
The Fluid Flow Approximation of the TCP
Vegas and Reno Congestion Control Mechanism

Adam Domański2, Joanna Domańska1, Michele Pagano3,
and Tadeusz Czachórski1(B)

1 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,
Baltycka 5, 44–100 Gliwice, Poland

tadek@iitis.pl
2 Institute of Informatics, Silesian Technical University,

Akademicka 16, 44–100 Gliwice, Poland
adamd@polsl.pl

3 Department of Information Engineering, University of Pisa,
Via Caruso 16, 56122 Pisa, Italy

m.pagano@iet.unipi.it

Abstract. TCP congestion control algorithms have been design to
improve Internet transmission performance and stability. In recent years
the classic Tahoe/Reno/NewReno TCP congestion control, based on
losses as congestion indicators, has been improved and many congestion
control algorithms have been proposed. In this paper the performance of
standard TCP NewReno algorithm is compared to the performance of
TCP Vegas, which tries to avoid congestion by reducing the congestion
window (CWND) size before packets are lost. The article uses fluid flow
approximation to investigate the influence of the two above-mentioned
TCP congestion control mechanisms on CWND evolution, packet loss
probability, queue length and its variability. Obtained results show that
TCP Vegas is a fair algorithm, however it has problems with the use of
available bandwidth.

1 Introduction

In spite of the rise of new streaming applications and P2P protocols that try
to avoid traffic shaping techniques and the definition of new transport protocols
such as DCCP, TCP still carries the vast majority of traffic [10] and so its
performance highly influences the general behavior of the Internet. Hence, a lot
of research work has been done to improve TCP and, in particular, its congestion
control features.

The first congestion control rules were proposed by Van Jacobson in the late
1980s [8] after that the Internet had the first of what became a series of conges-
tion collapses (sudden factor-of-thousand drop in bandwidth). The first practical
implementation of TCP congestion control is known as TCP Tahoe, while fur-
ther evolutions are TCP Reno and TCP NewReno that better handles multiple
losses in the same congestion window (CWND). The Reno/NewReno algorithm
c© The Author(s) 2016
T. Czachórski et al. (Eds.): ISCIS 2016, CCIS 659, pp. 193–200, 2016.
DOI: 10.1007/978-3-319-47217-1 21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80276996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

194 A. Domański et al.

consists of the following mechanisms: Slow Start, Congestion Avoidance, Fast
Retransmit and Fast Recovery. The first two, determining an exponential and
linear grow respectively, are responsible for increasing CWND in absence of losses
in order to make use of all the available bandwidth. Congestion is detected by
packet losses, which can be identified through timeouts or duplicate acknowl-
edgements (Fast Retransmit). Since the latter are associated to mild congestion,
CWND is just halved (Fast Recovery) and not reduced to 1 packet as after
a timeout. Hence, the core of classical TCP congestion control is the AIMD
(Additive-Increase/Multiplicative-Decrease) paradigm. Note that this approach
provides congestion control, but does not guarantee fairness [6].

The TCP Vegas was the first attempt of a completely different approach to
bandwidth management and is based on congestion detection before packet losses
[3]. In a nutshell (see Sect. 2 for more details), TCP Vegas compares the expected
rate with the actual rate and uses the difference as an additional congestion indi-
cator, updating CWND to keep the actual rate close to the expected rate and,
at the same time, to be able of making use of newly available channel capacity.
To this aim TCP Vegas introduces two thresholds (α and β), which trigger an
Additive-Increase/Additive-Decrease paradigm in addition to standard AIMD
TCP behavior. The article [12] shows TCP Vegas stability and congestion con-
trol ability, but, in competition with AIMD mechanism, it cannot fully use the
available bandwidth.

The goal of our paper is to compare the performance of these two variants of
TCP through fluid flow models. In more detail we investigated the influence of
these two TCP variants on CWND changes and queue length evolution, hence
also one-way delay and its variability (jitter). Moreover, we also evaluated the
friendliness and fairness of the different TCP variants as well as their ability in
using the available bandwidth in presence of both standard FIFO queues with
tail drop and Active Queue Management (AQM) mechanisms in the routers.

Another important contribution of our work is that we considered also the
presence of background traffic and asynchronous flows. In the literature, traffic
composed of TCP and UDP streams has been already considered, but in most
works (for instance, in [5,13]) all TCP sources had the same window dynamics
and UDP streams were permanently associated with the TCP stream. Instead,
in this paper, extending our previous work presented in [4], the TCP and UDP
streams are treated as separate flows. Moreover, unlike [9] and [14], TCP con-
nections start at different times with various values of initial CWND.

The rest of the paper is organized as follows. The fluid flow approximation
models are presented in Sect. 2, while Sect. 3 discusses the comparison results.
Finally, Sect. 4 ends the paper with some final remarks.

2 Fluid Flow Model of TCP NewReno and Vegas
Algorithms

This section presents two fluid flow models of a TCP connection, based on [7,11]
(TCP NewReno) and [2] (TCP Vegas). Both models use fluid flow approximation

Fluid Flow Approximation of TCP Vegas 195

and stochastic differential equation analysis. The models ignore the TCP timeout
mechanisms and allow to obtain the average value of key network variables.

In [11] a differential equation-based fluid model was presented to enable tran-
sient analysis of TCP Reno/AQM networks (flows throughput and queues length
in bottleneck router). The authors also showed how to obtain ordinary differen-
tial equations by taking expectations of the stochastic differential equations and
how to solve the resultant coupled ordinary differential equations numerically to
get the mean behavior of the system. In more detail, the dynamics of the TCP
window for the i-th stream are approximated by the following equation [7]:

dWi(t)
dt

=
1

Ri(t)
− Wi(t)Wi(t − Ri(t))

2Ri(t − Ri(t))
p(t − Ri(t)) (1)

where:

– Wi(t) – expected size of CWND (packets),
– Ri(t) = q(t)

C + Tpi
– RTT (sec),

– q(t) – queue length (packets),
– C – link capacity (packets/sec),
– Tpi

– propagation delay (sec),
– p – probability of packet drop.

The first term on the right hand side of the Eq. (1) represents the rate of increase
of CWND due to incoming acknowledgments, while the second one models mul-
tiplicative decrease due to packet losses. Note that such model ignores the slow
start phase as well as packet losses due to timeouts (a loss just halves the con-
gestion window size) in accordance with a pure AIMD behavior, which is a good
approximation of the real TCP behavior in case of low loss rates.

In solving Eq. (1) it is also necessary to take into account that the maximum
values of q and W depend on the buffer capacity and the maximum window
size (if the scale option is not used, 64 KB due to the limitation of the Adver-
tisedWindow field in TCP header). The dropping probability p(t) depends on
the discarding algorithm implemented in the routers (AQM vs. tail drop) and
on the current queue size q(t), which can be calculated through the following
differential equation (valid for both models also in presence of background UDP
traffic):

dq(t)
dt

=
n1∑

i=1

Wi(t)
Ri(t)

+
n2∑

i=1

Ui(t) − C1q(t)>0 (2)

where Ui(t) is the rate of the i-th UDP flow (with Ui(t) = 0 before the source
starts sending packets), while n1 and n2 denote the number of TCP (NewReno or
Vegas) and UDP streams, respectively. Note that the indicator function 1q(t)>0

takes into account that packets are drawn at rate C only when the queue is not
empty.

As already mentioned, classical TCP variants base their action on the detec-
tion of losses. The TCP Vegas mechanism, instead, tries to estimate the available
bandwidth on the basis of changes in RTT and, every RTT, increases or decreases

196 A. Domański et al.

CWND by 1 packet. To this aim, TCP Vegas calculates the minimum value of
the RTT, denoted as RBase in the following, assuming that it is achieved when
only one packet is enqueued:

RBase =
1
c

+ Tp (3)

Hence, the expected rate, which denotes the target transmission speed, is the
ratio between CWND and the minimum RTT, i.e.:

Expected =
Wi(t)
RBase

(4)

while the actual rate depends on the current value R(t) of the RTT:

Actual =
Wi(t)
R(t)

=
Wi(t)

q(t)
c + Tp

(5)

The Vegas mechanism is based on three thresholds: α, β and γ, where α and
β refer to the Additive-Increase/Additive-Decrease paradigm, while γ is related
to the modified slow-start phase [3].

In more detail, for Expected − Actual ≤ γ
RBase

TCP Vegas is in the slow
start phase, while for higher values of the difference we have the pure additive
behavior: for Expected − Actual ≤ α

RBase
the window increases by one packet

for each RTT and for Expected − Actual ≥ β
RBase

the window decreases by the
same amount. Finally, if Expected−Actual is between the two thresholds α and
β, CWND is not changed. Taking into account the definition of expected and
actual rates given by Eqs. (4) and (5) respectively, it is possible to express the
previous inequalities in terms of Wi, R and RBase. Then, changes in the window
are given by the formula:

dWi(t)
dt

=
W (t − R(t)) ∗ W (t − R(t))

R(t)
p0(t − R(t)) +

1
R(t − R(t))

p1(t − R(t))

− 1
W (t − R(t))R(t − R(t))

p2(t − R(t))

where

p0 =
{

1 for Wi(R−RBase)
R ≤ γ

0 otherwise
, p1 =

{
1 for γ ≤ Wi(R−RBase)

R ≤ α
0 otherwise

and

p2 =
{

1 for Wi(R−RBase)
R ≥ β

0 otherwise
.

Fluid Flow Approximation of TCP Vegas 197

3 Experimental Results

Our main goal is to show the behavior of the two completely different TCP
mechanisms, taking into account various network scenarios in terms of amount
of TCP flows as well as queue management disciplines (namely, standard FIFO
with tail drop and RED, the best-known example of AQM mechanism). For
numerical fluid flow computations we used a software written in Python and
previously presented in [4]. During the tests we assumed the following TCP
connection parameters:

– transmission capacity of bottleneck router: C = 0.075,
– propagation delay for i-th flow: Tpi

= 2,
– initial congestion window size for i-th flow (measured in packets): Wi =

1, 2, 3, 4....,
– starting time for i-th flow
– threshold values in TCP Vegas sources: γ = 1, α = 2 and β = 4 (see [1,3]),
– RED parameters: Minth = 10, Maxth = 15, buffer size = 20 (all measured in

packets), Pmax = 0.1, weight parameter w = 0.007,
– the number of packets sent by i-th flow (finite size connections).

Figures 1 and 2 present the CWND evolution and the buffer occupancy for
different numbers of TCP Vegas connections. In more detail, Fig. 1(a) refers
to a single TCP stream: after the initial slow start, the congestion avoidance
phase goes on until the optimal window size is reached and then CWND is
maintained at such level until the end of transmission. In case of two TCP
connections (Fig. 1(b)), the evolution of CWND is identical for both streams
and similar to the single source case (apart from a slightly lower value of the
maximum CWND). The comparison between the two figures highlights the main
disadvantage of TCP Vegas: the link underutilization. Indeed, under the same
network conditions, the optimal CWND for one flow is only slightly less than
the optimal CWND for each of the two flows.

Fig. 1. TCP Vegas congestion window evolution — FIFO queue

198 A. Domański et al.

Fig. 2. TCP Vegas congestion window evolution — RED queue

Fig. 3. TCP NewReno congestion window evolution — FIFO queue, 4 TCP streams

Figure 2 refers to the case of RED queue with two and three TCP streams.
Streams start transmission at different time points and TCP Vegas is able to
provide a level of fairness much greater than TCP NewReno. Indeed, in such case,
as highlighted in Fig. 3, the first stream (starting the transmission with empty
links) decreases CWND much slower and uses most of the available bandwidth.

The last set of simulations deals with the friendliness between TCP Vegas
and NewReno, considering two connections with the same amount of data to
be transmitted. In case of FIFO queue (see Fig. 4(a)), TCP NewReno is more
aggressive and sends data faster. Uneven bandwidth usage by TCP variants
decreases in presence of the AQM mechanism, as pointed out by Fig. 4(b). Our
results confirm that the RED mechanism improves fairness in access to the link
and keeps short the queues in routers (in our example, the maximum queue
length decreases from 20 to 12 packets).

Fluid Flow Approximation of TCP Vegas 199

(a) FIFO queue (b) RED queue

Fig. 4. TCP Vegas and NewReno congestion window evolution

4 Conclusions

The article evaluates by means of a fluid approximation the effectiveness of the
congestion control of TCP NewReno and TCP Vegas.

The two TCP variants differ significantly in managing the available band-
width. On one hand, TCP NewReno increases CWND to reach the maximum
available bandwidth and eventually decreases it when congestion appears. This
greedy approach clearly favors a stream which starts transmission when the link
is empty. On the other hand, TCP Vegas increases CWND only up to a certain
level to avoid the possibility of overloading. The disadvantage of this solution is
the link underutilization: with a single stream TCP Vegas is conservative and
may not use the total available bandwidth. However, in case of several competing
streams, TCP Vegas mechanism shows its fairness: in presence of synchronous
flows every stream uses the same share of the available bandwidth and even in
case of streams starting transmission at different times a quite fair share of the
network resources is still obtained.

Finally, the presented analysis permits to take into account finite-size flows
and, unlike most works in this area, allows to start TCP transmission at any point
of time with different values of the initial CWND (modern TCP implementation
often starts with a window bigger than 1 packet). In other words, our approach
makes possible the observation of TCP dynamics at such time when other sources
start or end transmission.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

200 A. Domański et al.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Ahn, J.S., Danzig, P.B., Liu, Z., Yan, L.: Experience with TCP Vegas: emulation
and experiment. In: ACM SIGCOMM Conference-SIGCOMM (1995)

2. Bonald, T.: Comparison of TCP Reno and TCP Vegas via fluid approximation.
Institut National de Recherche en Informatique et en Automatique 1(RR 3563),
1–34 (1998)

3. Brakmo, L.S., Peterson, L.: TCP Vegas: end to end congestion avoidance on a
global internet. IEEE J. Sel. Areas Commun. 13(8), 1465–1480 (1995)

4. Domańska, J., Domański, A., Czachórski, T., Klamka, J.: Fluid flow approximation
of time-limited TCP/UDP/XCP streams. Bull. Pol. Acad. Sci. Tech. Sci. 62(2),
217–225 (2014)

5. Domański, A., Domańska, J., Czachórski, T.: Comparison of AQM control systems
with the use of fluid flow approximation. In: Kwiecień, A., Gaj, P., Stera, P. (eds.)
CN 2012. CCIS, vol. 291, pp. 82–90. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31217-5 9

6. Grieco, L., Mascolo, S.: Performance evaluation and comparison of Westwood+,
New Reno, and Vegas TCP congestion control. ACM SIGCOMM Comput. Com-
mun. Rev. 34(2), 25–38 (2004)

7. Hollot, C., Misra, V., Towsley, D.: A control theoretic analysis of RED. In:
IEEE/INFOCOM 2001, pp. 1510–1519 (2001)

8. Jacobson, V.: Congestion avoidance and control. In: Proceedings of ACM SIG-
COMM 1988, pp. 314–329 (1988)

9. Kiddle, C., Simmonds, R., Williamson, C., Unger, B.: Hybrid packet/fluid flow
network simulation. In: 17th Workshop on Parallel and Distributed Simulation,
pp. 143–152 (2003)

10. Lee, D., Carpenter, B.E., Brownlee, N.: Observations of UDP to TCP ratio and port
numbers. In: Proceedings of the 2010 Fifth International Conference on Internet
Monitoring and Protection, ICIMP 2010, pp. 99–104. IEEE Computer Society,
Washington, DC (2010)

11. Misra, V., Gong, W., Towsley, D.: Fluid-based analysis of a network of AQM
routers supporting TCP flows with an application to RED. In: Proceedings of
ACM/SIGCOMM, pp. 151–160 (2000)

12. Mo, J., La, R., Anantharam, V., Walrand, J.: Analysis and comparison of TCP
Reno and Vegas. In: Proceedings of IEEE INFOCOM, pp. 1556–1563 (1999)

13. Wang, L., Li, Z., Chen, Y.P., Xue, K.: Fluid-based stability analysis of mixed
TCP and UDP traffic under RED. In: 10th IEEE International Conference on
Engineering of Complex Computer Systems, pp. 341–348 (2005)

14. Yung, T.K., Martin, J., Takai, M., Bagrodia, R.: Integration of fluid-based ana-
lytical model with packet-level simulation for analysis of computer networks. In:
Proceedings of SPIE, pp. 130–143 (2001)

http://dx.doi.org/10.1007/978-3-642-31217-5_9
http://dx.doi.org/10.1007/978-3-642-31217-5_9

	The Fluid Flow Approximation of the TCP Vegas and Reno Congestion Control Mechanism
	1 Introduction
	2 Fluid Flow Model of TCP NewReno and Vegas Algorithms
	3 Experimental Results
	4 Conclusions
	References

