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Abstract—This paper describes the hardware implementation
of a model-based State-of-Charge (SoC) estimation algorithm
for Lithium-ion batteries. SoC estimation is essential to evaluate
the remaining runtime of the battery, as well as to enhance its
safety and life expectancy. Model-based SoC estimation is a good
solution to the problem, but only offline tests have been presented
so far. In this work, the SoC estimation algorithm is implemented
on an FPGA device, following an innovative and automatic
development flow, which starts from a MATLAB/Simulink model
of the algorithm. The SoC estimation hardware block is combined
with a soft-core processor to form a System on a Programmable
Chip. Experimental results obtained exerting the battery with a
current profile that simulates its operation in an electric vehicle
are presented and discussed.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries are becoming an attractive

choice for energy storage in many industrial fields, such

as electric transportation and utility grids [1]. The Li-ion

batteries based on a Nickel Manganese Cobalt (NMC) cathode

provide higher energy and power densities if compared to

other variants making them particularly suitable for electric

vehicles (EVs), at the expense of a higher initial cost and

greater fragility. These batteries are always provided with a

Battery Management System (BMS). A fundamental function

of a BMS with advanced features is State-of-Charge (SoC)

estimation [2], [3].

SoC indicates the residual charge of the battery and is

usually expressed as a percentage of the battery capacity. SoC

knowledge makes it possible to maintain the battery inside

the operating condition optimal range and to evaluate the

runtime of the system powered by the battery (e.g., the residual

driving range of an EV). The simplest approach to estimate

the SoC is considering the battery an ideal charge reservoir

(i.e., a capacitor). In this way, the charge stored in the battery

can be tracked by integrating the current flowing in or out

of the battery (Coulomb Counting method). This approach,

however, is very sensitive to measurement errors. Particularly,

any offset of the current sensor may lead to large SoC errors

over time, because of the current integration. In addition,

Coulomb Counting does not account for the non unitary charge

efficiency of the battery and requires to be initialized with the

correct initial SoC value.

Another simple method to estimate the SoC is to make use

of the relationship between the SoC and the Open Circuit

Voltage (OCV). The SoC-OCV relationship is indeed almost

invariant in a wide operating temperature range and with bat-

tery aging [4]. Unfortunately, the OCV measurement requires

the battery to be in the steady state, a condition that is reached

only after a long time (often many minutes or even hours)

with no load current. Thus, this approach is not suited for

real time SoC estimation, when the battery is continuously

charged or discharged at high currents, as it happens in an

EV. Model-based algorithms (such as Extended Kalman and

Particle filters [5]–[7] and the Mix algorithm [8], [9]) have

been introduced to take into account the battery dynamics

and proved to be suitable for online SoC estimation in an

EV. However, almost all the works in this field have been

carried out with lab experiments, by measuring the voltage

and current of the battery under test with dedicated equipment

and then by processing the acquired data offline with software

environments such as MATLAB/Simulink or LabVIEW.

The aim of this work is to report on the preliminary

implementation of an enhanced version of the SoC estimation

Mix algorithm on a standalone platform consisting of a Field

Programmable Gate Array (FPGA)-based board. Thanks to

the intrinsic hardware parallelism and the deterministic “ex-

ecution” of concurrent tasks, an FPGA is a viable solution

for the implementation of SoC estimation of an EV battery

consisting of many series-connected cells. In fact, SoC can

vary from cell to cell because of the differences in the cell

characteristics. Thus, SoC estimation at cell level rather than

at battery level is desirable for an accurate evaluation of the

battery runtime and charge balancing of the battery cells. The

hardware block that implements the SoC estimation can also

be combined with a processor inside the same FPGA, creating

a System on a Programmable Chip (SoPC) that provides an

effective platform for the realization of a BMS with advanced

functions.

This paper is organized as follows. Section II presents the

Mix algorithm for SoC estimation and the cell model used in

the algorithm. The FPGA implementation of the algorithm is

discussed in the next Section. Experimental results are then

described in Section IV before drawing some conclusions.

II. MODEL-BASED SOC ESTIMATION

The basic idea underlying a model-based SoC estimation

algorithm is to use a cell model in which SoC is one of the

state variables that can be estimated by an observer, as it is

shown in Fig. 1. The crucial element of this approach is the
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Figure 1. Schematic representation of a model-based SoC estimation algo-
rithm.

Figure 2. Equivalent electrical model with one R-C group to model the cell
relaxation phenomenon.

cell model, which must be capable of accurately reproducing

the cell behavior in a wide range of its operating conditions.

A. Cell Model

Equivalent electrical models maintain a connection to the

physical behavior of the battery, while keeping the computa-

tional complexity affordable, if compared to purely mathemat-

ical or electrochemical models [10]. Fig. 2 shows a possible

representation of an electrical equivalent model, which consists

of two sections. On the left-hand side, a linear capacitor

accumulates the charges flowing in or out of the battery. The

numerical value of its capacitance Cn is equal to the cell

capacity (expressed in Coulomb) divided by 1V. SoC is thus

the numerical value of the voltage on the capacitor. On the

right-hand side, the model output voltage vM is obtained as

the sum of three terms (with the appropriate signs): the open

circuit voltage VOC, a purely resistive voltage R0iL (where

iL is the cell current, as shown in Fig. 2), and a relaxation

voltage vRC1
(with time constant τ1 = R1C1).

This model is capable of faithfully reproducing the dynamic

cell behavior assuming that the model parameters are properly

identified for the specific cell in the full range of the operating

conditions, i.e., SOC, temperature and load current of the cell

[11]. In fact, the model parameters significantly vary with the

operating condition. Figure 3 shows the SoC-OCV curve and

the model parameter measured on a 1.5A h NMC cell, using

pulsed current tests [11], [12]. Specifically, each charge or

discharge current pulse has 1.5A amplitude (or equivalently

1C−rate) and 3min duration, thus determining a 5% variation

of the cell SoC. The tests were performed at room temperature.

B. Mix Algorithm

The Mix algorithm is a simple implementation, compared

to Extended Kalman filters, of a model-based SoC estimation

method. Its block diagram is shown in Fig. 4. The light blue
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Figure 3. SoC-OCV curve and model parameters measured on a 1.5A h
NMC cell at room temperature.

Figure 4. Block diagram of the Mix algorithm.

box encloses the cell model [i.e., the electric model shown in

Fig. 2, in which the VOC generator is replaced by an OCV-SoC

Look-Up Table (LUT)]. The orange box contains the block

comparing the model output vM and the measured cell voltage

vT. The generated error signal is amplified by the observer

gain L and subtracted to the measured cell current iL. The

resulting current signal is then integrated over time to produce

SoC as in the conventional Coulomb Counting method.

Consequently, the Mix algorithm can be seen as the en-

hancement of the Coulomb Counting method by adding the

SoC estimation through OCV, where the latter is dynamically

obtained from the cell equivalent model. Thanks to the feed-

back loop, the sensitivity to uncertainties over the SoC initial

value and current measurements (mainly the drifting offset of

the current sensor) affecting the Coulomb Counting method

can be reduced [8]. However, such a valuable result relies on



Table I
ERROR RESPONSE TO DIFFERENT ERROR SOURCES

Error source Error response E(s) Steady-state Error

SoCerr
CnSoCerr

Cns+Lα1
0

V err
Verr

s

L

Cns+Lα1

Verr

α1

Ierr
Ierr

s

LZ(s)−1
Cns+Lα1

Ierr
L(R0+R1)−1

Lα1

the capability of the model to reproduce the cell behavior in an

accurate way. This is shown in [9], where the model parame-

ters variation with the cell operating conditions, namely SoC,

temperature and current, is considered with 3-Dimensional

LUTs. Unfortunately, using LUTs has disadvantages. In fact,

these LUTs are determined with time-consuming offline tests

(as those used to extract the parameters shown in Fig. 3). The

tests should be repeated for any cell of the battery to account

for variations in cell manufacturing. Furthermore, constant

value LUTs cannot model the variation of the parameters with

battery aging.

An attractive alternative to the use of LUTs or fitting

functions to model parameter variations is to implement the

cell model with constant parameters and then update their

values in real-time by means of a Parameter Identification

method (see Fig. 4) [13]–[15]. Thus, the hardware realization

of this approach consists of the implementation of the Mix

algorithm, with constant values of the cell model parameters,

and the Parameter Identification block. The following sections

describe the implementation in a low-cost FPGA-based board

and the related testing of the Mix algorithm with constant

values of the cell model parameters. Before moving on to the

FPGA design, let us briefly discuss the choice of the observer

gain L.

C. Choice of the Observer Gain L

The observer gain L shown in Fig. 4 can be calculated fol-

lowing the procedure described by Codeca et al. in [16], which

is based on the linearization of the OCV-SoC relationship (i.e.,

VOC = α1SoC + α0), and the evaluation of the system step

response E(s) in the Laplace domain with respect to different

error sources, such as a bad SoC initialization value SoCerr, an

error in the cell voltage and current measurements, V err and

Ierr, respectively. The steady-state value of the SoC errors

caused by the different error sources is obtained from E(s)

using the final value theorem. This is shown in Table I, where

Z(s) = R0 +
R1

1+R1C1s
is the small-signal output impedance

of the linearized cell model of Fig. 2.

It is worth noting that the Mix algorithm is capable of

fully correcting a bad SoC initialization independently of L.

In contrast, an error in the cell voltage measurement (or

equivalently in the output of the cell model) leads to a non-zero

steady-state error, which is independent of L being inversely

proportional to the slope α1 of the OCV-SoC curve in the SoC

operating point. Finally, the SoC steady-state error due to a

Figure 5. Block diagram of the System on a Programmable Chip (SoPC)
implemented in the FPGA device.

static offset in the cell current measurement can be cancelled

with an appropriate choice Lopt of the gain.

Lopt =
1

R0 +R1

(1)

According to (1), Lopt is determined by the value of the

resistive components of the cell model and thus is not constant

but varies when new values of the model parameters are

identified.

III. FPGA IMPLEMENTATION

FPGA devices provide the valuable support for a hard-

ware/software partitioning of the BMS functions, when com-

pared to discrete microcontrollers or digital signal processors

(DSPs). Specifically, more computationally-intensive tasks,

such as SoC estimation and parameter identification, can be

implemented by dedicated hardware blocks that exploit the

power of customized logic. These blocks can be combined

with an embedded processor core that can either be integrated

(hard-core) in the FPGA device or hardware programmed us-

ing the programmable logic resources (soft-core). In this way,

rather complex SoC estimation algorithms can be implemented

with very optimized hardware modules acting as co-processors

of the embedded CPU. The processor is thus released from

heavy computation loads and can reliably perform the other

BMS functions, such as battery monitoring, battery protection,

communicating with other systems, etc.

Figure 5 shows the architecture of the SoPC programmed

in an Altera Cyclone IV family FPGA. The SoC Estimation

module implements the Mix algorithm described in the previ-

ous section. The tabular values of the OCV-SoC relationship

are stored in an on-chip ROM (OCV-SoC LUT), whereas the

cell model parameters R0, R1 and C1 are generated by the

Parameter Identification block. This block simply provides a

constant value for each parameter in this paper. It will be

replaced by the full complex identification function in future

developments. The constant parameter values are computed by

averaging the values measured in the entire SoC range. The

OCV-SoC LUT contains 100 OCV values (1% SoC resolu-

tion) obtained by averaging and interpolating the measured

charge/discharge OCV values. The used values for OCV, R0,

R1, and C1 are the mean curves in Fig. 3.



The modules composing the SoPC communicate to each

other with standard memory-mapped interfaces connected by

means of the Interconnect infrastructure as shown in Fig. 5.

In this way, the values of the cell voltage and current acquired

by the ADC Interface are available to the SoC Estimation, the

Parameter Identification, and the Soft Core Processor blocks.

The latter is the economy variant of the Altera Nios II core.

As the aim of this work is to implement and validate the Mix

algorithm, the processor functions are basically configuring

and supervising the various hardware modules. It also commu-

nicates to a host PC via the UART Interface for configuration

and data logging purposes. The Ext. Mem. Interface is used

to connect to an SDRAM external memory.

An important aspect of the applied FPGA design flow is

the automatic generation of the hardware description (HDL

code) of the SoC Estimation block carried out with the Altera

DSP Builder tool, starting from a Simulink model of the

algorithm. Calculations are performed using single-precision

floating-point arithmetic. Then, the generated HDL code has

been provided with a standard interface and used as custom

component of the SoPC system. As all the components have

standard interfaces, the SoPC system can easily be composed

with the Altera Qsys tool, which automatically generates the

HDL files related to the used components and their intercon-

nections. Finally, the HDL description is synthesized using

the Altera Quartus II tool and the conventional FPGA back-

end flow. This approach significantly speeds up the hardware

implementation of an algorithm, as the latter can be developed

using a high level tool such as Simulink, from which the FPGA

programming bitstream can be obtained with automatic steps.

In this way, it is possible to take advantage of the hardware

parallelism provided by FPGAs, without the need of time-

consuming efforts to manually translate an algorithm into an

HDL code.

IV. VALIDATION

A. Experimental test-bed

The above described SoPC system has been programmed in

an Altera Cyclone IV EP4CE22 FPGA device mounted on a

low-cost development board (Terasic DE0-Nano), which also

includes an 8-channel 12-bit A/D converter. Two channels of

the ADC are used to acquire the voltage and the current of

the Lithium-ion cell under test, a 1.5A h NMC cell (Kokam

SLPB723870H4), which was preliminary characterized by

performing pulsed current tests as described in Section II-A.

The cell current is sensed by an off-the-shelf Hall sensor

(DHAB s/25), commonly used in automotive applications. To

increase its sensitivity and make it suitable for the used 1.5A h

cell, ten windings of the conductor carrying the cell current

have been sensed. The sampling rate of the SoC Estimation

block inputs is set to 10Hz, while the system clock frequency

is 50MHz (all the SoPC blocks are synchronous with the

system clock).

The current flowing in or out the cell is imposed by a highly

accurate source-meter unit (Keithley SMU 2420), which is

controlled by a LabVIEW application running on a PC. The

Figure 6. Photograph of the experimental test-bed.

cell current measured by the source-meter is integrated over

time and the resulting SoC is used as the reference value

to which compare the SoC calculated by the implemented

estimation algorithm. Figure 6 shows a photograph of the

experimental test-bed. The DE0-nano board is also connected

to the PC via an UART link, so that the cell voltage and

current values acquired by the ADC, as well as the output of

the SoC Estimation block, are available to the PC. In this way,

it is possible to compare the estimated SoC with the reference

one. Further, we can use the logged voltage and current values

as input of the Simulink model and verify that it produces the

same SoC value as that generated in the FPGA.

B. Test Current Profile

A crucial aspect in evaluating the performance of a SoC

estimation algorithm is to exert the battery with a current

profile relevant for the target application of the BMS. For

this purpose, we considered the Urban Dynamometer Driving

Schedule (UDDS) [17], i.e., the speed profile defined by the

U.S. Environmental Protection Agency that simulates a urban

route of 12.07 km with frequent stops. Given the speed profile

of the EV, we computed the current flowing in or out the

battery using a simple model of the vehicle, as described

in [14]. As the battery under test is a small size unit, the

UDDS derived current profile has been expressed in C-rate

of the battery, so that the current values are properly scaled

to the battery size available. Another simplification of the

experiment comes from the Keithley 2420 source-meter that

does not allow continuous changes of the current as the

calculated profile would require. The highly variable Simulated

current profile has been Simplified into a step-wise profile by

averaging the current values in 30 s windows, so that it can

be generated by the source-meter. The UDDS speed profile

and the Simulated and Simplified current profiled (expressed

in C-rate) are shown in Fig. 7.

C. Experimental Results

As each UDDS cycle determines approximately a 7.5%

variation of the SoC, 12 consecutive UDDS cycles are per-
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Figure 7. UDDS speed and battery current profiles expressed in C-rate.
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Figure 8. Signals logged during the test with 12 consecutive UDDS cycles.

formed to span the SoC range from 100% to 10%. Each test

starts after a full charge of the cell. Figure 8 shows the result

of applying 12 consecutive UDDS simplified cycles to the cell.

Specifically, the upper plots show the cell current and voltage,

as acquired by the FPGA, while the bottom plot compares

the estimated SoC from the FPGA system with the reference

one calculated from the source-meter data. We note that the

estimated SoC is in good accordance with the reference one.

Indeed, the SoC rms error is 5%, as reported in Table II. In

more detail, the absolute SoC error is below 5% except in the

SoC interval 50% to 20%, where the absolute error goes up to

11.5%. This behavior can be ascribed to the slope of OCV-

SoC curve that is very low in the 25% to 50% SoC range

(see Fig. 3). In fact, the error in SoC estimation caused by

errors in the cell voltage measurement or in the model output

is inversely proportional to the slope of the OCV-SoC curve

(see Table I).

To further investigate this phenomenon, we performed an-

other test in which the UDDS cycles are separated by 1 h
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Figure 9. Signals logged during the test with 12 consecutive UDDS cycles
separated by 1 h pauses.

pauses in which the cell current is zero. As shown in Fig. 9,

the SoC estimation error decreases during the pauses leading

to lower rms and maximum SoC error values compared to

those obtained in the test without pauses (see Table II). This

implies that the SoC error is mainly caused by a dynamic

error of the cell model output. As we used a constant value

for the cell model parameters, the capability of the model to

accurately reproduce the dynamic behavior of the cell voltage

is reduced. Such a voltage error is highly emphasized in the

SoC region with the lowest value of the OCV-SoC curve slope.

Thus, we are confident that the performance of the online

implementation of the Mix algorithm could be improved by the

online identification of the cell model parameters. However,

as shown in Fig. 9, there is also a residual static error, which

is related to the static error of the cell model caused by the

fact that the OCV LUT is filled with the mean value of the

charge/discharge OCV values. In fact, even if in NMC cell

the hysteresis is not pronounced as in other Li-ion batteries

[18], the charge curve lies slightly above the discharge one.

Consequently, the output of the cell model during discharge

overestimates the OCV during discharge, which causes the

Mix algorithm to underestimates the SoC especially when the

slope of the OCV-SoC curve is low.

Finally, we repeated the test with 12 consecutive UDDS

cycles after introducing a 100mA offset in the current sensor.

Figure 10 shows that the SoC estimated by the Mix algorithm

in presence of an offset is very similar (see also Table II) to

that achieved without offset (i.e., when the intrinsic offset of

the used Hall sensor is zeroed before starting the test). This

experiment proves the expected capability of the algorithm

to cancel the current offset effects. Instead, we note that the

introduced offset causes the conventional Coulomb Counting

method (CC in Fig. 10) to produce very unreliable results.
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Table II
SOC ERRORS IN THE DIFFERENT TESTS

Test rms error Max error

12x UDDS cycles 5.0 % 11.5 %

12x UDDS cycles w/pause 3.1 % 9.4 %

12x UDDS cycles w/ current offset 5.6 % 12.8 %

V. CONCLUSIONS

The FPGA implementation of a model-based SoC esti-

mation algorithm, specifically the Mix algorithm, has been

described in this paper. The SoC estimation algorithm has been

translated into a hardware block starting from its Simulink

model applying a tool for automatic hardware description

language (HDL) code generation, thus speeding up the devel-

opment process. The SoC estimation block is combined with

a soft-core processor to potentially realize a battery manage-

ment system (BMS) with advanced estimation functions as

System on a Programmable Chip (SoPC). The SoC estimation

hardware block can be used in time-multiplexing to perform

the SoC estimation of multiple cells of a battery, being the

sampling frequency of the SoC estimation inputs much lower

than the system clock frequency.

The SoPC has been fitted on an Altera Cyclone IV FPGA

device mounted on a low-cost development board, and sub-

jected to several tests to verify the performance of the SoC

estimation algorithm. First, the results obtained by the hard-

ware block overlap the output of the Simulink model when

it is fed with the same cell voltage and current signals, as

acquired by the FPGA. Second, the performances achieved by

the embedded system implementation of the Mix algorithm are

encouraging and comparable with those obtained in previous

works, when SoC estimation was performed offline on a PC.

This time the SoC estimation is running on an FPGA and its

inputs are acquired by off-the-shelf sensors. Future work will

be the implementation of the parameter identification hardware

block, which can improve the accuracy of SoC estimation by

updating the cell model parameters in real time, with the final

aim of obtaining a low-cost portable BMS for Lithium-ion

batteries with advanced functions.
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