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Origin of Shot Noise in Mesoscopic Cavities
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We discuss several aspects of shot noise suppression in mesoscopic cavities, focusing
on the so called “quantum to classical” crossover that can be induced by an increase
of the width of the constrictions defining the cavity, an increase in the energy of the
injected electrons or the application of a magnetic field. After reviewing the relevant

literature, we present some results of our numerical simulations, and point out an alter-
native explanation of the observed shot noise suppression and the reasons why several
statements that can be found in the literature are debatable. Overall, we point out how

shot noise behavior in mesoscopic cavities can be explained without any need for classi-
cally chaotic dynamics and only on the basis of quantum chaos resulting from diffraction
at the constrictions.

1. Introduction

The topic of shot noise and its suppression in mesoscopic cavities has received

very significant attention in the last 20 years. A very large body of literature exists,

originating from early theoretical [1,2] and experimental [3,4] investigations of chaos

in quantum dots. The first and seminal paper specifically on the noise behavior of

mesoscopic cavities was published in 1994 by Jalabert et al. [5], in which, based

on random matrix theory, a suppression of shot noise down to 1/4 of the value

given by Schottky’s theorem [6] was predicted for a symmetric cavity, defined as a

ballistic region connected through small constrictions to two reservoirs. The same

result was then been obtained with several different approaches, both quantum and

classical [7–9] and making rather different assumptions. All of these models have the

presence of chaos in common, although, as we will discuss in the following, assumed

as originating from different sources. The shot noise suppression by a factor 1/4 was

then experimentally demonstrated by Oberholzer et al. [10] for a cavity whose width

was defined by etching, while the constrictions were obtained by means of quantum

point contacts. A remarkable interpretation of shot noise suppression in chaotic

cavities was formulated by Agam, Aleiner and Larkin [11], who introduced the

concept of chaos resulting from multiple diffraction within the cavity, which occurs

if the dwell time of a particle in the cavity is longer than the typical time over which
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trajectories significantly diverge as a result of diffraction, known as the Ehrenfest

time τE . Agam et al. also introduced a view of the transition between the regime

dominated by diffraction and characterized by a shot noise suppression factor (ratio

of the shot noise power spectral density to that predicted by Schottky’s theorem,

usually known also as “Fano factor”) of 1/4 to a regime without diffraction, and

therefore noiseless, as a transition between a “quantum” and a “classical” behavior.

This distinction between a “classical” and a “quantum” behavior was further

developed by Oberholzer and co-workers [12], who investigated shot noise suppres-

sion in a mesoscopic cavity as a function of constriction width and of an orthogonal

magnetic field. While this was a remarkable experiment, we felt that the theoretical

explanation was not convincing and developed an alternative model [7], based on

the comparison of characteristic length scales, such as the semiclassical cyclotron

radius and the constriction width.

A further development in the understanding of shot noise in mesoscopic cavities

resulted from the work of Aigner et al. [13], who performed numerical simulations

of shot noise in cavities of different shape (both classically chaotic and classically

regular) and with the presence of a weak disorder. In particular, they noticed (in

agreement with our numerical results [7]) that the shot noise power spectral den-

sity was substantially independent of the shape of the cavity, thereby ruling out

conjectures that connected the observed behavior of the Fano factor with classical

chaotic trajectories. They also pointed out that the main source for chaos in these

structures is from diffraction at the apertures.

Theoretical efforts were also made to understand the role of symmetries [14], the

dependence of conductance and shot noise on the number of propagating modes in

each lead [15], the dependence of weak localization on the Ehrenfest time [16] and

on magnetic field and spin-orbit coupling [17], the effect of dephasing on transport

in chaotic quantum conductors [18], and the behavior of particular structures with

the simultaneous presence of chaotic and regular regions [19].

Whitney and Jacquod [20] developed a semiclassical model treating a mesoscopic

cavity as the parallel of two cavities: a deterministic one with electrons character-

ized by a short dwell time and therefore providing no contribution to shot noise and

a quantum mechanical stochastic cavity with electrons that have a dwell time longer

than the Ehrenfest time and generate noise; they also showed [21] that a semiclas-

sical model can reproduce most aspects of the results obtained with random matrix

theory.

More recently, Vidal and Kanzieper [22] used a scattering matrix approach to

investigate the distribution of reflection eigenvalues in cavities with leads charac-

terized by tunnel barriers.

In the present paper we review the basic concepts of the “quantum to classical”

transition that has been discussed in the literature for mesoscopic cavities and

formulate an intuitive interpretation of shot noise behavior in mesoscopic cavities,

also with the support of some new numerical result.
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2. “Classical” and “Quantum” shot noise

As already mentioned, it is common to find in the literature (see, e.g., Ref. [12])

a distinction between “classical” and “quantum” shot noise. The basic concept

is that shot noise has two main sources: the random emission from the contacts

(resulting from a finite temperature) and the non-integer transmission through

the device. Landauer and Martin [24] provide a detailed discussion of these noise

sources, which are summarized in their Eq. (29). In the “classical” case, in which

only deterministic paths exist (with either 0 or 1 transmission), the only source of

shot noise is represented by the variance of the random emission from the contacts

(which drops down to zero for vanishing temperature), while the purely “quantum”

case is achieved at zero temperature, and thus with no fluctuation of the charge

injection from the contacts, in a device in which quantum mechanical effects lead

to noninteger transmission. However, a quantum device at non zero temperature

exhibits both noise from charge injection fluctuations and noise from noninteger

transmission, and, more importantly, a classical device such as a vacuum tetrode or

pentode exhibits partition noise [25], resulting from the random capture of electrons

by the screen grid, which leads to a contribution to the noise power spectral density

that has the very same form as quantum partition noise, i.e. proportional to T (1−

T ), as in the purely quantum case [26, 27]. A similar partition noise was reported

also as a result of random electron-hole recombination in the base of a bipolar

transistor [25]. Therefore we believe that it is better to distinguish between injection

and transmission sources of noise, rather than “classical” and “quantum”.

In general, the appearance of a chaotic behavior in a classically regular domain

does not even necessarily involve the deterministic/non-deterministic duality, as

discussed in Ref. [28], where the authors demonstrate that, within the deterministic

Bohmian representation, chaos may result from the simple superposition of two

properly constructed states.

If we limit ourselves to the case of the zero temperature limit, shot noise depends

only on transmission, and, in general on the transmission eigenvalues for a diagonal

representation of the transmission matrix, according to Büttiker’s expression [27]:

SI(0) = 4
e2

h
|eV |

∑

i

Ti(1− Ti) , (1)

where e is the electron charge, h Planck’s constant, V the voltage applied across

the device, and Ti the i-th eigenvalue of the tt† matrix, t being the transmission

matrix.

Let us now consider the case of a mesoscopic cavity analogous to that studied

in Refs. [10,12], with a rectangular shape, defined by hard walls, and with a width

W = 2 µm and a length L = 5 µm (while in Ref. [7] we considered the very same

size as in the experiment, here we consider a smaller cavity for the purpose of

reducing the size of the numerical problem). A sketch of the cavity is reported in

Fig. 1.



June 15, 2016 18:13 WSPC/INSTRUCTION FILE paperpm3

4 M. Macucci and P. Marconcini

L

W
c

W

Fig. 1. Sketch of an L long and W wide cavity, with Wc wide constrictions.

We have considered a rectangular, hard-wall cavity because its treatment is

simpler from the numerical point of view and it has been shown that both the

shape and the details of the confinement potential do not play an essential role

in the behavior of the noise and of the conductance of a cavity [7, 13]. This is

a direct consequence of the fact that, as we will further discuss in the following,

the quantum chaotic behavior that makes, for example, random matrix theory

applicable is a consequence of diffraction at the constrictions [13], and is not related

to classical chaotic dynamics, contrary to what is stated or implied by most of

the literature on this subject. For all calculations, which are performed with our

versions of the recursive Green’s function technique [29, 30] and of the scattering

matrix approach [31], we assume the material parameters for gallium arsenide, in

particular an effective mass m∗ = 0.067m0, where m0 is the free electron mass.
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Fig. 2. Fano factor for a 5 µm long and 2 µm wide cavity, computed as a function of the width
of its constrictions for a Fermi energy EF = 9 meV, corresponding to a Fermi wavelength of
49.94 nm.

In Fig. 2 and in Fig. 3 we report the Fano factor as a function of the constriction
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Fig. 3. Fano factor for a 5 µm long and 2 µm wide cavity with 500 nm wide constrictions, as a
function of the Fermi energy and of the Fermi wavelength.

width and of the energy of the injected electrons, respectively. For Fig. 2 we have

considered a constant Fermi energy Ef of 9 meV, corresponding to the typical

situation in the modulation doping layer of a GaAs/AlGaAs heterostructure, while

for Fig. 3 we have considered a constant constriction width of 500 nm. In Fig. 3

we report, on the top horizontal axis, also the Fermi wavelenght, to provide an

indication of its relationship with the constriction width. While the results of Fig. 2

correspond to a realistic situation, which can in principle be implemented in an

experiment (and has, at least for part of the width interval, been implemented in

Ref. [12]), those of Fig. 3, instead, do not correspond to a practical situation because

of the unphysically wide energy range, but are reported as a thought experiment

useful to gain a better understanding of the transition to the “classical” geometrical

optics regime.

Let us first discuss the data in Fig. 2: as the width of the constrictions is in-

creased, the Fano factor, starting from a value around 1/4, decreases, dropping

down to zero when the constrictions reach the same width as the main region of

the cavity and therefore disappear. As previously mentioned, the diffraction occur-

ring at the constrictions is at the origin of the quantum chaotic behavior, since

diffraction of a wavepacket leads to the generation of multiple possible new trajec-

tories. A measure of the strength of the diffraction is represented by the ratio of

the constriction width to the Fermi wavelength (given by λf = h/
√

2m∗Ef ); at the

considered Fermi energy λf ≈ 50 nm, therefore strong diffraction and a Fano factor

close to 1/4 occur only for constriction widths up to a few hundred nanometers,

while for wider constrictions a significant drop of the noise power spectral density

is observed.

In Fig. 3 we see an analogous drop of the Fano factor, this time resulting from the
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fact that, as the Fermi wavelength becomes small with respect to the constriction

width, a reduced diffraction regime, closer to geometrical optics, is entered, thereby

reaching an increasingly “classical” behavior and a situation with reduced noise.
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Fig. 4. Ratio of the resistance Rcav of a 5 µm long and 2 µm wide cavity to the sum RL+RR of the

constriction resistances (computed from the number of modes propagating in each constriction),
as a function of the constriction width, for a Fermi energy EF = 9 meV, corresponding to a Fermi
wavelength of 49.94 nm.

In Fig. 4 we report the ratio of the actual resistance through the cavity to the

sum of the resistances characteristic of the constrictions defining the same cavity,

as a function of the constriction width. The resistances RL and RR, corresponding

to the resistance of the left constriction and to that of the right constriction, re-

spectively, have been computed with the Landauer-Büttiker formula on the basis of

the number of propagating modes in the corresponding contriction and assuming

unitary transmission (these values have been verified also by numerical simulation

of a structure with a constriction between two leads with the same width as the

cavity).

According to Ref. [12] this ratio should not depend on the width of the con-

strictions, but we instead see that it clearly decreases as the constriction width is

increased. This result is in line with those included in Ref. [7], where it has been

shown to be valid also for stadium-shaped cavities. Oberholzer et al. justified their

resistance data stating that this is the consequence of randomization within the cav-

ity, which takes place both in the case of classical and of quantum chaos. We believe

instead that the experimentally observed additivity of the resistances is the conse-

quence of a non-ideality of the cavity, which is not fully ballistic because of elastic

scattering from impurities or some amount of inelastic scattering. Indeed, there is a

simple argument showing that the assumption of a total resistance remaining equal

to the sum of the constriction resistances is not reasonable in a ballistic cavity: in

the limit of constrictions as wide as the main body of the cavity, the resistance
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will be identical to that of a single constriction, therefore, as the constrictions are

widened, there must be a continuous transition of the total resistance from the sum

of those of the two constrictions to that of a single constriction, which is indeed

reached in Fig. 4 when the width of the constrictions equals 2 µm, corresponding

to the cavity width.
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Fig. 5. Ratio between the resistance Rcav of a 5 µm long and 2 µm wide cavity and the sum
RL + RR of the constriction resistances, as a function of the Fermi energy and of the Fermi
wavelength, for a constriction width of 500 nm.

The ratio of the total resistance to the sum of the constriction resistances is

shown also in Fig. 5, but in this case as a function of the energy of the injected

electrons.

In several papers the presence of some form of disorder in the cavity has been

invoked as a source of diffraction needed for the creation of a quantum chaotic

regime or at least as contributing to the achievement of the conditions for the

applicability of the results of random matrix theory and to the establishment of the

transport regime characterized by a Fano factor of 1/4. For example, in Ref. [13]

a relatively weak disorder is shown to raise the Fano factor to a value close to 1/4

for a cavity with wide constrictions (which would otherwise exhibit a Fano factor

well below 1/4). A similar result is obtained by Jacquod and Whitney [32] with a

semiclassical method and by Sukhorukov and Bulashenko [33] with a path integral

technique. Thus it is suggested that disorder helps in reaching the limit in which

fully chaotic transport appears, but, in reality, this is just a consequence of the

relatively small disorder amplitude that was considered in such studies. Indeed,

we have shown [23] that as the amplitude of disorder in the cavity is increased,

it contributes to a diffusive behavior typical of disordered conductors with a Fano

factor greater than 1/4 (1/3 for the particular case in which all requirements for
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fully diffusive transport are satisfied, a situation, however, not so common in most

mesoscopic conductors [34]), prevailing over any specific cavity effect. This can be

clearly seen in Fig. 6, where the Fano factor for an 8 µm wide and 5 µm long cavity

with randomly located hard-wall square 50 × 50 nm2 scatterers and 800 nm wide

constrictions is reported as a function of their number (analogous results can be

obtained with realistic disorder profiles, see Ref. [23]). As the number of scatterers

is increased, we notice that the Fano factor raises above 1/4, without even a hint of

a plateau, then reaches 1/3, with a plateau, and finally rises well above such level.
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Fig. 6. Fano factor for a 5 µm long and 8 µm wide cavity with 800 nm wide constrictions, as
a function of the number of randomly located square hard-wall scatterers, for a Fermi energy of
9 meV, corresponding to a Fermi wavelength of 49.94 nm.

In the presence of a magnetic field perpendicular to the plane containing the

cavity a suppression of the Fano factor was observed in Ref. [12], where an explana-

tion was attempted on the basis of the reduced area explored by the particle within

the cavity, which should lead to a reduction of the dwell time. This explanation,

however, was shown not to hold [7], because changing the length of the cavity (and

therefore the dwell time) the Fano factor does not vary significantly, while it is very

sensitive to the ratio of the semiclassical cyclotron diameter to the constriction

width [7].

As the magnetic field is increased, the cyclotron diameter DC =

2
√

2m∗Ef/(eB) (where B is the magnetic field) decreases, edge states crawling

along the walls of the cavity start forming, and cyclotron orbits start fitting within

the width of the constrictions. The electron density within a cavity 8 µm wide, 5 µm

long, and with 400 nm wide constrictions is shown, for a Fermi energy of 9 meV, in

Fig. 7: panel a) is for no magnetic field, panel b) for an intermediate value of the

magnetic field (90 mT) and panel c) for a magnetic field of 0.84 T, which corre-

sponds to strongly confined edge states, leading to almost complete suppression of

diffraction and therefore vanishing Fano factor. In Fig. 8 we report the behavior of
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a)

b)

c)

Fig. 7. Probability density for a 5 µm long and 8 µm wide cavity with 400 nm wide constrictions,
computed for an orthogonal magnetic field B equal to 0 (panel a), 0.09 T (panel b), and 0.84 T
(panel c), for a Fermi energy of 9 meV, corresponding to a Fermi wavelength of 49.94 nm.

the Fano factor for a cavity of the same size, but with 100 nm wide constrictions,

as a function of the magnetic field. In this case, due to the narrower constrictions,

a larger value of the magnetic field is needed to completely suppress shot noise.
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The best fit to the experimental results in Ref. [12] is obtained for a constriction

width of 60 nm (see Ref. [7]). It is interesting to observe the behavior of the ra-

tio of the cavity resistance to the sum of the constriction resistances reported in

Ref. [12] as a function of the magnetic field: it remains somewhat constant around

1 and then starts dropping above 1 T, quickly reaching the value 0.5. This can be

explained well on the basis of our previous interpretation: at low magnetic field the

presence of elastic or inelastic scattering within the cavity effectively decouples the

two constrictions, however the formation of edge states, which are protected from

scattering, leads then to the behavior that we expect for a purely ballistic cavity.
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Fig. 8. Fano factor for a 5 µm long and 8 µm wide cavity with 100 nm wide constrictions, as a

function of the orthogonal magnetic field B.

3. Conclusion

We have summarized the main results on shot noise in mesoscopic cavities, pre-

senting also some new data that show how the classical limit is approached when

the energy increases and the Fermi wavelength becomes much smaller than the

relevant features of the confinement potential. Our main conclusions are that shot

noise suppression down to 1/4 of the value predicted by Schottky’s theorem is the

result of a quantum chaotic regime induced by wavepacket diffraction at the cavity-

constriction interfaces. Contrary to what can be found in most of the literature,

there is no significant contribution from classical chaotic dynamics. Indeed also

the actual presence of classical chaos discussed in the early papers on quantum

dots is debatable, because the confinement potential at the 2DEG (2-dimensional

electron gas) level has a shape which is rather different from that of the metallic

gates defining the cavity: the gate can have a classically chaotic shape, but then

the effective potential confining the 2DEG may well be classically regular. Another

issue we have discussed in some detail is the role of disorder in the cavity: contrary
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to several published results, it does not contribute to achieving the 1/4 limit, but,

rather, leads to a noise behavior typical of the diffusive regime, as long as the dis-

order strength is made large enough. Finally, we have discussed the issue of shot

noise suppression in a cavity as a function of an orthogonal magnetic field. In this

case we point out that the relevant dimensional scales are the cyclotron diameter

and the constriction width: as the semiclassical cyclotron diameter decreases well

below the constriction width, edge states crawl freely from one constriction to the

other and noise drops, since diffraction disappears.

Overall, we can conclude that detailed numerical models are instrumental in

proving or disproving conjectures that are made on the basis of simplified ap-

proaches and that one should not rely on long-term developments based on too

abstract models, unless quantitative comparison to experiments or, if they are not

available, with detailed numerical simulations is performed on a regular basis.
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