
AN EXAMPLE OF AN INFINITE STEINER TREE

CONNECTING AN UNCOUNTABLE SET

EMANUELE PAOLINI, EUGENE STEPANOV, AND YANA TEPLITSKAYA

Abstract. We construct an example of a Steiner tree with an infinite number
of branching points connecting an uncountable set of points. Such a tree is
proven to be the unique solution to a Steiner problem for the given set of
points. As a byproduct we get the whole family of explicitly defined finite
Steiner trees, which are unique connected solutions of the Steiner problem for
some given finite sets of points, and with growing complexity (i.e. the number
of branching points).

1. Introduction

In this paper we construct an explicit and rather natural example of an infinite
tree connecting some “fractal” set of points (in fact, homeomorphic to a Cantor set,
and in particular compact, uncountable and totally disconnected) in the optimal
way in the sense that it solves the Steiner problem for this set of points. The Steiner
problem which has various different but more or less equivalent formulations, is that
of finding a set S with minimal length (one dimensional Hausdorff measure H1) such
that S ∪ A is connected, where A is a given compact subset of a given complete
metric space X . Namely, defined

St(A) := {S ⊂ X : S ∪ A is connected},
one has to find an element of St(A) with minimal length H

1. This problem appeared
in the work of V. Jarńık and O. Kössler of 1934, but actually became famous
later, after having been cited in the book of R. Courant and H. Robbins “What
is Mathematics?” where it has been linked to the name of J. Steiner. Usually
it is stated in the case when the ambient space X is the Euclidean space R

n (or
even the Euclidean plane R

2), the set A (interpreted, say, as the set of cities to be
connected by roads) is finite, while the solutions (interpreted in this case as the sets
of roads connecting the given cities in the optimal way) are required a priori to be
the finite sets of line segments (for the case when A is the set of three points in
the plane, this is nothing but the famous problem posed by P. Fermat already in
the seventeenth century). Even in such a formally restricted setting this problem
is subject of active study until nowadays, and presents still a lot of open problems
(for the extremely extensive literature on the subject see, for instance [2, 1] and
references therein). The general setting of this problem as stated above (i.e. with X
generic metric space, A not necessarily finite, and without any a priori restriction
on the class of minimizers) has been recently studied in [5], in which under rather
mild assumptions on the ambient space X (which anyhow are true in the Euclidean
space setting) it is shown that every solution S having finite length H

1(S) < +∞
has the following properties:

• S ∪ A is compact;

The work of the second and third authors has been sponsored by the St.Petersburg State
University grants #6.38.670.2013 and #6.38.223.2014 and by the Russian government grant NSh-
1771.2014.1. The work of the second author was also partially financed by GNAMPA, by RFBR
grant #14-01-00534 and by the project 2010A2TFX2 “Calcolo delle variazioni” of the Italian
Ministry of Research.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80271938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EMANUELE PAOLINI, EUGENE STEPANOV, AND YANA TEPLITSKAYA

• S \A has at most countably many connected components, and each of the
latter has strictly positive length;

• S̄ contains no loops (homeomorphic images of S1);
• the closure of every connected component of S is a topological tree (a con-

nected, locally connected compact set without loops) with endpoints on A
(so that in particular it has at most countable number of branching points),
and with at most one endpoint on each connected component of A and
all the branching points having finite order (i.e. finite number of branches
leaving them);

• if A has a finite number of connected components, then S \ A has finitely
many connected components, the closure of each of which is a finite geodesic
embedded graph with endpoints on A, and with at most one endpoint on
each connected component of A;

• for every open set U ⊂ X such that A ⊂ U one has that the set S̄ := S \U
is a subset of a finite geodesic embedded graph. Moreover, for a.e. ε > 0 one
has that for U = {x : dist (x,A) < ε} the set S̄ is a finite geodesic embedded
graph (in particular, it has a finite number of connected components and a
finite number of branching points).

Thus, if S is a solution to the Steiner problem for the given set A, then Σ := S ∪A
also does not containing loops, unless of course A itself contains loops. In this case
Σ is usually called Steiner tree, and, further, it is called indecomposable, when Σ\A
is connected. It is worth mentioning that rather few explicit examples of solutions
to the Steiner problem are known, and the known examples are mainly limited to
the case when A is a finite set. In fact, while some necessary conditions for a given
set to be optimal are quite easy to obtain, it is usually quite hard to prove that
the given set is optimal, and even harder to prove the uniqueness of the Steiner
set (in fact, in general the solutions may be non unique, as can be easily seen on
the example when A is the set of vertices of a square). A promising method to
deal with such problems has been proposed in [4]: although this method is not
universal, sometimes it allows to prove the optimality of the concrete set. In this
paper we provide an explicit example of a unique solution S∞ to a Steiner problem
for some given set of points A∞ ⊂ R

2 of “fractal” type. The set S∞ is connected
and disjoint from A∞, and thus Σ∞ := S∞ ⊔ A∞ is an indecomposable Steiner
tree with infinitely many branching points (joined by countably many line segments
meeting with equal angles of 2π/3). As a byproduct we get the whole family of
explicitly defined unique connected solutions of the Steiner problem for some given
finite sets of points which are finite binary trees (it is customarily to say that these
Steiner trees have full topology [2]), and with growing complexity (i.e. the number
of branching points). Note also that the existence of a (finite) Steiner tree in the
plane with arbitrary (but finitely) many branching points follows from the abstract
result from [2].

The set A∞ consists of the root and uncountably many leafs of the tree. No seg-
ment of S∞ touches the leafs, while every leaf is an accumulation point of segments
of S∞. The infinite tree Σ∞ is composed by a trunk of some length ℓ which splits
into two branches of length λ1ℓ both of which split further into two branches of
length λ1λ2ℓ and so on. Our proof requires that the sequence {λj} vanish rather
quickly (in fact, al least be summable). It is an open question if in the case of a
constant sequence λj = λ (with λ > 0 small enough) the same construction still
provides a Steiner tree. This seems to be quite interesting since the resulting tree
would be, in that case, a self-similar fractal.
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2. Notation

For a subset D ⊂ E of a metric space E we denote by D̄ and ∂D its closure and
its topological boundary respectively, and by H

k(D) its k-dimensional Hausdorff
measure, we set dist (x,D) := inf{d(x, y) : y ∈ D} whenever x ∈ E, and denote
by (D)ε := {x ∈ E : dist (x,D) < ε} its ε-neighborhood. By Br(x) we denote the
open ball of radius r with center x ∈ E. The Euclidean norm in R

n is denoted by
| · |.

For points A, B in the plane we let (AB), [AB] and [AB) (or (BA]) stands for the
respective line, line segment and the ray with endpoint A, while |AB| := |A − B|.
By ∠(a, b) we denote the angle between the two rays a and b (or between the ray
and the line, depending on the context). By △ABC we denote the triangle with
vertices A, B and C, and by ∠ABC the angle at the vertex B. The notation for
the angles and for their measure is the same.

3. Construction

For the sake of brevity we introduce the notation

M(A) := {S ∈ St(A) : H1(S) ≤ H
1(S′) for every S′ ∈ St(A)},

for the set of solutions of the Steiner problem. Set also S(A) := H
1(S), where

S ∈ M(A).
We call Fermat point of the triangle △ABC the point minimizing the sum of

distances from the three vertices of the triangle. Such a point is well-known to be
unique and will be denoted by F (A,B,C). When all the angles of the triangle do
not exceed 2π/3, the Fermat point is inside the triangle and all sides of the triangle
are visible from Fermat point at the angle of 2π/3.

Let L > 0 be a given length and {λj} be a given sequence of positive numbers.
We construct three sequences of points: {xn, yn, zn}∞n=1 ⊂ R

2 by the following
recursive procedure (see Figure 1):

• y0 := (−L+ 2λ1L, 0) ∈ R
2;

• y1 := (0, 0) ∈ R
2, x1 = (2λg(1)L, 0) ∈ R

2 with g(j) := ⌊log2 j + 1⌋;
• zn := (xn + yn)/2 for n ≥ 1;
• the points xn, x2n, x2n+1 are the three vertices, listed in counter-clockwise

order, of the equilateral triangle inscribed in the circle with center zn and
radius |xn − zn|;

• yn := 2λg(n)y⌊n/2⌋ + (1 − 2λg(n))xn for n ≥ 1 (observe that in this way
yn = F (y⌊n/2⌋, x2n, x2n+1)).

Let i := g(j). The point xj will be called leaf of the i-th generation and the point
yj is called Fermat point of the i-th generation.
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Σ1

Figure 1. The first tripod in the construction of Σn

Let us define the following sets for k = 0, 1, . . .:

σk := [y0, y1] ∪
2k−1
⋃

n=1

[yn, y2n] ∪ [yn, y2n+1],

Σk := σk ∪
2k+1−1
⋃

n=2k

[yn, xn],

Ak := {x2k , x2k+1, . . . , x2k+1−1} the vertices of Σk,

S∞ :=

∞
⋃

k=1

σk, Σ∞ := S∞, A∞ := Σ∞ \ S∞,

Gen(xp) := {x2p, x2p+1, x4p, . . . , x2kp, . . . , x2kp+2k−1 . . . }
the set of the descendants of vertex xp,

Genk(xp) := Ak ∩ Gen(xp).

Let us call Σk the sample tree for the set of points Ak (where k is finite or k = ∞).
Note that Σk depends on the number L and the coefficients λ1 · · ·λn. Clearly, for
the sample tree one has

(1) ∠y2jyjy2j+1 = ∠y2jyjy⌊j/2⌋ = ∠y⌊j/2⌋yjy2j+1 =
2π

3
,

Actually, by construction yj = F (y⌊j/2⌋, x2j , x2j+1) and all the angles of the triangle
△x2jy⌊j/2⌋x2j+1 do not exceed 2π/3, and thus all the sides of the triangle are visible
from yj at the angle 2π/3.

It is easy to see that there is a λ̄ > 0 such that if all λk < λ̄, then all Σk with k
finite and k = ∞ do not contain loops (homeomorphic images of S1) and hence are
topological trees (i.e. connected and locally connected compact sets without loops).
Of course this condition must be satisfied for Σk to be an optimal set.

3.1. Main result. The principal result of this paper is the following.

Theorem 3.1. Let Σk (where k is either finite or k = ∞) be the sample tree
constructed with decreasing sequence of positive coefficients {λj}, satisfying

λj ≤ 1/5000, j ≥ 2,(2)

120

∞
∑

j=1

λj < π/42.(3)

Then Σk ∈ M({y0} ∪ Ak) and for every S ∈ M({y0} ∪ Ak) one has Sk ⊂ S ⊂ Σk.
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Figure 2. Three iterations in the construction of Σn. The set Σ3 is blue.
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Figure 3. The iteration in the construction of Σn.

It is worth remarking that the proof of the above theorem gives a bit more,
namely some stability of the result with precise geometric conditions on the data
that guarantee still the same structure and length of the Steiner tree as well as its
uniqueness. We stress however the requirement that the sequence {λj} be vanishing
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as j → ∞. It is not clear whether the similar statement is true for non vanishing
sequences, say, for constant ones λj = λ for some sufficiently small λ > 0.

3.2. Some properties of the construction. For the readers’ convenience we
remark here the basic properties of our construction.

Recall that a c ∈ Σ is called a topological endpoint of a compact connected
metric space Σ, if for every ε > 0 there is an open neighborhood U of c in Σ
with diam U ≤ ε and ∂U being a singleton [3]. It is easy to note then that the
closed set Ak is made of the topological endpoints of the tree Σk (for both k finite
and k = +∞), and in the case k = +∞ it is uncountable (this is immediate by
identifying each c ∈ A∞ with the itinerary in the binary tree, say, encoded by a
sequence of 0 and 1 standing for the directions chosen at each branching point).
Further, it is totally disconnected (i.e. its connected components are singletons),
which can of course be worked out “by hand” in our construction even for the case
we do not know that Σk are Steiner trees, but it is curious to observe that once we
know Σk to be a Steiner tree, the respective properties of Ak can also be seen as a
general property of endpoints of Steiner trees according to the following statement.

Proposition 3.2. Suppose that Σ ⊂ E is a closed set solving the Steiner problem
for some compact C ⊂ E, i.e. Σ ∈ M(C), where E is a complete metric space,
H

1(Σ) < +∞. If the set of endpoints A of all connected components of Σ is closed,
then it is compact and totally disconnected. Moreover, Σ ∈ M(A).

Proof. Suppose that A is closed. By theorem 7.6 from [5] one has A ⊂ C, hence
it is compact. Further, if there is a shorter Σ connecting A, then it also connects
C, hence, Σ ∈ M(A). Again by theorem 7.6 from [5] one has that each connected
component of Σ has at most one endpoint at each connected component of A, hence,
A is totally disconnected. �

Note that in our construction the set A∞ is compact, totally disconnected and
perfect (i.e. it has no isolated points, say, by Lemma 3.5 which implies in particular
that for each c ∈ A∞ there is an arbitrarily small ball containing c and containing
infinitely many other points of A∞), and hence it is homeomorphic to the Cantor
set (which is yet another way to observe that it is uncountable).

Another easy statement below shows in particular that no binary tree can be an
indecomposable Steiner tree for the compact set of its endpoints A, if H1(A) 6= 0.
For simplicity it is provided here for sets in a Euclidean space although it is clearly
valid in a much more general context, as easily can be deduced from the proof.

Proposition 3.3. Suppose that Σ ⊂ R
n is a compact connected set, and H

1(Σ) <
+∞. Then for its set of endpoints A one has H

1(A) = 0.

Proof. Recall that if Σ is a compact connected set with H
1(Σ) < +∞, then it is

a trace of some Lipschitz curve θ of finite length which without loss of generality
may be arclength parameterized over some interval [0, l], so that θ([0, l]) = Σ. Let

c ∈ A. Then for each t ∈ (0, l) such that θ(t) = c one has θ̇(t) either does not exist

or θ̇(t) = 0. In fact, otherwise there are two curves with traces Γ1 = θ([t, t+ε]) ⊂ Σ
and Γ2 = θ([t − ε, t]) ⊂ Σ for some ε > 0 such that Γ1 ∩ Γ2 = {c}, and hence c is
not an endpoint of Σ. Thus {t ∈ [0, l] : θ(t) ∈ A} must have zero Lebesgue measure,
which implies H

1(A) = 0. �

In the sequel we also will need the following almost immediate technical lemmata.

Lemma 3.4. Every point c ∈ A∞ is a limit point of some sequence of points
ak ∈ Ak.

Proof. Consider an arbitrary point c ∈ A∞ = Σ∞ \ S∞. There is a subsequence
ck ∈ S∞ =

⋃∞
k=1 σk converging to c. It may be assumed without loss of generality
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that ck ∈ σk \σk−1 (otherwise, there would be an n ∈ N such that c ∈ σ̄n ⊂ σn+1 ⊂
S∞). Then dist (ck, Ak) ≤ λk . . . λ1L→ 0. Since each Ak is a compact set, there is
ak ∈ Ak attaining this distance. But then

|c− ak| ≤ |c− ck| + |ck − ak| → 0

as k → ∞. �

Lemma 3.5. For the sample tree constructed with decreasing sequence of coeffi-
cients {λk} satisfying λ1 < 1/2 one has Gen(xn) ⊂ B4Lλ1...λg(n)

(xn) for every
n ∈ N.

Proof. Let xp ∈ Gen(xn). Then

dist (xn, xp) ≤ dist (yn, xn) + dist (yn, xp) .

We estimate dist (yn, xp), keeping in mind that the radius of the circle circumscribed
around the equilateral triangle △x2jx2j+1xj is equal to λg(j) . . . λ1L = |yjx2j | =
|yjx2j+1| (note that F (x2j , x2j+1, xj) ∈ [yjxj ] is the center of this circle), and hence

dist
(

y⌊j/2⌋, yj
)

< dist
(

y⌊j/2⌋, xj
)

= λg(j)−1 . . . λ1L.

One has then

dist (yn, xp) ≤ dist (y⌊p/2⌋, xp) +

g(p)−g(n)−1
∑

l=1

dist (y⌊p/2l⌋, y⌊p/2l+1⌋)

≤ Lλ1 . . . λg(p)−1 +

g(p)−g(n)−1
∑

l=1

Lλ1 . . . λl

=

g(p)−1
∑

l=g(n)

Lλ1 . . . λl = Lλ1 . . . λg(n)



1 +

g(p)−1
∑

l=g(n)+1

λg(n)+1 . . . λl





≤ Lλ1 . . . λg(n)

g(p)−g(n)−1
∑

l=0

λlg(n)+1

≤ Lλ1 . . . λg(n)
1 − λ

g(p)−g(n)
g(n)+1

1 − λg(n)+1
< 2Lλ1 . . . λg(n),

because
1 − λ

m−g(n)
g(n)+1

1 − λg(n)+1
<

1

1 − λg(n)+1
< 2,

since λg(n)+1 < 1/2. But

dist (yn, xn) = 2Lλ1 . . . λg(n),

and therefore, dist (xp, xn) < 4Lλ1 . . . λg(n). �

4. Proof of the main result

Proof of Therem 3.1. The proof will be achieved in several steps. Namely,

• in Step 1 we will prove that any Steiner tree in M({y′0} ∪ Ak) has the
structure similar to that of the sample tree, i.e. is still a binary tree with
each bifurcation at the angle of 2π/3 (we will call such a structure regular),
once its root y′0 is not too far away from y0 (the precise geometrical condition
for “being not too far away” will be provided, and it is worth emphasizing
that it allows the distance |y0y′0| to be arbitrarily large). This is the crucial
step of the proof, and it will be accomplished by an inductive application of
Lemma A.6. The latter is of certain interest itself: it deals with a Steiner set
connecting a vertex of an equilateral triangle with two very small arbitrary



8 EMANUELE PAOLINI, EUGENE STEPANOV, AND YANA TEPLITSKAYA

compact sets very close to the other two vertices of this triangle, and says
when it remains a tripod (like the Steiner tree connecting the vertices of this
triangle) away from these sets, giving the answer in terms of a quantitative
estimate on the data;

• in Step 2 we first show under the same hypothesis that every finite tree
with regular structure connecting {y′0}∪Ak, k ∈ N, has length |y′0x1|, which
together with the result of the Step 1 proves that every finite Steiner tree
in M({y′0}∪Ak) has length |y′0x1|, so that that in particular the optimality
of sample trees follows for the case k finite. This is accomplished by a more
or less straightforward application of Melzak’s construction [2];

• then (still in Step 2) knowing the exact value of the length of Steiner trees
Σ′

k ∈ M({y′0} ∪ Ak) for k finite, we show that it remains the same (i.e.
equal to |y′0x1|) also for k = +∞, proving in particular also the optimality
of the sample tree for this case. This is an almost immediate application
of Go la̧b theorem on semicontinuity of length along sequences of Hausdorff
convergent connected compact sets, and of the optimality of Σ′

k;
• and, finally, on Step 3 we will prove the uniqueness of the Steiner tree in

M({y0} ∪ Ak) (i.e. with root y0). The latter will be done for both the
cases k finite and k = +∞ simultaneously by the same argument (without
distinguishing between these cases). Note that in fact, here only the case
k = +∞ is really interesting, since uniqueness for k finite is well-known
and follows from convexity of the length of a Steiner tree as a function of
coordinates of branching points. However, the argument we use here works
for both cases. Namely, we prove by induction that for any Steiner tree in
M({y0} ∪ Ak) its branching points coincide with those of the sample tree,
which is done again with the help of Step 1 and Step 2.

Since the proof is quite lengthy and technical, we found it reasonable to put all the
necessary auxiliary statements including the crucial Lemma A.6 in the Appendix.
Step 1. We prove that an arbitrary Steiner tree Σ′

k ∈ M({y′0} ∪ Ak) has the same
structure of the sample tree (we will call it regular), if its root y′0 is not too far away
from y0. Namely, a tree with 2k − 1 branching points y′j and endpoints {x′j}, i.e.

Σ′
k = σ′

k ∪
2k+1−1
⋃

j=2k

[y′j, x
′
j ],

where

σ′
k := [y′0, y

′
1] ∪

2k+1
⋃

j=1

(

[y′j, y
′
2j ] ∪ [y′j , y

′
2j+1]

)

,

and

y′j = F (y′2j , y
′
⌊j/2⌋, y

′
2j+1), j = 1, . . . , 2k−2,

so that all the angles

∠y′2jy
′
jy

′
2j+1 = ∠y′2jy

′
jy

′
⌊j/2⌋ = ∠y′⌊j/2⌋y

′
jy

′
2j+1 =

2π

3
,

and further,

y′j = F (x′2j , x
′
2j+1, y

′
⌊j/2⌋), j = 2k−2, . . . , 2k−1

and hence,

∠x′2jy
′
jx

′
2j+1 = ∠x2jy

′
jy

′
⌊j/2⌋ = ∠y′⌊j/2⌋y

′
jx

′
2j+1 =

2π

3
,

will be said to have regular structure of k-th generation with k finite (in particular,
this is the case of the sample tree according to (1)). The condition on the root
y′0 to be “not too far away” from y0 will be considered (and this is important in
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the sequel) in the angular terms, namely, we assume that ∠y′0x1y0 < β1 and y′0 be
outside of the ball B̄(40λ2+1)λ1L(z1) (see Figure 1).

The point y′j will be called branching point of i-th generation, if i = g(j). Define
the sequence

β0 :=
π

6
− π

21
, βi+1 := βi + 120λi+1.

Then according to the assumption (3) of the main theorem, for each index i the
inequality

π

6
− π

21
< βi <

π

7
=
π

6
− π

42
holds. By induction on the generation i we prove now the following

Claim: for all finite i = 1, . . . , k, the Steiner tree Σ′
k outside of the union of the

balls
⊔

g(l)=i+1 B20λi+1...λ1L(xl) is the tree of i-th generation having regular

structure (i.e. it is the tree with regular structure having branching points of
all generations up to the i-th generation), with root y′0 and the set of leafs x′l
belonging to the union of circumferences

⊔

g(l)=i+1 ∂B20λi+1...λ1L(xl), with

a single leaf on each circumference; moreover, each branching point y′j of
i-th generation is located inside the angle of measure 2βi+1 with bisector
[x2jyj) and outside of the ball B̄(40λi+2L+1)λi+1...λ1L(z2j), as well as inside
the angle of the same value 2βi+1 with bisector [x2j+1yj) and outside of the
ball B̄(40λi+2L+1)λi+1...λ1L(z2j+1).

Note that k in the above Claim is not necessarily finite.
Base of induction: i = 1. According to Lemma 3.5 the set Ak is located in-

side the balls with radius 4λ1λ2L centered at x2 and x3. Since for the points
T ′ := y′0, T := y0 , V := x2, U := x3 and the sets A := Ak, AV := Genk(x2),
AU := Genk(x3) conditions of Lemma A.6 are satisfied, then there are points
x′2 := V ′ ∈ ∂B20λ2λ1L(x2) and x′3 := U ′ ∈ ∂B20λ2λ1L(x3), such that outside of the
balls B20λ2λ1L(x2) and B20λ2λ1L(x3) the optimal tree for {y′0} ∪ Ak coincides with
the tripod connecting y′0, U ′, V ′ and having branching point y′1 = F (T ′, U ′, V ′).
Since T , T ′, U ′, V ′, W := x1 satisfy the conditions of Lemma A.9 with β := β2 and
α := ∠T ′WT < β1 = β2−120λ2, then y′1 is located inside the angle of 2β2 with bisec-
tor [x2y1), while in view of Remark A.10 it does not belong to B̄(40λ3L+1)λ2λ1L(z2)
(while applying Remark A.10 it is worth noting that here OV = z2).

The symmetrical assertion is also true: the point y′1 is inside the angle of 2β2
with the bisector [x3y1) and outside of the ball B̄(40λ3L+1)λ2λ1L(z3). So the base of
induction is proved.

Step of induction. Consider an arbitrary branching point y′j of i-th generation

(i.e. g(j) = i), for which the inductive assumption holds, in particular, y′j exists and

is located inside the angle of 2βi+1 with bisector [x2jyj) (in other words, ∠y′jx2jyj <

βi+1) and outside of the ball B̄(40λi+2L+1)λi+1...λ1L(z2j). The inductive assumption
implies that Σ′

k contains a subtree connecting y′j with ∂B20λi+1...λ1L(x2j) and there-

fore, since other parts of Σ′
k cannot intersect this circle, it also contains the subtree

connecting y′j with Genk(x2j) ⊂ B4λi+1...λ1L(x2j) and both subtrees are optimal.
Then in view of Lemma 3.5

Genk(x2j) = Genk(x4j) ⊔ Genk(x4j+1) ⊂ B4λi+2...λ1L(x4j) ⊔B4λi+2...λ1L(x4j+1),

the assumptions of Lemma A.6 hold with AV := Genk(x4j) andAU := Genk(x4j+1)),
and thus there exists a V ′ ∈ ∂B20λi+2...λ1L(x4j) and an U ′ ∈ ∂B20λi+2...λ1L(x4j+1)
such that outside of the balls B20λi+2...λ1L(x4j) and B20λi+2...λ1L(x4j+1) any optimal
set for {y′j}∪Genk(x2j) coincides with the tripod connecting y′j , U

′, V ′ and having

branching point y′2j = F (y′j , U
′, V ′). Then employing Lemma A.9 (with T ′ := y′j ,

T := yj , V := x4j , U = x4j+1, W := x2j , β := βi+2, α := ∠T ′WT < βi+1 =
βi+2 − 120λi+2 and Lλ1 . . . λi in place of L, λi+1 in place of λ1 and λi+2 in place of



10 EMANUELE PAOLINI, EUGENE STEPANOV, AND YANA TEPLITSKAYA

λ2), we get that y′2j is inside the angle of 2βi+2 with bisector [x4jy2j) and outside

of the ball B̄(40λi+3L+1)λi+2...λ1L(z4j). Moreover, the point y′2j is inside the angle
of 2βi+2 with bisector [x4j+1y2j) and in view of Remark A.10 (used with the same
notations) is outside of the ball B̄(40λi+3L+1)λi+2...λ1L(z4j+1). Similarly, the point
y′2j+1 is inside the angle of 2βi+2 with bisector [x4j+2y2j+1) and outside of the ball

B̄(40λi+3L+1)λi+2...λ1L(z4j+2). Moreover, it is inside the angle of 2βi+2 with bisector

[x4j+3y2j+1) and outside of the ball B̄(40λi+3L+1)λi+2...λ1L(z4j+3).
Further, since y′2j = F (yj , U

′, V ′), one has

∠x′4jy
′
2jx

′
4j+1 = ∠y′jy

′
2jx

′
4j = ∠x′4j+1y

′
2jy

′
j =

2π

3

for x′4j+1 := U ′, x′4j := V ′. The analogous statement is true for the point y′2j+1.

Thus the Steiner tree Σ′
k outside of the balls

⊔

g(l)=i+2 B20λi+2...λ1L(xl) coincides

with the tree of the i-th generation with the regular structure which connects the
root y′0 with some vertices from the circumferences

⊔

g(l)=i+2 ∂B20λi+2...λ1L(xl) (one

vertex on each of the circumferences), which concludes the proof of the step of
induction.

Step 2. We prove that the length of any Steiner tree for {y′0}∪Ak (with k finite
or infinite) is equal to |y′0x1|, once one has, as assumed on Step 1, that ∠y0x1y

′
0 < β1

and the point y′0 is outside of the ball B̄(1+40λ2)λ1L(z1).
First assume k to be finite. We will show the claim for every tree with regular

structure connecting the set of points {y′0} ∪ An. For this purpose we again use
induction. The base (i = 0) is obvious, since every tree having the regular structure
connecting the points of the set {y′0} ∪ A0 = {y′0, x1} is just a segment with length
|y′0x1|. It suffices thus to prove that every tree of the regular structure connecting
the vertices of the set y′0 ∪ An has length |y′0x1|, if the same is true for all trees
of the regular structure connecting the vertices of the set y′0 ∪ An−1. To this aim
assume that p is such that g(p) = n. Then

(4) y′p = F (x2p, x2p+1, y⌊p/2⌋).

By corollary to Ptolemy’s theorem (Lemma A.1) if y′p is on the circle circumscribed

around the triangle △x2px2p+1xp and ∠x2py
′
px2p+1 = 2π

3 (which is true in view
of (4)), then |y′px2p| + |y′px2p+1| = |y′pxp|. Let us consider an arbitrary tree of
regular structure connecting the vertices of the set y′0 ∪ An, namely,

Σ′
n = σ′

n ∪
2n+1−1
⋃

j=2n

[y′j, xj ] = [y′0, y
′
1] ∪

2n+1
⋃

j=1

[y′j , y
′
2j ] ∪ [y′j , y

′
2j+1] ∪

2n+1−1
⋃

j=2n

[y′j, xj ].

Denote

σ′
n−1 := [y′0, y

′
1] ∪

2n
⋃

j=1

[y′j , y
′
2j] ∪ [y′j, y

′
2j+1],

Σ′
n−1 := σ′

n−1 ∪
2n−1
⋃

j=2n−1

[y′j , xj ].

Since the tree Σ′
n has the regular structure, obviously, Σ′

n−1 has a regular structure
too, since there are no new branching points: with g(j) = n one has

(5) ∠y⌊j/2⌋y
′
jxj = ∠y⌊j/2⌋y

′
jy

′
2j + ∠y′2jy

′
jxj =

2π

3
+
π

3
= π,

The second equality in the above chain is true because of the regular structure of
Σ′

n. Since Σ′
n−1 has the regular structure, we can apply the induction hypothesis:

H
1(Σ′

n−1) = |y′0x1|.
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To verify the step of induction we only have to prove that

H
1(Σ′

n−1) = H
1(Σ′

n).

It is enough to verify that

H
1





2n−1
⋃

j=2n−1

[y′j , xj ]



 = H
1





2n−1
⋃

j=2n−2+1

[y′j , y
′
2j ] ∪ [y′j , y

′
2j+1] ∪

2n+1−1
⋃

j=2n

[y′j, xj ]



 .

The latter equation is true because for p satisfying g(p) = n− 1 one has

|y′pxp| = |y′px2p| + |y′px2p+1| in view of Lemma A.1

= |y′py′2p| + |y′2px2p| + |y′py′2p+1| + |y′2p+1x2p+1| in view of (5).

Therefore it is proven that every (finite) tree with the regular structure has
length |y′0x1|. Since in Step 1 it has been proven that every Steiner tree has regular
structure, we have that the length of every optimal tree for the set {y′0} ∪ Ak is
|y′0x1| for all finite k.

Let us now consider a case of the infinite number of vertices (k = ∞). We
will find the length of the tree Σ′

∞ ∈ M({y′0} ∪ A∞). It cannot be greater than

|y′0x1|, because, in view of Lemma 3.4, the limit in Hausdorff distance Σ̃∞ of each
subsequence of trees having the regular structure Σ′

k connects the points of the set
{y′0} ∪ A∞ (as Ak ⊂ Σ′

k) and its length satisfies

H
1(Σ̃∞) ≤ lim inf

n→∞
H

1(Σ′
n) = |y′0x1|,

because of Go la̧b theorem on lower semicontinuity of H1 over Hausdorff convergent
sequence of connected compact sets (theorem 3.3 from [5]). We prove now by
contradiction that the length of Σ∞ cannot be less than |y′0x1|. Assume the contrary,
i.e. that it is |y′0x1| − ε, where ε > 0. Estimating the length of the set

Rn :=
∞
⋃

k=n

2k−1
⋃

j=2k−1

([xjzj ] ∪ [x2jzj] ∪ [x2j+1zj ])

connecting the vertices of An and A∞ (note that it is the union of sets connecting
the vertices of the generations k − 1 and k, with k ≥ n), we get

H
1(Rn) =

∞
∑

k=n

2k−1
∑

n=2k−1

|xjzj | + |x2nzj | + |x2n+1zj | =

∞
∑

k=n

2k−1
∑

n=2k−1

3λ1 . . . λkL

≤
∞
∑

k=n

3L(2λ1)k = 3L
(2λ1)n

1 − 2λ1
→ 0

as n → ∞. Choose an n ∈ N such that H
1(Rn) < ε/2. Then the points of the set

{y′0}∪An with n finite can be connected by Σ′
∞ ∪Rn, namely, the points of the set

{y′0} ∪ A∞ are connected by Σ′
∞, and then points of the set An are connected to

points of the set {y′0} ∪ A∞ by Rn. The total length of this construction does not
exceed

(|y′0x1| − ε) +
ε

2
< |y′0x1|,

which contradicts the fact that every optimal tree {y′0}∪An has length |y′0x1|. This
proves that every optimal tree for the set {y′0} ∪A∞ has length |y′0x1|.

Step 3. We prove now uniqueness of the Steiner tree for {y0}∪Ak with k either
finite or k = ∞ at once (without distinguishing the two cases). Since on Step 1 it
has been already proven that every such tree Σ′

k has regular structure outside the
respective balls, it suffices to show that all the branching points y′j are at the sample
position, i.e. y′j = yj for all j ∈ N. We will do it by induction on the generation

i. Since y′0 := y0, base of induction is proven. Let us prove the inductive step.
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Let the claim be true for all branching points y′j up to the i-th generation included
(g(j) ≤ i). Then, as it was shown on Step 1, Σ′

k has the regular structure outside
the respective balls and hence

Σ′
k = [y0, y1] ∪

2i−1
⊔

j=1

[yj , y2j] ∪
2i−1
⊔

j=2i−1

Trj ,

where Trj ∈ M({yj/2} ∪ Genk(xj)). For the length of Σ′
k to be minimum, it is

necessary that the trees Trl have minimal length each, where g(l) = i+ 1. Without
loss of generality, consider the structure of Tr2j , where g(j) = i and y′j = yj by the
inductive hypothesis.

Then, using Step 1 with yj in place of y0, Genk(x2j) in place of Ak, k−i in place of
k, λi . . . λ1L in place of L, x2g(l)j+l−2g(l) in place of xl and λl+i in place of λl, we get
that outside of the balls B20λi+2...λ1L(x4j) and B20λi+2...λ1L(x4j+1) each tree Tr2j ,
optimal for the set {yj} ∪ Genk(x2j), coincides with the tripod connecting yj , U

′,
V ′ and having branching point y′2j = F (yj , U

′, V ′), where V ′ ∈ ∂B20λi+2...λ1L(x4j)

and U ′ ∈ ∂B20λi+2...λ1L(x4j+1). Then Tr2j = [yj, y
′
2j ] ⊔ Tr′4j ⊔ Tr′4j+1, where Tr′l ∈

M({y′l/2} ∪ Genk(xl)). Note that conditions of Lemma A.9 and Remark A.10 are

fulfilled with T ′ := T := yj , β := π
6 − π

21 + 120λi+1 and λi+1 in place of λ2, because

0 = ∠TWT ′ < β − 120λi+1 =
π

6
− π

21
.

Thus the branching point y2j′ is inside the angle of 2β with the bisector [x4j+1y2j)
and outside of the ball B̄(40λi+3+1)λi+2...λ1L(z2j). Then the conditions of the Step 2
are satisfied for the point y′2j and the set Genk(x4j) (with y2j and y′2j in place of y0
and y′0, with Genk(x4j) in place of Ak, with k − i− 1 in place of k, λi+1 . . . λ1L in
place of L, x2g(l)+1j+l−2g(l) in place of xl, λl+i+1 in place λl and β in place of β1).
We thus have that the length of the Steiner tree, connecting the points of the set
{y′2j} ∪ Genk(x4j), is |y′2jx4j |. So

H
1(Tr′4j) = |y′2jx4j |.

Similarly,
H

1(Tr′4j+1) = |y′2jx4j+1|.
Therefore,

H
1(Tr2j) = H

1([yj , y
′
2j ] ⊔ Tr′4j ⊔ Tr′4j+1) = |yjy′2j| + |y′2jx4j | + |y′2jx4j+1|.

Since Tr2j has minimum possible length, then y′2j must minimize the expression on
the righthand side, and hence coincide with the Fermat point F (yj , x4j , x4j+1) =
y2j . Thus the induction step is proven, concluding therefore the proof of the claim
of Step 3, and hence, the proof of the theorem. �

Appendix A. Auxiliary lemmata

In this section we will provide some technical assertions. The most important re-
sults here which are of certain independent interest are Lemma A.3 and Lemma A.6.

To make the readers’ life easier we recall the following very classical result the
proof of which can be found in virtually any nice book on elementary geometry.

Lemma A.1. (corollary to Ptolemy’s theorem) If the quadrilateral ABCD is in-
scribed in a circumference and the angles ∠BCD = ∠CBD = π/3, then |AC| =
|AB| + |AD|.

Consider now a triangle △TUV with all the angles less than 2π/3. We will
study what happens to its Fermat point, if the vertices of the triangle change their
positions not too much, so that all angles remain less than 2π/3. The quantitative
answer to this question is given in Lemma A.3.

We start with the following notation. Denote
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• Y := F (T, U, V );
• L := |TY | + |Y U | + |Y V |.

Lemma A.2. Let T be a point inside the angle ∠UWV and outside of the closed
circle circumscribed around the equilateral triangle △UWV . Then the only compact
S ∈ M({T, U, V }) is a tripod with branching in the Fermat point F (T, U, V ). The
length H

1(S) = |TW | can be found from Ptolemy’s theorem.

Proof. It suffices to observe that each angle of the triangle △TUV is less than 2π/3
and so the respective Steiner tree is a tripod. �

Assume now that |TU | = |TV |. We describe a simple construction drawn in
Figure 4. Note that R := |Y U | = |Y V | is the radius of the circle circumscribed
around the equilateral triangle △V UW . Denote the center of this circle by O. Let
further

• λ1 := R/L, λ1 < 3/7, λ2 < 1/120;
• the line t be a common tangent to the circles Bτ (V ) and Bτ (U) with τ :=

20λ1λ2L so that these circles are on the opposite sides of it. Note that that
under our assumption on λ2 we have that the circles B̄τ (V ) and B̄τ (U) are
disjoint;

• PV := t ∩ ∂Bτ (V ), PU := t ∩ ∂Bτ (U). Without loss of generality assume
that |TPV | < |TPU |;

• the point PW is such that the triangle △PV PUPW is equilateral (there are
two such points; we choose the one closest to W );

• the ray sV starts from the point W and is parallel to the line (PV PW );
• the ray sU is symmetric to the ray sV with respect to the line (TW ).

We emphasize that in view of the requirements on λ1 and λ2 one has that the
balls B̄τ (U), B̄τ (V ) and B̄2τ (W ) are disjoint, and the point T is outside of the ball
B̄R+2τ (O) as can be verified by an elementary calculation.

Lemma A.3. The following assertions hold true.

(i) ψ := ∠(sV , (TW )) = arccos 40√
3
λ2 − π

3 , so that ψ → π
6 as λ2 → 0.

(ii) If the point T ′ is such that ∠TWT ′ < ψ, then

[TT ′] ∩ sV = [TT ′] ∩ sU = ∅.
(iii) If T ′ is such that

[T ′T ] ∩ sU = [T ′T ] ∩ sV = ∅
(in view of assertion (ii) it is true when ∠TWT ′ < ψ ) and T ′ is outside
of the ball B̄R+2τ (O), then for every U ′ ∈ B̄τ (U) and V ′ ∈ B̄τ (V ) the
unique Steiner tree S′ ∈ M({T ′, U ′, V ′}) is a tripod with H

1(S′) = |T ′W ′|
whenever the triangle △V ′U ′W ′ is equilateral.

Remark A.4. Under the assumptions of Lemma A.3, the set of possible positions of
the point W ′ corresponding to all the possible U ′ ∈ ∂Bτ (U) and V ′ ∈ ∂Bτ (V ), as
well as to all the possible U ′ ∈ B̄τ (U) and V ′ ∈ B̄τ (V ), is the closed ball B̄2τ (W ).

Indeed,

W = V + Rπ
3

(U − V ),

W ′ = V ′ + Rπ
3

(U ′ − V ′),

where Rπ
3
∈ SO(2) is the matrix representing the rotation by π/3, then

W ′ = V + (V ′ − V ) + Rπ
3

(U − V ) + Rπ
3

((U ′ − U) − (V ′ − V ))

= W + Rπ
3

(U ′ − U) +
(

Id−Rπ
3

)

(V ′ − V ) .
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V

U

W

T

O

BR+2τ (O)

qV

qU

PV

PU

C

Q

sV

sU

Figure 4. The construction used in Lemma A.3.

Therefore,

{W ′ : V ′ ∈ ∂Bσ(V ), U ′ ∈ ∂Bρ(U)} = W + Rπ
3

(∂Bρ(0)) +
(

Id−Rπ
3

)

(∂Bσ(0))

= W + ∂Bρ(0) + ∂Bσ(0)

= W + B̄ρ+σ(0) \B(ρ−σ)∨0(0)

= B̄ρ+σ(W ) \B(ρ−σ)∨0(W ),

where B0(0) := ∅, the second equality is valid since
(

Id−Rπ
3

)

(∂Bσ(0)) = ∂Bσ(0).

Applying this assertion for σ = ρ := τ as well as for all σ ∈ [0, τ ], ρ ∈ [0, τ ], we get

{W ′ : V ′ ∈ ∂Bτ (V ), U ′ ∈ ∂Bτ (U)} = {W ′ : V ′ ∈ B̄τ (V ), U ′ ∈ B̄τ (U)} = B̄2τ (W )

as claimed.

Remark A.5. Under the assumptions of Lemma A.3, for the open ball B′ circum-
scribed around the triangle △V ′W ′U ′ one has

∂B′ ⊂ B̄R+2τ (O) \BR−2τ (O),

so that

B′ ⊂ BR+2τ (O).

In fact, for every z′ ∈ ∂B′ in the arc connecting V ′ and W ′, we have that there
is a rotation R by the angle not exceeding π/3, such that z′ = U ′ + R(V ′ − U ′).
Denoting z := U +R(V −U), we have that clearly z ∈ ∂B in the arc connecting V
and W , where B is the circle circumscribed around △UWV , and

z′ − z = R(V ′ − V ) + (Id−R)(U ′ − U).
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V

U

Q

D

E

PV

PU

PW

SU
S

Figure 5. The construction used in the proof of Lemma A.3.

Letting σ := |V ′ − V | and ρ := |U ′ − U |, we get that

z′ − z ∈ R(∂Bσ(0)) + (Id−R)(∂Bρ(0))

⊂ ∂Bσ(0)) + B̄ρ(0) ⊂ B̄ρ+σ(0) \B(ρ−σ)∨0(0),

the second inclusion being valid because the angle of the rotation does not exceed
π/3. Thus, minding that σ ≤ τ and ρ ≤ τ , we get

(6) z′ − z ∈ B̄2τ (0).

Analogously, for every z′ ∈ ∂B′ in the arc connecting U ′ and W ′, there is a z ∈ ∂B
in the arc connecting U and W such that (6) holds. In other words, the arc of ∂B′

connecting V ′ and W ′ (resp. U ′ and W ′) belongs to the (closed) 2τ -neighborhood
of the arc of ∂B connecting V and W (resp. U and W ). To show the analogous
statement about the remaining arc of ∂B′ connecting V ′ and U ′, let R(x) := O +
Rπ/3(x − O) where Rπ/3 is the rotation by π/3, so that R is the rotation by
π/3 around O, and set W ′′ := R(W ′), V ′′ := R(V ′) and U ′′ := R(U ′), so that
R(△V ′W ′U ′) = △V ′′W ′′U ′′. Note that R(△VWU) = △UVW , R(B) = B and
V ′′ ∈ B̄τ (U), U ′′ ∈ Bτ (W ). For every z′ ∈ ∂B′ in the arc connecting V ′ and U ′

we have that R(z′) ∈ R(∂B′) belongs to the arc connecting V ′′ and U ′′. Applying
what has already been proven to △V ′′W ′′U ′′ instead of △V ′W ′U ′, R(∂B′) instead
of ∂B′, and R(z′) instead of z′, we have that there is a z̃ ∈ ∂B in the arc connecting
U and W such that |R(z′)− z̃| ≤ 2τ (which is just (6) for R(z′) instead of z′ and z̃
instead of z). Letting z ∈ ∂B in the arc connecting V and U be such that R(z) = z̃,
we get

|z′ − z| = |R(z′) −R(z)| ≤ 2τ,

and thus the arc of ∂B′ connecting V ′ and U ′ also belongs to the closed 2τ -
neighborhood of the arc of ∂B connecting V and U . In other words,

∂B′ ⊂ (∂B)2τ = B̄R+2τ (O) \BR−2τ (O),

showing the claim.

Proof. To prove the assertion (i) let us draw a line perpendicular to (UV ) through
the point U and denote by SU its intersection with the line (PV PU ). Set also
S := (PV PU ) ∩ (USU ). Since the line (PV PW ) is parallel to sV and (USU ) is
parallel to (TW ), then the angle between (PV PW ) and (USU ) is equal to ψ. Let
us denote γ := ∠USUPU and look at the triangle △SPV SU (see Figure 5). One
observes then

(7) ψ = π − ∠PV SUS − ∠SPV SU = ∠USUPU − ∠SPV SU = γ − π

3
.
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Denote Q := (PUPV ) ∩ (TW ). It is easy to see (looking at the triangles △USUQ
and △UPUQ) that ∠QUPU = γ (see Figure 6). From the triangle △UPUQ one has

(8) cos γ =
|UPU |
|UQ| =

τ

|UV |/2 .

Therefore,

(9) γ = arccos
2τ

|UV | = arccos
40λ1λ2L√

3λ1L
=

40√
3
λ2,

which means that

ψ = γ − π

3
= arccos

40√
3
λ2 −

π

3
,

proving (i).

γγ

Q

U
SU

PU

V

W

KV

kV

Figure 6. The construction used in the second step of the proof of Lemma A.3
.

Assertion (ii) is obvious. Let us prove (iii). Consider any points U ′ ∈ B̄τ (U) and
V ′ ∈ B̄τ (V ). For the triangle △T ′U ′V ′ to have no angle greater or equal to 2π/3
it is sufficient that

(A) T ′ be outside of the circle B̄′ circumscribed around the equilateral triangle
△U ′W ′V ′ and

(B) T ′ be inside the angle ∠U ′W ′V ′.

Clearly (A) is just Remark A.5. To prove (B), denote

Q′ := (U ′V ′) ∩ (TW ),

J ′
V := [V ′W ′) ∩ (TW ),

J ′
U := [U ′W ′) ∩ (TW ).

First we show that

(10) ∠V ′J ′
VQ

′ ≥ ∠(sV , (TW )) = ψ.
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Because of

∠V ′Q′W =
2π

3
− ∠Q′J ′

V V
′

and the fact that ∠V ′Q′W takes the greatest value when V ′ := PV and U ′ = PU

(i.e. when Q′ = Q) which corresponds to the minimum value of the angle ∠Q′J ′
V V

′,
the latter being therefore equal to ψ. Thus ∠Q′J ′

V V
′ ≥ ψ for all U ′ and V ′.

Now let us show that B̄τ (V ) is outside of the angle formed by the rays sV and
(TW ] (with the vertex at point W ). It is suffices to prove that

(11) ∠(sV , (TW ]) < ∠(kV , (TW ]),

where kV is the ray with the vertex W tangent to the circle Bτ (V ), such that the
circle Bτ (V ) is outside of the angle formed by the rays kV and (TW ]. Let us denote
by KV the point of contact of the ray kV with the circumference ∂Bτ (V ). Note
that

∠(kV , (TW )) = ∠TWV − ∠KVWV =
π

6
− arcsin

τ

|WV |
(see Figure 6). In view of (7) and (9) one has

ψ = arccos
2τ

|UV | −
π

3
=
π

6
− arcsin

2τ

|UV | ,

and hence

ψ <
π

6
− arcsin

τ

|UV | = ∠(kV , (TW ]),

which shows the validity of (11) and therefore of the claim being proven.
Thus for every U ′ ∈ B̄τ (U), V ′ ∈ B̄τ (U) one has ∠V ′J ′

VQ
′ > ∠(sV , (TW ]),

and, furthermore, the circle B̄τ (V ) is outside of the angle ∠(sV , (TW ]) and has a
nonempty intersection with the ray (V ′J ′

V ]. Hence the part of the angle formed by
the rays sV and (TW ] outside of the circle B̄R+2τ (O) (which contains both B̄τ (V )
and the points W and J ′

V ) is contained in the angle ∠V ′J ′
VQ

′. Similarly, the part
of the angle ∠U ′J ′

UQ
′ outside of the circle B̄R+2τ (O) contains the angle formed by

the rays sU and (TW ]. Then the part of the angle ∠V ′W ′U ′ outside of the circle
B̄R+2τ (O) contains the angle formed by the rays sV and sU , namely,

(V ′W ′]\B̄R+2τ (O) = (V ′J ′
V ]\B̄R+2τ (O),

(U ′W ′]\B̄R+2τ (O) = (U ′J ′
U ]\B̄R+2τ (O),

∠V ′W ′U ′\B̄R+2τ (O) = (∠V ′J ′
VQ

′ ∪ ∠Q′J ′
UU

′)\B̄R+2τ (O)

⊃ (∠(sV , (TW ]) ∪ ∠(sU , (TW ]))\B̄R+2τ (O)

= ∠(sV , sU )\B̄R+2τ (O).

Thus from [T ′T ] ∩ sU = [T ′T ] ∩ sV = ∅ and T ′ outside of BR+2τ (O) follows that
T ′ is inside of the angle ∠U ′W ′V ′, which proves (B), and therefore, concludes the
proof of (iii) in view of Lemma A.2. �

In the following crucial lemma we consider a Steiner problem of connecting a
vertex of an isosceles triangle with two very small arbitrary compact sets very close
to the other two vertices of this triangle, and say in quantitative terms when every
solution to this problem is still a tripod (similarly to the Steiner tree connecting
the vertices of this triangle) far away from these sets.

Lemma A.6. With the notations of Lemma A.3 assume additionally that λ2 <
1/5000 and let T ′ outside of the ball B̄R+2τ (O) be such that ∠TWT ′ < π/7. Letting
Σ ∈ St(A), where A = AU ∪ AV ∪ {T ′}, AV ⊂ B4λ1λ2L(V ), AU ⊂ B4λ1λ2L(U), we
have that Σ \ (Bτ (V ) ∪Bτ (U)) is a tripod.
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Remark A.7. Note that ∠TWT ′ < π/7 < ψ when λ2 < 3/1000, since in this case

arcsin(40λ2/
√

3)) < π/42, and hence

ψ = arccos

(

40√
3
λ2

)

− π

3
=
π

6
− arcsin

(

40√
3
λ2

)

>
π

6
− π

42
=
π

7
.

Proof. We first prove that

(A) there are points U ′ ∈ ∂Bτ (U) and V ′ ∈ ∂Bτ (V ) such that S(T ′ ∪ ∂Bτ (U)∪
∂Bτ (V )) = S({T ′, U ′, V ′}).

In fact, either claim (A) holds, or

(B) there is a setG ∈ M(T ′∪∂Bτ (U)∪∂Bτ (V )) and the sets S1 and S2 that S1 ∈
M({T ′}∪∂Bτ (V )) (without loss of generality), S2 ∈ M(∂Bτ (U)∪∂Bτ (V )),
and G = S1 ∪ S2.

To this aim consider an arbitrary S′ ∈ M(T ′ ∪ ∂Bτ (U) ∪ ∂Bτ (V )). If (B) holds,
then in view of the obvious relationships

S(∂Bτ (U) ∪ ∂Bτ (V )) = |UV | − 2τ,

S({T ′} ∪ ∂Bτ (V )) = |T ′V | − τ,

we obtain

S(T ′ ∪ ∂Bτ (V ) ∪ ∂Bτ (U)) = |UV | + |T ′V | − 3τ.

On the contrary, if (A) holds, then the length of a Steiner tree S′ is equal to |T ′W ′|,
hence, since S′ is the shortest possible, H1(S) is equal to the distance from T ′ to
the set of all possible positions of the point W ′, which in view of Remark A.4 is the
ball B̄2τ (W ). Therefore, in this case

S(T ′ ∪ ∂Bτ (V ) ∪ ∂Bτ (U)) = dist (T ′, B2τ (W )) = |T ′W | − 2τ.

We now observe that

(12) |T ′W | − 2τ < |UV | + |T ′V | − 3τ.

To show (12), drop the perpendicular h from the point V to the line (T ′W ) and
denote H := h ∩ (T ′W ) (see Figure 7a). Then keeping in mind the conditions on
λ2 and T ′ which give ∠T ′WV = ∠TWV −∠TWT ′ > π/6− π/7 = π/42 in view of
Remark A.7, we get

|T ′V | + |UV | − |T ′W | = |T ′V | + |VW | − |T ′W |
= (|T ′V | − |T ′H |) + (|VW | − |HW |) ≥ |VW | − |HW |

= |VW |(1 − cos(∠T ′WV )) ≥
√

3λ1L
(

1 − cos
( π

42

))

> 0.0048λ1L > 20λ2λ1L = τ,

the latter inequality because λ2 < 1/5000, which proves (12), and hence rules out
the validity of (B) proving the claim (A).

T

V

W

T ′

H
h

a).

U

U ′

DU

EU

b).

Figure 7. The constructions used in the proof of Lemma A.6.
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Let S0 ∈ M({T ′, U ′, V ′}). Then

(13) H
1(Σ \ (Bτ (U) ∪Bτ (V ))) ≥ H

1(S0),

because Σ\(Bτ (U)∪Bτ (V )) ∈ St(T ′∪∂Bτ (U)∪∂Bτ (V ) and S0 ∈ M(T ′∪∂Bτ (U)∪
∂Bτ (V )).

Clearly, since AU ⊂ B4λ1λ2L(U) = Bτ/5(U), T ′ 6∈ Bτ (U) and Σ connects AU

with AV ∪ {T ′}, we have that Σ ∩ ∂Bατ (U) 6= ∅ for all α ∈ (1/5, 1). Suppose now
that there is no α in this interval such that Σ ∩ ∂Bατ (U) is a singleton, that is,
it contains at least two points for each α ∈ (1/5, 1). Then in view of the coarea
inequality one has

(14) H
1(Σ ∩ (Bτ (U) \Bτ/5(U))) ≥ 2 · 4

5
τ.

There is the point DU such that DU ∈ ∂Bτ/5(U) ∩ Σ. Let CU be the semicircle
of ∂B4λ1λ2L(U) which contains both DU and EU := [U ′, U ] ∩ ∂B4λ1λ2L(U) (see
Figure 7b)). Consider the tree Σ0 defined as the disjoint union:

Σ0 := S0 ⊔ [U ′, EU ] ⊔CU ⊔ (Σ ∩Bτ/5(U)) ⊔ (Σ ∩Bτ (V )).

We have therefeore

H
1(Σ0) = H

1(S0) + |U ′EU | + H
1(CU ) + H

1(Σ ∩Bτ/5(U)) + H
1(Σ ∩Bτ (V ))

= H
1(S0) +

4τ

5
+
πτ

5
+ H

1(Σ ∩Bτ/5(U)) + H
1(Σ ∩Bτ (V ))

<
8τ

5
+ H

1(S0) + H
1(Σ ∩Bτ/5(U)) + H

1(Σ ∩Bτ (V ))

≤ 8τ

5
+ H

1(Σ \ (Bτ (U) ∪Bτ (V )))

+ H
1(Σ ∩Bτ/5(U)) + H

1(Σ ∩Bτ (V )) by (13)

=
8τ

5
+ H

1(Σ \ (Bτ (U) \Bτ/5(U)))

≤ H
1(Σ ∩ (Bτ (U) \Bτ/5(U))) + H

1(Σ \ (Bτ (U) \Bτ/5(U))) by (14)

= H
1(Σ),

which contradicts the optimality of Σ, because Σ0 ∈ St(A). Therefore we proved
that there is a number α ∈ (1/5, 1) such that Σ ∩ ∂Bατ (U) is a singleton {U1}.
Similarly there is a number α′ ∈ (1/5, 1) such that Σ ∩ ∂Bα′τ (V ) is a singleton
{V1}. Then

Σ \ (Bατ (U) ∪Bα′τ (V )) ∈ M(T ′, U1, V1).

The points U1, V1 and T ′ satisfy the conditions of Lemma A.3 and hence Σ \
(Bατ (U)∪Bα′τ (V )) is a tripod, and thus Σ \ (Bτ (V ) ∪Bτ (U)) is a tripod too. �

Lemma A.8. When 0 < x < π/6 − π/42, 0 < y < π/6 + π/21, 1/8 > α > 0 the
following inequalities are valid:

arcsin

(

sinx

1 + α

)

> x− α

2
,(15)

arcsin

(

sin y

1 − α

)

< y + α.(16)

Proof. To prove (15) in view of the assumptions it suffices to show

sinx

1 + α
> sin

(

x− α

2

)

,

that is
(

1

1 + α
− cos

α

2

)

sinx > − cosx sin
α

2
,
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which keeping in mind conditions on x and α is equivalent to

tanx <
sin α

2

cos α
2 − 1

1+α

.

The latter holds because

tanx < tan
(π

6
− π

42

)

<
1

2
<

sin α
2

cos α
2 − 1

1+α

.

Similarly, to prove (16) in view of the assumptions it suffices to show

sin y

1 − α
< sin (y + α) ,

or, equivalently,
(

1

1 − α
− cosα

)

sin y < cos y sinα,

which keeping in mind conditions on y and α reduces to

tan y <
sinα

1
1−α − cosα

.

The latter is valid because

tan y < tan
(π

6
+

π

21

)

< 0.8 <
sin 1

8
1

1− 1
8

− cos 1
8

<
sinα

1
1−α − cosα

.

�

Lemma A.9. Under assumptions of Lemma A.3 let β satisfy

π

6
− π

21
< β <

π

6
− π

42

and also that λ2 < 1/1000. Then in order for Y ′ := F (T ′, U ′, V ′) to be inside the
angle of 2β with bisector [V Y ) for every pair of points U ′ ∈ B̄τ (U) and V ′ ∈ B̄τ (V ),
it is sufficient that T ′ be outside of B̄R+2τ (O) and inside the angle of 2α < 2(β −
120λ2) with bisector [WT ).

Proof. Denote K := (TW ] ∩ ∂BR+2τ (O), and let J ∈ ∂BR+2τ (O) be the closest to
V of two points in ∂BR+2τ (O) such that ∠Y V J = β, and I ∈ ∂BR−2τ (O) be the
farthest from V of two points in ∂BR−2τ (O) such that ∠Y V I = β.

Let us describe the set of all possible positions of the point Y ′ := F (T ′, U ′, V ′).
It lies in the intersection of the ray (T ′W ′] and the circumference ∂BU ′V ′W ′ cir-
cumscribed around the points U ′, V ′,W ′ (i.e. Y ′ = (T ′W ′] ∩ ∂BU ′V ′W ′).

Let T ′ be inside the angle δ of the value 2α ≤ 2β with bisector (TW ]. We
draw two rays parallel to the sides of this angle each one at distance 2τ from the
respective side. The closed angle formed by these rays will be denoted γ. Note
that the sides of the angle γ are tangent to the ball B̄2τ (W ) and that the point
W ′ in view of Remark A.4 belongs to this ball. Therefore the ray (T ′W ′] is inside
the angle γ (except possibly the endpoint W ′ which may belong to its boundary),
the circumference ∂BU ′V ′W ′ is also inside the annulus B̄R+2τ (O) \ BR−2τ (O) by
Remark A.5. Thus

Y ′ ∈ γ ∩ (B̄R+2τ (O) \BR−2τ (O)).

Consider the curvilinear trapezoid bounding the latter planar region and prove
that it is contained in the angle of 2β with bisector [V Y ). We first claim that
[V I] ∩ (TW ) 6= ∅. In fact, assuming the contrary, we get the existence of a point
H ∈ [TW ] with ∠OHV = π/2. Then, denoting I ′ := [IV ) ∩ (TW ], one has

R − 2τ = |OI| =
√

|OH |2 + |HI|2 <
√

|OH |2 + |HI ′|2 = |OI ′|.
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O

U

V

J

WK Y

I

A

B

a).

O
W

N1

S

P
H1

H2Q

b).

O W

NP1S1 B
c).

Figure 8. The constructions used in Lemma A.9.

From the triangle △V I ′O we get

|OI ′|
sin(π/3 − β)

=
|V O|

sin(π/3 + β)
,

and hence

R− 2τ < |OI ′| = R
sin(π/3 − β)

sin(π/3 + β)
= R

√
3 − tanβ√
3 + tanβ

< R

√
3 − tanπ/7√
3 + tanπ/7

,

which gives the contradictory chain of ineaqualities

1

50
> 20λ2 =

20λ1λ2
λ1L

=
τ

R
>

tanπ/7√
3 + tanπ/7

.

We now claim that [V J ] ∩ (TW ) = ∅. In fact, assuming the contrary, we have
that ∠OV J ≤ ∠OV K, so that

∠OVK ≥ π

3
+ β

but ∠KOV = π
3 , and thus

∠V KO ≤ π

3
− β <

π

6
+

π

21
.
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Then from the law of sines for the triangle △V KO we have

(17)
|KO|
|V O| =

sin∠OV K

sin∠V KO
.

Note that ∠KVO < π
2 since

|KO| = R+ 2τ <
|OV |

cos∠KOV
=

R

cos π
3

= 2R.

Moreover, ∠OVK ≥ π
3 + β ≥ π

2 − π
21 . Then (17) implies

1 + 40λ2 =
R+ 2τ

R
=

|KO|
|V O| =

sin∠OVK

sin∠V KO
≥ sin(π2 − π

21 )

sin(π6 + π
21 )

> 1.5,

which is impossible for λ2 < 1/1000. It is suffices to prove that boundary of the
region under consideration does not meet the rays [V J) and [V I), because then we
will immediately have that the whole region is located inside the angle γ. Further,
without loss of generality we will view (TW ) as the horizontal line and call the
respective half-plane containing V upper, and the remaining one lower.

For the first assertion it is enough to prove that the point A, which is the in-
tersection of the external circumference with the upper side of the angle γ, located
below the point J . Then the whole region is located below the line (V J). For the
second assertion it is enough to prove that the point B which is the intersection of
the internal circumference with the lower side of the angle γ, is located above the
point I. Then the whole region is above the line (V I). To prove that A is lower
than J we consider the angle ∠TWA and show that

(18) ∠TWA < α+ 50λ2

and

(19) β − 10λ2 < ∠JWT.

Then, choosing α in such a way that

(20) α+ 50λ2 < β − 10λ2,

we obtain that the point A is inside the arc JK of the circumference ∂BR+2τ (O).
To prove that the point B is above the point I, consider ∠BWT and obtain

(21) ∠BWT < α+ 80λ2.

We will also prove that

(22) ∠IWT > β − 40λ2.

Then, choosing α in such a way that

(23) α+ 80λ2 < β − 40λ2,

we obtain that the pointB is inside the arc of the circumference ∂BR−2τ (O) connect-
ing I with the point ∂BR−2τ (O)∩(TW ], hence B is inside the angle ∠IV K ⊂ ∠IV J .
Since the condition (23) is stronger than the condition (20), it is enough to choose
α so as to satisfy

α < β − 120λ2.

The rest of the proof is dedicated to validation of the assertions (18), (19) as well
as (21) and (22). First we show that

(24) ∠TWS < α+ 50λ2,

where S is the point of intersection of the upper side of the angle γ and the circum-
ference ∂BR(O). To this aim drop the perpendicular from the point O to the upper
side of the angle γ. Denote the respective point of intersection by H1 and the point
of intersection of the perpendicular [OH1] with the upper side of the angle δ by
H2. Denote also the points of intersection of the upper side of the angle δ with the
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segment [OS] and with the perpendicular to the upper side of the angle γ passing
through S, by Q and P respectively. Then (see Figure 8b))

|SP | = |H1H2| = 2τ

Set

ϕ := ∠WQO = ∠PQS = ∠H1SO.

One has then

sinϕ = sin∠H1SO =
|H1O|
|SO| =

|H1H2| + |H2O|
|SO|

=
|H1H2| + |OW | sin∠OWH2

|SO| =
2τ +R sinα

R
= sinα+ 40λ2

and

tan∠PWS =
|SP |
|PW | =

|SP |
|PQ| + |QH2| + |H2W | ≤

|SP |
|H2W | =

|SP |
|OW | cosα

=
2τ

R cosα
<

40λ2
cosβ

<
40λ2

cos(π6 − π
42 )

< 50λ2.

Then, since x < tanx, one gets

∠PWS < tan∠PWS < 50λ2,

so that (24) follows by the calculation

∠TWS = ∠TWP + ∠PWS < α+ 50λ2.

To prove (18), observe that

∠TWS > ∠TWA

and recall the inequality (24).
We will prove now (21). Denote by S1 the point of intersection of the circum-

ference ∂BR(O) with the lower side of the angle γ, and by N the point where the
lower side of the angle γ touches the circle B2τ (W ) (see Figure 8c)). Finally, let P1

be the point of intersection of the perpendicular dropped from the point O to the
lower side of the angle γ with the latter. Then

∠TWS1 = ∠TWS < α+ 50λ2

and

|OP1| = |OH1| = R sinα+ 2τ,

so that

∠OBW = ∠OBN − ∠WBN = arcsin

( |OP1|
|BO|

)

− arctan

( |WN |
|BN |

)

= arcsin

(

R sinα+ 2τ

R− 2τ

)

− arctan

( |WN |
|BN |

)

.

Similarly, one has

∠OS1W = ∠OS1N − ∠WS1N = arcsin

( |OP1|
|S1O|

)

− arctan

( |WN |
|S1N |

)

= arcsin

(

R sinα+ 2τ

R

)

− arctan

( |WN |
|S1N |

)

.
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Therefore

∠OBW − ∠OS1W =

(

arcsin

(

R sinα+ 2τ

R− 2τ

)

− arcsin

(

R sinα+ 2τ

R

))

−
(

arctan

( |WN |
|BN |

)

− arctan

( |WN |
|S1N |

))

,

and hence in view of the inequality |WN |/|BN | > |WN |/|S1N | and the monotonic-
ity of arctan we get

(25) ∠OBW − ∠OS1W < arcsin

(

R sinα+ 2τ

R− 2τ

)

− arcsin

(

R sinα+ 2τ

R

)

.

Since the function x 7→ arcsinx− 2√
3
x decreases when x < 1/2, then for b < a < 1/2

the inequality

(26) arcsina− arcsin b <
2√
3

(a− b)

is valid. Note that condition λ2 < 1/1000 implies

6τ

R
= 120λ2 < 1 − 2 sin

π

7
< 1 − 2 sinα

and thus 6τ < R− 2R sinα, which can be written as

R sinα+ 2τ

R− 2τ
<

1

2
.

Therefore we may apply the estimate (26) to (25) obtaining

∠OBW − ∠OS1W <
2√
3

(

R sinα+ 2τ

R − 2τ
− R sinα+ 2τ

R

)

=
2√
3

(R sinα+ 2τ)
2τ

R(R − 2τ)
<

2√
3
· R

2(sinα+ 40λ2) · 40λ2
R2

=
80√

3
λ2(sinα+ 40λ2) ≤

40√
3
λ2 < 30λ2,

where the penultimate inequality is valid because

sinα+ 40λ2 ≤ sin
π

7
+ 40λ2 <

1

2
,

which is true whenever λ2 < 1/800. Hence,

∠OS1W = ∠OWS1 = ∠TWS1 = ∠TWS

and therefore

∠TWB = ∠OWB < ∠OBW < ∠OS1W + 30λ2 = ∠TWS + 30λ2 < α+ 80λ2

(the last inequality of this chain is obtained applying (24)), which proves (21).
At last, to show (18), note that

∠OWJ > ∠WJO = ∠KOJ − ∠OWJ = ∠KOV − ∠JOV − ∠OWJ

=
π

3
− ∠JOV − ∠OWJ =

π

3
− (π − ∠OV J − ∠V JO) − ∠OWJ

=
π

3
− (π − (β +

π

3
) − ∠V JO) − ∠OWJ = β − π

3
+ ∠V JO − ∠OWJ,

which implies

(27) ∠OWJ >
β

2
− π

6
+

∠V JO

2
.

The law of sines for the triangle △V JO gives

sin∠V JO

sin∠OV J
=

|V O|
|OJ | =

R

R+ 2τ
=

1

1 + 40λ2
,
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and hence one has

sin∠V JO =
sin∠OV J

1 + 40λ2
=

sin(π3 + β)

1 + 40λ2
,

that is,

∠V JO = arcsin

(

sin(π3 + β)

1 + 40λ2

)

,

since ∠V JO < π/2 in view of |V O| < |JO|. Applying Lemma A.8 to the latter
relationship, we get

∠V JO > β +
π

3
− 20λ2.

Using the latter relationship, we get

∠OWJ > β − 10λ2

from (27). Since ∠TWJ = ∠OWJ , this gives (21).
To prove (22), observe the validity of the equalities

(28)
∠OIW + ∠IWO = ∠IOK = ∠IOV − ∠KOV = (π − ∠V IO − ∠OV I)

− π

3
=

(

π − ∠V IO − (
π

3
− β)

)

− π

3
=
π

3
+ β − ∠V IO.

Applying the law of sines to the triangle △OIV , we get

sin∠V IO

sin∠OV I
=

|V O|
|IO| =

R

R− 2τ
=

1

1 − 40λ2
,

so that

∠V IO = arcsin

(

sin∠OV I

1 − 40λ2

)

= arcsin

(

sin(π3 − β)

1 − 40λ2

)

.

Applying LemmaA.8 to the latter equality, we get

∠V IO <
π

3
− β + 40λ2.

Recalling (28) we get

(29) ∠OIW + ∠IWO > 2β − 40λ2

and from the law of sines for the triangle △OIW we get

sin∠OIW

sin∠IWO
=

|OW |
|IO| =

R

R− 2τ
=

1

1 − 40λ2
.

Hence

∠OIW = arcsin

(

1

1 − 40λ2
sin∠IWO

)

,

and applying Lemma A.8 to the latter relationship (we may do it since ∠IWO <
π/6) we obtain

∠OIW < ∠IWO + 40λ2.

Taking into account (29), this gives

2∠IWO + 40λ2 > ∠IWO + ∠OIW > 2β − 40λ2,

and hence
∠IWT = ∠IWO > β − 40λ2,

concluding the proof. �

Remark A.10. With the notation of Lemma A.3 and under the assumption that

λ3 ≤ λ2 ≤ 1/5000,
π

6
− π

21
< ∠TWT ′ ≤ ψ <

π

6
− π

42
,

one has that the point Y ′ is outside of the balls B̄ρ(OV ) and B̄ρ(OU ), where ρ :=
(1 + 40λ3)λ2λ1L, OV ∈ [Y V ], |OV V | = λ2λ1L, OU ∈ [Y U ], |OUU | = λ2λ1L.
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Proof. It suffices to show that the distance from the point V to the ray pV is greater
than twice the radius of these balls (since the distance between the points OV and V
is smaller than the radius (1+40λ3)λ2λ1L). As is easily seen, the distance from the

point V to the ray pV is equal to sin(π/6 − ψ) · |VW | − 2τ , where |VW | =
√

3λ1L,
τ = 20λ2λ1L. Therefore, it is sufficient to verify the following inequality

sin
(π

6
− ψ

)√
3λ1L− 40λ2λ1L > 2 (1 + 40λ3)λ2λ1L.

Since
0.07 < sin

π

42
< sin

(π

6
− ψ

)

,

we only have to show that
√

3 · 0.07 > 42λ2 + 80λ3λ2,

which is true because of the assumptions on λ2 and λ3. �

References

[1] A. O. Ivanov and A. A. Tuzhilin. Minimal networks: the Steiner problem and its generaliza-

tions. CRC Press, 1994.
[2] A. O. Ivanov and A. A. Tuzhilin. Extreme networks theory. Institute of Computer Investiga-

tions, Moscow-Izhevsk, 2003. in Russian.
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