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Abstract. In this contribution a brief overview of the status and recent developments of
ab-initio studies of nuclear reactions of astrophysical interest is presented.

1. Introduction

The study of nuclear reactions occurring in the cosmos are one of the primary goal of nuclear
physics. These reactions enter in a large variety of phenomena, ranging from Big Bang
Nucleosinthesis (BBN) [1], the formation and evolution of stars [2], the structure of neutron
stars [3], etc. In particular, the theoretical study of these reactions has been vigorously pursued
by many years. The “standard” starting point is to consider the nucleus as composed of nucleons
interacting via non-relativistic potentials mediated by pions and other mesons. Also with this
“simplification”, there are still several issues not completely understood, in spite of decades of
studies. Since the reactions occurring in the cosmos are driven from strong, electro-magnetic
(EM), and weak forces, it is necessary, in order to obtain accurate estimates of the reaction
rates, to take care of the following issues: i) it is necessary to well understand the nature of the
strong nucleon-nucleon (NN) and of three-nucleon (3N) interactions; ii) a consistent theory for
the interaction of nucleons with EM and weak probes (nuclear EM and weak currents) is also
required; iii) we need to develop reliable and sophisticated methods for taking into account the
nuclear structure of the nuclei entering the reactions, and their initial/final state interactions.

Usually, these issues are connected between each other. For example, EM current conservation
imposes a strict relation between the Hamiltonian H describing the strong interaction among
the nucleons and the nuclear EM current operators, entering in the matrix elements of the EM
transition. Analogous relations exist for the weak interaction [4, 5].

Traditionally in nuclear physics the nuclear forces and currents have been constructed
adopting some particular meson exchange model, usually limited to consider only one-boson
exchange contributions. This picture led to a generation of realistic NN interactions which
describe the NN data set with high precision [6, 7, 8]. Also 3N potentials and the EM and weak
current operators have been constructed from these meson exchange models [4], but the issue of
the consistency between all these quantities still remains to be clarified. Moreover, it is difficult
to assess a “theoretical uncertainties” of the results obtained employing these models, as there
is not a systematic criterion to select the contributions to be taken into account.

More recently, the advent of effective field theoretical methods and chiral perturbation theory
(χPT) started to provide a more solid basis for a construction of consistent nuclear forces and
currents [9, 10]. In the next Section, a brief overview of such a development is presented. In
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Section 3, the preliminary results of a preliminary application of this method to the calculation
of a reaction rate of astrophysical interest, namely the reaction p + d → 3He + γ, is reported.
Finally, in the last section, a brief conclusion is given.

2. Ab-initio studies of nuclear reactions of astrophysical interest

Many reactions of astrophysical interest are driven by the EM and weak interactions, as for
example the reactions p+d → 3He+γ or p+p → d+e++νe. The transition rate is usually well
calculated using first order perturbation theory with respect to the “perturbation” Hamiltonian
HI , the part of the Hamiltonian describing the interaction of nucleons with EM and weak
external probes. Consequently, it is possible to reduce the problem to the calculation of transition
matrix elements of the type 〈Ψf , Xf |HI |Ψi, Xi〉, where |Ψi〉 and |Ψf 〉 are the initial and final
nuclear states, while |Xi〉 and |Xf 〉 are the initial and final states of eventual photons and/or
leptons appearing in the reaction. The states |Ψi〉 and |Ψf 〉 have to be calculated as solutions of
H|Ψx〉 = Ex|Ψx〉, where x = i, f (Ei and Ef are energies of the initial and final nuclear states,
respectively), namely by fully taking into account the dynamics due to the strong interaction
between the nucleons and the distortion induced by the long-range Coulomb interaction between
the protons. The latter effect is clearly of paramount importance for studying reactions of
astrophysical interest, which usually take place at very low energies.

The “perturbation” HI can be written in general of the form HI =
∫
d3xFμ(x)J

μ(x), where
J μ ≡ (ρ, j) is the so-called nuclear current, consisting of operators acting on the nuclear states.
The terms Fμ(x) are field-theoretic operators describing the emission/absorption of photons,
leptons, etc. This latter part is usually well known, as these operators are derived directly from
the Standard Model (SM) EM and weak interactions. On the other hand, the operators J μ(x)
have a complicated form due to the effects of the strong force.

There are also reactions not involving the effects of the EM and weak interaction, but driven
directly by the strong force and/or the distortion due to the Coulomb interaction. The ab-initio
study of such reactions requires the direct solution of the Schroedinger equation HΨ = EΨ for
positive energies, taking into account the dynamics of all nucleons. For example, the reaction
3He + 3He → 4He + 2p involves the dynamics of six nucleons, and the transition amplitude can
be calculated solving the Schroedinger equation with appropriate boundary conditions.

In this contribution, we will concentrate on the reactions driven by either the EM or the
weak interaction. In the next subsection, a brief introduction to the χPT for the construction
of H will be reported. In Subsect. 2.2 we extend the discussion to the nuclear EM and weak
interactions entering HI . Finally, in the last subsection, some of the most accurate methods
used to solve the Schroedinger equation for a system of A nucleons will be briefly recalled.

2.1. Strong forces
Traditionally in nuclear physics the Hamiltonian has been taken in a nonrelativistic form in
which pairwise interactions between nucleons are supplemented by 3N forces for systems with
more than two nucleons.

As discussed before, in recent years, the problem of the determination of these interactions
has been tackled using an effective field theory (EFT) approach, based on the so-called chiral
symmetry. This symmetry is an approximate symmetry of Quantum Chromodynamics (QCD),
the fundamental theory that describes the interactions of quarks and gluons—the symmetry
becomes exact in the limit of vanishing quark masses. At the nuclear level, where the nucleons
and pions are the relevant degrees of freedom, this symmetry plays a main role in constraining
the forces between nucleons, as well as the interaction of the nucleons with other SM particles
as leptons, photons, etc.

In this approach, one starts from the most general Lagrangian describing pions and nucleons
which takes into account the (approximate) chiral symmetry of QCD. In particular, chiral
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symmetry requires that the pion couple to these baryons, as well as to other pions, by powers
of its momentum Q and, as a consequence, the Lagrangian describing their interactions can
be expanded in powers of Q/Λχ, where Λχ ∼ 1 GeV is the chiral symmetry breaking scale.
Classes of Lagrangians emerge, each characterized by a given power of Q/Λχ, or equivalently a
given order in the derivatives of the pion field and/or pion mass factors, and each containing a
certain number of unknown parameters, the so called low-energy constants (LECs), which, in
practice, are fixed by comparison with experimental data. The central point of this approach is
the definition of a power counting scheme which permits a systematic truncation of the possible
contributions to the interaction (the so-called χPT).

The NN potentials most widely used in the literature are those of Refs. [11] and [12], and
they are developed to the next-to-next-to-next-to-leading-order (N3LO) in the chiral expansion.
Very recently, the potential at one additional order (N4LO) has been constructed [13, 14]. The
convergence of this chiral expansion, at least for the NN system, seems to be now well established,
as follows by comparing the predictions of the N3LO and N4LO NN forces [13].

In order to be used in the Schroedinger equation these potentials have to be regularized
for large relative momenta k (or conversely for small interparticle distances). This is usually
performed by multiplying them by a cutoff function, depending on a cutoff parameter Λ, so
that for k � Λ the potentials vanish. This procedure is somewhat arbitrary, and each group
has chosen different method of regularization. The dependence of the results on Λ has been
often used to establish the “theoretical uncertainty” of the calculation. In fact, it is expected
that, at convergence of the expansion over Q/Λχ, the results should be independent by the high-
energy behavior of the potential, namely by the precise value adopted for the cutoff parameter
Λ. Therefore, by varying Λ (within a reasonable range of values), one should have information
about the accuracy of the theoretical calculation, in particular that one due to the truncation
of the χPT series. To be noticed that more accurate methods of extracting the theoretical
uncertainty of the calculations based on χPT have been recently proposed [13, 15].

In their current form, these potentials contains 27 parameters (coming from the unknown
LECs). These parameters have been fitted to the NN database, with a χ2 very close to 1.
Therefore, these chiral potentials have reached an accuracy comparable to those achieved for
the traditional NN potentials.

New mechanisms for the 3N force have also been proposed using the chiral approach. The
3N force appears at N2LO and contains two additional LECs [16, 17, 18]. The development of
a 3N force at N3LO and N4LO is currently under way [19].

2.2. Nuclear currents
Also the development of the theory of the nuclear current operators J μ was the object of
extensive studies. In general, they can be written as sums of one-, two-, and many-body terms
that operate on the nucleon degrees of freedom, namely

ρ(q) =
∑

i

ρi(q) +
∑

i<j

ρij(q) + . . . , j(q) =
∑

i

ji(q) +
∑

i<j

jij(q) + . . . . (1)

Above q is the three-momentum transfer to the nuclear system in the transition.
As stated before, the EM current operator must satisfy the current conservation relation

(CCR) q · jEM (q) = [H, ρEM (q)]. Therefore, the CCR imposes rather strict constraints on
these EM nuclear currents. The weak current, on the other hand, can be divided in a vector and
an axial component. The vector part, from the vector current conservation hypothesis, is directly
related to the isovector part of the EM current, and therefore it is in practice constrained by
the same CCR given above. The axial current verifies a similar relation in the limit of vanishing
pion mass (partially conserved axial current hypothesis), and this also imposes strict constraints
on the form of this part [5].
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In recent years, the development of the nuclear currents has been brought forth systematically
using the EFT approach, both for the EM current [20, 21, 22] and the weak current [23, 24].
In this approach, the EM and weak currents can be obtained directly starting from the same
Lagrangian used to construct the nuclear forces. The currents constructed in this way verify the
CCR automatically order by order in the χPT with the corresponding nuclear forces. Also in
the construction of the nuclear currents one has to apply cutoff functions in order to regularize
them for large relative momenta. An application of the EFT currents to an EM reaction of
astrophysical interest is described in Section 3.

2.3. Calculation of the wave functions
Another important aspect for the determination of a reaction rate is the computation of
numerically accurate nuclear wave functions. They are obtained as solutions of the associated
quantum mechanical problem

HΨ(1, 2, . . . , A) = EΨ(1, 2, . . . , A) , (2)

where H is a nuclear Hamiltonian. In this section, we will limit ourselves to mainly recalling
some of the most used techniques. In the Faddeev Equation (FE) approach [25, 26, 27, 28],
Eq. (2) is transformed to a set of coupled equations for the Faddeev amplitudes, which are then
solved directly (in momentum or coordinate space) after a partial wave expansion.

The Urbana-Argonne group has in recent years developed [29, 30] the Green’s Function Monte
Carlo (GFMC) method, which has been successfully applied to calculate the spectra of nuclei
up to A = 12. This techniques consists in the computation of exp(−τH)Φ(1, 2, . . . , A), where
Φ(1, 2, . . . , A) is a trial wave function, using a stochastic procedure to obtain, in the limit of
large τ , the exact ground state wave function Ψ [29, 30].

The Stochastic Variational Method (SVM) [31] and the Coupled Rearrangement Channel
Gaussian method (CRCG) [32] provide a variational solution of Eq. (2) by expanding the
(radial part of the) wave function in Gaussians. Another widely applied variational method
is the expansion of the wave function in terms of the Hyperspherical Harmonic (HH) basis [33].

In the no-core shell model (NCSM) method [34, 35] the calculations are performed using
a (translationally-invariant) harmonic-oscillator finite basis P and introducing an effective P -
dependent Hamiltonian HP to replace H in Eq. (2). The operator HP is constructed so that
the solution of the equation HPΨ(P ) = EPΨ(P ) provides eigenvalues which quickly converge
to the exact ones as P is enlarged. The effective interaction hyperspherical harmonic (EIHH)
method [36, 37] is based on a similar idea, but the finite basis P is constructed in terms of the
HH functions.

In many reaction of astrophysical interest, either the initial or the final wave function
corresponds to a scattering state. So far, only the FE and HH methods have been extended to
find accurate solutions of Schroedinger equation in the continuum [25, 33]. Recently, also the
NCSM has been generalized to treat scattering states using the resonating group method [38].

3. Proton radiative capture on deuterons

The radiative capture p+d → 3He+γ is a relevant process in many astrophysical environments.
For instance, it is the second step in the chain of nuclear reactions which, starting from the
proton-proton weak capture, allows to stars like our Sun to shine via pp-chain. Interest in this
reaction is also present in the context of BBN [1], since it is one of the main processes through
which deuterium can be destroyed and thus affects its eventual yield.

The calculation reported in this Section has been performed as follows. The nuclear
Hamiltonian H includes the non-relativistic kinetic energy, the chiral NN potential at N3LO
of Ref. [12], the chiral 3N potential at N2LO [18], and the point-Coulomb interaction between
the protons.
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The “perturbation” Hamiltonian describing the EM interaction of nucleons with photons has
been constructed using the chiral technique as well, as described in Ref. [20]. Although both
operators in H and HI have been determined using the same χPT technique, some details of
the construction are not consistent, In particular, the chiral order of the NN force and the EM
currents is not consistent, the EM currents do not include a three body term (necessary to verify
the CCR with the 3N force), and the cutoff functions used for the NN force and the current are
not the same. Consequently, the EM nuclear currents used do not exactly verify CCR. Work is
in progress to solve this problem.

The present calculation has been performed by using two values of the cutoff parameter Λ
(= 500 and 600 MeV) in order to have a hint of the theoretical uncertainty related to the
truncation of the chiral expansion.

The initial and final wave functions have been calculated using the HH method, as described
in detail in Refs. [33, 39]. The initial wave function is that one of the p + d scattering, while
the final wave function is that of the 3He bound state. The theoretical uncertainties arising
from the solution of the corresponding Schoredinger equations are very small and can be safely
neglected [39].

The preliminary astrophysical S-factor obtained in this way has been reported in Fig. 1,
where it is compared with the recent calculation of Ref. [40] performed using the traditional
approach, as well as with the existing data of Refs. [41, 42, 44, 43]. The results are presented as
a band corresponding to the two selected values of cutoff parameter Λ. The width of the band
is rather small, suggesting that the theoretical error due to the truncation of the χPT is tiny
for this process.
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Figure 1. (Color online) Astrophysical S-factor of the reaction p + d → 3He + γ, plotted as
function of the center-of-mass kinetic energy E of the p+d initial state. The preliminary results
obtained using χPT as described in the text are given as the orange band. These results are
compared with the available experimental data of Refs. [41, 42, 44, 43] and the calculation of
Ref. [40] (solid black line).

The present results are in good agreement with the previous calculation and the LUNA data
at low energies. Above E = 50 keV, the calculated theoretical S-factor is slightly larger than
the available experimental data and that of Ref. [40]. Work is in progress to upgrade this χPT
calculation.

8th European Summer School on Experimental Nuclear Astrophysics (Santa Tecla School) IOP Publishing
Journal of Physics: Conference Series 703 (2016) 012013 doi:10.1088/1742-6596/703/1/012013

5



4. Conclusions

In recent years, there have been important developments in the construction of the nuclear
forces and currents, and in the implementations of techniques for accurately solving (at least for
few-nucleon systems) the Schroedinger equation even in presence of complicate NN and 3N force
components. In particular, the advent of EFT method, strongly rooted on QCD, now provides
a solid basis for the construction of consistent nuclear forces and currents. All these advances
should in a near future allow for accurate studies of many reactions of astrophysical interest.
Here we have presented only a preliminary study of one of them.
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