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Abstract

The Hodrick-Prescott filter represents one of the most popular method for trend-

cycle extraction in macroeconomic time series. In this paper we provide a multivariate

generalization of the Hodrick-Prescott filter, based on the seemingly unrelated time

series approach. We first derive closed-form expressions linking the signal-noise matrix

ratio to the parameters of the VARMA representation of the model. We then show that

the parameters can be estimated using a recently introduced method, called “Moment

Estimation Through Aggregation (META)”. This method replaces the traditional

multivariate likelihood estimation with a procedure that requires estimating univari-

ate processes only. This makes the estimation simpler, faster and better-behaved

numerically. We prove that our estimation method is consistent and asymptotically

normal distributed for the proposed framework. Finally, we present an empirical ap-

plication focusing on the industrial production of several European countries.
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1 Introduction

The extraction of trend and cycle components from economic time series represents an

important tool for economic analysis. Several univariate methods have been discussed

by the literature (see for example Beveridge & Nelson (1981), Watson(1986), Harvey &

Jaeger (1993), Canova(1998), Baxter & King(1999), Harvey & Trimbur(2003)). One of the

most popular method, widely employed in macroeconomics, is the “smooth-trend model”,

generally known as Hodrick-Prescott(1997) filter. As a matter of fact, this method was

suggested a long time before by Leser(1961) for trend extraction (see the discussion in

Mills(2009)). This approach extracts a stochastic trend which moves smoothly over time

and is uncorrelated with the random irregular term representing the cyclical component.

The ratio between the variances of the two noises (i.e. the signal-to-noise ratio) is the key

scalar that determines the “smoothness” of the extracted trend. For example, Hodrick &

Prescott(1997) suggest specific values for time series observed at different frequencies.

Despite the recognized importance of this method in empirical analysis, we still know

little about the multivariate case. This represents a relevant framework since it allows

extracting multiple trends that might share similar dynamic behaviors (such as the case of

common trends as in Stock & Watson (1988)). A notable exception is Kozicki(1999) who

discusses the multivariate extension of the Hodrick-Prescott filter. However, the author

assumes the same single common trend for the whole system of equations. This assumption

is rather restrictive and is relaxed here.

We provide analytical results for the Hodrick-Prescott filter in the multivariate case.

More specifically, we derive closed-form results linking the signal-noise matrix to the pa-

rameters of the VARMA model representing the stationary representation of the structural
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model. Similar expressions for some trend-cycle models can be found in Morley et al.(2003)

and Oh et al. (2008); however, none of the mentioned papers deal with the multivariate

case. Establishing explicit relations between the two forms is relevant since one can de-

rive/estimate the structural parameters from the reduced form ones (and viceversa).

Relying on these relations, we build a fast and simple estimation method for the

covariance matrices and extract from it a change of variable matrix that decouples the

model into d uncorrelated ones with the same form. These models can then be estimated,

each with its own optimal signal-noise ratio. Our method generalizes the so-called META

approach of Poloni & Sbrana(2014), which was initially developed for the multivariate

exponential weighted moving average model. We prove in the appendix that the resulting

estimator is consistent and asymptotically normally distributed.

Finally, we show an example for the practical use of our results in extracting the trends

from the industrial production series of some European countries.

2 Theoretical results

The unobserved components representation of the smooth-trend model, also known as

Hodrick-Prescott filter, was firstly used by Akaike(1980). Here we consider the multivariate

state-space representation (for the univariate case see Harvery & Trimbur(2008))

yt = µt + εt,

µt+1 = µt + βt,

βt+1 = βt + ξt,

(1)
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where the vectors yt, µt, βt, εt, ξt are of dimension d. In addition t = 1, 2, · · · , N represents

the number of observations. Contrary to Harvey & Trimbur(2008), here we relax the

assumption of normality of the noises. We assume that the noises εt and ξt are i.i.d. with

zero mean and covariances

Var

εt
ξt

 =

Σε 0

0 Σξ

 (2)

where Σε, Σξ and 0 are d× d matrices. In the scalar case the ratio between the variances

of the two noises ΣξΣ
−1
ε (i.e. the signal-noise ratio) is the key scalar that determines the

“smoothness” of the extracted trend µ̂. For example, the smaller the ratio, the smoother

the extracted trend (see Kaiser & Maravall (2001)). In the multivariate case the ratio is

a non-symmetric matrix (in general) whose eigenvalues play the role of the scalars that

determine the smoothness of the trends of the transformed series (this will be clarified

below).

The nonstationary state-space system (1) is called a structural process and the co-

variances in (2) are called structural parameters. Its stationary representation zt =

yt − 2yt−1 + yt−2 is a (second order) integrated vector moving average of order two (See

Harvey(1989) and Maravall & Del-Rio(2007) for the univariate case). Using Wold repre-

sentation theorem, we can reparametrize it as

zt = ∆2yt = (I − 2L+ L2)yt = ξt−2 + (I − 2L+ L2)εt =

= (I + Θ1L+ Θ2L
2)ηt, with E(ηtη

′
t) = Ω,

(3)

where L is the backshift operator and I is the d× d identity matrix. This form is known

as reduced form, with parameters Θ1, Θ2 and Ω.
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The autocovariances of zt can be expressed as functions of both structural and reduced

form parameters as follows; here and in the following, we use the symbol M ′ to denote

the (conjugate) transpose of a matrix M .

Γ0 = E
(
ztz
′
t

)
= 6Σε + Σξ = Ω + Θ1ΩΘ′1 + Θ2ΩΘ′2 (4a)

Γ1 = E
(
ztz
′
t−1

)
= −4Σε = Θ1Ω + Θ2ΩΘ′1, (4b)

Γ2 = E
(
ztz
′
t−2

)
= Σε = Θ2Ω, (4c)

Γj = E
(
ztz
′
t−j
)

= 0, for |j| ≥ 3. (4d)

Note that the autocovariance matrices are all symmetric i.e. Γ−2 = Γ′2 = Γ2 and

Γ−1 = Γ′1 = Γ1; this is a characteristic feature of this model that we shall exploit in

our computations.

Computing Θ1, Θ2 and Ω from the covariances Γk in (4) (or, equivalently, from Σε and

Σξ) requires solving a system of nonlinear equations. We wish to show how the solution

can be determined explicitly in closed form.

One can gather together the autocovariances to form the autocovariance generating

function (ACGF) (see Harvey(1989)), which is a rational function in the formal variable

L

Γ(L) := Γ2L
2 + Γ1L+ Γ0 + Γ−1L

−1 + Γ−2L
−2

= ΣεL
2 − 4ΣεL+ 6Σε + Σξ − 4ΣεL

−1 + ΣεL
−2 =

(L− 1)4

L2
Σε + Σξ.

The relation among the autocovariances and the MA(2) parameters can be embedded
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in the following factorization

Γ(L) = (Θ2L
2 + Θ1L+ I)Ω(I + Θ′1L

−1 + Θ′2L
−2). (5)

If the matrix polynomial Θ2L
2 + Θ1L + I has no roots inside the unit circle, the MA

process is called invertible. If the ACGF is such that Γ(z) is invertible for each z on the

unit circle {z ∈ C : |z| = 1}, such factorization (called canonical factorization) exists and

is unique; for a formal proof of this statement in the matrix case, see Gohberg, Lancaster

and Rodman(1982), Theorem 4.1 (and the following remark). Therefore, if we determine a

canonical factorization (5) of the ACGF, then its coefficients Θ1, Θ2 and Ω must coincide

with the MA(2) parameters.

Our strategy is constructing explicitly such a factorization of the ACGF. We start from

the scalar case, then move on to the multivariate one.

2.1 The univariate case

Here we provide the algebraic linkage between the scalar signal-noise ratio and the moving

average parameters. This linkage is well-known and is discussed for example in McEl-

roy(2008), for the HP-filter, as well as in Sbrana(2011) for the generic local linear trend.

The result in Proposition 1 is instrumental for the multivariate case.

Proposition 1. Let zt follow an univariate version of the model (3), and suppose Σε > 0,

Σξ > 0. Let δ = ΣξΣ
−1
ε . Then, zt follows an invertible MA(2) zt = (1 + θ1L + θ2L

2)ut

process with coefficients

θ1 = −2 +
1

2

√
−2δ + 2

√
δ2 + 16δ, θ2 =

−θ1

4 + θ1
=

4−
√
−2δ + 2

√
δ2 + 16δ

4 +
√
−2δ + 2

√
δ2 + 16δ
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and ω = Varut = θ−1
2 σε.

Proof. In the scalar case, the autocovariance generating function takes the form

γ(L) =
(L− 1)4

L2
σε + σξ.

The complex zeros of γ(L) can be determined through the following process

(s− 1)4

s2
= −δ, (6)

(s− 1)2

s
= ±i

√
δ,

0 = s2 −
(

2± i
√
δ
)
s+ 1, (7)

s =
2 + it±

√
4it− t2

2
, where t = ±

√
δ, (8)

where the last step is simply the formula for the solution of a quadratic equation. The

possible choices of the ± signs in (8) give the four solutions. Each of the two quadratic

equations in (7) has two solutions with product 1 and sum 2±i
√
δ, by the roots-coefficients

relations. Since their product is 1, one of them lies inside the unit circle and one lies outside

(they cannot have both modulus 1, otherwise their sum would have modulus at most 2,

which is in contradiction with |2 ± i
√
δ| > 2). Moreover, since (6) is a real equation, we

know that the solutions come in conjugate pairs. Putting all together, we have proved

that the solutions returned by the formula (8) can be written as (s, s̄, 1/s, 1/s̄) for some

complex number s with |s| < 1.

To respect invertibility, the polynomial 1 + θ1L+ θ2L
2 must have as its roots the two
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roots with modulus larger than 1, i.e., 1/s and 1/s̄. Hence,

1 + θ1L+ θ2L
2 = (1− (s+ s̄)L+ ss̄L2).

To avoid troubles with the signs, we derive an equation for θ1 directly. The univariate

equivalent of (5) is

γ(L) = (θ2L
2 + θ1L+ 1)ω(1 + θ1L

−1 + θ2L
−2). (9)

Equating coefficients in (9), we get the following system of equations

σε = γ2 = θ2ω,

−4σε = γ1 = θ1(θ2 + 1)ω,

6σε + σξ = γ0 = ω(1 + θ2
1 + θ2

2)

(10)

(since we are in the scalar case, for the sake of clarity we replaced each uppercase letter

with the corresponding lowercase one). We can easily derive

θ2 =
−θ1

4 + θ1
, ω = θ−1

2 σε, (11)

and use these relations to eliminate variables and get a single equation in θ1. After some

computations, we obtain

θ4
1 + 8θ3

1 + (24 + δ)θ2
1 + (32 + 4δ)θ1 + 16 = 0,
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whose four solutions are given by choosing ± signs in

−2± 1

2

√
−2δ ± 2

√
δ2 + 16δ.

Only one of these solutions corresponds to s+ s̄ (the other ones being 1
s + s̄ s+ 1

s̄ , 1
s + 1

s̄ ,

which would give rise alternative non-invertible MA(2) representations). It is easy to tell

which one is correct: it should be real, and this implies that we have to take the + sign

on the right; and since |s+ s̄| < 2 we need the plus sign on the left as well.

Finally, one can use (11) to get back θ1 and ω.

2.2 The multivariate case

As claimed in the introduction, it is possible to make a linear change of variable that

transforms (1) into d separate uncorrelated processes. We show its form explicitly in the

next result.

Proposition 2. Let zt follow the model (3), and suppose that Σε and Σξ are positive

definite. Let Σε = M ′M be a Cholesky decomposition, and (M ′)−1ΣξM
−1 = Q∆Q′, with

QQ′ = I and ∆ = diag(δ1, δ2, . . . , δd), be an eigendecomposition, and let P = M ′Q.

Let moreover

αk = −2 +
1

2

√
−2δk + 2

√
δ2
k + 16δk, βk =

−αk
4 + αk

=
4−

√
−2δk + 2

√
δ2
k + 16δk

4 +

√
−2δk + 2

√
δ2
k + 16δk

.
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Then, the unique invertible VMA(2) representation of zt is given by

Θ1 = P diag(α1, α2, . . . , αd)P
−1, Θ2 = P diag(β1, β2, . . . , βd)P

−1, (12)

Ω = Varut = P diag(β−1
1 , β−1

2 , . . . , β−1
d )P ′ = Θ−1

2 Σε. (13)

Remark 1. When Σξ is positive semi definite with some roots equal to zero then the model

contains common trends. This is the case when cointegration arises. In this case some of

the δk are equal to zero and therefore the corresponding αk and βk are equal to -2 and 1

respectively.

Notice that ΣξΣ
−1
ε = M ′(M ′)−1ΣξM

−1(M ′)−1 = M ′Q∆Q′(M ′)−1 = P∆P−1, hence

P is an eigenvector basis of ΣξΣ
−1
ε . One may wish to choose P as an arbitrary eigenvector

basis of ΣξΣ
−1
ε instead of the more complicated definition in the theorem. In that case,

then (12) and Ω = Θ−1
2 Σε still hold, while the other equality in (13) may fail.

Proof. The autocovariance matrices of zt in (3) are

Γ2 = E
(
ztz
′
t−2

)
= Σε,

Γ1 = E
(
ztz
′
t−1

)
= −4Σε,

Γ0 = E
(
ztz
′
t

)
= 6Σε + Σξ.

In addition, Γ−2 = Γ′2 = Γ2 and Γ−1 = Γ′1 = Γ1, and all the other autocovariances Γi with

|i| > 2 are zero.

Since only the two symmetric matrices Σε, Σξ appear in these expressions, one can find

a change of variables that decouples the components of zt. Namely, we set z̃t := P−1zt; in
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this way, it is easy to verify that P−1Σε(P
′)−1 = I and P−1Σξ(P

′)−1 = ∆, and thus

Γ̃2 = E
(
z̃tz̃
′
t−2

)
= I,

Γ̃1 = E
(
z̃tz̃
′
t−1

)
= −4I,

Γ̃0 = E
(
z̃tz̃
′
t

)
= 6I + ∆,

and again Γ̃−2 = Γ̃′2 = Γ̃2 and Γ̃−1 = Γ̃′1 = Γ̃1, while Γ̃k = 0 for |k| > 2.

Hence each of the components of z̃t follows a scalar MA(2) uncorrelated from the other

components, with Σε = 1 and Σξ = δk, where k is the index of the component. Using

Proposition 1, one can thus derive

(z̃t)k = (1 + αkL+ βkL
2)(ũt)k, Var(ũt)k = β−1

k .

Finally, we undo the change of variables used to define z̃t, to obtain that zt follows the

VMA(2) process (12)–(13), where ut := Pũt.

Therefore it is possible to reconstruct the parameters of the reduced form of the process,

in closed form, by knowing only its autocovariances. In empirical analysis, one might

be tempted to use the sample covariance estimates such as Γ̂0 = N−1
∑N

t=1 ztz
′
t and

Γ̂2 = N−1
∑N

t=1 ztz
′
t−2 but this is generally not recommended due to lack of accuracy.

In the next section, we provide a method that allows estimating more accurately Σε =

Γ2 and Σξ = Γ0 − 6Γ2.
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3 Moment estimation through aggregation (META)

The closed-form results obtained in the previous section are relevant in empirical analysis

if we have accurate estimates of the autocovariances of (3). Indeed, these allow one to

reconstruct the signal-noise matrix ratio and therefore extract the multiple trends from

system (1). In this section, we describe an estimator of the autocovariances that general-

izes the algorithm of Poloni & Sbrana(2014) to this model. The main cost of the estimation

procedure consists in estimating several univariate constrained MA(2) models of the form

(11); this makes it quick and practical even in cases of large dimension, without conver-

gence issues. We then combine these estimates to obtain the desired autocovariances Γk.

Beside these practical advantages, the reader should be aware that the META approach

does not guarantee to yield positive definite Σ̂ξ and Σ̂ε. This is especially true in small

samples and also when we approach the cointegration case (that is when the one or more

roots of Σ̂ξ are closed to zero). This issue and a simple proposal to fix it are discussed

below.

The estimation procedure can be described as follows. Let

W := {ei : 1 ≤ i ≤ d} ∪ {ei + ej : 1 ≤ i < j ≤ d},

where ei denotes the i-th column of the identity matrix Id.

1. For each of the d(d+1)
2 vectors w ∈ W, construct the aggregated scalar process

x
(w)
t := w′zt, and estimate it using a maximum likelihood estimator.

2. Using the estimated parameters of the process x
(w)
t , compute autocovariances γ̃

(w)
k

(not sample autocovariances!) and construct the (scalar) ACGF γ̃(w)(L) of x
(w)
t .
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3. As the ACGF Γ(L) of yt is symmetric, it is possible to reconstruct it in closed form

by knowing γ(w)(L) = w′Γ(L)w for each w ∈ W. Indeed, by Poloni & Sbrana(2014),

Lemma 5,

(Γk)i,j =


γ

(ei)
k i = j,

1
2

(
γ

(ei+ej)
k − γ(ei)

k − γ(ej)
k

)
i 6= j.

(14)

4. Use the method in Section 2 to compute the signal-noise matrix ratio as well as the

parameters of the VMA representation of zt.

As can be seen easily from the formula γ(w)(L) = w′Γ(L)w, the aggregated scalar processes

are MA(2) with γ
(w)
1 = −4γ

(w)
2 . As in (11), we can obtain from this relation

θ
(w)
2 =

−θ(w)
1

4 + θ
(w)
1

. (15)

We estimate them using a constrained maximum-likelihood estimator enforcing (15). The

procedure produces θ̃
(w)
1 , θ̃

(w)
2 =

−θ̃(w)
1

4+θ̃
(w)
1

and ω̃(w). We can then use the formulas (cfr. (10))

γ̃2 = θ̃
(w)
2 ω̃(w),

γ̃1 = θ
(w)
1 (θ̃

(w)
2 + 1)ω̃(w) = −4γ2,

γ̃0 = ω̃(w)(1 + (θ̃
(w)
1 )2 + (θ̃

(w)
2 )2).

(16)

Notice that the estimated autocovariances Γ̃k of the multivariate process will satisfy au-

tomatically the constraint Γ̃1 = Γ̃′1 and Γ̃1 = −4Γ̃2, by the linearity of (14). If one

were to use a direct multivariate maximum-likelihood estimator, these conditions would

be harder to represent explicitly as a restriction on the parameters Θ1 and Θ2, and hence

troublesome to estimate.
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Finally, it can be shown that the META estimator is consistent and asymptotically

normal distributed. Indeed, the following theorem holds.

Theorem 1. Consider the META estimator described in Section 3 for the reduced pa-

rameters Θ1 and Θ2 of the invertible, stationary and ergodic process (1) with i.i.d. noises

with variances (2). The estimator is consistent. If, in addition, the fourth moments of

the noise vector

εt
ξt

 are finite, then the estimator is asymptotically normal.

A proof can be found in the Appendix. It is relevant to remark the advantages of using

the META estimator. Indeed the standard maximum likelihood estimation of the system

(1) is not trivial especially for medium-high dimensional systems. Similar conclusions

hold for the likelihood estimation of the reduced form (3). By making use of a univariate

estimation approach, the META provides a simple estimation alternative, based on the

likelihood principle (providing accurate estimates), much faster than the full multivariate

likelihood approach. The procedure can be implemented by standard packages since it

does not adopt any sophisticated maximization algorithm.

As already mentioned above, the major issue with this numerical procedure is that

there is no guarantee that the estimated process yields positive definite values of the

structural parameters Σ̃ε = Γ̃2 and Σ̃ξ = Γ̃0 − 6Γ̃2. This is especially true for Σξ, since it

is derived as the difference of two estimated matrices and hence it might suffer from error

accumulation.

A simple fix for this issue is enforcing positivity by adding a suitable multiple of the

identity to Σε and Σξ when necessary. Ultimately, this can be justified by the assumption

that our data come from a model of the form (1), thus their positivity is a modelling

requirement. We describe this regularization procedure in more detail for our practical
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example.

3.1 Trend extraction

The key factor for trend extraction using the Hodrick-Prescott filter is the signal-noise

ratio. In the scalar case, the ratio can either be chosen arbitrarily (as proposed in Hodrick-

Prescott(1997)), or can be estimated using the result in Proposition 1. This choice is also

present in the multivariate case. In the vector case, we have shown how to estimate the

signal-noise matrix ratio ΣξΣ
−1
ε = Γ0Γ−1

2 −6I = P∆P−1. Each of the diagonal elements of

∆ represents a scalar signal-noise ratio that can be used to filter the associated component

of the transformed system ỹt := P−1yt, whose VARMA representation is diagonal. One

can then obtain the smooth-trends of the system yt by premultiplying the transformed

trends µ̃t by the matrix P .

A possible variant is choosing arbitrarily the values of the signal-noise ratios on the

uncorrelated processes ỹt rather than on yt. This produces a trend extraction method

that, while still choosing SNRs arbitrarily, keeps into account the fact that the covariance

matrices (2) are in general not diagonal and the processes are correlated.

A direct multivariate approach for trend extraction, that does not diagonalize the

system, is suggested by McElroy & Trimbur(2015). These authors provide also results for

the trend model as in (1) when Σξ has reduced rank.

4 Detrending multiple time series: an empirical application

Here we provide an empirical example dealing with the industrial production of some ma-

jor European economies. The time series data, relative to the total industrial production

by country, have been downloaded from the online statistical database of the Organisa-
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tion for Economic Co-operation and Development (2014). We employed monthly season-

ally adjusted observations (expressed as index numbers) for the following eight countries:

Belgium, France, Germany, Italy, Netherlands, Portugal, Spain, United Kingdom. The

sample runs from May 1974 until March 2014 for a total of 479 observations.

As described in Section 3, the bulk of the estimation cost consists in estimating

d(d+1)
2 = 36 scalar constrained MA(2) models, followed by some quick computations. For

our experiments we chose to use Wolfram Mathematica v9, since that software contains a

ML estimator general enough to allow enforcing the constraint (15) explicitly. Note that

the scalar estimator used is unconditional maximum likelihood.

The estimated covariance matrix Σ̃ξ had a small negative eigenvalue ≈ −1.5 × 10−2.

Indeed, as we noted above, there is no guarantee that the method produces positive

definite estimates in empirical examples. To address this issue, we regularized the estimate

by adding a suitable multiple of the identity to Σ̃ξ, i.e., Σ̂ξ = Σ̃ξ + αI8. We chose

α = 0.0015428533. This number is chosen so that the smallest eigenvalue of Σ̂ξΣ̂
−1
ε equals

1
14400 = 0.0000694, which is the standard signal-noise ratio recommended in software

packages such as EViews for Hodrick-Prescott filtering of monthly data.

We obtain the following estimates for the covariance matrices of the noises (2)

Σ̃ε =



0.8429

0.02121 0.7632

0.09744 0.1419 0.7497

0.1871 0.06468 0.06268 1.159

−0.1544 0.2812 0.06318 0.1073 2.583

0.06602 0.2387 0.2089 0.265 0.1438 3.048

0.06847 0.247 0.08804 0.131 0.1751 0.3083 1.686

0.09582 0.1087 0.0776 0.1215 0.1535 0.1928 0.1191 0.6269



,
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Σ̂ξ =



0.07748

0.06312 0.05871

0.08688 0.08175 0.1239

0.0734 0.06911 0.09324 0.1618

0.04262 0.03635 0.05105 0.05275 0.03846

0.02446 0.01703 0.02533 0.03828 0.01042 0.02073

0.04151 0.04143 0.05226 0.06523 0.02957 0.01757 0.04876

0.03398 0.03357 0.05591 0.03005 0.02341 0.005987 0.01746 0.04468



.

The META estimates are very close to those produced by STAMP 8.2 (Koopman,

Harvey, Doornik & Shephard, 2007), which employs a maximum likelihood estimator for

the structural system. Indeed, a comparison between the META and the STAMP output

shows that the relative errors in the Frobenius norm (root mean squared error of the

matrix entries) are ∥∥ΣMETA
ε − ΣSTAMP

ε

∥∥
F

‖ΣSTAMP
ε ‖F

= 0.073, (17)

∥∥∥ΣMETA
ξ − ΣSTAMP

ξ

∥∥∥
F∥∥∥ΣSTAMP

ξ

∥∥∥
F

= 0.177, (18)

∥∥ΩMETA − ΩSTAMP
∥∥
F

‖ΩSTAMP ‖F
= 0.074, (19)

where ‖·‖F is the Frobenius norm.

However, while the estimation in STAMP takes about 40 seconds, the one with META

takes just 14 seconds. This shows the clear computational advantages of using our simple

estimator. Using the estimated matrices, the signal-noise matrix ratio is derived using the
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procedure described in Proposition 2. We have

P =



0.4601 0.08478 −0.4455 0.4898 −0.063 −0.2311 0.109 0.3412

0.4225 0.07566 −0.1639 −0.1915 −0.134 0.05911 0.3999 −0.578

0.6077 0.2573 0.0001279 −0.3538 0.2624 −0.0273 −0.342 0.04939

0.5831 −0.7558 0.4043 0.2669 0.05411 −0.07511 0.06081 0.03422

0.2834 −0.01842 −0.03882 0.4361 −0.543 0.9852 −0.7428 −0.7025

0.1505 −0.1733 −0.09401 0.2449 0.11 −1.192 −0.6928 −1.007

0.3025 −0.2091 −0.08031 −0.4969 −1.071 −0.3526 −0.1477 0.0638

0.259 0.3946 0.4872 0.2695 −0.2398 −0.1559 0.0672 −0.08842


and

∆ =



0.3127 0. 0. 0. 0. 0. 0. 0.

0. 0.08487 0. 0. 0. 0. 0. 0.

0. 0. 0.03726 0. 0. 0. 0. 0.

0. 0. 0. 0.01205 0. 0. 0. 0.

0. 0. 0. 0. 0.01085 0. 0. 0.

0. 0. 0. 0. 0. 0.0054 0. 0.

0. 0. 0. 0. 0. 0. 0.004519 0.

0. 0. 0. 0. 0. 0. 0. 0.00006944



.

The values of ∆ are then used to extract separately the trend from each series of the

system ỹt := P−1yt. This univariate procedure can be easily carried out with any statistical

software. Here we make use of EViews version 8. Once these trends are extracted, the

final step is pre-multiplying these trends by the matrix P in order to obtain trends for the

original multivariate system yt.

Here we compare our empirical results obtained using the META approach with two

standard univariate approaches. The first approach is the ARIMA-model-based (AMB)

approach as suggested by Kaiser & Maravall(2005). The AMB approach can be considered

as the univariate analogous of the META approach since the signal-noise ratio is estimated
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(rather than fixed apriori) by employing an ARIMA(0,2,2) model separately for each series

of the system. This procedure is implemented in Eviews through the function SEATS

(Signal Extraction in ARIMA Time Series) by performing an ARIMA-based decomposition

of an observed time series into unobserved components. The SEATS algorithm in Eviews

was developed by Victor Gomez and Agustin Maravall.

The second approach, the most employed in standard practice, consists of fixing the signal-

noise ratio to a prescribed value (see for example Hodrick & Prescott (1997)). For monthly

series EViews suggests a signal-noise ratio of 1
14400 = 0.0000694. The main difference

between these two univariate approaches is that fixing the signal-noise ratio results in

extracting a much smoother trend compared to estimating the signal-noise ratio using

an ARIMA approach. This in evident in our empirical results. Figures 1–8 report the

industrial production index (in gray) together with the trends extracted using the META

approach (thick black line), the AMB approach (dotted black line) and the approach that

fix the signal-noise ratio (tiny black line). As noted above, the estimation sample for the

three competing approaches is 1974-2014. However, for the sake of clarity, for each country

we show the results in two separate charts; one referring to the sample 1974-1994 and the

other one to the sample 1994-2014. This is done in order to better focus and compare the

different extracted trends.

First of all, one can observe that fixing the smoothing constant provide much smoother

trends compared to the AMB approach. Interestingly, the META approach provides trends

with mixed level of smoothness. On the one hand, results relative to Spain and UK show

that the META provides trends that are very close to the AMB approach. This is not

surprising since both filtering procedure estimate the signal-noise ratio. On the other

hand, looking at the results for France and Germany, the META extracts trends that are
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very close to the standard practice of fixing the signal-noise ratio (this is especially evident

in the sample 1994-2014). Finally, the results relative to Belgium, Italy, Netherlands and

Portugal show that the META approach provides trends that, in terms of smoothness, are

somehow in between the two univariate approach. Therefore, our empirical results show

that estimating the signal-noise ratios using the META approach does not necessarily

deliver different outputs compared with the standard practice of fixing these parameters

apriori. We believe nevertheless that our procedure is more rigorous since it is based on

a robust estimation method. On the other hand, imposing a predetermined single signal-

noise ratio for all series represents a rather simplistic assumption. Indeed, the estimated

values for the signal-noise ratios are quite far from being constant, in this example. On

top of that, there is no general consensus on how to choose the signal-noise ratio (see for

example the discussion in Ravn & Uhlig (2002)).

5 Conclusions

This paper provides closed-form results for the Hodrick-Prescott filter in the multivari-

ate case. In addition, a simple and fast method is suggested to estimate the VARMA

parameters of the implied structural process. As a consequence, the signal-noise matrix

ratio can be quickly be estimated and used for filtering the underlying system of equa-

tions. Contrary to the standard maximum likelihood estimation, the main advantage

of our method is that it is exempt from the numerical and convergence issues of high-

dimensional minimization procedures. Indeed, the META estimation procedure uses only

univariate model estimations as its computational core. Another significant advantage is

that these scalar estimations are computationally independent and hence very suitable for
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parallel computation.

In general, we remark that our results, as well as the estimation procedure, are valid

when it is assumed that the data generation process (1) holds for the entire system of

equations. Clearly this hypothesis might represent an issue in empirical analysis when

departing from the assumption of a single dynamics for all the equations. Nevertheless,

if the aim is simply extracting smooth-trends from multivariate time series, these results

might simplify considerably the calculations.
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6 Proof of Theorem 1

We first recall some definitions. For a sequence g(k), k ∈ Z, if there is a ψ > 0 such that

‖g(k)‖ = O(p(k)ψk) for some polynomial p(k) and for k → ∞, we say that g decays with

rate ψ. A causal linear process of an uncorrelated time series {Yt}, Yt ∈ Rm, is a time

24
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series of the form

gt :=
∞∑
k=0

g(k)Yt−k,

where g(k) ∈ R1×m. Using the backshift operator, one can write alternatively gt =∑∞
k=1 g

(k)LkYt, and define the so-called transfer function g(L) :=
∑∞

k=1 g
(k)Lk. If ‖g(k)‖

decays with rate ψ, we say for shortness that the process gt decays with rate ψ. Often one

can rewrite a transfer function g(L) as a matrix fraction g(L) = q(L)−1p(L); in this case,

the process decays with rate max{|z| : z ∈ C, q(z) = 0}.

We start by proving a slight variation of Poloni & Sbrana(2014), Lemma 10. Here the

notation ‖X‖2 denotes the L2 norm of random variables ‖X‖2 = E
[
X2
]1/2

.

Lemma 1. Let (Yi)i∈Z be a sequence of i.i.d. vector-valued random variables in Rm with

mean 0 and finite fourth moments, and let

gt :=

∞∑
k=0

g(k)Yt−k,

ht :=
∞∑
k=0

h(k)Yt−k,

(20)

be two causal linear functions of Y , with g(k), h(k) ∈ R1×m. Let moreover Fba be the σ-field

generated by Yt for a ≤ t ≤ b. Suppose that g(k) and h(k) decay with rate ψ < 1. Then,

ξt = gtht − E [gtht] is such that ‖ξ0 − E
[
ξ0 | F0

−t
]
‖2 decays (as a function of t) with rate

ψ, too.

Proof. We follow the proof in Poloni & Sbrana(2014), generalizing it to this case. For a
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fixed t > 0, we may write

g0 =

t∑
k=0

g(k)Y−k︸ ︷︷ ︸
:=pt

+
∑
k>t

g(k)Y−k︸ ︷︷ ︸
:=qt

, (21)

where pt is a function in the σ-field F0
−t and qt is independent from it, and similarly

h0 =
t∑

k=0

h(k)Y−k︸ ︷︷ ︸
:=rt

+
∑
k>t

h(k)Y−k︸ ︷︷ ︸
:=st

. (22)

One has

E
[
g0h0 | F0

−t
]

= E
[
(pt + qt)(rt + st) | F0

−t
]

= ptrt + E
[
qt | F0

−t
]︸ ︷︷ ︸

=0

rt + pt E
[
st | F0

−t
]︸ ︷︷ ︸

=0

+E
[
qtst | F0

−t
]

= ptrt + E
[
qtst | F0

−t
]
,

thus

∥∥ξ0 − E
[
ξ0 | F0

−t
]∥∥

2
=
∥∥g0h0 − E

[
g0h0 | F0

−t
]∥∥

2
= ‖qtrt + ptst + qtst − E

[
qtst | F0

−t
]
‖2

≤ ‖qt‖2‖rt‖2 + ‖pt‖2‖st‖2 + 2‖qt‖2‖st‖2.

Since the decompositions (21), (22) are into independent (orthogonal) components, one

can estimate

‖pt‖2 ≤ ‖g0‖2, ‖qt‖2 = O

(∑
k>t

‖g(k)‖2

)
= O(ψt + ψt+1 + ψt+2 + . . . ) = O(ψt),

‖rt‖2 ≤ ‖h0‖2, ‖st‖2 = O

(∑
k>t

‖h(k)‖2

)
= O(ψt)
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(since
∑

k≥0 ψ
t+k = ψt

1−ψ = O(ψt)).

Hence
∥∥ξ0 − E

[
ξ0 | F0

−t
]∥∥

2
= O(ψt).

We are now ready to consider the asymptotic properties of the maximum likelihood

estimator for the scalar processes x
(w)
t . We recall that they follow a a scalar MA(2) of the

form

x
(w)
t = v

(w)
t + θ

(w)
1 v

(w)
t−1 −

θ
(w)
1

4 + θ
(w)
1

v
(w)
t−2, E

[
(v

(w)
t )2

]
= ω, (23)

where v
(w)
t is an uncorrelated white noise sequence (but, for w1 6= w2, v

(w1)
t and v

(w2)
t will

in general be correlated).

First of all, we prove that these MA processes admit an invertible representation

(cfr. Poloni and Sbrana(2014), Lemma 6).

Lemma 2. Let w ∈ R1×m be given, with w 6= 0, and let x
(w)
t = w′yt be the aggregate

process of a process yt ∈ Rm with ACGF Γ(L) such that det Γ(z) 6= 0 for each z on the

unit circle. Then, the ACGF γ(L) = w′Γ(L)w has also no zeros on the unit circle and

hence x
(w)
t has an invertible representation.

Proof. For z on the unit circle, Γ(z) is a Hermitian positive semidefinite matrix (thanks

to (5)). So w′Γ(z)w = 0 can hold if and only if Γ(z)w = 0, i.e., if det Γ(z) = 0, which is

against our assumption.

Therefore we may safely assume that the polynomials θ(L) = 1 + θ
(w)
1 L − θ

(w)
1

4+θ
(w)
1

L2

have all their roots outside the unit circle.

The corresponding negative log-likelihood function is

L(θ1, ω) =
1

N

N∑
t=1

`
(w)
t (θ1, ω), `

(w)
t (θ1, ω) =

1

2
logω +

v2
t

2ω
,
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where the sequence vt = vt(x
(w), θ1) is generated by vt = x

(w)
t − θ1vt−1 + θ1

4+θ1
vt−2. As in

Poloni & Sbrana(2014), we may ignore the issue of the initial data and set v0 = v−1 = 0

(quasi-likelihood). Indeed, as in many similar models, the influence of the choice of v0

and v−1 on the estimator is negligible asymptotically (cfr. Box & Jenkins(1976), Section

7.1.3).

First of all, we check that the exact values of the parameters θ
(w)
1 , ω(w) correspond to

an isolated maximum of E
[
`
(w)
t (θ1, ω)

]
. Notice first that v

(w)
t = vt(x

(w), θ
(w)
1 ).

Define for shortness v′t := ∂vt
∂θ1

, v′′t := ∂2vt
∂θ21

; v′t obeys the recursion rule

v′t = −θ1v
′
t−1 +

θ1

4 + θ1
v′t−2 − vt−1 +

4

(4 + θ1)2
vt−2, (24)

obtained by differentiating the definition of vt. In particular v′t is a linear function of

vt−1, vt−2, . . . . This implies that v′t(θ
(w)
1 ) is uncorrelated with vt(θ

(w)
1 ) = v

(w)
t . The same

holds for v′′t (θ
(w)
1 ). Using these properties, one can evaluate

∇E
[
`
(w)
t

]∣∣∣∣
θ
(w)
1 ,ω(w)

= E


 vtv′t

ω

1
2ω −

v2t
2ω2


∣∣∣∣
θ
(w)
1 ,ω(w)

= 0, (25)

∇∇′E
[
`
(w)
t

]∣∣∣∣
θ
(w)
1 ,ω(w)

=

E
[

1
ω

(
v′t

2 + v′′t vt

)]
E
[
− 1
ω2 v
′
tvt
]

E
[
− 1
ω2 v
′
tvt
]

E
[

1
2ω2

(
2v2t
ω − 1

)]
∣∣∣∣
θ
(w)
1 ,ω(w)

=

E
[

(v′t(θ
(w)
1 ))2

ω

]
0

0 1
2(ω(w))2

 .
The matrix ∇∇′E

[
`
(w)
t

]∣∣∣∣
θ
(w)
1 ,ω(w)

is nonsingular unless v′t(θ
(w)
1 ) is zero a.s.; this cannot

happen, otherwise from (24) we would obtain a nontrivial relation among the v
(w)
t at

different t’s, but since v(w) is a white noise process with variance ω(w) > 0 this is impossible.

Indeed, with some transfer function machinery, one can evaluate E
[
v′t(θ

(w)
1 )2

]
exactly in
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terms of the system parameters (see Lemma 4), but here it is enough to prove that it is

nonzero.

Notice moreover that the Hessian is positive definite; hence the negative log-likelihood

has a local minimum, and the likelihood has a local maximum.

Lemma 3. Consider the constrained maximum-likelihood estimator (θ̃
(w)
1 , ω̃(w)) = arg maxL(θ1, ω)

for a process x
(w)
t . This estimator is asymptotically consistent.

Proof. This follows from standard maximum-likelihood theory, for instance from Ling &

McAleer(2010), Theorem 1. We have proved above that E
[
`
(w)
t

]
has a local maximum in

(θ̃
(w)
1 , ω̃(w)), so using a suitable neighborhood of this point as the parameter space Θ, the

assumptions there are satisfied.

Lemma 4. The estimator

β̃ = (θ̃
(w1)
1 , ω̃(w1), θ̃

(w2)
1 , ω̃(w2), . . . , θ̃

(w d(d+1)
2

)

1 , ω̃
(w d(d+1)

2

)
)′

is asymptotically normal, i.e.,
√
N(β̃ − β)→ N(0,Ξ) in law.

Proof. Once again we follow Poloni & Sbrana(2014), Theorem 11. In view of their proof,

it is enough to prove that the functions

∥∥∥∥ ∂

∂θ1
`
(w)
t − E

[
∂

∂θ1
`
(w)
t | F0

−t

]∥∥∥∥
2

,

∥∥∥∥ ∂∂ω`(w)
t − E

[
∂

∂ω
`
(w)
t | F0

−t

]∥∥∥∥
2

(26)

(where the σ-fields F are costructed starting on Yt =

εt
ξt

) decay with rate ψ < 1 for
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each w ∈ W. We recall that (cfr. (25))

∂`
(w)
t

∂θ1
=
vt(x

(w), θ1)v′t(x
(w), θ1)

ω(w)
,

∂`
(w)
t

∂ω
=

1

2(ω(w))2

(
ω(w) − vt(x(w), θ1)2

)
. (27)

The process vt(x
(w), θ1) is a linear process in Yt. Using backshift operator formalism, we

have

zt = ξt−2 + εt − 2εt−1 + εt−2 =

[
I − 2L+ L2 L2

]εt
ξt

 ,
x

(w)
t = w′tzt = w′t

[
I − 2L+ L2 L2

]εt
ξt

 ,
vt(x

(w), θ1) = H(L)−1x
(w)
t = H(L)−1w′t

[
I − 2L+ L2 L2

]εt
ξt

 ,
with H(L) = 1− θ1L− θ1

4+θ1
L2. This rational expression can be turned into a power series

in L as in (20), with coefficients g(k) decaying as the maximum modulus of the roots of

H(L), which are all smaller than 1 by the invertibility assumption.

Similarly, one can evaluate

v
′(w)
t =

∂

∂θ1
H(L)−1w′t

[
I − 2L+ L2 L2

]εt
ξt

 = −H
′(L)

H(L)2
w′t

[
I − 2L+ L2 L2

]εt
ξt

 ,
with H ′(L) = ∂H(L)

∂θ1
= −1− 4

(4+θ1)2
L. Again, one turns this expression into a power series

in L and obtains that the decay rate in the coefficients is exponential with rate given by

the roots of H(L). Hence v
′(w)
t is also a linear function of Yt with exponentially decaying

coefficients. Now we simply apply Lemma 1 to get the required decay properties for (26).
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Having proved Lemmas 3 and 4, we can conclude as in Poloni & Sbrana(2014), Theo-

rem 12 to prove Theorem 1.
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Figure 1: BELGIUM: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 32



Figure 2: FRANCE: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 33



Figure 3: GERMANY: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 34



Figure 4: ITALY: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 35



Figure 5: NETHERLANDS: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 36



Figure 6: PORTUGAL: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 37



Figure 7: SPAIN: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 38



Figure 8: UK: Industrial production and associated smooth-trends
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The chart shows the industrial production series (in grey) together with the trends extracted with the

standard HP filter (tiny black line), with the META approach (thick black line) and with the AMB

approach (dotted line). The first chart refers to the sample 1974-1994, while the second one refers to the

sample 1994-2014 39
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