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Abstract 21 

BACKGROUND: Fruit development and oil quality in Olea europaea L. are strongly influenced 22 

by both light and water availability. In this study the simultaneous effects of light environment 23 

and irrigation on fruit characteristics and oil quality were studied in a high-density orchard over 24 

two consecutive years. Olive fruits were harvested from three canopy positions (intercepting 25 

about 64%, 42% and 30% of above canopy radiation) of fully-productive trees subjected to full, 26 

deficit or complementary irrigation. RESULTS: Fruits receiving 61-67% of above canopy 27 

radiation showed the highest fruit weight, mesocarp oil content and maturation index, whereas 28 

those intercepting only 27-33% showed the lowest values. Palmitoleic and linoleic acids 29 
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increased in oils obtained from fruits exposed to high light levels, whereas oleic acid and the 30 

oleic-linoleic acid ratio decreased. Neither canopy position nor irrigation affected the K232, K270, 31 

∆K, and lignans concentration in virgin olive oils (VOOs). Total phenols, 3,4-DHPEA-EDA and p-32 

HPEA-EDA increased in VOOs produced from fruits harvested from the top of the canopy, 33 

whereas full irrigation decreased total phenols and 3,4-DHPEA-EDA concentrations with respect 34 

to the complementary irrigation treatment. CONCLUSION: Light and water availability are not 35 

only crucial for tree productivity, but they also clearly affect olive oil quality.  36 

 37 

Keywords: fatty acids; mesocarp oil content; phenolic composition; photosynthetically active 38 

radiation; leaf water potential. 39 

 40 

INTRODUCTION 41 

Light and water are major driving forces for photosynthesis and transpiration, which are the main 42 

processes responsible for tree growth and productivity. In fruit trees and vines the evolution of 43 

planting systems from traditional orchards to high-density ones involved the optimization of 44 

canopy light interception and the introduction of irrigation 1, 2, 3. High-density olive orchards 45 

became common since the 1980s, whereas very high-density (hedgerow) systems only became 46 

commercial since the middle of the 1990s 4. As a result, studies on light interception and optimal 47 

management of irrigation in olive orchards are still relatively new despite the evidence about the 48 

marked effects that solar radiation and water have on vegetative activity, leaf morphology and 49 

density, photosynthesis, transpiration, fruit production and quality in fruit trees 3, 5, 6, 7, 8.  50 

Connor 9 proposed a model that calculated profiles of photosynthetic active radiation (PAR) 51 

according to a combination of row height, width, spacing, and orientation of olive hedgerows, 52 

and associated these profiles with the productive responses of individual canopy walls. 53 

Trentacoste et al. 10 reported that olive fruits (cv. Arbequina) formed at the top of the canopy had 54 

higher fruit weight, mesocarp weight and oil content than fruits from less illuminated canopy 55 

zones. In a study conducted on 8-year-old olive trees (cv. Arbequina) planted at a 4 x 6 m tree 56 

spacing, Cherbiy-Hoffmann et al. 11 reported that fruit dry weight and oil content concentration 57 

increased linearly up to about 40% of external PAR if the light environment was manipulated 58 
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after endocarp sclerification. A similar relationship between canopy light interception and fruit oil 59 

content, albeit with a higher threshold (60% of incident PAR), had been determined earlier for 60 

hedgerow orchards 12. In other experiments and simulations the fruit oil content increased 61 

linearly over the 12-75% interval of incident radiation, whereas fruit density increased linearly up 62 

to about 40% irradiance beyond which it remained stable 13. As for the effect of canopy light 63 

interception on olive oil quality, Gómez-del-Campo and Garcia 14 reported that fruits located in 64 

the upper part of the canopies trained to hedgerows produced oils that were more stable, richer 65 

in polyphenols and saturated fatty acids than those obtained from less illuminated fruits. The 66 

current interest in light effects on oil quality of olive trees also stems from the progressive 67 

abandonment of severe pruning techniques, the adoption of free canopy training systems in 68 

high-density and hedgerow orchards, and the introduction of mechanical pruning.  69 

Soil water availability virtually affects all aspects of tree performance including fruit development, 70 

fruit characteristics and oil quality 15, 16, 17. Martinelli et al. 18 reported that fruits of rainfed olive 71 

trees had higher levels of total polyphenols than those collected from fully-irrigated trees during 72 

the period comprised between the post pit hardening stage and the complete pigmentation of the 73 

epicarp. At the last sampling date a higher concentration of anthocyanin in fruits sampled from 74 

rainfed trees was also observed, indicating that soil water availability affected ripening in olives 75 

18. In orchards and vineyards it has been shown that supplying water to fully compensate for 76 

plant water consumption does not necessarily lead to optimal fruit quality, and that periods of 77 

water deficit can improve quality depending on the timing of stress imposition 7, 19, 20, 21. In mature 78 

olive trees extensive evidence has also been produced, showing that it is possible to reduce the 79 

amount of water applied during the irrigation season without negative effects on fruit and oil yield  80 

22, 23, 24. Caruso et al. 25 reported that the oil yield and the oil yield efficiency of deficit (46-54% of 81 

full irrigation) irrigated trees (cv. Frantoio) were 82 and 110% those of fully-irrigated ones over 82 

four years, respectively. The oil concentration in fruits of cv. Arbequina subjected to deficit 83 

irrigation (25% of the irrigation volume applied to the control treatment) was higher than that of 84 

fully-irrigated trees in two out of the three years of study 26. Similar results were obtained in a 85 

hedgerow olive orchard (cv. Arbequina) where a reduction of irrigation by 70% in July allowed to 86 
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save 16% of total season irrigation water without losses in oil production compared with fully-87 

irrigated trees 4. 88 

Changes in the quality of VOO induced by soil water availability have been reported by many 89 

authors 16, 27, 28, 29. Most studies showed a negative correlation between concentrations of 90 

phenols, ortho-diphenols, secoiridoids and the volume of water applied, whereas the irrigation 91 

regime had negligible effects on free acidity, peroxide value, fatty acid composition, and 92 

concentrations of lignans of VOOs 14, 16, 27, 29. 93 

All the above reported studies focused on the effect of either water availability or light 94 

interception. In a previous work, we showed that there was an interaction between light intensity 95 

and tree water status on volatile organic compounds (VOCs) in VOOs, effects that could not be 96 

entirely predicted by simply summing the individual responses to light or water deficit 30. The 97 

objective of this study was to determine the simultaneous effect of different light levels and tree 98 

water status on several parameters that characterize VOO quality. Free acidity, peroxide value, 99 

spectrophotometric indices, fatty acids composition, and phenolic compounds concentrations in 100 

VOOs obtained from trees grown in a high-density olive orchard were measured over two 101 

consecutive growing seasons. 102 

 103 

EXPERIMENTAL 104 

Plant material, radiation interception and tree water status 105 

A high density (513 trees ha-1) olive (Olea europaea L. cv. Frantoio) orchard, planted in April 106 

2003 at the experimental farm of University of Pisa, Italy (43° 01’N; 10° 36’ E), was used in 2008 107 

and 2009. The soil was a sandy-loam permanently covered with a natural green cover. Canopies 108 

were trained to a free vase training system formed by a single trunk and three to five primary 109 

branches 25.  110 

The climatic conditions over the study period were monitored using a weather station iMETOS 111 

IMT 300 (Pessl Instruments GmbH, Weiz, Austria) installed on site. Reference 112 

evapotranspiration, calculated according to the Penman–Monteith equation, was 993 and 1101 113 

mm in 2008 and 2009, respectively. The effective evapotranspiration was calculated by using a 114 

crop coefficient (Kc) during the irrigation period of 0.55 and a coefficient of ground cover (Kr) of 115 
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0.9 and 1 in 2008 and 2009, respectively. Annual precipitation was 1107 and 771 mm in 2008 116 

and 2009, respectively, while summer precipitation was 74 mm and 87 mm in those respective 117 

years. During the summer the average mean temperature was 23.1 and 23.3 °C in 2008 and 118 

2009, respectively (Fig. 1). Annual solar radiation, measured by a silicon sensor placed on top of 119 

the weather station, was 71130 and 77501 W m-2 in 2008 and 2009, respectively. During the fruit 120 

development period (from anthesis through fruit harvest) solar radiation was 40935 and 46071 W 121 

m-2 in those two respective years, corresponding to 290 and 311 W m-2 of daily radiation. During 122 

the same period clear days (above canopy solar radiation to extra-terrestrial radiation greater 123 

than 0.75 31) were 66%, and cloudy days (above canopy solar radiation to extra-terrestrial 124 

radiation lower than 0.25 31) were 1% in 2008 31; in 2009 the percentage of sunny days and 125 

cloudy days was 72 and 2% respectively 31. 126 

Subsurface drip irrigation was used to supply 100% (Full Irrigation, FI), 46-48% (Deficit Irrigation, 127 

DI) or 2-6% (Complementary Irrigation, CI) of tree water needs, calculated as effective 128 

evapotranspiration, for about 14 weeks. Irrigation periods were 2 July-10 October and 1 July-9 129 

October in 2008 and 2009, respectively. Fully-irrigated trees received water 4-5 days a week and 130 

the volumes applied were 1860 and 2134 m3 ha-1 in 2008 and 2009, respectively 25. Fertilizers 131 

were applied via the sub-surface irrigation system every year before irrigation treatments were 132 

put into action. A total of 25 and 50 g of N, P2O5 and K2O per tree were supplied to all trees in 133 

2008 and 2009, respectively. The trees had started fruit production in 2005 (about 5 kg per tree) 134 

and had reached full production by the time the experiments were started 30.  135 

Three trees per irrigation treatment were used in this experiment. In both years, on each of the 136 

selected trees, volumes of 1 m3 each were identified in: i) the top zone of the canopy at a height 137 

of about 3 m (T); ii) the lower part of the South side at 2 m above ground (L-S); iii) the lower part 138 

of the North side at 2 m above ground (L-N). Each canopy position was replicated nine times 139 

(three trees per irrigation treatment for a total of nine trees).The PAR was measured at regular 140 

intervals from dawn until sunset on clear days with a LI-COR Line Quantum Sensor (LI-191 SB, 141 

Licor, Lincoln, USA) in 2008 and a Sun Scan System (SS1, Delta-T Devices Ltd, Cambridge, 142 

UK) in 2009. Two cross measurements of light interception (North-South and East-West 143 
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directions) were taken per each canopy position and the data averaged 30. The average (2008-144 

2009) canopy volume of FI, DI and CI trees was 27.9, 19.9 and 20.4 m3, respectively. 145 

Tree water status was determined by measuring the pre-dawn leaf water potential (PLWP) at 7-146 

10 day intervals during the irrigation period using a pressure chamber 25. In 2009 the stem water 147 

potential (SWP) was also determined (Fig. 3). The SWP was measured after blocking 148 

transpiration of leaves inserted near the main scaffolds of the tree 30. The leaf was bagged and 149 

then sampled to determine SWP 32. Preliminary measurements showed that the minimum time 150 

required for the leaf to reach equilibrium with the xylem was 40 min. In order to assess possible 151 

differences in leaf water potential due to different amounts of light intercepted, we also measured 152 

SWP on leaves located at different canopy positions of the same trees used for PLWP 153 

measurements. No differences in SWP between the different canopy positions were found (data 154 

not shown). 155 

 156 

Fruit harvest, oil extraction and analysis 157 

Full bloom occurred on 2 June and 24 May in 2008 and 2009, respectively and fruits were 158 

harvested on 21 and 19 October in those two respective years.  159 

Due to the limited number of fruits in the 1 m3 volume of selected canopy positions, we had to 160 

restrict the destructive sampling of fruits. Prior to harvest 50 fruits were sampled from each 161 

canopy position of each tree for the determination of fresh weight and maturation index. The oil 162 

content of the dry mesocarp of five fruits for each canopy position, previously sampled for fresh 163 

weight determinations, was measured by nuclear magnetic resonance (NMR) Oxford MQC-23 164 

analyzer (Oxford Analytical Instruments Ltd., Oxford, UK), as previously reported 25. 165 

Oil was extracted from about 1.5 kg of fruits sampled from each canopy position of each tree 166 

using an Abencor system (MC2, Ingenieria y Systemas, Sevilla, Spain) within 24 h from harvest 167 

33. From each sample we obtained about 100 mL of oil, that was then stored in the dark at 14 °C 168 

until analyses. Free acidity and peroxide value (PV) of oils were determined colorimetrically 169 

using an Oxitester unit (Olive Oxytester, CDR, Ginestra Fiorentina, FI, Italy) that allowed the 170 

determination of both parameters rapidly on small samples 33. Fatty acid composition and UV 171 
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absorption characteristics at 232 and 270 nm of oils were measured in accordance with the 172 

European Official Methods 16, 34.  173 

The fatty acid composition was determined in accordance with the European Official Methods 33, 174 

35, peak identification of the various fatty acid methyl esters was performed by comparison of 175 

their retention times with those of Supelco 37 Component FAME Mix (Milan, Italy). 176 

The phenolic composition was evaluated by liquid-liquid extraction from VOO and analyzed by 177 

high performance liquid chromatography (HPLC) 29, 35. Standards were obtained from different 178 

sources: (3,4-dihydroxyphenyl)ethanol (3,4-DHPEA), produced by the Cayman Chemical Co. 179 

(Ann Arbor, MI, USA), was obtained from Cabru s.a.s. (Arcore, Milan, Italy), while the (p-180 

hydroxyphenyl)ethanol (p-HPEA) was purchased from Fluka (Milan, Italy). The dialdehydic form 181 

of elenolic acid linked to 3,4-DHPEA or p-HPEA (3,4-DHPEA-EDA and p-HPEA-EDA, 182 

respectively, the isomer of oleuropein aglycon (3,4-DHPEA-EA), the (+)-1-acetoxypinoresinol, 183 

and (+)-pinoresinol were extracted from VOO and separated by semipreparative HPLC 184 

according to previously reported procedures 29, 36. 185 

 186 

Experimental design and statistical analysis 187 

A one factor randomized complete block design was used with canopy position as the fixed 188 

factor and irrigation level as the randomized factor. Three trees per irrigation treatment (a total of 189 

nine trees) were selected similar in size, productivity and location within the orchard. Means of 190 

irrigation treatments and canopy positions were separated by least significant differences (LSD) 191 

at p < 0.05 after analysis of variance using MSTAT software (Michigan State University, East 192 

Lansing, USA). Fatty acids composition data were subjected to ANOVA after arcsine 193 

transformation. Where applicable, data were analyzed by regression using Costat (CoHort 194 

Software, Monterey, USA).  195 

Fatty acid composition and phenolic concentrations of VOOs were subjected to Principal 196 

Components Analysis (PCA) using the SIMCA 13.0 chemometric package (Umetrics AB, Umeå, 197 

Sweden). The raw data were normalized by subtracting the mean, and autoscaled by dividing 198 

them by the standard deviation. The number of significant components was found by cross-199 

validation, and the results of PCA modeling were presented in graphical form. 200 
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 201 

RESULTS 202 

Climatic and experimental conditions during fruit development were similar in both growing 203 

seasons (Fig. 1), except that summer precipitations were higher in 2009 than in 2008. The 204 

amount of the average daily PAR intercepted at each canopy position was similar in 2008 and 205 

2009. Diurnal profiles of light interception showed that PAR values were 67, 46 and 33% of 206 

above canopy ones for T, L-S and L-N positions, respectively in 2008 and 61, 38 and 27% in 207 

2009 (Fig. 2). 208 

The PLWP of the FI trees was usually maintained above –1.0 MPa with an average of –0.86 209 

MPa. The PLWP of DI trees decreased progressively with increasing seasonal drought and 210 

reached -2.2 and -2.6 MPa at 76 and 110 days after full bloom (DAFB) in 2008 and 2009, 211 

respectively (Fig. 3A, B). The minimum PLWP values of CI trees were -3.5 MPa in 2008 (109 212 

DAFB) and -4.8 MPa in 2009 (102 DAFB). In 2008 and 2009 the PLWP of both DI and CI 213 

treatments rose to values similar to FI twice because of rainfall during the irrigation period (Fig. 214 

3A, B). In the 2009 seasonal course of SWP of fully-irrigated trees (PLWP of about -0.9 MPa) 215 

was similar to that of PLWP and ranged between -1.3 and -1.9 MPa (Fig. 3 C). 216 

Fully irrigated, deficit irrigated and complementary irrigated trees produced 18.869 ± 4.303, 217 

14.232 ± 0.940 and 11.192 ± 1.285 kg of fruit per tree in 2008, respectively, and 23.130 ± 5.286, 218 

10.931 ± 1.023 and 8.430 ± 1.273 kg per tree in 2009 (values are means ± standard error of 219 

three trees for each irrigation treatment).  220 

Both canopy position and water status affected fruit fresh weight (FW), but the effect of location 221 

was more evident than that of irrigation: the fruit FW from the T canopy position was 131-140% 222 

that from the L-N, whereas the fruit FW from the FI treatment was 119-114% that of CI fruits 223 

(Fig. 4). Maturation was also markedly affected by both canopy position and irrigation (Fig. 4C, 224 

D). Fruits harvested from the top of the canopy of CI trees showed highest maturation index. 225 

Low light levels significantly slowed down the development of dark colour and the progression of 226 

fruit maturation. The oil content in the mesocarp increased at an apparently steady rate as the 227 

level of light interception increased up to a threshold level of about 40% PAR, beyond which it 228 
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levelled off (Fig. 4E, F). In 2008 fruit mesocarps from the top of the canopy had 105% of the oil 229 

(% dry weight) of the L-N and L-S ones, (107 and 102% respectively, in 2009). 230 

Peroxide value of VOOs produced in 2008 showed significant differences due to different tree 231 

water status and light interception (Tab. 1). In 2008 maximum peroxide values, all below the 232 

limits of VOO classification (EU Off. J. Eur. Communities, 2003), were measured in oils from 233 

fruits of the top part of the canopy of FI trees, whereas minimum values were obtained in oils 234 

from the L-N part of the canopy of CI trees that received only occasional irrigations (Tab. 1). Oils 235 

obtained from fruits located in the L-S position had intermediate values. A significant interaction 236 

between the irrigation regime and canopy position was found for peroxide value in 2008, but not 237 

in 2009. In 2009 those parameters were similar regardless of tree water status or canopy 238 

position (Tab. 1). In 2009 all spectrophotometric indices were unaffected by either light or water 239 

regime, except for the ΔK that was significantly affected by light interception (Tab. 1).  240 

Oil fatty acid composition was more influenced by the canopy position than the irrigation regime 241 

(Tab. 2), without any significant interaction between the two factors (supplementary 242 

material_Table 1). Oleic acid decreased as light interception increased and showed the highest 243 

values in oils obtained from fruits that intercepted the lowest amount of light (Tab. 2). Significant 244 

differences in oleic acid concentration between T and L-N zones were observed in both years 245 

(Tab. 2). Linolenic acid decreased as light levels increased only in 2009; linoleic and palmitoleic 246 

acids increased as light interception increased, and showed significant differences between oils 247 

from T and L-N zones in both years (Tab. 2). At high PAR levels the oleic-linoleic ratio of VOOs 248 

was lower than that of fruits exposed to low PAR values in both years. However, canopy position 249 

did not affect the saturated-unsaturated fatty acids ratio. Stearic acid was significantly lower in FI 250 

than in CI trees in both years (Tab. 2). 251 

Both tree water status and canopy position influenced the phenolic concentrations of VOOs. In 252 

general, trees that had undergone the least water deficit or fruits in the L-N position produced 253 

oils with the lowest concentration of phenolic compounds. The interaction between I x CP was 254 

never significant for any of the different fractions, except for p-HPEA in 2008 (supplementary 255 

material _Table 2). The p-HPEA showed in both years a decrease in oils obtained from trees 256 

that experienced high level of water stress. Oils obtained from fruits in the top layer of the 257 
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canopy had higher concentrations of p-HPEA-EDA (183-223%), p-HPEA (116-173%), 3,4-258 

DHPEA-EDA (178-238%), and the sum of phenolic compounds (155-159%) than those from the 259 

Low-North side in both years (Tab. 3). However, only the p-HPEA-EDA showed significant 260 

differences between canopy zones in both years, whereas the other phenolic compounds and 261 

their sum showed significant differences only in one of the two years (Tab. 3). There was a 262 

positive correlation between 3,4-DHPEA-EDA, p-HPEA-EDA, the total phenolic concentration 263 

and the amount of intercepted radiation in both years (data not shown).  264 

The model obtained from PCA explained 74% of the total variance (46%, 15%, and 13% for the 265 

first, the second and the third component, respectively). The score plot of the second component 266 

vs. the first one showed a clear discrimination of the objects according to light exposure in the 267 

first component, while the second one evidenced their discrimination based on water status (Fig. 268 

9). The third component referred to the year effect, which was the least evident of the three 269 

components (data not shown). From the relative loading plot it turns out that the variables 270 

responsible for the differentiation of the objects in the first component were mainly oleic and 271 

linolenic acids that reached the highest values for the VOOs obtained from olives from L-N 272 

canopy position; on the other hand, the palmitoleic and linoleic acids and the phenolic 273 

compounds were in the right side of this component with the highest levels in VOOs produced 274 

from the top of the canopy (Fig. 9). Regarding the second component the variables with the 275 

highest absolute loading values were stearic acid, arachidic acid (Top) and p-HPEA (bottom). 276 

The highest values for stearic and arachidic acids were measured in VOOs obtained from 277 

complementary irrigated trees, whereas the higher concentrations of p-HPEA were observed 278 

under full irrigation conditions. 279 

  280 

DISCUSSION 281 

Previous studies on the effect of either the light environment or the water status on VOO quality 282 

did not consider what happened when both factors were changed concomitantly. In a recent 283 

article we showed that the interaction between irrigation, canopy position, and year significantly 284 

affected the development of fruit colour change (and thus the progression of maturation) and the 285 

concentration of many volatile compounds in VOO 30. In the current study we confirmed 286 
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individual effects of tree water status and light exposure, but we did not find any evidence of 287 

significant interactions between those factors on spectrophotometric indices, fatty acid 288 

composition, phenolic composition and concentration of VOO. The only interaction appeared for 289 

free acidity and peroxide value in the first year of study, but not in the second one. 290 

Irrigation and light exposure affected fruit characteristics in both years. Fruit fresh weight 291 

increased with higher PLWP (less water deficit), and fruit colour change was delayed when trees 292 

were fully irrigated. It is well known that better water status increases fruit weight and size of 293 

several olive cultivars and that fruit weight of fully-irrigated trees can be higher than that of deficit 294 

irrigated trees 4, 25. Gucci et al. 22 reported that fruit fresh weight of fully- and deficit-irrigated trees 295 

was 158% and 123% (average of two years), respectively, of that from non-irrigated ones. Fresh 296 

weight and maturation index increased almost linearly within the range of measured light levels. 297 

Fruits growing in well exposed parts of the canopy were usually larger and heavier than those in 298 

less illuminated zones 12, 37. In our study, the effect of light on mesocarp oil content was quite 299 

similar to that reported for cv. Arbequina in the Southern hemisphere 11. The mesocarp oil 300 

content increased almost linearly until a level of about 40% PAR beyond which it levelled off, 301 

similarly to the threshold value reported by Cherbiy-Hoffman et al. 11, but lower than the 60% 302 

value of horizontally intercepted radiation reported for hedgerows orchards by Connor et al. 12. 303 

Our average fruit density for fully-irrigated trees were 740 fruits m-3 of canopy volume, 304 

corresponding to a medium-high crop load 11, 38. The average fruit density was low for the DI and 305 

CI treatments (320 and 261 fruits m-3 of canopy volume, respectively). 306 

Besides the above described effects on fruit characteristics, both light and irrigation markedly 307 

affected VOO quality. In 2009 ΔK was significantly affected by light interception, whereas K232 308 

and K270 were unaffected by either light environment or water regime. On the contrary, Gόmez-309 

del-Campo and Garcia 14 measured an increase of the K232 and K270 as fruits were sampled from 310 

upper canopy layers. In another study Proietti et al. 39 reported that free acidity and peroxide 311 

value were unaffected by light conditions. Apparently conflicting results also emerged about the 312 

effect of water availability, confirming previously published reports 29, 40. In the first year of our 313 

study higher values of peroxide were measured in oils obtained from FI trees, but differences 314 

disappeared in the second year. Other authors observed differences in peroxide values of oils 315 
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obtained from trees subjected to different irrigation treatments but these results were not 316 

consistent between the two years of study 41, 42. Variability due to the growing season and 317 

processing conditions may be responsible for the increase in free acidity and peroxide value of 318 

VOOs from irrigated treatments. This issue needs to be further addressed at the biochemical 319 

level to clarify which substrates and enzymatic reactions in fruit metabolism may be modified by 320 

irrigation. 321 

The effect of light intercepted by fruits on fatty acid composition of VOOs was consistent in both 322 

years: as light interception increased oleic acid decreased, whereas palmitoleic and linoleic 323 

acids increased with significant differences between VOOs obtained from the Top and the Low-324 

North parts of the canopy. Our results are in agreement with those reported for hedgerows 325 

orchards of cv. Arbequina by Gómez-del-Campo and Garcia 14, who measured significantly 326 

higher values of palmitic, palmitoleic and linoleic acids in the upper canopy layers. Although fruit 327 

temperature was not measured in either study, it is reasonable to expect higher temperature in 328 

canopy zones that are more exposed to solar radiation. If so, temperature might explain the 329 

observed changes in fatty acid composition, since it had been previously shown that the oleic 330 

acid concentrations decreased linearly with increasing temperature in the 16-32 °C range, 331 

whereas palmitoleic, linoleic and linolenic acids increased 42. Similar PLWP values in the 332 

different zones of the canopy seem to exclude that leaf water relations were responsible for the 333 

changes in the fatty acid composition.  334 

Tree water status affected the phenolic concentration of VOOs, consistently with existing 335 

literature 16, 28, 29. The slightly different response between the two years may have been due to 336 

summer rains summer in the second year that increased data variability. In both years VOOs 337 

from trees with higher water status did show lower phenolic concentrations. In both years fruits 338 

harvested from the top layer of the canopy produced oils with higher concentrations of total 339 

phenols, p-HPEA-EDA, p-HPEA, and 3,4-DHPEA-EDA than those obtained from the less 340 

exposed ones (Low-North side). Oils produced from the Low-South part showed intermediate 341 

values between Top and Low-North ones. Interestingly, high phenolic concentrations were 342 

measured in VOOs obtained from fruits at a more advanced stage of maturation, assessed 343 

visually as tissue pigmentation. This is usually not the case since more ripe olives reportedly 344 
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yield oils with lower phenolic concentrations 44. However, in agreement with our results, Gómez-345 

del-Campo and Garcia 14 reported that VOOs extracted from fruits located in the upper layers of 346 

the canopy had significantly higher contents of p-HPEA-EDA, 3,4-DHPEA-EA, ortho-diphenols, 347 

secoiridoids derivatives and total phenols. In another study conducted on cvs. Frantoio and 348 

Leccino, Proietti et al. 39 observed that fruits grown under high light conditions produced oils with 349 

a higher polyphenol content and better sensorial characteristics than those obtained from 350 

shaded fruits. Hence, good exposure to light stimulates phenolic accumulation in the fruit and the 351 

oil. In particular, both the 3,4-DHPEA-EDA and the p-HPEA-EDA decreased at low light levels. 352 

The response of 3,4-DHPEA and 3,4-DHPEA-EA to light was less clear as it varied between the 353 

two years of study. 354 

In conclusion, we showed that both the light environment and water availability modified VOO 355 

quality. The PCA model confirmed that the discrimination effect of canopy position was greater 356 

than that of water status in both years. The effect of the year was the least evident, contrarily to 357 

what had been previously reported for VOCs 30. Tree water status mainly influenced fruit size, 358 

fruit pigmentation and phenolic concentration in the oil, whereas light exposure also affected 359 

fatty acids composition. The interaction between canopy position and irrigation on VOO 360 

parameters was seldom significant. The study has important implications on correct orchard 361 

management for maximum VOOs quality. Light interception can be manipulated by selecting row 362 

orientation, planting distance and training system. These factors do not only play a role in 363 

determining performance and productivity of trees, but also clearly affect oil quality. Analogously, 364 

water availability can be optimized by appropriate site selection and deficit irrigation 365 

management to produce top quality VOOs.  366 

 367 
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