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How	I	stumbled	upon	a	new	(to	me)	construction	of	the	inverse	of	a	point	

	
Anna	Baccaglini-Frank	
	
Abstract	
While	 explaining	 to	 a	 friend	 analyst	 that	 a	 theorem	about	 circle	 inversion	 that	 he	
used	 could	 be	 proved	 with	 synthetic	 geometry,	 I	 stumbled	 upon	 a	 new	 to	 me	
construction	 of	 the	 inverse	 of	 a	 point	 with	 respect	 to	 a	 circle.	 In	 this	 snapshot	 I	
describe	episodes	from	this	discovery	process,	 faithfully	to	how	they	played	out	in	
time,	highlighting	 the	main	ways	 in	which	 I	used	dynamic	geometry	as	a	 research	
tool.	
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Introduction	
In	this	paper	I	will	be	talking	about	a	process	of	mathematical	discovery	in	the	field	
of	 “advanced	 Euclidean	 Geometry”	 (Coxeter	 &	 Greitzer,	 1967).	 The	 name	 of	 this	
branch	of	 geometry	 suggests	 a	 distinction	 from	 “elementary	Euclidean	 geometry”,	
the	geometry	 that	 is	 contained	 in	Euclid’s	writings.	 In	many	countries	high	school	
geometry	 includes	 topics	 from	elementary	Euclidean	 geometry,	 so	 the	 reader	will	
probably	 be	 familiar	 with	 them.	 Advanced	 Euclidean	 geometry	 is	 the	 geometry	
discovered	after	Euclid’s	death	by	mathematicians	who	have	continued	to	develop	
Euclidean	geometry,	discovering	many	new	 interesting	relationships.	Some	people	
also	refer	to	this	branch	as	“synthetic	geometry”	(Scimemi,	2012),	to	highlight	that	
they	do	not	use	analytic	geometry	to	prove	the	theorems.	
In	particular,	notions	that	I	will	be	referring	to	are	circle	inversion	and	the	power	of	
a	point	with	respect	to	a	circle.	For	the	reader’s	reference	I	define	them	here.	
The	inverse	of	a	point	P	with	respect	to	a	circle	C		with	radius	r	and	center	O	is	a	point	
P’	on	the	ray	OP	such	that	𝑂𝑃 ⋅ 𝑂𝑃$ = 𝑟'	(P	is	assumed	different	from	O)1.	

																																																								
1	In	the	proofs	presented	in	this	paper	the	notation	𝐴𝐵	indicates	the	(positive)	
length	of	the	segment	with	endpoints	in	A	and	B.		
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caption:	P’	is	the	inverse	of	P	with	respect	to	the	circle	C.	

	
The	 power	 of	 a	 point	 P	 with	 respect	 to	 a	 circle	 C,	∏ (𝑃)- ,	 is	 the	 product	𝑃𝐴 ⋅ 𝑃𝐵	
(where	A	and	B	are	 the	 intersection	points	of	 any	 line	 through	P	and	 through	 the	
circle	C).	

	

	
caption:	The	power	of	P	with	respect	to	C	is	the	product	of	the	lengths	𝑃𝐴	and	𝑃𝐵.	
	
Episode	0	
I	 am	 a	mathematics	 educator	working	 in	 a	mathematics	 department;	many	 of	my	
neighbors	on	the	ground	floor	hallway,	where	my	office	is,	are	analysts	with	whom	I	
enjoy	numerous	discussions	over	coffee.	One	morning	one	of	these	neighbors	came	
in	while	I	was	preparing	for	a	new	(for	me)	course	I	would	be	teaching	to	graduate	
students	the	following	semester;	a	substantial	part	of	the	course	includes	topics	in	
advanced	Euclidean	geometry.	That	morning	I	was	refreshing	my	knowledge	about	
circle	inversion:	I	had	sketched	different	constructions	for	an	inverse	of	a	point	with	



respect	 to	 a	 circle	 with	 chalk	 on	 my	 blackboard,	 and	 open	 on	 my	 iPad	 was	 a	
reconstruction	 of	 Peaucellier’s	 inversion	machine	 that	 I	 had	 constructed	 using	 an	
app	for	dynamic	geometry.		

	
caption:	The	reconstruction	of	Peaucellier’s	inversion	machine	that	I	had	made	on	

my	iPad	using	dynamic	geometry.	
	
The	inversion	machine	is	a	linkage	made	of	six	bars	with	joints	at	points	A,	B,	C,	D.	
Point	E	 is	 fixed	 and	 is	 the	 center	 of	 the	 circle	 of	 inversion.	 Point	B	 can	be	moved	
(inside	or	outside	of	the	circle	of	 inversion)	and	C	is	the	inverse	of	B.	The	circle	of	
inversion	is	not	part	of	the	machine,	but	I	had	represented	it	to	visualize	properties	
of	the	inversion	(its	radius	is	√𝐴𝐸' − 𝐴𝐵').	
My	friend	analyst	wanted	to	see	how	the	dynamic	construction	worked	and	to	play	
around	with	it	a	bit.	Then	he	said:	“I	don’t	know	much	about	this	kind	of	geometry,	
but	I	do	use	circle	inversion	for	some	theorems	I	teach.	We	use	a	“magic”	fact	about	
circle	inversion,	that	is	that	the	ratio	between	𝑃𝑄	and	𝑃′𝑄,	where	P’	is	the	inverse	of	
P	with	respect	to	the	circle	C,	on	which	Q	lies	(Fig.	1),	is	constant.”	(we	will	refer	to	
this	as	Theorem	1	in	this	paper).	
	
	

	
caption:	The	ratio	between		𝑃𝑄	and	𝑃′𝑄,	where	P’	is	the	inverse	of	P	with	respect	to	

the	circle	C,	on	which	Q	lies,	is	constant.	
	



Then	 he	 proceeded	 to	write	 down	 on	 the	 blackboard	 an	 analytical	 proof	 in	 an	 n-
dimensional	space	for	the	theorem.	I	gazed	at	the	figure	while	he	was	writing	down	
the	proof	and	mumbled	(too	loudly):	“I	think	this	can	be	done	in	synthetic	geometry.”	
He	 heard	 and	 at	 that	 moment	 I	 felt	 “condemned”	 to	 finding	 a	 way	 to	 prove	 my	
conjecture.	
During	 the	 next	 few	 days	 I	 proved	 not	 only	 the	 conjecture	 I	was	 after,	 but	 I	 also	
stumbled	upon	 some	 lovely	 invariant	 properties	 of	 circle	 inversion	 that	 I	 had	not	
found	in	the	books	I	had	been	studying	from,	and	that	led	me	to	a	new	(to	me)	way	
of	constructing	the	inverse	of	a	point.		
In	 the	 rest	 of	 this	 snapshot	 I	 will	 describe	 episodes	 from	 this	 discovery	 process,	
faithfully	 to	 how	 they	 played	 out	 in	 time	 (so	 results	will	 not	 be	 presented	 in	 the	
formal	way	used	in	usual	mathematical	publications),	highlighting	the	main	ways	in	
which	I	used	dynamic	geometry	as	a	research	tool.	
	
Episode	1:	a	(failed)	search	for	similar	triangles	
I	had	a	hunch	I	could	work	out	the	problem	using	similar	triangles,	and,	at	most,	the	
notion	of	power	of	a	point	with	respect	to	a	circle,	since	I	was	interested	in	ratios	(or	
products).	I	started	looking	for	similar	triangles,	adding	points	and	lines	to	my	initial	
figure	(Fig.	4)	constructed	in	dynamic	geometry.	The	first	segment	I	drew	was	P’E,	
since	the	statement	must	hold	both	for	Q	and	for	E	(that	is,	 	34

5

34
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = <45

<4
),	

because,	 more	 in	 general,	 the	 statement	 holds	 for	 any	 point	 X	 on	 the	 circle	 of	
inversion.	But	why	look	only	at	triangles	“inside”	P’QP?	I	also	thought	that	definitely,	
if	I	were	to	use	the	notion	of	power	of	a	point	(I	was	thinking	of	the	power	of	P’,	in	
particular),	I	was	going	to	need	to	consider	lines	through	P’	and	their	intersections	
with	the	circle.	So	I	thought	of	chords	through	P’	and	drew	QZ	(I	constructed	Z	as	the	
second	intersection	of	QP’	with	the	circle),	and	then	constructed	Q’	as	the	image	of	Q	
through	reflectional	symmetry	across	OP	(Fig.	5).	
	

	
Caption:	Z	is	the	second	intersection	of	QP’	with	C	and	Q’	as	the	image	of	Q	through	

reflection	symmetry	over	OP.	



	
I	tried	dragging	Q	a	bit	(along	the	circle	because	it	was	constructed	as	a	“point	on	the	
circle”)	and	what	I	saw	were	“chords”	QZ	and	Q’E	“folding	onto”	one	another	when	Q	
and	Q’	switched	sides	across	OP;	Z	seemed	to	be	symmetric	(again	across	OP)	to	E,	
and	Q’,	P’,	E	seemed	 to	always	be	 lined	up.	 I	even	checked	 the	measures	of	angles	
∠𝑂𝑃′𝑄′	and	∠𝑃𝑃′𝐸:	sure	enough,	they	always	seemed	to	be	the	same.	
I	hadn’t	found	the	similar	triangles	I	was	looking	for,	but	now	I	was	intrigued	by	this	
new	regularity	and	I	wondered	if	it	happened	all	so	“magically”	just	because	of	the	
position	of	P’	given	by	its	being	the	inverse	of	P	over	C.	
	
Episode	2:	stumbling	upon	a	new	construction	for	the	inverse	of	a	point	
I	 wanted	 to	 make	 sure	 it	 was	 really	 P’,	 the	 inverse	 of	 P,	 that	 was	 “special”;	 so	 I	
constructed	a	point	K	on	OP	 (I	was	 loosely	 thinking	of	point	K	 as	 a	 possibly	 “less	
constrained”	representation	of	the	inverse	of	P),	joined	it	with	segments	to	Q,	to	Q’	
and	to	E,	and	found	the	second	intersection,	W,	of	QK	with	the	circle	(Fig.	6).	As	K	
moved	along	OP,	and	Q	around	the	circle,	never	were	Q’,	K	and	E	collinear	nor	was	
W	symmetric	with	 respect	 to	E,	 except	 for	when	K	 coincided	with	P’	 (in	 this	 case	
both	 invariants	 were	 present	 for	 any	 position	 of	 Q).	 I	 found	 this	 part	 of	 the	
exploration	to	be	very	convincing	as	to	the	fact	that	only	for	K	coincident	with	P’	did	
those	interesting	invariants	seem	true.	
	

	
caption:	Only	when	K	=	P’,	Q’,	K,	E	are	collinear,	and	W	is	the	image	of	E	through	

reflectional	symmetry	over	OP.	
	
So	I	went	a	step	further,	and	decided	to	assume	these	invariants	true	if	and	only	if	K	
=	P’,	and	used	them	to	construct	K	so	that	it	would	have	the	desired	properties,	thus	
finding	an	alternative	way	of	constructing	P’…if	eventually	I	had	been	able	to	prove	
that		
	
Conjecture	1:	Q’,	K,	E	are	collinear	if	and	only	if	K	is	the	inverse	of	P	with	respect	to	a	
circle	C	with	 center	O	 and	 radius	 r,	 that	 is,	 if	 O,	 P	 and	 P'	 are	 collinear	 and	 if	𝑂𝑃 ⋅
𝑂𝑃$ = 𝑟'.	



	
The	construction	is	as	follows	(both	in	the	case	of	P	inside	or	outside	of	the	circle):		
Construct	a	point	Q	on	the	circle	and	connect	it	with	P;	on	the	line	P	and	Q	construct	
the	second	intersection,	E,	with	the	circle	C.	Construct	the	segment	joining	the	center	
O	of	the	circle	with	P,	and	reflect	QE	on	OP;	mark	the	symmetric	points	Q’	and	E’	to	Q	
and	E	respectively.	Construct	lines	through	Q	and	E’	and	through	E	and	Q’.	The	two	
lines	meet	at	a	point	on	the	line	through	O	and	P,	that	is	the	inverse	of	P	with	respect	
to	the	circle	(Fig.	7).	
	

	
Caption:	New	construction	of	the	inverse	of	a	point	P	with	respect	to	a	circle	C	

	
So	now	instead	of	proving	what	I	initially	wanted,	I	had	generated	a	new	conjecture	
that	I	wanted	to	prove	even	more	than	the	first	one.	However,	diligently,	I	went	back	
to	my	original	problem.	
	
Episode	3:	back	to	the	analyst’s	problem	
I	 continued	my	search	 for	 similar	 triangles,	 and	 the	 third	morning,	walking	 to	 the	
department,	 I	 tried	 working	 with	 a	 particular	 configuration	 in	 my	 head:	 one	 in	
which	QO	is	perpendicular	to	OP	(Fig.	8).	

	
Caption:	Simpler	configuration	I	imagined	in	my	head.	



	
Sure	enough,	the	choice	of	the	particular	case	to	analyze	mentally	was	a	good	one:	I	
was	able	to	see	to	very	promising	similar	triangles:	QOP’	and	P’EP,	both	similar	to	
QOP.	I	worked	out	the	proportions	in	my	mind	and	saw	that	indeed	these	triangles	
should	be	similar	in	general.	As	soon	as	I	got	to	the	office	I	pulled	out	my	iPad	and	
dragged	around	Q	to	empirically	check	the	similarities.	The	dragging	confirmed	my	
conjecture,	and	I	wrote	a	proof	for	my	friend	analyst.	
	
Proof	(of	Theorem	1):	
We	 assume	 that	𝑂𝑃 ⋅ 𝑂𝑃$ = 𝑟'	(where	 r	 is	 the	 radius	 of	C,	 on	which	Q	 is	 chosen),	
because	P’	is	the	inverse	of	P.	
This	 is	 equivalent	 to	𝑂𝑃$/𝑟 = 𝑟/𝑂𝑃	(as	 long	 as	 r	 is	 not	 0	 and	 P	 does	 not	 coincide	
with	O),	and	also	to	𝑂𝑃$/𝑄𝑂 = 𝑄𝑂/𝑂𝑃.	
Now,	 since	 triangles	 QOP	 and	 QOP’	 have	∠𝑄𝑂𝑃′	in	 common,	 and	 P	 and	 P'	 are	
different	points,	they	are	similar	because	of	the	last	proportion	written.		
So,	we	can	write	a	proportion	involving	the	third	sides	of	the	similar	triangles	QOP	
and	QOP’,	and	get:	
345
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,		that	is	34
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.	

This	proved	the	analyst’s	 theorem	(Theorem	1)	with	synthetic	geometry,	 including	
the	exact	constant	as	a	function	of	r	and	OP.	
	
Episode	4:	proving	collinearity	
Now	I	was	determined	 to	also	prove	 that	 the	new	construction	of	 the	 inverse	of	a	
point	that	I	had	stumbled	upon	was	indeed	a	proper	one,	so	I	worked	on	this	a	bit	
longer	and	finally	was	able	to	prove	the	property	that	I	was	heavily	using	in	it:	the	
collinearity	of	Q’,	P’	and	E	(refer	to	Fig.	5	or	Fig.	9).	
Theorem	2:		
Given	a	 circle	C	with	center	O	and	radius	r,	with	Q	a	point	of	 the	circle	and	P	any	
point,	the	points	Q’,	P’,	E	are	collinear	if	and	only	if	𝑂𝑃 ⋅ 𝑂𝑃$ = 𝑟'.	
	
Proof	(of	Theorem	2):	
	
Assuming	that	P’	is	the	inverse	of	P,	we	have	that	triangle	OQP’	is	similar	to	triangle	
OQP	(see	proof	of	Theorem	1),	so	∠𝑂𝑄𝑃$ = ∠𝑄𝑃𝑂.	
Moreover,	triangles	EP’P	and	OQP	are	similar,	because	𝑃𝐸/𝑃𝑃$ = 𝑂𝑃/𝑃𝑄	(which	I	
prove	below),	and	angle	∠QPO	is	common	to	both	triangles.	
Knowing	that	𝑂𝑃 ⋅ 𝑂𝑃$ = 𝑟',	we	can	write	𝑂𝑃' − 𝑂𝑃 ⋅ 𝑂𝑃$ = 𝑂𝑃' − 𝑟'	(change	sign	
to	the	initial	terms	and	add		𝑂𝑃'	to	both	sides).	Both	terms	now	can	be	seen	as	the	
power2	of	P	with	respect	to	C.	Substituting	𝑂𝑃 − 𝑂𝑃′	with	𝑃′𝑃,	we	get	the	following	
equality	between	products:	𝑂𝑃 ⋅ 𝑃$𝑃 = 𝑂𝑃' − 𝑟' = 𝑃𝐸 ⋅ 𝑃𝑄,	which	is	𝑃𝐸/𝑃′𝑃 =

																																																								
2	If	E	and	Q	are	points	of	intersection	of	a	line	through	P	with	circle	C,	then	the	
power	of	the	point	𝑃𝐸 ⋅ 𝑃𝑄	can	also	be	written	as	|𝑂𝑃' − 𝑟'|.	



𝑂𝑃/𝑃𝑄.	Therefore	∠𝑂𝑃$𝑄 = ∠𝑃𝑄𝑂 = ∠𝐸𝑃′𝑃,	and	by	construction	∠𝑄$𝑃′𝑂 = ∠𝑂𝑃$𝑄,	
so	∠𝑄$𝑃$𝑂 = ∠𝐸𝑃′𝑃,	which	proves	that	points	Q’,	P’	and	E	are	collinear.	
	
Vice	versa,	if	points	Q’,	P’	and	E	are	collinear,	triangles	OQP’	and	EP’P	are	similar	
because	two	of	their	angles	are	respectively	congruent:	∠𝑄𝑃$𝑂 = ∠𝑃𝑃$𝐸	and	
∠𝑃$𝑄𝑂 = ∠𝑃′𝑃𝐸,	as	we	prove	below.	
If	A	is	the	intersection	of	line	P’O	with	C,	on	the	side	opposite	to	P	(see	Fig.	9),	then	
∠𝑄𝑂𝐴 = F

'
∠𝑄𝑂𝑄$ = ∠𝑄𝐸𝑄$ = ∠𝑄𝐸𝑃′	(because	∠𝑄𝑂𝑄$	and	∠𝑄𝐸𝑄$	are	respectively	

a	central	angle	and	an	inscribed	angle	insisting	on	the	same	arc)	and	∠𝑃$𝑄𝑂 =
∠𝑄𝑂𝐴 − ∠𝑄𝑃$𝑂 = ∠𝑄𝐸𝑃$ − ∠𝑃𝑃$𝐸 = ∠𝑃′𝑃𝐸.	
	

	
caption:	A	is	the	intersection	of	line	P’O	with	C,	on	the	side	opposite	to	P;	∠𝑄𝑂𝑄$	and	
∠𝑄𝐸𝑄$	are,	respectively,	a	central	angle	and	an	inscribed	angle	insisting	on	the	same	
arc.	
	
From	the	similarity	of	triangles	OQP’	and	EP’P,	we	have,	in	particular,		

𝑂𝑃$/𝑄𝑃$ = 𝑃$𝐸/𝑃′𝑃	
which	is	
𝑂𝑃$ ⋅ 𝑃𝑃$ = 𝑄𝑃$ ⋅ 𝑃′𝐸,	and	since	𝑄𝑃$ = 𝑄′𝑃′,		
𝑂𝑃$ ⋅ 𝑃𝑃$ = 𝑄$𝑃$ ⋅ 𝑃$𝐸 = ∏ (𝑃$) =- 𝑟' − (𝑂𝑃$)'.	
Substituting	𝑃𝑃$	with	𝑃𝑂 − 𝑃′𝑂,	we	get	the	following	equality	𝑂𝑃′ ⋅ (𝑃𝑂 − 𝑃$𝑂) =
𝑟' − 𝑂𝑃′',	which	is	

𝑂𝑃′ ⋅ 𝑃𝑂 − (𝑂𝑃$)' = 𝑟' − (𝑂𝑃$)'.	
	
So	𝑂𝑃 ⋅ 𝑂𝑃$ = 𝑟',	as	we	wanted	to	prove.	
	
The	role	of	dynamic	geometry	in	the	episodes	
Studies	 have	 shown	 that	 figures	 constructed	 in	 dynamic	 geometry	 environments	
can	 be	 interpreted	 in	 fundamentally	 two	 different	 ways,	 as	 Sinclair	 and	 Robutti	
describe	(2013):	in	a	first	way,	according	to	which	the	dynamic	figure	constitutes	a	
discrete	(and	very	large)	set	of	“static”	examples	(Marrades	&	Gutierrez,	2000);	or	in	
a	 second	way,	 according	 to	which	 the	 dynamic	 figure	 is	 seen	 as	 an	 entity	 whose	
behavior	 is	 perceived	 and	 explored	 as	 a	 whole	 (Laborde,	 1992;	 Battista,	 2008).	



Indeed,	the	authors	state:	“It	is	still	unclear	whether	learners	somehow	naturally	see	
the	 draggable	 diagrams	 as	 a	 series	 of	 examples	 or	 as	 one	 continuously	 changing	
object,	and	whether	this	depends	on	their	previous	exposure	to	the	static	geometric	
discourse	of	the	typical	classroom	[…]”	(Sinclair	&	Robutti,	2013,	p.	574).	
In	my	 personal	 experience,	 I	 have	 come	 to	 “see”	 dynamic	 figures	 (even	 the	 same	
figure)	 both	 as	 very	 large	 sets	 of	 discrete	 static	 examples,	 and	 as	 a	 sort	 of	
“continuous	whole”	 to	 be	 explored	 and	 played	with.	 Of	 course	 this	way	 of	 seeing	
figures	comes	from	my	educational	experiences	with	the	software:	initially	(in	2003,	
as	 an	 undergraduate)	 I	was	 introduced	 to	 Cabri	 by	 a	mathematician,	who	 clearly	
saw	the	software	as	a	powerful	generator	of	static	examples,	so	of	course	I	took	on	
this	 perspective;	 later,	 when	 I	 studied	 dynamic	 geometry	 in	 depth	 as	 a	 graduate	
student	(see	Baccaglini-Frank	&	Mariotti,	2010),	I	also	experienced	the	power	of	the	
“continuous	whole”	interpretation.	So	now	I	find	myself	happily	switching	from	one	
way	of	interpreting	the	dynamic	figure	to	the	other,	and	back,	without	even	noticing.	
Thinking	back	to	how	I	used	(and	interpreted	feedback	from)	the	dynamic	geometry	
software	 during	 the	 episodes	 from	 my	 mathematical	 explorations	 on	 circle	
inversion,	I	noticed	that	I	jumped	back	and	forth	between	these	two	interpretations.	
	
In	Episode	1	I	used	the	software	to	generate	static	configurations	as	I	searched	for	
similar	 triangles,	 changing	 the	 figure	 only	 to	 try	 and	 notice	 examples	 or	 counter-
examples	when	I	 thought	I	had	found	similar	triangles.	However,	at	 the	end	of	 the	
episode,	 I	 perceived	 the	 dynamic	 geometry	 construction	 as	 a	 whole	 moving	
continuously:	 I	 saw	 the	 chords	 through	P’	 “collapsing”	 and	 “switching	places”	 as	 I	
dragged	Q	along	the	circle.	This	butterfly-like	motion	made	me	think	of	reflectional	
symmetry	along	the	line	through	OP,	leading	to	Conjecture	1.	
	
In	 Episode	 2	 I	 used	 the	 software	 to	 test	 Conjecture	 1,	 though	 a	 dragging	 test	
(Baccaglini-Frank	 &	 Mariotti,	 2010).	 I	 empirically	 verified	 that	 K	 “worked”	 only	
when	it	coincided	with	P’,	and	I	saw	this	during	dragging,	interpreting	the	feedback	
as	a	very	 large	number	of	different	sketches	of	which	only	one	was	a	 “good	case”.	
This	convinced	me	that	the	collinearity	of	Q’,	K	and	E	was	a	necessary	and	sufficient	
condition	for	K	to	be	P’,	the	inverse	of	P.	
	
In	Episode	3,	 I	 again	used	 the	 software	 to	perform	a	dragging	 test	 for	 the	 similar	
triangles	I	had	thought	of.	In	this	case	I	could	not	find	a	counter	example	in	the	many	
many	 examples	 generated	 through	 dragging,	 which	 confirmed	 my	 belief	 in	 the	
similarity	of	the	triangles	considered,	the	key	idea	for	the	proof	of	Theorem	1.	
	
Finally,	in	Episode	4,	I	left	a	static	figure	on	the	screen	and	worked	on	the	equations	
with	paper	and	pen,	so	the	software	played	the	role	of	simple	pen	and	paper	(with	
the	difference	that	the	figure	was	more	precise).	
	
For	the	classroom	
Generating	 conjectures	 and	 proving	 them	 are	 important	 mathematical	 habits	 of	
mind	 (Cuoco,	 Goldenberg	 &	 Mark,	 1996),	 that	 should	 be	 promoted	 in	 the	
mathematics	classroom.	Geometry	is	a	perfect	setting	to	develop	and	practice	such	



habits.	 The	 specific	 topic	 in	 this	 paper	 is	 circle	 inversion,	 which	 is	 not	 usually	
treated	 in	 high	 school	 (at	 least	 in	 Italy),	 but	 in	 undergraduate	 and	 graduate	
geometry	courses	at	some	mathematics	departments,	such	as	the	one	where	I	teach.	
The	rationale	for	teaching	circle	inversion	and	some	of	its	properties	as	part	of	the	
“synthetic	 geometry”	 topics	 is	 fostering	deeper	knowledge	of	Euclidean	geometry,	
but	also	better	understanding	how	Poincare’s	disk	model	 for	hyperbolic	geometry	
works.	Although	this	year	in	the	course	I	never	made	it	to	the	particular	findings	in	
this	paper,	I	have	constantly	asked	the	students	to	use	dynamic	geometry	as	a	tool	of	
exploration	for	generating	and	testing	conjectures,	and	searching	for	key	properties	
that	might	be	useful	in	the	proofs	of	the	conjectures.	Over	the	years	I	have	noticed	
that	undergraduate	and	graduate	students	seem	to	quickly	come	to	appreciate	the	
power	of	dynamic	geometry,	and	are	able	to	(more	or	less	spontaneously)	interpret	
dynamic	figures	 in	the	two	ways	described	above,	using	them	to	carry	out	various	
“mathematical	habits	of	mind”.	
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