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1 Introduction

Bosonic degrees of freedom arise generically and naturally in theories of fundamental

physics, both in the Standard Model and beyond. The Higgs boson is of paramount im-

portance, being the only fundamental scalar in the Standard Model [1–4], but many other

scalar degrees of freedom have been proposed to extend particle physics to high energy

scales. These include (among many others) the axion of QCD [5–9] or the scalar which

drives the expansion of the universe in quintessence models [10].

These bosonic particles often make good Dark Matter (DM) candidates as well. One

reason for this is that unlike the Higgs, many of these new scalars would be stable or long-

lived enough that they could coalesce into DM halos which constitute the seeds of galaxy

formation. Unlike the usual collisionless cold DM picture, however, we are interested in the

scenario where large collections of these bosons form bound states of macroscopic size due

to their self-gravitation (and self-interaction generically). For this picture to be consistent,

the scalars are taken to be sufficiently cold so that they may coalesce into a Bose-Einstein

Condensate (BEC) state, and can thus be described by a single condensate wavefunction.

These wavefunctions can indeed encompass an astrophysically large volume of space and

have thus been termed “boson stars” [11].

It was shown many years ago that objects of this type are allowed by the equations of

motion, first by Kaup [12] and subsequently by Ruffini and Bonazzola [13] in non-interacting

systems. They found a maximum mass for boson stars of the form Mmax ≈ 0.633M2
P/m,

where MP = 1.22 × 1019 GeV is the Planck mass and m is the mass of the individual

bosons. (This is very different from the analogous limit for fermionic stars, termed the

Chandrasekhar limit, which scales as M3
P/m

2). Later, it was shown by Colpi et al. [11]

that self interactions in these systems can cause significant phenomenological changes. In

particular, they examined systems with repulsive self-interactions, and show that the upper
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limit on the mass is Mmax ≈ 0.02
√
λM3

P/m
2, where λ is a dimensionless φ4 coupling.1 This

extra factor of MP/m as compared to the noninteracting case makes it more plausible

that boson stars can have masses even larger than a solar mass. A different method of

constraining the boson star parameter space, which fits the coupling strength using data

from galaxy and galaxy cluster sizes, has been considered in [14, 15].

The situation for attractive self-interactions is slightly more complex. The simplest

case involves a self-interaction of the form λφ4, where λ < 0 for attractive interactions. If

this were the highest-order term in the potential, then it would not be bounded below, and

so one typically stabilizes it by the addition of a positive φ6 term. We will assume that

the contribution of such higher-order terms is negligible phenomenologically (we address

the validity of that assumption in section 3.3). Furthermore, in this scenario the typical

sizes of gravitationally bound BEC states is significantly smaller than the repulsive or non-

interacting cases. This is because the only force supporting the condensate against collapse

comes from the uncertainty principle. Gravity and attractive self-interactions tend to shrink

the condensate. We will see in section 3 that the maximum mass for an attractive conden-

sate scales as Mmax ∼ MP/
√
|λ|. This result was originally derived using an approximate

analytical method [16], and was later confirmed by a precise numerical calculation [17].

DM self-interactions have already been proposed and studied in different contexts [18–

37]. One of the main reasons why DM self-interactions can play an important role is

due to the increasing tension between numerical simulations of collisionless cold DM and

astrophysical observations, the resolution of which (for the moment) is unknown. The first

discrepancy, known as the “cusp-core problem”, is related to the fact that dwarf galaxies

are observed to have flat density profiles in their central regions [38, 39], while N-body

simulations predict cuspy profiles for collisionless DM [40]. Second, the number of satellite

galaxies in the Milkly Way is far fewer than the number predicted in simulations [41–46].

Last is the so-called “too big to fail” problem: simulations predict dwarf galaxies in a mass

range that we have not observed, but which are too large to have not yet produced stars [47].

The solution of these problems is currently unknown, but a particularly well-motivated

idea involves self-interacting DM (SIDM). Simulations including such interactions suggest

that they have the effect of smoothing out cuspy density profiles, and could solve the other

problems of collisionless DM as well [25, 48, 49]. These simulations prefer a self-interaction

cross section of 0.1 cm2/g . σ/m . 10 cm2/g. There are, however, upper bounds on σ/m

from a number of sources, including the preservation of ellipticity of spiral galaxies [50, 51].

The allowed parameter space from these constraints nonetheless intersects the range of cross

sections which can resolve the small-scale issues of collisionless DM, in the range 0.1 cm2/g

. σ/m . 1 cm2/g.

Self-gravitation and additionally extra self-interactions among DM particles can lead

in some cases to the collapse of part of the DM population into formation of dark stars.

The idea of DM forming star-like compact objects is not new. Dark stars that consist of

annihilating DM might have existed in the early universe [52–54]. Dark stars have been

1Note that the Colpi et al. result does not reduce to the Kaup bound as λ → 0 because the former is

derived by rescaling the equations of motion and dropping higher-order terms in the strong coupling limit,

as we see in section 3.
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also studied in the context of hybrid compact stars made of baryonic and DM [55–58] as

well as in the context of mirror DM [59–62]. Additionally some of the authors of the current

paper studied the possibility of dark star formation from asymmetric fermionic DM that

exhibits Yukawa type self-interactions that can alleviate the problems of the collisionless

cold DM paradigm [63]. Unlike the dark stars of annihilating DM, asymmetric dark stars

can be stable and observable today. [63] displays the parameter space where it is possible

to observe such dark stars, providing mass radius relations, corresponding Chandrasekhar

mass limits and density profiles. Self-interactions in dark stars have also been considered

in [64] for fermionic particles, as well as in [65] for bosonic ones.

In this paper we examine the dark stars composed of asymmetric self-interacting

bosonic DM. The study is fundamentally different from that of [63] because unlike the

case of fermionic DM where the stability of the star is achieved by equilibrium between

the Fermi pressure and gravitation, bosonic DM does not have a Fermi surface. They

form a BEC in the ground state and it is the uncertainty principle that keeps the star

from collapsing. We are going to demonstrate how DM self-interactions affect the mass

radius relation, the density profile and the maximum mass of these DM bosonic stars in

the context of the self-interactions that reconcile cold DM with the observational findings.

Note that we set ~ = c = 1 in what follows.

2 SIDM parameter space

As we mentioned above, galactic scale N -body simulations of cold, non-interacting DM

indicate that the central regions of galaxies should have a “cuspy” density profile, contrary

to the cored profiles one observes. This, along with the “missing satellites” and “too big

to fail” problems, has led some to question the non-interacting DM paradigm. While some

believe that the inclusion of baryonic physics could alleviate these issues [66–69], it remains

an open question. On the other hand, the inclusion of self-interactions in the DM sector

could resolve these issues without creating tension with other astrophysical constraints.

These two conditions can be simultaneously satisfied if the cross section per unit mass for

DM satisfies

0.1
cm2

g
.
σ

m
. 1

cm2

g
. (2.1)

Assuming a velocity independent cross section, [25] found that σ/m = 1 cm2/g tends to

over-flatten dwarf galaxy cores and that it is marginally consistent with ellipticity con-

straints of the Milky Way. On the other hand a value of 0.1 cm2/g satisfies all constraints

and flattens dwarf galaxy cores sufficiently. Let us consider a potential of the form

V (φ) =
m2

2
φ2 +

λ

4!
φ4. (2.2)

Note that λ > 0 (λ < 0) signifies a repulsive (attractive) interaction. The resulting DM-DM

scattering cross-section is

σ =
λ2

64πm2
(2.3)
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at tree level. Plugging this into eq. (2.1), we get the constraint(
m

1 MeV

)3/2

<
|λ|

10−3
< 3

(
m

1 MeV

)3/2

. (2.4)

This matches the results of [70]. For perturbativity, we should restrict λ . 4π, which would

imply that our results are valid only for m . 100 MeV. In this mass range, it is plausible

that these DM particles coalese into boson stars at some point in early cosmology.

If a large fraction of DM is contained inside boson stars, the derived parameter space

may be significantly altered [71], since boson star-DM interactions and boson star self-

interactions may become significant. We will however assume that boson stars are rather

scarce and the DM self-interactions are dominated by DM-DM scattering.

2.1 DM scattering with boson stars

To quantify how scarce boson stars have to be within this approximation, we assume that

boson stars have a characteristic radius R, mass M and number density nBS. The mass,

number density and self-interaction cross section of free DM is taken to be m, n and σ.

The mean free path a DM particle travels before hitting another DM particle or a boson

star will be λDM = (nσ)−1 and λBS ∼ (nBSπR
2)−1, respectively. Scattering with boson

stars has to be much rarer than with other free DM in our approximation. Therefore we

require λDM � λBS. For the DM density we use the typical value of the solar system, i.e.

ρDM = MnBS +mn ≈ 0.3GeV/cm3. These requirements lead to the following condition

nBS �
σρDM

mπR2 +Mσ
. (2.5)

Taking self-interactions to be that of eq. (2.3), and the boson star radius to be comparable to

the minimum radius (which scales the same for both signs of interaction) R ∼
√
|λ|MP/m

2

(see eq. (3.18)), eq. (2.5) becomes

nBS �
ρDM

64π2
M2

P
|λ|m +M

. (2.6)

The maximum mass of a boson star with non-negligible attractive interactions is ∼MP/
√
|λ|.

Since this scaling is only proportional to a single power of MP, the first term in the de-

nominator of eq. (2.6) tends to dominate. We obtain in the attractive scenario

nattBS �
|λ|mρDM

64π2M2
P

≈ 2× 10−5|λ| m
MeV

AU−3, (2.7)

where AU is an astronomical unit. The minimum mean distance between attractive boson

stars can therefore within this approximation be (nattBS)−1/3 ≈ 40(|λ|m/MeV)−1/3AU. In the

scenario with repulsive interactions the maximum mass scales as
√
λM3

P/m
2. Therefore the

second term in the denominator of eq. (2.6) dominates. The number density must satisfy

nrepBS �
m2ρDM√
λM3

P

≈ 9× 10−9λ−1/2
( m

MeV

)2
pc−3. (2.8)

The minimum mean distance between repulsive boson stars which leaves our approximation

valid can at most be (nrepBS )−1/3 ≈ 5× 102λ2/3(m/MeV)−2/3pc.
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3 Bosonic dark matter

An important property of light scalar particles that has been examined extensively in

the literature [72, 73] is that large collections (particle number N � 1) can transition to

a BEC phase at relatively high temperature, as compared to terrestrial experiments with

cold atoms. The critical temperature for condensate occurs when the de Broglie wavelength

is equal to the average interparticle distance, λdB = [ζ(3/2)/n]1/3, where n is the average

number density of the particles and ζ(x) is the Riemann Zeta function. This implies a

critical temperature for transition to the BEC phase of the form

kTc =
2π

m

(
n

ζ(3/2)

)2/3

. (3.1)

In this paper, we will assume that all relevant scalar field particles are condensed, i.e.

that the system is in its ground state, a perfect BEC. The effect of thermal excitations is

examined in [74] and they are expected to be negligible as long as T < Tc is satisfied.

3.1 Non-interacting case

It is instructive to begin with the case of boson stars bound only by gravity, first analyzed

in [12]. In this seminal work, Kaup considers the free field theory of a complex scalar

in a spacetime background curved by self-gravity. The equations of motion2 were solved

numerically. The maximum mass of these solutions was found to be Mmax ≈ 0.633M2
P /m,

the oft-quoted Kaup limit for non-interacting boson stars. This value was later confirmed

by Ruffini and Bonazzola [13], who used a slightly different method by taking expectation

values of the equations of motion in an N -particle quantum state.

Interacting field theories are more complex. In particular, for cross sections satisfying

eq. (2.1), the phenomenology of repulsive and attractive interactions are very different, and

accordingly, the methods required to analyze them are different as well. We outline the

relevant methods in the sections below.

3.2 Repulsive interactions

If the self-interaction is repulsive, we can make use of the result of Colpi et al. [11]. Like

Kaup, their method begins with the relativistic equations of motion for a boson star,

the coupled Einstein and Klein-Gordon equations, but including a self-interaction term

represented by Λ:

A′

A2x
+

1

x2

(
1− 1

A

)
=

(
Ω2

B
+ 1

)
σ2 +

Λ

2
σ4 +

(σ′)2

A

B′

B2x
+

1

x2

(
1− 1

A

)
=

(
Ω2

B
+ 1

)
σ2 − Λ

2
σ4 +

(σ′)2

A

σ′′ +

(
2

x
+
B′

2B
− A′

2A

)
σ′ +A

[(
Ω2

B
− 1

)
σ − Λσ3

]
= 0, (3.2)

2The non-interacting equations of motion are equivalent to eqs. (3.2) and (3.3) in the limit Λ→ 0.
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where the rescaled variables are x = mr, σ =
√

4πGΦ (Φ the scalar field), Ω = ω/m (ω

the particle energy), and Λ = λM2
P/(4πm

2). In addition to the scalar field itself, A(r) and

B(r) must be solved for; these represent the deviations from the flat metric due to the

self-gravity of the condensate,

ds2 = −B(r)dt2 +A(r)dr2 + r2dΩ2. (3.3)

In practice, one can trade the metric function A(r) for the mass M(x) by the relation

A(x) = [1− 2M(x)/x]−1. In the limit that the interactions are strong (precisely, Λ � 1),

the system can be simplified significantly, as one can perform a further rescaling of the

equations: σ∗ = σΛ1/2, x∗ = xΛ−1/2, and M∗ = MΛ−1/2. The relevant parameters of

section 2 suggest a value of Λ = O(1040) or higher, so it is completely safe to neglect terms

proportional to Λ−1. In this limit the equations simplify to

σ∗ =

√
Ω2

B
− 1

M′∗ = 4πx2∗ρ∗

B′

Bx∗

(
1− 2M∗

x∗

)
− 2M∗

x3∗
= 8πp∗, (3.4)

where the pressure p∗ and density ρ∗ are given by

ρ∗ =
1

16π

(
3Ω2

B
+ 1

)(
Ω2

B
− 1

)
p∗ =

1

16π

(
Ω2

B
− 1

)2

. (3.5)

In this limit, the equations do not depend on Λ, and one finds numerically that there is a

maximum (dimensionless) massM∗max ≈ 0.22. Restoring the appropriate dimensions, one

finds

M < M rep
max = 0.22

√
λ

4π

M3
P

m2
. (3.6)

This bound on the mass of repulsive boson stars was confirmed very precisely using a

hydrodynamic approach as well [75].

Figures 1 and 2 show the mass-radius relation and selected density profiles, respectively.

The branch to the left of the peak in figure 1 represents unstable equilibria, where the

ground state energy is higher than the equilibrium on the right branch with the same

number of particles (and thus the same quantum numbers).

If we take the allowed range of λ to be given by eq. (2.4), then we find the following

range for M rep
max:(

1 MeV

m

)5/4

3.42× 104M� .M rep
max .

(
1 MeV

m

)5/4

6.09× 104M�, (3.7)

where M� = 1.99 × 1030 kg is the solar mass. The range of masses allowed by these

inequalities are represented in figure 3. Because of the strength of the repulsive interactions,
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1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.00

0.05

0.10

0.15

0.20

X*

M
*

Figure 1. The mass-radius relation for a boson star with strong repulsive coupling. The 3 circles

correspond to the density profiles in figure 2. The dimensionless variables in the plot are defined in

terms of the dimensionful ones as M∗ = mM2Λ−1/2/MP and X∗ = mRΛ−1/2.

0.0 0.5 1.0 1.5 2.0
1.×10-4

5.×10-4

0.001

0.005

0.010

0.050

0.100

x*

ρ
*

Figure 2. Three examples of density profiles in the case of repulsive interactions. The red profile

corresponds to the profile of the maximum mass equilibrium, while the blue and green are taken

on the stable branch of equilibria. The dimensionless variables in the plot are defined in terms of

the dimensionful ones as ρ∗ defined in eq. (3.5) and x∗ = mrΛ−1/2.

these solutions can have masses several orders of magnitude above M�. If there is a

significant number of such objects in the Milky Way, it could have important observational

signatures. However, a detailed analysis of the formation of these objects is required, in

order to give some indication of whether DM boson stars in galaxies have masses close to

the maximum value or lower.

3.3 Attractive interactions

If DM self-interactions are attractive, then the method of [11] does not apply. However,

assuming relativistic corrections are negligible, one can instead solve the nonrelativistic

equations of motion numerically and analyze the solutions. To be precise, the dynamics

– 7 –
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Kaup Limit

0.1 cm2/g

1 cm2/g

λ = 4π

10-20 10-18 10-16 10-14 10-12 10-10 10-8
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103
10-20 10-18 10-16 10-14 10-12 10-10 10-8

m
[M
eV

]

101 103 105 107 109 1011

101 103 105 107 109 1011

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

Mmax [M☉ ]

Figure 3. The maximum mass of a boson star with repulsive self-interactions satisfying eq. (2.4),

as a function of DM particle mass m. The green band is the region consistent with solving the

small scale problems of collisionless cold DM. The blue region represents generic allowed interaction

strengths (smaller than 0.1 cm2/g) extending down to the Kaup limit which is shown in black.

The red shaded region corresponds to λ & 4π. Note that the horizontal axis is measured in solar

masses M�.

of a dilute, nonrotating BEC are governed by the Gross-Pitäevskii equation for a single

condensate wavefunction φ(r, t) = ψ(r)e−iEt [76]

Eψ(r) =

(
−
~∇2

2m
+ V (r) +

4πa

m
|ψ(r)|2

)
ψ(r) (3.8)

where V is the trapping potential, which in our case is the gravitational potential of the

BEC and satisfies the Poisson equation

~∇2V (r) = 4πGmρ(r). (3.9)

The s-wave scattering length a is related to a dimensionless φ4 coupling λ by a = λ/(32πm).

Here, ρ(r) = m · n(r) = m · |ψ(r)|2 is the mass density of the condensate, which is

normalized such that
∫
d3rρ(r) = M , the total mass. The three terms on the right-hand

side of eq. (3.8) correspond to the kinetic, gravitational, and self-interaction potentials, re-

spectively. As our notation signifies, we will assume that the density function is spherically

symmetric, i.e. ρ(~r) = ρ(r), which should be correct for a ground state solution.

Because the Gross-Pitäevskii + Poisson system (hereafter GP, defined by eqs. (3.8)

+ (3.9)) cannot be solved analytically in general, we use a shooting method to integrate

the system numerically over a large range of parameters. As boundary conditions, we

– 8 –
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5 10 50 100 500 1000
0.01

0.05

0.10

0.50

1

R
˜
99

M˜

Figure 4. The mass-radius relation for a boson star with attractive interactions. The three circles

correspond to the density profiles in figure 5. The dimensionless variables in the plot are defined in

terms of the dimensionful ones as M̃ =

√
λ

32π

M

MP
and R̃99 =

√
32π

λ

m2

MP
R99.

choose the values of ψ(0) and V (0) so that both functions are regular as r → 0, and so

that asymptotically ψ(r)→ 0 and rV (r)→ 0 exponentially as r →∞. Some examples of

integrated density functions are given in figure 5. Our numerical procedure requires the

following rescaling of the dimensionful quantities:

ψ =

√
m

4πG

1

|ã|
ψ̃ V − E =

m

|ã|
Ṽ

a = mG|ã| r =

√
|ã|
m

r̃, (3.10)

where the dimensionless quantities on the r.h.s. are denoted with a tilde. The equations

take the form [
−1

2
∇̃2 + Ṽ − |ψ̃2|

]
ψ̃ = 0

∇̃2Ṽ = |ψ̃2|, (3.11)

where ∇̃ denotes a gradient with respect to r̃, and we have explicitly taken a < 0. These

are the equations we solve. Similar rescaled equations were used in [77], but for repulsive

interactions, and unlike [77], we also scale away the scattering length a. This makes our

solutions valid for any generic a < 0.

In figure 4 we show the mass-radius relation for the bosonic stars, which agrees well

with the results obtained in [17]. As in the repulsive case, there is a maximum mass for these

condensates, but this mass is significantly smaller for attractive interactions. For parame-

ters satisfying eq. (2.4), our analysis shows that condensates of this type would be light and

very dilute, having masses < 1 kg and radii R ∼ O(km). (Our assumption that the General

Relativistic effects could be neglected in this case is therefore well supported a posteriori.)
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0.1 0.5 1 5 10
10-4

0.001

0.010

0.100

1

r̃

ρ̃

Figure 5. Three examples of density profiles in the case of attractive interactions. The red profile

corresponds to the profile of the maximum mass equilibrium, while the blue and green are taken

on the stable branch of equilibria. The dimensionless variables in the plot are defined in terms of

the dimensionful ones as ρ̃ =
λ

m4
ρ and r̃ =

√
32π

λ

m2

MP
r.

One can arrive at a good, order of magnitude analytic estimate on the size and mass

of condensates by a variational method which minimizes the total energy. To this end, we

follow the approach of [16] by using the GP energy functional,

E[ψ] =

∫
d3r

[
|~∇ψ|2

2m
+ V |ψ|2 +

2πa

m
|ψ|4

]
. (3.12)

As input, we choose an ansatz for the wavefunction ψ(r), and subsequently compute the

energy of the condensate by integrating eq. (3.12) up to some maximum size R. Mini-

mizing the energy with respect to R should give a good estimate for the size of stable

structures. Note that the gravitational potential V (r) must be chosen self-consistently to

satisfy eq. (3.9) for a given choice of ψ(r).

In order to illustrate the salient features of the method, we will choose a simple ansatz

for the wavefunction:

ψ(r) =


√

3N
4πR3 e

ir/R if r ≤ R,

0 if r > R,
(3.13)

which is normalized as above. Performing the energy integral gives the result

E = N

[
A

R2
− BN

R
+

3ANa

R3

]
, (3.14)

where A ≡ 1/(2m) and B ≡ 6Gm2/5. Minimizing E(R) with respect to R gives two critical

points

Rc =
A

BN

(
1±

√
1 +

9a

A/B
N2

)
. (3.15)
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In this calculation, a natural length scale X ≡ A/B emerges. For any a 6= 0 (repulsive or

attractive), the minimum of the energy lies at the solution with the “+” sign, i.e.

R0 =
X

N

(
1 +

√
1 +

9a

X
N2

)
. (3.16)

In the case of attractive interactions, there is a critical number of particles Nmax ≡√
X/(9|a|), above which the real energy minimum disappears and no stable condensate

exists. Using Mmax = mNmax, this analysis sets a value for the maximum mass for stable

condensates with attractive interactions:

M < Matt
max = m

√
X

9|a|
=

√
320

27

MP√
|λ|
. (3.17)

The corresponding limit on the radius is a lower bound, attractive boson stars being stable

only for

R > Ratt
min =

√
15

16
|λ|MP

m2
. (3.18)

Note that while the coefficient depends on the details of the wavefunction ansatz, the

scaling relations Matt
max ∼MP/

√
|λ| and Ratt

min ∼
√
λMP/m

2 are completely generic.

Using eq. (2.4), we find(
1 MeV

m

)3/4

7.37× 10−9 kg .Matt
max .

(
1 MeV

m

)3/4

1.31× 10−8 kg (3.19)

The range of masses allowed by these inequalities is given by the green band in figure 6. We

plot the maximum masses over many orders of magnitude, between 1 eV and 1 GeV, but the

maximum mass of boson stars with such strong attractive self-interactions is still < 1 kg.

Note that the numerical results agree well with the predictions of the variational

method to within an order of magnitude, even for the näıve constant density ansatz in

eq. (3.13). These estimates can be improved further by a more robust ansatz for the

wavefunction.

As an example of a physical model, field theories describing axions exhibit an attractive

self-coupling through the expansion of the axion potential V (A) = m2f2
(

1 − cos(A/f)
)

,

where A is the axion field, m is the axion mass, and f is the axion decay constant. Gravi-

tationally bound states, particularly in the context of QCD axions, have become the topic

of much recent interest [78–80]. These states typically have maximum masses of roughly

10−11M�, far below the bounds set in this section, because the couplings are typically

many orders of magnitude smaller.

As we pointed out in the introduction, in the case of attractive interactions the poten-

tial is unbounded from below since λ < 0. Therefore there must exist higher dimensional

operators suppressed by some cutoff. The first irrelevant operator with a Z2 symmetry is

φ6/µ2c where µc is the cutoff scale. We will now set a lower limit for µc by requiring that

the φ6 term is negligible with respect to the φ4 term for typical boson star field values.

Assuming that the kinetic energy of the field is negligible, the energy density is roughly
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Figure 6. The maximum mass of a boson star with attractive self-interactions satisfying eq. (2.4),

as a function of DM particle mass m. The green band is the region consistent with solving the

small scale problems of collisionless cold DM. The blue region represents generic allowed interaction

strengths (smaller than 0.1 cm2/g) extending up to the Kaup limit which is shown in black. The

red shaded region corresponds to λ & 4π. Note that the horizontal axis is measured in grams.

equal to the potential. The maximum mass and minimum radius in eqs. (3.17) and (3.18)

can also be used to estimate the energy density as ρ ≈Mmax/R
3
min ≈ m6/|λ|2M2

P. Now we

can estimate the field value φ̃ inside the boson star with attractive interactions to be

|φ̃| ≈ m√
2|λ|

1 +

(
1− 4m2

|λ|M2
P

)1
2


1
2

≈ m√
|λ|
. (3.20)

Requiring |λ|φ̃4 � φ̃6/µ2c we obtain the inequality µc � m/|λ|.

4 Conclusions

In this paper we studied the possibility that self-interacting bosonic DM forms stars. We

assumed that self-interactions are mediated by a λφ4 interaction and we investigated what

type of stars can be formed in the case of both attractive and repulsive self-interactions,

giving particular emphasis to the parameter phase space of masses and couplings where the

DM bosons alleviate the problems of collisionless DM. We have considered DM particles

that populate the BEC ground state. We estimated the maximum mass where these dark

stars are stable, the mass-radius relation and the density profile for generic values of DM

mass and self-interacting coupling λ.
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We leave several things for future work. The first and most important is the mechanism

of formation for these bosonic dark stars. Sufficiently strong self-interactions can lead to the

gravothermal collapse of part or the whole amount of DM to dark stars [81]. In this case,

DM self-interactions can facilitate the formation of bosonic stars because DM particles get

confined to deeper self-gravitating wells simply by expelling high energetic DM particles out

of the core. As the core loses energy, the virial theorem dictates that the core shrinks and

heats up the same time. This leads to further energy loss and thus to the gravothermal col-

lapse. Such a scenario could also explain why the black hole at the center of the Galaxy is so

heavy, since DM bosonic stars could provide the initial seed required for the further growth

of the supermassive black hole [82]. It is interesting to note that boson stars can coexist in

equilibrium with black holes, as shown in [83, 84]. One should also notice that if the whole

density of DM collapses to dark stars, one does not have to be within the narrow band of

parameter space depicted in figures 3 and 6. Another possibility is the creation of high DM

density regions due to adiabatic contraction, caused by baryons [85, 86]. Moreover, bosonic

DM particles can get trapped inside regular stars via DM-nucleon collisions. The DM pop-

ulation is inherited by subsequent white dwarfs that, in case of supernovae 1a explosions,

can leave the bosonic matter intact, either alone or with some baryonic matter [87].

Asymmetric bosonic dark stars where no substantial number of annihilations take place

will not be very visible in the sky, although present. Gravitational lensing could be one way

to deduce the presence of such stars in the universe. Additionally, if the DM boson interacts

with the Standard Model particles via some portal (e.g. kinetic mixing between a photon

and a dark photon), thermal Bremmstrahlung could potentially produce an observable

amount of luminosity. This is particularly interesting since such a photon spectrum would

probe directly the density profile of the boson star. Bosonic stars could also disguise

themselves as “odd” neutron stars. For example, it is hard to explain sub-millisecond

pulsars with typical neutron stars. XTE J1739-285 could possibly be such a case, since it

allegedly rotates with a frequency of 1122Hz [88]. Compact enough bosonic stars would

have no problem to explain such high rotational frequencies. Another possibility is the

observation of compact stars with masses higher than the maximum mass a neutron star

can support. Such might be the case of the so-called “black widow” PSR B1957+20, with

a mass of 2.4 solar masses [89]. Therefore, abnormal neutron stars can well be the smoking

gun for the existence of asymmetric dark stars either with fermionic constituents like [63],

or with the bosonic ones studied here.
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