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Abstract. We consider the BCS-BEC crossover of a quantum Fermi
gas at T = 0 in the presence of an energy-dependent Fano-Feshbach
resonance, driving the system from broad to narrow limits. We choose a
minimal microscopic potential reproducing the two-particle resonance
physics in terms of the scattering length a and the effective range R∗

representing the resonance width, and solve the BCS mean-field equa-
tions varying a, R∗ and the density. We show that the condensate
fraction manifests a universal behavior when the correlation length,
measuring the pair size, is used as the crossover parameter. Generally,
a negative effective range has the effect of stretching the crossover re-
gion between the two extreme regimes, as evidenced by the behavior
of the chemical potential. These results can be useful in view of the
more recent perspectives of realizing narrow resonances also by optical
means and amenable as a base Quantum Monte Carlo simulations.

1 Introduction

The evolution of superfluidity in a quantum gas of interacting fermionic particles
crossing over from a Bose-Einstein Condensation (BEC) [1, 2] of composite bosons
to a Bardeen-Cooper-Schrieffer (BCS) [3] superfluidity of Cooper pairs is still an
open problem. A number of theoretical and numerical efforts have been aimed to
find universal behaviors after using different classes of interaction potentials whose
strength might drive the crossover [4]. The seminal works of Eagles [5], Leggett [6]
and Nozières and Schmitt-Rink [7] have introduced the concept of crossover physics
in the context of superconductivity and superfluidity: they predicted how observables
like the chemical potential and the fraction of Bose-Einstein condensed pairs would
smoothly evolve their behaviors from a BCS-like state of Cooper pairs to a BEC-like
state of bosons composed by two fermions with varying the attractive interaction.
The smooth evolution in the BCS-BEC crossover has become a hot topic in the con-
text of high-temperature superconductivity, also hinging on the celebrated log-log
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plot by Uemura et al. [8], showing that the measured critical temperatures of several
fermionic and bosonic systems can be collected to stay along approximately the same
line as a function of an effective Fermi temperature TF , with high-TC superconduc-
tors in between the BCS and BEC limits. This unique description independent of the
compounds details, has boosted further theoretical investigations, especially the work
of Pistolesi and Strinati [9]. They demonstrated that such a universal behavior, that
is independent of the details of the interaction potential and of the single-particle den-
sity of states, can be described using the correlation length, representing the size of
the Cooper pair evolving into bosonic molecules. However, high-TC superconductors
are complex systems, where microscopic details are hard to control and disentangle.
The realization of superfluidity in ultracold bosonic [10–13] and fermionic [14–16]
quantum gases is instead characterized by the conditions of extreme precision and
control typical of atomic physics, with the possibility of tuning temperature, dimen-
sionality, and interactions in strength, sign and range. Therefore, they represent a
very convenient experimental and theoretical laboratory to probe the crossover idea
and link it to microscopic models. In particular, the strength and sign of interactions
can be controlled through the mechanism of Fano-Feshbach resonances [17,18], where
the energy of a bound state of the interatomic potential composed by two (fermionic)
atoms, can be magnetically or optically tuned at resonance with the energy of a scat-
tering state of the same interatomic potential where the two atoms are free [19]. At
low energy, the whole mechanism can be described by two relevant length scales: the
scattering length, tunable from negative to positive large values, and the effective
range of the potential, related to the resonance width. The latter has to be compared
to the background scattering length (i.e. away from resonance) in two-body physics,
and to the interparticle spacing in the many-body case [20,21]. For broad resonances
the effective range becomes immaterial. A third relevant length is the interparticle
spacing.
Two questions are still open. First, whether a unique microscopic model exists that
could describe the crossover for both broad and narrow resonances. This is becom-
ing a timely issue with the more recent possibility of realizing narrow resonances by
optical means [19]. Theories are usually classified in two- and single- channel Hamilto-
nians [16,22], the channels representing the scattering and bound states contributing
to the resonance mechanism. While the two-channel Hamiltonians stem from the orig-
inal Fano-Feshbach idea [23,24] and provide a natural theoretical framework, single-
channel theories have been often used to describe the broad-resonance case. This is
presently very well understood also beyond mean-field by theoretical [25] and Quan-
tum Monte Carlo (QMC) methods [26]. Second question is whether the crossover can
be described by only one universal parameter. The usual statement is found in liter-
ature, that no universal behavior can be observed in the narrow resonance case [22].
Here, we dig deeper into this last question, after considering the BCS-BEC crossover
of a quantum Fermi gas at zero temperature in the presence of an energy-dependent
Fano-Feshbach resonance, driving the system from broad to narrow limits. We find
that the physics is effectively described in terms of three physical parameters, that
are scattering length a, effective range R∗, and density n, one more with respect to
the class of potentials considered in [7, 9] . We show that the condensate fraction
manifests a universal behavior when the correlation length, as first introduced in [9],
is used as the only crossover parameter, with all the data sets collapsing into one
single curve (see Fig. 6). In addition, we find that a negative effective range has the
overall effect of stretching the crossover region between the two extreme regimes. For
the chemical potential, this actually makes the universal behavior less evident with
respect to the striking result obtained in [9] with a two-parameter model potential
and in a wider density range. To this aim, we use a single-channel Hamiltonian, able
to reproduce the two-body resonance physics, with the interaction potential in the
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form of a well-barrier model [27,28]. The choice of the single-channel Hamiltonian has
been performed in view of using the present mean-field results as starting point for
future QMC studies, extending the single-channel analysis for broad resonances [26]
and for energy-dependent resonances limited to positive R∗ [29]. On the other hand,
we discuss limits of the present well-barrier model in the deep BEC regime.
The paper is organized as follows. Sect. 2 introduces the model. Sect. 3 describes the
mean-field equations and defines the observables. The results are discussed in Sect. 4,
and summarized in Sect. 5 along with conclusive remarks and future perspectives.

2 The model

As discussed in the introduction, we use the standard BCS formulation for the Hamil-
tonian of a system with N fermions of mass m equally distributed in two spin
states [3]:

Ĥ =
∑
k

tkc
+
kσckσ +

∑
kk′q

Vkk′c+k+q/2↑c
+
−k+q/2↓c−k′+q/2↓ck′+q/2↑, (1)

where ĉkσ are the fermionic operators, tk = ~2k2/2m is the free-fermion dispersion
relation. Vkk′ is the interaction potential representing an effective interaction among
the particles, that here is wanted to reproduce the two-body physics of the energy-
dependent Fano-Feshbach two-channel mechanism.
As enlightened in [30], it is in principle possible to reduce a two-channel into a single-
channel model. This is appropriate when a minimal number of microscopic parameters
describe the relevant two-body physics, to which the many-particle results reduce to.
For the resonance mechanism under consideration, three parameters may be seen to
characterize the low-energy scattering: the scattering length abg away from resonance,
the detuning ν from resonance and the resonance width. For a magnetically-induced
resonance for example, the two channels are coupled via an exchange interaction g
determining the resonance width, ν is the energy difference between the bound state
of the closed channel and the threshold of the continuum in the open channel. These
quantities are related to the scattering length a via a = abg − m|g|2/(4π~2ν). The
coupling g defines a characteristic length R∗ = −8π~4/(m2|g|2), that is the effective
range [30]. Its meaning appears from the expression of the effective inverse scattering
phase shift, which to second order in k can be expressed as [22]

1

aeff (k)
' 1

a
− 1

2
R∗k2. (2)

In an equivalent single-channel model, an appropriate Vk,k′ is to be devised to repro-
duce a and R∗. Following [27–29], we take it in real space in the simplest form of a
short-range square well, followed by a repulsive barrier:

V (r) =


−V0, if r < r0,

V1, if r0 ≤ r < r1,

0, otherwise.

(3)

This is depicted in Fig. 1. In essence, the well-barrier depth V0 + V1 determines a,
and the barrier width r1 − r0 drives R∗ and the resonance width. V0, r0, V1, and r1
can be appropriately connected to the scattering theory, after solving the two-body
problem. Closely following the pedagogical work by Jensen et al. [28], a and R∗ can
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Fig. 1. Square well-barrier model reproducing the physics of an energy-dependent Fano-
Feshbach resonance. The two physical parameters, a and R∗ are determined after solving
the 2-particle scattering problem: in essence V0+V1 determines a and r1-r0 determines R∗.

be cast in the form:

a = r1 −
k1α+ k0β

k1(k0 + k1αβ)
, (4)

R∗ = r1 −
k20 + k21
aγ

1

k0k1

[
1 +

k0k1r0(1− β2)

aγ
− r1

a
+

β

k1a

]
+

1

k21a
− r31
a2
, (5)

where k1 =
√
mV1/h2, k0 =

√
mV0/h2, α ≡ tan(k0r0), β ≡ tanh(k1(r1 − r0)), and

γ ≡ k1(k0 + k1αβ). It is possible to check by inspection that R∗ 6 r1 always.
In the actual determination of V (r), we first fix V1 to stay within the first resonance.
We then fix r0 in order to provide the wanted diluteness parameter nr30 at given
density. Finally, given a and R∗ we determine the remaining parameters V0 and r1.
Notice that at variance with [28], where a and the effective range at resonance R∗0 are
varied, we have found more convenient to vary a and R∗: this allowed us to compare
with the two-channel model results existing in literature.

3 Mean-field approach at zero temperature

Closely following the BCS derivation [31], we consider the trial wave function |ΦBCS〉 =∏
k(uk + vkĉ

+
k↑ĉ

+
−k↓) |0〉, representing a collection of pairs of fermions created in the

vacuum |0〉, where the two fermions have opposite spins and correlated momenta +k
and −k, their total momentum being q = 0. Here, uk and vk are k-dependent func-
tions that satisfy the normalization condition |uk|2 + |vk|2 = 1. Minimization of the

free-energy F̂ = Ĥ − µN̂ , with µ the chemical potential, yields:

u2k =
1

2

(
1 +

εk
Ek

)
, v2k =

1

2

(
1− εk

Ek

)
. (6)

Here, Ek =
√
ε2k +∆2

k is the excitation energy, ∆k the gap function, and εk the
single-particle energy that in our choice includes the Hartree-Fock contribution. The
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well-known self-consistent equations result to be:

∆k = −
∑
k

Vk,k′
∆k′

2Ek′
, (7)

εk = tk − µ+
1

2
VHn−

∑
k′

Vk,k′

(
1− εk′

Ek′

)
, (8)

N = 2
∑
k

nk = 2
∑
k

|vk|2 =
∑
k

(
1− εk

Ek

)
, (9)

where Vk,k′ is the Fourier transform of (3) and VH = 4π[V1(r31 − r30) − V0r
3
0]/3 is

the Hartree contribution. Considering only the s-wave scattering contribution in this
low-energy regime, one has:

V (k, k′) =
2π

kk′

[
(V0 + V1)

( sin((k + k′)r0)

k + k′
− sin((k − k′)r0)

k − k′
)

+

− V1
( sin((k + k′)r1)

k + k′
− sin((k − k′)r1)

k − k′
)]
, (10)

Eqs. (7)-(8) are non-linear and self-consistent expressions, to be solved numerically
by iteration in order to provide ∆(k), E(k) and µ. In particular, after iterating (7)
and (8), from initial guesses for ∆(k) and ε(k), the corresponding value of µ is found
as a root of Eq. (9). The procedure is repeated until full convergence.
We conclude this section by listing all the observables that are calculated and illus-
trated in the next one. First, the condensate fraction N0, given by [31]

N0 =
∑
k

|ukvk|2. (11)

The correlation length ξ represents a crucial quantity for our results. Therefore, we
first calculate the pair correlation function gσ,σ′(r) [32], with σ =↑, ↓. Because of spin
symmetry, one has gp(r) = 2g↑↑(r) = 2g↓↓(r) for the parallel contribution and ga(r) =
2g↑↓(r) = 2g↓↑(r) for the antiparallel one. The correlation length ξ is a measure of
the variance of g↑↓(r) and embodies all the interaction effects. After performing the
angular integration and conveniently expressing in units of Fermi wave-vector kF , one
has:

(kF ξ)
2 =

∫
d3rr2(g↑↓(r)− 1)∫
d3r(g↑↓(r)− 1)

=

∫∞
0
dkk2

∣∣∣ ddk (u(k)v(k))
∣∣∣2∫∞

0
dkk2|u(k)v(k)|2

, (12)

where

g↑↓(r) = 1 + 9
∣∣∣ ∫ ∞

0

dk
k

r
sin(kr)u(k)v(k)

∣∣∣2 (13)

For completeness, g↑↑(r) = 1− 9|
∫∞
0
dkk sin(kr)|v(k)|2/r|2.

4 Results

Before illustrating the results we define our parameter space. Tab. 1 summarizes all
the length scales of the problem, with the corresponding range of values here adopted.
Notice that all the microscopic potential length scales, r0, r1, k−10 and k−11 are smaller

than the interparticle spacing (n/k3F )−
1
3 , while kFa and possibly kFR

∗ may diverge.
We recall that (kFa)−1 < 0 and (kFa)−1 > 0 correspond to BCS and BEC sides of
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Table 1. Length scales of the model and values of a and R∗ which they determine (see

text). Notice that r0, r1, k−1
0 , and k−1

1 < (n/k3F )−
1
3 , while kF a and kFR

∗ may diverge.

kF r0 kF r1 (k0/kF )−1 (k1/kF )−1 (n/k3F )−
1
3 kFR

∗ (kF a)−1

0.31 ∼ (0.35, 0.7) ∼ (0.1, 0.2) 0.15 (3π2)
1
3 = 3.1 (0.2,−0.75) (−10,+2)

Fig. 2. Parameter space for nr30 = 10−3. The regions (A)-(D) are discussed in the text.

the resonance, respectively, with (kFa)−1 = 0 marking resonance. As to R∗, Eq. (2)
provides a useful reading key for the whole discussion below: R∗ < 0 values make
a−1eff more positive and therefore move the system towards a more BEC character,
similarly R∗ > 0 values drive a more BCS nature.
Fig. 2 represents the parameter space for the case with density n such that nr30 =

10−3. Four relevant regions (A)-(D) are evidenced. Region (A) is less interesting when
compared with the two-channel model where R∗ < 0 and is not accessible in the well-
barrier model where R∗ < r1. Region (B) is the main concern of this work, with
(C) corresponding to a trivial extension of it. Finally, we have found that region (D)
in the extreme boson-like regime appears to be hardly accessible to the well-barrier
model. On physical grounds, this might be due to extreme localization of the pair
wavefunction in the deep BEC regime, which hampers condensation at k = 0. If this
were the case, we should expect that the largest accessible R∗ value, say R∗C , be
dictated by the condition R∗C ∼ 2r0. Indeed, a negative value of the effective range
R∗0 at resonance implies that a large portion of the pair density be inside the well with
R∗0 . 2r0 [28]. In practice, we have numerically checked this hypothesis by exploring
the largest accessible R∗ value for different kF r0, as reported in Tab. 2, where the
trend R∗C ∼ 2r0 seems to emerge. The numerical check has been repeated by using two
different strategies to solve the gap equation, namely iteration and Newton methods.
This limit has not been discussed in [28].
Besides a and R∗, the density is varied as well. The largest negative kFR

∗ = −3.6
is attainable at nr30 = 0.125. Here, the resonance can be viewed as narrow in the
many-body sense [21]. Notice that too large values of nr30 worsen the validity of a
mean-field approach, making QMC studies even more necessary.
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Table 2. Lowest critical value R∗C of R∗ for different densities nr30 (see the main text).

nr30 kF r0 (kF r0)−1 kFR
∗
C

0.125 1.54 0.65 −3.6

10−3 0.31 3.23 −0.75

10−4 0.14 7.14 −0.2

10−5 0.07 14.28 −0.05

As the numerical parameters in the self-consistent procedure, we have used up to 1200
points dividing the integration in three intervals to account for the different length
scales of the problem, and treating the last integral with the variable change k →
k−1. A typical convergence procedure required from tens to hundreds iterations for
∆(k) and ε(k) depending on the position in the parameter space. For each calculated
quantity, we have estimated the error bar by varying all the different physical and
algorithm parameters, and observed the error propagation. In the following figures,
the size of the used symbols represents the uncertainty of the data.

4.1 Gap function

For completeness, we first report results already known from [28], though in an ex-
tended parameter region. Fig. 3 displays ∆(k) for kFR

∗ and (kFa)−1 values reported
in the legends. We first notice the periodicity character, that is dictated by 2(kF r0)−1,
as evident from panel (d) where two different kF r0 cases are compared. Second,
panel (a) evidences how the BEC character manifests as a bump at finite k/kF value,
corresponding to building up of the pair wave function in the center of the well at
kF r0/2. The bump is lost on the BCS side of the resonance, where the gap maximum
moves towards k = 0, as expected. In panel (b), the effect of R∗ > 0 values is evident,
always driving the system towards a BCS-like nature. Finally, panel (c) illustrates
the effect of R∗ < 0 values in enhancing the bump size and therefore the BEC char-
acter. While in the BCS regime ∆(k = 0) clearly is the significant parameter, on the
BEC side ∆(0) is unchanged and the bump size increased, so that

∫
d3k|∆(k)|2 is the

relevant parameter, evaluating the probability for the pair to be located within the
well.

4.2 Correlation length

Fig. 4 illustrates the behavior of the correlation length kF ξ as a function of (kFa)−1

and for different values of kFR
∗. The inset displays the typical antiparallel pair cor-

relation function g↑↓(r) at different (kFa)−1 values, from which kF ξ is computed
via (12). It is evident the usefulness of kF ξ as a parameter characterizing the crossover.
In fact, kF ξ progressively increases while (kfa)−1 becomes large and negative and
kFR

∗ > 0: we have checked that kF ξ → kF ξPippard, with the Pippard coherence
length ξPippard = ~2kF /(m∆), where ∆ is the BCS-gap parameter. On the BEC side
with (kfa)−1 large and positive and kFR

∗ < 0, we see that kF ξ → kF r0 (dashed
horizontal line), as expected. Similar results hold at the other density values.

4.3 Universal behaviors

We are now in a position to discuss the main results of this work. Fig. 5 shows µ/EF
versus kF ξ. Following the original idea [9], we use the following normalization: µ/E∗F
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(a) kFR
∗ = 0. (b) kFR

∗ = 0.2.

(c) (kF a)−1 = 0, kFR
∗ < 0. (d) (kF a)−1 = 0.

Fig. 3. Gap function ∆(k) in units of EF = ~2k2F /2m vs. k in units of kF , for different
values of (kF a)−1, kFR

∗ and nr30 (or kF r0), as in legend.

Fig. 4. Correlation length kF ξ versus the parameter (kF a)−1 for different values of kFR
∗as

in the legend and nr30 = 10−3. The dashed line marks the value kF r0 (see text). Inset: g↑↓(r)
for (kF a)−1in the legend and kFR

∗= 0.
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Fig. 5. Chemical potential µ vs. correlation length kF ξ. µ is normalized to EF when µ > 0
(BCS side) and to half the binding energy Eb/2 when µ < 0. Solid lines are extracted from [9].
Points: this work for the model parameters (kF a)−1, kFR

∗and nr30 as in the legend.

when µ > 0, with E∗F = ~2k2F /(2m∗) in terms of the effective mass determined from
ε(k), and µ/(Eb/2) when µ < 0, with Eb/2 the binding energy for two particles in
the well-barrier model. This is given by Eb/(2EF ) = 2[ζ − 1 +

√
1− 2ζ]/(kFR

∗)2 [22]
at given R∗, a, and their ratio ζ ≡ (kFR

∗)/(kFa).
We have explicitly collected all our data sets at different kFR

∗ and nr30 as in the
legend and superimposed them on top of the original graph in [9]. In [9], the mi-
croscopic potential is a separable one, described by two parameters, i.e. scattering
length and density. The different solid lines from the original graph refer to different
values of n/k30, with k−10 being the characteristic wave vector of the model interaction
potential [9]. It is seen that for small kF ξ < π−1 and large kF ξ > 2π, all the curves
collapse to either −1 or +1. In our case, the same idea is extended to analyze µ in
terms of the three parameters of the present theory: (kFa)−1, kFR

∗ and nr30. We
find a similar behavior, though in a smaller density range, with two special remarks.
First, R∗ has the effect of stretching the crossover region between the two extreme
regimes, in which the data are scattered. Therefore, while kF ξ demonstrates to be a
suited parameter to describe the crossover, the degree of universal behavior reduces
with respect to the striking result obtained in [9]. Second, in our case with R∗ < 0,
the deep BEC regime is moved toward the leftmost side of the graph, which is not
accessible due to the already discussed model limitations in region (D), Fig. 2.
The universal behavior is striking when the normalized condensate fraction 2N0/N
is considered. This is displayed in Fig. 6 as function of kF ξ for our data sets. All
data sets collapse in only one curve with the expected limiting values 2N0/N → 1 on
the BEC side, and 2N0/N → ∆(k = 0)/EF on the BCS regime. While the chemical
potential appears to be more sensitive to the details of the interaction, this is not
the case for the condensate fraction, which embodies both the changes in chemical
potential and gap function.

5 Conclusions

We have considered the BCS-BEC crossover of a quantum Fermi gas at T = 0 in the
presence of an energy-dependent Fano-Feshbach resonance, driving the system from
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Fig. 6. Condensate fraction 2N0/N vs. kF ξ for the model parameters as in the legend.

broad to narrow limits. We have chosen a minimal microscopic potential reproducing
the two-particle resonance physics in terms of the scattering length a and the effective
range R∗ representing the resonance width, and solved the BCS mean-field equations
varying a, R∗ and the density.
We have found that the condensate fraction manifests a universal behavior when the
correlation length, measuring the pair size, is used as the crossover parameter, as
first introduced in [9]. In addition, the introduction of the negative effective range as
a third parameter, stretches the crossover region between the two extreme regimes.
As a consequence, while kF ξ remains a suited parameter to describe the crossover,
the degree of universal behavior for the chemical potential reduces with respect to
the striking result obtained in [9] in a wider range of densities. Remarkably, all the
data sets of our three-parameter model for the condensate fraction collapse into a
single curve (Fig. 6), embodying both the behavior of the chemical potential and
gap function. This result is significant, because it is worked out using a model po-
tential different from [7, 9] and stemming from a richer physical mechanism. On the
other hand, in the caste literature exploring the BCS-BEC crossover for narrow Fano-
Feshbach resonances, this result has not been noticed because kF ξ, introduced in [9],
has not been used to describe the physics. The present work also extends to more
negative effective-range values the observable analysis in [28] and, as checked, obtains
the same results as those from the two-channel model [33] at corresponding values of
the parameters.
In fact, the BCS variational ansatz is not expected to give a complete description,
especially around resonance. For example, a comparison performed with Quantum
Monte Carlo data available in portions of the parameter space, limited to broad res-
onances with either zero [26] or small and positive effective ranges [29], evidences the
size of beyond mean-field corrections and quantifies the limits of validity of the present
mean-field approach. Therefore, the results of the present work may represent a pre-
cursor for Quantum Monte Carlo simulations, able to encapsulate the many-particle
correlations which here are dropped.
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