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Abstract—In spite of many improvements in industrial safety
of the last decades, nowadays four people per minute die in
the world for occupational illnesses and accidents at work.
Besides equipping machines with the most advanced technologies,
industrial safety has become more and more interested in human
factors in recent years, since many accidents at work are proven
to be blamed on dangerous behaviours of workers. Recruiting
workers with proper risk perception and caution can make safer
their interaction with the task assigned, thus reducing devas-
tating events. This paper presents a many-objective optimization
framework for personnel recruitment in safety-critical work envi-
ronments. Four objectives are considered: cost and learning time
(which are minimized), and risk perception and caution (which
are maximized). A neural network-based module computes each
candidate’s risk perception and caution for every single task
he/she applies for. Pareto optimal solutions are generated using
the Multi-Objective Particle Swarm Optimizer based on hyper-
volume (MOPSOhv). The best personnel recruitment is selected
by the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS). The effectiveness of the proposed framework
was validated on two real-world recruitment processes involving
100 and 300 candidates, respectively.

I. INTRODUCTION

Human factors have become increasingly important in re-
cent years to improve the safety of work environments. This
is due to the fact that, despite huge technological advances
that have led to the design and construction of more and
more sophisticated and secure machines, worldwide, every
year, about 2.3 million people die due to occupational injuries
(318,000 deaths) and work-related diseases (2,022,000 deaths):
4 people per minute [1]. It is estimated that up to 80% of
the accidents at work are blamed on actions or omissions of
workers [2].

Human factors refer to environmental, organizational and
job factors, and individual characteristics which influence
the behaviour at work in a way that can affect health and
safety [2]. For instance, with respect to individual charac-
teristics, people have their own personal attitudes, skills and
personalities. These aspects can act as strengths or weak-
nesses, depending on the task performed, and they can cause
dangerous behaviours. Individual characteristics affect peo-
ple’s behaviour in complex ways. Therefore, human factors
influence risk perception, which is the way one realizes
characteristics and gravity of dangerous situations [3]–[7].
Examples of human factors include past health status, past
experience, cultural, social and psychological aspects, trust in
risk management institutions, age, locus of control [8], [9] and

optimism bias [9], [10]. Even though all these factors have
been studied in depth, it is still unclear how they influence the
behaviour in the presence of risk.

Risk awareness programs are aimed at making employees
aware of the dangers, through safety training courses. These
courses are iterated at regular intervals so as to let workers
maintain a proper risk perception level to carry out the
tasks safely. Nevertheless, many accidents happen every day.
Recently, advanced techniques have been proposed to identify
the workers’ risk sensibility profiles [11], with the aim of
classifying each worker into one of them [12], and provide
him/her a customized training wherein concepts are presented
in the most appropriate way. However, these techniques re-
quire significant economic resources. Just think, for instance,
that occupational illnesses and accidents cause costs ranging
between 1.8% and 6% of GDP, in country estimates, with an
average of 4% [1]. The lack of economic resources makes it
difficult for safety to be managed in small and medium enter-
prises (SMEs). In the European Union, SMEs represent ∼99%
of the companies and employ 65 million people [13].

Integrating human factors into industrial safety strategies
can reduce accidents and occupational diseases [2]. Therefore,
instead of repeating safety training courses (with the economic
costs discussed above), it may be helpful to consider human
factors during the recruitment of new personnel. So doing,
companies could hire the most suitable person for each vacant
job, from the point of view of safety. This can be achieved
by considering, on the one hand, the characteristics of the job
and its risks, and, on the other hand, the candidates’ human
factors, in order to determine their risk perception level and
caution in the presence of risk.

This paper presents a framework for many-objective opti-
mization in the field of personnel recruitment. Four objectives
are considered, namely, the cost and the learning time of
a new task (which are minimized), and the risk perception
and caution (which are maximized). For each candidate, the
learning time of a new task is estimated by analyzing his/her
past jobs, based on a three-phase model of the learning curve.
Each candidate’s risk perception and caution are computed by
a neural network-based system, by considering the candidates’
human factors and the characteristics of their behaviour in
the presence of risk. The optimization problem is solved in
two steps. First, a hypervolume-based particle swarm multi-
objective algorithm (i.e., MOPSOhv [14]) generates a set of
Pareto optimal recruitment plans. Then, the best recruitment
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plan is selected by means of the TOPSIS algorithm. The
proposed framework was tested on two real-world recruitment
scenarios involving 100 and 300 candidates, respectively. By
comparing the recruitment plans suggested by the management
to those generated by our framework, significant increase in
risk perception and caution is achieved, with modest increase
in cost. This can actually make risks less likely and/or less
damaging. Safety in the workplace can be significantly im-
proved because workers are more aware of the dangers and
therefore they are more cautious at work.

The paper is organized as follows: Section II contains some
preliminaries on multi-criteria decision making and multi-
/many-objective optimization; in Section III the model of the
worker’s risk perception and caution is given; Section IV
presents the problem formulation and the objective functions;
in Section V the experiments are discussed and, in Section VI,
the conclusions are drawn.

II. PRELIMINARIES

A. Multi-criteria decision making

A multi-criteria decision making (MCDM) problem has
a set of criteria and a set of alternatives. Finding the best
alternative with respect to all the criteria is the goal.

1) Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS): TOPSIS is an MCDM methodology
[15]. For an n-alternatives and m-criteria decision problem,
TOPSIS needs an n × m decision matrix H = [hij ], where
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Element hij measures
how good alternative i is with respect to criterion j. Also,
criteria are required to be weighted. Let ω = (ω1, . . . , ωm),
with

∑m
j=1 ωj = 1, contain the weights of the criteria.

TOPSIS computes the weighted normalized decision matrix
V = [vij ] = ωjhij/

√∑n
i=1 h

2
ij . The ideal best (IB) and

worst (IW ) solutions are then found. Let benefit and cost
criteria be indexed by indices in ΩB and ΩC , respectively.
Let IB = (a+1 , . . . , a

+
m) and IW = (a−1 , . . . , a

−
m), where

a+j = maxi vij for j ∈ ΩB or a+j = mini vij for j ∈ ΩC , and
a−j = mini vij for j ∈ ΩB or a−j = maxi vij for j ∈ ΩC .
TOPSIS computes the Euclidean distance of each alternative
from IB, i.e., D+

i =
√∑m

j=1(vij − a+j )2, and IW , i.e.,

D−i =
√∑m

j=1(vij − a−j )2. Finally, TOPSIS determines the
relative closeness coefficient of each alternative to IB as
RCL+

i = D−i /(D
+
i + D−i ): the higher RCL+

i the better.
Alternative k = arg maxiRCL

+
i is selected.

B. Multi- and Many-objective optimization

A multi-objective optimization (MOO) problem [16] in-
volves the optimization of two or more (conflicting) objectives.
The general MOO problem form is

Minimize
x

f(x) = [f1(x), f2(x), . . . , fk(x)] (1)

subject to:

gi(x) ≤ 0, i = 1, . . . ,m (2)
hj(x) = 0, j = 1, . . . , n (3)

where k ≥ 2 is the number of objectives, while m and n are
the number of inequality and equality constraints, respectively.
Function f : Rp → Rk contains the objective functions
to minimize. In general, no solution exists which minimizes
all the objective functions. This is why Pareto dominance
and Pareto-optimality are considered. A solution x1 is said
to dominate x2 if fi(x1) ≤ fi(x

2)∀i ∈ {1, . . . , k}, and
fj(x

1) < fj(x
2) for at least one index j ∈ {1, . . . , k}.

Pareto-optimal solutions cannot be improved with respect to
any objective without degrading at least one of the remaining.

Many-Objective Optimization (MaOO) deals with optimiza-
tion problems having more than 3 objectives [17].

1) Particle swarm optimization: Particle Swarm Optimiza-
tion (PSO) is an optimization heuristics inspired by the social
behaviour of birds flocking to find food [18]. Given an
optimization problem, the set of solutions is represented by a
set of particles (i.e., the swarm) moving through the search
space, according to a cooperative procedure. In PSO, the
swarm searches for optimal solutions through generations. The
movement of each particle depends on the velocity operator,
which is controlled by a local and a social component. In
particular, the behaviour of a particle is influenced by either
the best personal (i.e., within a neighborhood) or the best
global particle (i.e., the leader). Personal particles and leaders
represent the local and social components, respectively.

Multi-Objective Particle Swarm Optimization (MOPSO)
[19] typically uses Pareto dominance to determine leaders.
Using Pareto dominance, each particle may have more than
one leader, but only one is selected to update the velocity. This
set of leaders is stored into an external archive containing the
best non-dominated solutions found so far.

The steps of a MOPSO algorithm are: i) initialization of the
swarm; ii) computation of the velocity; iii) position update and
archive update. Each particle pi has a position xi(t) ∈ Rp and
a velocity vi(t) ∈ Rp at time t. Position and velocity are
updated as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (4)

vi(t+ 1) = ωvi(t) + C1r1(xpi − xi) + C2r2(xgi − xi) (5)

where xpi is the best solution (position) ever explored by parti-
cle xi, xgi is the leader, i.e., the best solution the entire swarm
has encountered. Also, ω is the inertia, which determines how
the particle velocity is influenced by the previous velocity.
Finally, C1 and C2 control the effect of the best personal
and global particles, respectively, and r1 and r2 are random
numbers with uniform probability in [0, 1].

2) The MOPSOhv algorithm: MOPSOhv is a hypervolume-
based multi-objective particle swarm algorithm. MOPSOhv
proved to be effective in many-objective optimization prob-
lems [14]. From an operation point of view, MOPSOhv
randomly initializes the swarm with N particles. Positions
and velocities are evaluated with respect to the k objective
functions. Considering the initial swarm, non-dominated solu-
tions are inserted into the initial archive A0. Then, in the main
loop, the hypervolume contribution of each particle contained



in the archive is first determined. Such particles are sorted in
descending order, considering their hypervolume contribution.
For each particle, global and personal leaders are determined.
The global leader is chosen from the top-ranked particles (from
the top 2%) of the sorted archive At. The personal leader is
chosen from the lowest-ranked particles (the bottom 98%).
Each particle in the swarm updates its velocity and position
according to the leaders. The new position of each particle
must be in the search space. So, if the position xi(t + 1)
of particle i at time t + 1 goes beyond a boundary of some
decision variable, particle i is put back into the search space,
by assigning the corresponding lower or upper bound to the
decision variable. Also, its velocity is inverted. In the last step
of the update, a mutation operator is applied to each particle,
based on a mutation probability that depends on time t. So-
updated particles are evaluated with respect to the objectives
of the problem, and the new non-dominated particles are
selected to construct archive At+1. In this final step, new
solutions might dominate some solutions in the archive. In
such a case, the latter are deleted. Also, new solutions may be
non-dominated with respect to the entire archive, hence, new
non-dominated solutions are inserted into the archive, which
is then pruned to its maximum size by deleting those particles
that contribute the least to the hypervolume.

III. WORKER’S RISK PERCEPTION AND CAUTION

Consider a work environment with a set of tasks T . Let
W = {w1, . . . , w|W|} be the set of the workers. Task ti, with
i = {1, . . . , |T |}, exposes a worker to a set Ri of risks. The
set R =

⋃|T |
i=1Ri contains all the risks of the workplace.

A set Ak = {ak,1, . . . , ak,|Ak|} of preventive actions can
be used by workers to prevent each risk rk ∈ R, with
k ∈ {1, . . . , |R|}. A preventive action can make a risk less
likely and/or decrease its effects, the so-called risk impact.
A prevention level in L = {1, . . . , L} characterizes each
preventive action. The higher the level the more effective
the action in decreasing probability and/or impact of a risk.
Typically, experts in risk assessment establish the prevention
level of an action.

Let H = {h1, . . . , h|H|} be a set of human factors (here-
after, factors). Each factor hv , where v ∈ {1, . . . , |H|}, takes
values in a domain Dv . Two categories of factors form set H,
the ones relating to the individual and the ones relating
to the task. The former are P personal factors, while the
latter are T task-related factors. For worker wj , where j ∈
{1, . . . , |W|}, the risk perception personal level pers percj
depends on the set Pj =

⋃P
v=1 dv,j , where dv,j ∈ Dv is

the value of personal factor hv for worker wj . Obviously,
Pj ∈ D1 × · · · × DP . A function ϕPERSONAL exists, such
that Pj 7→ ϕPERSONAL(Pj) = pers percj .

The perception level task perci,j of wj for the risks
of task ti stems from Tj =

⋃P+T
v=P+1 dv,j . Here, dv,j is

the value of task-related factor hv for worker wj . Also,
task perci,j depends on the risk perception personal level
pers percj of wj . Hence, there exists function ϕTASK

such that (Tj , pers percj) 7→ ϕTASK(Tj , pers percj) =
task perci,j .

For each risk rk and worker wj , the caution of wj for
rk stems from the count of preventive actions wj performs
to prevent rk, for each prevention level: this represents the
behaviour of wj toward rk. More formally, let #Ak,`=`,j
denote the count of `-level actions wj performs to prevent
rk. A function ρk, such that (#Ak,`=1,j , . . . ,#Ak,`=L,j) 7→
ρk(#Ak,`=1,j , . . . ,#Ak,`=L,j) = risk cautionk,j , exists for
each k = 1, . . . , |R|.

Finally, for each task ti and worker wj , the caution of
wj for ti depends on risk cautionk,j ,∀k ∈ Ri. A set
of functions τi, one for each i = 1, . . . , |T |, such that⋃
rk∈Ri risk cautionk,j 7→ τi

(⋃
rk∈Ri risk cautionk,j

)
=

task cautioni,j , computes the task caution of wj for each
task ti given the worker’s risk cautions.

In this model, worker wj is represented by the tuple

θj =
{⋃P+T

v=1 dv,j ,
⋃|R|
k=1

⋃L
λ=1 #Ak,l=λ,j

}
. (6)

Note that |H|= P + T and v ∈ {1, . . . , P} denotes personal
factors, while task-related factors are v ∈ {P +1, . . . , P +T}.

A neural system was proposed in [20] to compute
task perci,j and task cautioni,j , given the tuple in Eq. (6),
which describes worker wj and how he/she interacts with each
task ti. This system is used in this paper to obtain the risk
perception and caution of a candidate with respect to each
task he/she applies for. These values determine two objectives
of the optimization problem formalized in the next section.

IV. OPTIMIZATION PROBLEM

A. Objective functions

Let xij ∈ {0, 1} be a decision variable such that

xij =

{
1 if worker wj is recruited for task ti
0 otherwise (17)

where i ∈ {1, . . . , |T |} and j ∈ {1, . . . , |W|}. Vector
x ∈ {0, 1}|T |×|W| represents a personnel recruitment plan,
and contains variables xij in lexicographic order. The four
objectives taken into account in this paper are formalized in
the following.

1) Cost: The cost of assigning task ti to worker wj depends
on his/her work seniority for ti. The greater the work seniority
for ti, the higher the cost cij the employer pays (for salary
and benefits) to assign worker wj to task ti. The global cost
objective function COST (x) : {0, 1}|T |×|W| → R+, here
minimized, is modeled as:

COST (x) =

|T |∑
i=1

|W|∑
j=1

cijxij . (18)

2) Learning time: In the model here proposed, more expe-
rienced workers are preferred to be recruited for each task. To
be correctly performed, a task ti requires a set of skills Si.
Consider worker wj applying for task ti. Let Pj be the set of
the past jobs of wj and let DSTART

pj and DEND
pj be the dates

on which wj began and ceased past job pj ∈ Pj , respectively.



Also, let t(pj) be the task performed by wj in pj . The set
PSKILLi,j = {pj ∈ Pj : Si ∩St(pj) 6= ∅} contains the past jobs
of worker wj which required some skills of task ti.

In this paper, with reference to a past job in which worker
wj performed task ti, a learning curve like the one shown in
Fig.1 is considered. In particular, the curve is composed of

D�
pj

DEND
pj

DSTART
pj

learningpj
(τ)

τ

θpj

Fig. 1. Learning curve of worker wj in past job pj .

three pieces. The first one corresponds to the learning phase,
wherein the worker has to be trained to perform the task. The
learning process requires a time for the worker to learn how to
perform the task properly. The duration of the learning phase
is measured from DSTART

pj to the day when the worker is
considered to be sufficiently skilled for the task. This happens
at time D?

pj , when the worker can execute the task repeatedly,
completing its steps in a certain time and with a given quality
level. From D?

pj to DEND
pj , the worker’s skill is considered

unchanged because the task is performed every day. When the
worker ceases a job, generally tends to forget the details of the
task and how to perform it, as time passes. The model here
considered is as follows:

learningpj (τ) =
λt(pj) ln(τ +DSTART

pj ) if DSTART
pj ≤ τ ≤ D?

pj

1 if D?
pj < τ ≤ DEND

pj

e
− 1

ln θpj
τ+B

if τ > DEND
pj

(19)

where τ is the time in days, B =
DENDpj

ln θpj
, and θpj is the count

of the days with learning equal to 1, that is, the central region
of Fig. 1. In order to recruit a worker wj for a task ti, it
is possible to estimate how long the time to learn the new
task will be. Once set PSKILLi,j is determined, for each pj ∈
PSKILLi,j it holds that

λt(pj) =
1

D?
pj +DSTART

pj

. (20)

Therefore, for a candidate wj applying for task ti, we estimate
the coefficient λi,j affecting the learning time of wj as

λi,j =
1

|PSKILLi,j |
∑

pj∈PSKILLi,j

λt(pj)

( |St(pj)|
|Si|

)
, (21)

that is, a weighted average of the λt(pj) where the more
the skills required by past job pj also required by the task

the candidate applies for (i.e., ti), the higher the weight. By
considering the learning curve in Eq. (19) with coefficient λi,j
in place of λt(pj), one can get the time D?

i,j required to train
worker wj for task ti, based on the estimate in Eq. (21), as

D?
i,j =

1− λi,jDSTART
i,j

λi,j
, (22)

where DSTART
i,j is the date when worker wj begins the new

job where he/she performs task ti. The learning time objective
function LEARNING(x) : {0, 1}|T |×|W| → R+, measured
in days, is here defined as:

LEARNING(x) =
1

|T |

|T |∑
i=1

|W|∑
j=1

D?
i,jxij . (23)

The average is used because learning times are supposed to
be quite similar. The global learning time is minimized.

3) Perception: Consider the average perception
level of a personnel recruitment plan x expressed as:
perc = 1

|T |
∑|T |
i=1

∑|W|
j=1 task perci,jxij . Global risk

perception PERC(x) : {0, 1}|T |×|W| → R+, to be
maximized, is measured here as the mean to variance ratio of
the risk perception of every worker with respect to the task
assigned:

PERC(x) =
perc∑|T |

i=1

∑|W|
j=1 (task perci,jxij − perc)2

. (24)

4) Caution: Consider the average task caution
of a personnel recruitment plan x expressed as:
caution = 1

|T |
∑|T |
i=1

∑|W|
j=1 task cautioni,jxij . Global

caution CAUTION(x) : {0, 1}|T |×|W| → R+ is modelled
here as the mean to variance ratio of the caution of every
worker with respect to the task assigned:

CAUTION(x) =
caution∑|T |

i=1

∑|W|
j=1

(
cautioni,jxij − caution

)2 .
(25)

Global caution is maximized.

B. Problem formulation

Consider a set of tasks T and a set of workers W where
|W|S |T |. Assume that each task can be assigned to one
worker and vice versa. The optimization problem is:

Minimize
x

f(x) = [COST (x), LEARNING(x),

−PERC(x),−CAUTION(x) ] (26a)

subject to:
|T |∑
i=1

xij ≤ 1, ∀j = 1, . . . , |W| (26b)

|W|∑
j=1

xij = 1, ∀i = 1, . . . , |T | (26c)

xij ∈ {0, 1}, ∀i = 1, . . . , |T |,∀j = 1, . . . , |W|. (26d)



Equation (26a) is the vector-valued objective function f(x) :
{0, 1}|T |×|W| → R+ × R3

− whose components are, in the
order, the global cost, the learning time, the global risk percep-
tion, and the global caution for recruitment x ∈ {0, 1}|T |×|W|.
Constraints (26b) consider a worker may be assigned to no
task, since workers and tasks are typically unbalanced in re-
cruitment problems. Constraints (26c) let each task be assigned
to one worker. Finally, Eq. (26d) is the integer constraint.

V. EXPERIMENTS AND DISCUSSION

This section describes the results obtained by applying the
proposed framework to two real-world recruitment scenarios,
hereafter referred to as REC1 and REC2, respectively. Exper-
iments were carried out thanks to two footwear companies.

To the best of the authors’ knowledge, there is no previous
work in the literature which deals with cost, learning time, risk
perception and caution in the personnel recruitment problem.
For this reason no comparison with previous works could be
made. Instead, results were compared to the recruitment plans
suggested by the management of the involved companies.

Also, it is important to point out that risk perception and
caution are completely new measures and they are hard to be
evaluated objectively because there is no ground truth to be
used for this. However, a way to evaluate the results may be
thinking of how safely workers say they would behave in the
presence of risk, by considering the level of prevention of the
selected preventive actions, in intuitive terms.

A. Dataset and data gathering

The optimization framework was implemented in Java and
MATLAB. Also, a website containing a multiple choice test
was implemented in Java EE and MySQL. Once deployed
on a web server, the website allowed candidates of the two
experimented scenarios to fill out a questionnaire. Data were
gathered anonymously, in compliance with the privacy laws.
For each candidate wj , the questionnaire collects:
• data about the candidate’s human factors to determine
task perci,j ;

• data related to the candidate’s past jobs to derive the
learning time for each task the candidate applies for;

• data related to the behaviour towards each risk rk of
every single task ti the candidate applies for, i.e., the
preventive actions the candidate selects from a set of
proposed preventive actions. These selected actions let
the system compute task cautioni,j for each task ti the
candidate applies for.

For lack of space, the questionnaire cannot be reported here.
The collected dataset consists of 400 interviews. A first set

of 100 interviews is related to candidates of the recruitment
process carried out by the first company. The remaining 300
interviews concern candidates of the recruitment process of
the other company. Results are discussed in the next section.

B. Optimization results

1) Personnel recruitment in the involved companies: Com-
panies carry out personnel recruitment processes whenever

new employees have to be hired for vacant tasks. In the
involved companies, experts determine how experienced each
candidate is in performing a task by means of risk-free practi-
cal and technical tests. Several days are generally required for
these tests to be carried out. Finally, candidates face an oral
interview.

Based on the outcome of the practical tests and the inter-
view, a suitability level is determined for each candidate with
respect to every single position (i.e., task) he/she applies for. In
addition, cost is taken into account. Assigning a candidate to a
task is much more expensive the lower he/she is experienced
for that task and the higher the candidate’s work seniority.

The great majority of the tasks of a footwear industry
consists of handmade work. In the remaining tasks, workers
use (potentially dangerous) machines, in a repetitive way, to
cut the leather, scrape the soles, sew the uppers and so on.
The risks to which workers are exposed include crushing,
amputation, burn, and fall. Nevertheless, risk management is
often carried out in SMEs by assigning more dangerous tasks
to candidates with more years of experience, regardless of their
human factors and behaviour in the presence of risk. This may
be extremely dangerous because more experienced workers get
higher locus of control and this can reduce risk perception [8].

2) Proposed technique for personnel recruitment: The
management of the involved company was first asked to
express the weights of the objectives (see Table III). An expert
in risk assessment classified the preventive actions into three
prevention levels (i.e., low, medium, high).

Data about each candidate’s human factors and behaviour
were gathered through the website described in Section V-A.
Such data let us obtain each candidate’s task perc and
risk caution toward each risk. The task caution and the
task perc (with respect to the tasks each candidate applies
for) were first computed by the neural system referred to in
Section III. The Pareto front was approximated by means of
MOPSOhv with the parameters in Table IV. Parameters of
Table IV produced the best results and have been statistically
validated with the paired t-Student’s test, by considering
different configurations. For each tested configuration, the
average hypervolume of 20 simulations was computed. The
best solution, selected by TOPSIS, is in Table V.

3) Discussion of REC1: Within REC1, the company had
10 vacant tasks. The management gave 100 candidates the
possibility to apply. The aim here is to improve safety without
particular constraints on cost and learning time. As Table III
shows, the sum of the weights associated with risk perception
and caution is more than twice the sum of the weights of cost
and learning. The obtained Pareto front is shown in Fig. 2.

The management suggested a recruitment plan having global
risk perception and global caution equal to −3.37 and −4.03,
respectively, as shown in Table V. The proposed recruitment
guarantees ∼105% improvement in global risk perception and
∼94% improvement in global caution.

Since global risk perception and caution are difficult to
evaluate, it is important to discuss some reasons the improve-
ment in safety arises from. Data on the candidates’ behaviour



TABLE III
WEIGHTS OF THE OBJECTIVES

COST LEARNING PERC CAUTION
REC1 0.1 0.2 0.35 0.35
REC2 0.3 0.3 0.2 0.2

TABLE IV
PARAMETERS USED FOR REC1 AND REC2

REC1 REC2
Number of particles 200 300

C1 1
C2 1

Mutation probability 0.5
ω 0.4 0.5

Max iterations 1500

with respect to every single task cannot be reported here for
reasons of space. Indeed, each job exposes workers to 5 risks
on average, in the experimented scenarios. In turn, each risk
can be prevented, on average, by 4 actions per prevention level.
The proposed framework considers 3 prevention levels, low,
medium and high. Therefore, considering for instance REC1
(the smaller scenario), on average there would be 60 preventive
actions for worker, with a total of 1200 preventive actions,
i.e., 600 related to the assignment suggested by management
and 600 related to the assignment proposed by the framework.
Thus, the discussion is here based on intuitive considerations
about the behaviours that deeply impact on safety.

To understand the safety improvement that the proposed
framework guarantees in REC1, think that if the assignment
proposed were applied, just under two thirds of the work-
ers would deal with the assigned task only with high-level
preventive actions. The remaining one third of the workers
would be characterized by behaviors ranging from a poor
level of caution which is characterized by 2 low-level actions,
to a good level of caution given by 3 medium-level actions
and 1 high-level action. It is important to note that the most
unsafe behaviour (i.e., 2 low-level actions only) stems from
workers which stamp the shoe insoles or put the tissue paper
into the shoes. As one can imagine, tasks like these do not
expose workers to dangerous risks. In particular, workers may
experience eyestrain, back pain and muscle tightness.

Instead, in the recruitment plan suggested by the man-
agement, 3 safety-critical tasks are assigned to workers with
behaviour made of only 2 low-level preventive actions. These

tasks deal with sander machines, high temperature ovens and
diecutters. These machines can cause serious consequences on
the health if used unsafely, because workers may experience
severe grazes, burns and crushing of hands, and, in the case
of the diecutters, even amputation. The workers that the
management assigns to these tasks have a high probability
of getting hurt because of their poor level of caution. The
management, in these cases, makes the mistake of assigning
safety-critical tasks to people having a greater number of years
of experience. Of course, the management focuses on the fact
that these workers do not need to be trained to perform the task
properly, but it is highly wrong to neglect their behaviour in
the presence of risk. Here, the workers assigned to the safety-
critical tasks discussed so far have 8 years of experience for
the assigned task, on average, but their level of caution is
extremely poor, mainly because they have become familiar
with the tasks and do not realize the risks they take with their
behaviour. With reference to the learning time, the proposed
recruitment is able to guarantee a faster training (∼7 days,
on average) if compared to the recruitment suggested by the
management (∼10 days, on average). The improvement in
risk perception, caution and learning time discussed so far is
achieved at the expense of an increase in cost of 3920 Euros.
However, cost is not one of the most important objectives here
(see Table III). Also, one should remember that cost decreases
over time because it also considers the cost for the training.

4) Discussion of REC2: In REC2, cost and learning time
are relevant, as shown in Table III. Hence, the management is
here interested in recruitment plans characterized by a good
level of risk perception and caution, but paying particular
attention to cost and learning time.

The management suggested a plan with global risk percep-
tion and global caution equal to −5.29 and −6.48, respectively
(see Table V). With our plan, ∼50% improvement in global
risk perception and ∼31% in global caution would be reached.
The Pareto front is in Fig. 2. As for REC1, the discussion is
based on the behaviours that highly impact on safety.

As an example, it is important to note that behaviours
composed of only high-level preventive actions pass from 2
(in the suggested recruitment plan) to 5 (in the proposed
recruitment plan). Also, thanks to our framework, no worker
would have a behaviour composed of low-level preventive
action only. Instead, in the recruitment suggested by the
management, 4 behaviours like these exist, the riskiest ones
are related, respectively, to a task where workers may crush

TABLE V
RECRUITMENT PLANS SUGGESTED BY THE MANAGEMENT (S) AND PROPOSED BY THE FRAMEWORK (P) WITH THEIR OBJECTIVES VALUES

TASKS OBJECTIVES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 COST LEARNING −PERC −CAUTION

REC1 S 94 71 19 38 90 44 66 13 84 7 - - - - - - - - - - 26730 10.34 −3.37 −4.03
P 11 38 67 10 87 51 90 16 7 40 - - - - - - - - - - 30650 7.28 −6.91 −7.84

REC2 S 186 209 75 264 17 280 79 178 60 41 199 21 88 287 13 160 94 226 281 6 72993 12.38 −5.29 −6.48
P 138 86 19 244 280 97 209 178 110 60 94 6 88 30 13 293 47 264 22 3 74160 13.06 −7.93 −8.51
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Fig. 2. Pareto fronts of REC1 and REC2. Circles represent Pareto-optimal recruitments.

their hands while using a press and to a task where workers
may experience severe and irreversible burns to the hands.
As in REC1, the recruitment proposed by the management is
affected by the experience bias, i.e., the management chooses
workers with more experience for the most dangerous tasks.

The learning time is almost the same as the recruitment
suggested by the management (see Table V), and this respects
the importance assigned by the management (see Table III).

Finally, it is important to highlight that the discussed
increase in safety causes just 1.6% increase in global cost.
This represents an unquestionable advantage of the proposed
framework, especially in work environments related to SMEs.

VI. CONCLUSION

This paper presented a many-objective optimization frame-
work for personnel recruitment in safety-critical work envi-
ronments. Four objectives are considered: the cost and the
learning time are minimized, while the workers’ risk percep-
tion and caution are maximized. Given a set of candidates, a
neural system first computes each worker’s risk perception and
caution for every single task each candidate applies for. Pareto
optimal solutions are then generated by using MOPSOhv, a
hypervolume-based particle swarm multi-objective algorithm.
The best personnel recruitment is finally selected by TOPSIS.

The proposed framework was tested on two real-world
recruitment processes involving 100 and 300 candidates, re-
spectively. Significant improvement of risk perception and
caution has been shown in both scenarios by comparing the
recruitment plan suggested by the management to the one
found by the proposed framework. Risks are made less likely
and less damaging because each vacant task is assigned to the
most appropriate candidate from the point of view of safety.
Also, modest increase in cost characterizes the proposed
solutions. This is paramount for SMEs, a widely common
reality in the EU.
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