blocking antibody. We found that
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Fig. 3.

Inhibition of CD47 only affects fusions involving mononucleated preOCs while syncytin-1 only affects fusion events between

multinucleated OCs. Fusion partners identified by time-lapse recordings were sub-divided into mono- or multinuclear (>2 nuclei) OCs. A:
Analysis of the frequency of fusion partners classified according to their nuclearity in two control experiments. The percentage reflects the
number of events in a particular category compared to the total number of fusion events for each experiment separately. The graph shows the
mean and standard deviation of the results for each well and for each of the days. In B-F the fusion frequency involving the different fusion pairs in
the presence of inhibitors are shown relative to their respective control. Data are presented and normalized in the same way as described in
Figure 1. B: Analysis of strictly mononucleated fusion partners. C: Analysis of fusion pairs where one was mononucleated while the other was
multinucleated. D: Analysis of strictly multinucleated fusion partners. E: A combined analysis of all fusion events involving mononucleated
preOCs. F: A combined analysis of all fusion events involving multinucleated OCs. Statistics: In A: 2way ANOVA; B-F: Wilcoxon Signed Rank
Test testing against a median of 1.0 in the control (indicated with the dashed line). *, P < 0.05; **P < 0.01; ns, not significant. B-F. The box-plot
shows the 25-75% quartiles and whiskers indicate the minimum and maximum of the data set. Horizontal line within the box indicates the
median and “+” indicates the mean, o = antagonist. All graphs shown are representative of three experiments for each inhibitor.

the CD47 blocking-antibody reduced the relative frequency of
OCs with 2-5 nuclei, but surprisingly we also found a relative
increase in the fusion events resulting in six nuclei or more out
of the total OCs. However, we also found that preOCs/OCs
with few nuclei were strongly positive for CD47 while larger
OCs were less so. We therefore proposed that CD47 has a
heterogenic expression amongst OCs at various stages of
differentiation and that it is primarily involved in early fusion
events involving preOCs/OCs with few nuclei
(Hobolt-Pedersen et al., 2014). This is now demonstrated in
our present study by additional information that better allows
us to interpret the involvement of CD47 in OC fusion.

JOURNAL OF CELLULAR PHYSIOLOGY

Inhibition of CD47 resulted in: (i) a significant drop in the
number of fusion events in real-time (Fig. |) in line with prior
proposals (Lundberg et al., 2007; Maile et al., 201 1); (ii) a strong
reduction in fusion events between two mono-nucleated
preOC:s; (iii) a specific inhibition of fusion between a preOCs
and an OC with two nuclei, but without affecting fusion with
OC:s containing three nuclei or more; (iv) no effect on fusion
between two multi-nucleated OCs; (v) a specific reduction in
fusion events mediated through the broad contact surface
phenotype. These data fit the view discussed by Vignery (2005)
that CD47 is involved in recognition of “self’ and as a possible
fusion partner. This issue appears particularly critical for
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Inhibition of CD47 only affects fusion of mononucleated preOCs with small multinucleated OCs while inhibition of syncytin-1

primarily affects fusion between OCs with many nuclei. A and B: The nuclearity of the OCs resulting from fusions between two multinucleated
OCs were sub-divided into those that had 4-6 or more nuclei. The number of fusion events in the presence of inhibitor was normalized to the
control condition. A: Effect of CD47 inhibition; B: Effect of syncytin-1 inhibition. C and D: The nuclearity of the multinucleated OCs that fused
with a mononucleated preOC was sub-divided into those where the multinucleated fusion partner had 2-5 or more nuclei. The number of
fusion events in the presence of inhibitor was normalized to the control condition and the averages from four wells were used. C: Effect of
CDA47 inhibition; D: Effect of syncytin-1 inhibition. Statistics: One sample t test testing if column means are significantly different from 1.0.
“P < 0.05; “*P < 0.01; ns, not significant. The graphs shown are representative of three experiments each.

fusions with a mono-nucleated cell since it is at this level that
selection of the correct fusion partner has to be very strict in
order to avoid detrimental effects. CD47 may be such a critical
hallmark.

In our previous study, an end-point analysis showed that
inhibition of syncytin-1 surprisingly resulted in a higher relative
frequency of OCs with two nuclei while the relative frequency
of OCs with six nuclei or more was significantly reduced (Soe
etal, 201 1). We speculated that the higher number of
binucleated OCs resulted from an accumulation of this fusion
stage because later fusion steps were blocked. With our
present study we are now able to re-interpret our previous
observations. Our new study using time-lapse recordings
clearly shows that inhibition of syncytin-1 resulted in: (i) a
strong increase in the number of fusion events between two
mononucleated preOCs; (ii) no effect on fusions between a
mononucleated preOC and a multinucleated OG; (iii) a marked
inhibition of fusion between two multinucleated OCs in
particular when the resulting OC has at least five nuclei; (iv) a
specific reduction in fusion events mediated through the
phagocytic cup phenotype. There are only very few studies that
have addressed the involvement of syncytin-1 in cell fusion and
at the same time stratified for the number of nuclei in the
resulting cells. However, Frendo and colleagues (Frendo et al,,
2003) did so when investigating the fusion of primary human
cytotrophoblasts in the presence or absence of syncytin-| anti-
sense RNA. They found, using end-point analyses, that only the
frequency of syncytia with six nuclei or more was significantly
reduced, which supports data from our present study. At the
same time they also observed that this reduction was
compensated by a strong increase in syncytia with 3-5 nuclei.
This matches our previous (Soe et al., 201 1) as well as our
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present results. However, the observed increase in the number
of fusion events between mononucleated preOCs is surprising.
Yet, this finding is not unique to syncytin-1, but has also been
seen in other studies. Shin et al. (2014) reported that a double
knock-out of dynamin one and two inhibited fusion of OCs
resulting in cells with seven nuclei or more, but especially the
number of OCs with two and three nuclei were actually
fourfold more common. Very similar results were reported by
Verma and colleagues who also investigated the involvement of
dynamins in the fusion of OCs (Verma et al., 2014). Finally, in a
study using knock-outs of OC-STAMP it was also shown that
OC-STAMP deficiency strongly reduced fusion of OCs
resulting in three nuclei or more, but apparently the fusion of
mononucleated preOC:s still went on since there was a clear
accumulation of bi-nucleated OCs (Witwicka et al., 2015).
Although none of these studies used time-lapse analyses to
accurately observe the effect of knock-outs, anti-sense RNA or
inhibition on individual fusion events, their results are similar to
those we obtained in our original study inhibiting syncytin-|
fusion (Soe etal., 201 I). Although others have reported similar
results it is uncertain how this unexpected result may be
explained and more knowledge is needed based on research
tools like time-lapse recordings. Since only end-point
measurements have been used previously it has been
interpreted as an accumulation of small OCs because their
fusion was unaffected by treatment or because it caused defects
in cytokinesis during the cell cycle (Soe et al., 201 1; Shin et al,,
2014; Witwicka et al., 2015) and therefore more OCs with few
nuclei accumulated. However, only if real-time analyses are
used all possibilities can be clearly distinguished and in our
study we can rule out that it was due to a defect in cytokinesis
or accumulation of cells since this can clearly be addressed
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Fig. 5. Inhibition of CD47 and syncytin-1 differently affects the
phenotype of fusion partners immediately prior to fusion. The
fusion phenotype of fusion partners were sub-divided into four
different phenotypes: broad contact surface (BCS), phagocytic cup
(Pha.cup), fusion at the tip of tube-like structures (Tube) and where
one fusion partner sits on top before fusion occurs (From top). A:
Analysis of the frequency of fusion partners classified according to
their fusion phenotype in two control experiments. The percentage
reflects the number of events in a particular category compared to
the total number of fusion events for each well and each day. The
graph shows the mean and SD. B and C: The percentage reflects the
number of events in a particular category compared to the total
number of fusion events for each well and each day. The box-plot
shows the 25-75% quartiles and whiskers indicate the minimum and
maximum of the data set. Horizontal line within the box indicates
the median and “+” indicates the mean. B: Effect of CD47
inhibition; C: Effect of syncytin-1 inhibition. Statistics: In A: 2way
ANOVA; B and C: Wilcoxon Signed Rank Test testing against a
median of 1.0 in the control (indicated with the dashed line).

*P < 0.05; **P <0.01; ns, not significant. All graphs shown are
representative of three experiments each.
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Fig. 6. Schematic representation of the overall involvement of
CDA47 and syncytin-1 in OC fusion. Our data have prompted us to
suggest this model on the specific involvement of CD47 and
syncytin-1 in OC fusion. Please refer to text in the Discussion for
details.

using time-lapse. Whatever the explanation, it is interesting
that observations based on several fusion factors point to a
model where some “fusion factors” specifically favor the
addition of more nuclei to pre-existing multinucleated cells and
hinder the generation of additional multinucleated cells.

In Figure 6 we show a model of how our data may be
summarized in the context of facilitating and regulating OC
fusion. CD47 primarily contributes to OC fusion by facilitating
the formation of numerous but small OCs mostly with two
nuclei, but also facilitating a slowly increasing number of nuclei
in OCs by adding one nucleus at a time. In contrast, syncytin-|
contributes to reducing the number of small multinucleated
OC:s by facilitating their fusion and therefore generating large
OCs with many nuclei, but at the expense of less OCs. The
latter effect is even more pronounced since we also found that
syncytin-| seems to antagonize fusion between mononucleated
cells in the first place. One may speculate that this antagonistic
effect results from a negative effect of syncytin-I on OC
migration (Mo et al., 2013). Alternatively, it may also involve
receptor interference as known from virus preventing a host
cell from fusing with other viruses (Kjeldberg et al.,, 201 I).
Whatever the explanation, physiologically, it may make sense
that multinucleated cells form initially, but that their size and
number needs to be controlled. The involvement of factors
only at certain steps may present a possibility to control the
potentially deleterious fusion of cells. This goes for OCs but
certainly also for example the syncytiotrophoblast and muscle.

Finally, in accordance with our previous findings (Soe et al.,
2015) the present study shows that the most common fusion
morphologies of fusion pairs were what we have called broad
contact surface and phagocytic cup (Fig. 5A). We found that
there were small but significant effects on the frequency of
these fusion morphologies between the two treatment types.
In the case of CD47 inhibition we found a significant reduction
in the frequency of fusions through broad contact surface
(Fig. 5B), while we found a reduction in the frequency of
phagocytic cup in the case of syncytin-I inhibition (Fig. 5C).
Although recently a number of studies have focused on the
morphologies of fusion partners immediately prior to fusion
(Oikawa et al., 2012; Takito and Nakamura, 2012; Takito etal.,
2012; Fiorino and Harrison, 2016), knowledge about the
molecular composition at these fusion sites is still very scarce.
However, considering that syncytin-| originates from a
retroviral fusion protein it may make sense that it is this fusion
route that is affected. It is known that syncytin-| originates
from a family of retroviruses, which are suggested to fuse with
host cells through for example phagocytosis/endocytosis
(Permanyer etal., 2010; Lokossou et al., 2014). With regard to
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the effect of CD47 inhibition on fusions through the broad
contact surface, it is more difficult to interpret because of the
very limited knowledge about CD47’s role in cell-cell fusion.
However, it is known that CD47 through strictly regulated
clusters on the extracellular membrane (Ha etal., 2013), is part
of signaling pathways preventing cells from being phagocytized
by macrophages.

Conclusion

In conclusion, the present study demonstrates that the
respective roles of CD47 and syncytin-1 in OC fusion differ
depending on the degree of nuclearity of the fusion partners.
Overall, it suggests that fusion of OCs is not just the same
process from the very first fusion between two mononucleated
preOC:s to the fusion between large multinucleated OCs. Our
observations have lead to a model where the molecular
mechanism of cell-cell fusion is evolving during the successive
fusion of cells leading to a given number of nuclei per cell. These
findings have important methodological implications, since they
highlight that the role of a given fusion factor has to be
evaluated specifically for each fusion step leading to the
multinucleated cell. It cannot be properly evaluated by
analyzing only the resulting multinucleated cell as end-product
—which otherwise is the common approach. We would
therefore like to advocate for more studies using approaches
such as quantitative analyses of time-lapse recordings in order
to generate the necessary critical mass of studies to unravel
how cell-cell fusion is regulated and controlled.
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