
THE TWO OBSTACLE PROBLEM
FOR THE PARABOLIC BIHARMONIC EQUATION

M. NOVAGA AND S. OKABE

Abstract. We consider a two obstacle problem for the parabolic biharmonic equation
in a bounded domain. We prove long time existence of solutions via an implicit time
discretization scheme, and we investigate the regularity properties of solutions.

1. Introduction

The present paper is devoted to discussing a two obstacle problem for the parabolic bi-
harmonic equation. The obstacle problem for second order elliptic and parabolic equations
has attracted a great interest in the past years, and there is an extensive mathematical
literature (e.g., see [6] and the references therein). On the contrary, much less is known
on the obstacle problem for higher order elliptic or parabolic equations.

The biharmonic operator can be regarded as a prototype fourth order differential op-
erator. Indeed, elliptic and parabolic PDEs for biharmonic operator are under intensive
investigation in recent years (see for example [2, 9, 10, 12, 13, 14, 15, 16]). Although the
obstacle problem for the biharmonic equation has been studied in the 1970s and 1980s
(see [?, 5, 7, 8, 11, 20]), some results on the obstacle problem for the corresponding para-
bolic equation have only been obtained very recently. In particular, in [19] we considered
the case of a single obstacle, i.e., the solution u satisfies u ≥ f in Ω for a given obstacle
function f in a domain Ω, and it is natural to ask whether the results can be extended
to the case of two obstacles. Indeed, in this paper we prove the existence of solutions for
the two obstacle problem, and we investigate their regularity properties.

Let Ω ⊂ RN , with N ≤ 3, be a bounded domain with ∂Ω ∈ C4. Let f : Ω → R and
g : Ω → R denote the obstacle functions satisfying

f ∈ C4(Ω), g ∈ C4(Ω), f ≤ g in Ω,(1.1)

f < 0 < g on ∂Ω.(1.2)

We consider a two obstacle problem of the type

(∂tu+∆2u)(u− f) ≤ 0 in Ω× R+,

(∂tu+∆2u)(u− g) ≤ 0 in Ω× R+,

∂tu+∆2u = 0 in { (x, t) ∈ Ω× R+ | f(x) < u(x, t) < g(x) },
f ≤ u ≤ g in Ω× R+,

u = ∇u · νΩ = 0 on ∂Ω× R+,

u(·, 0) = u0(·) in Ω,

(P)
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where νΩ denotes the unit normal vector on ∂Ω, and the initial datum u0 : Ω → R satisfies

u0 ∈ H2
0 (Ω), f ≤ u0 ≤ g in Ω.(1.3)

Here we define a weak solution of (P). To this aim, we set

K := {u ∈ L2(0, T ;H2
0 (Ω)) ∩H1(0, T ;L2(Ω)) | u(x, 0) = u0(x) a.e. in Ω,(1.4)

f(x) ≤ u(x, t) ≤ g(x) a.e. in Ω× (0, T ) }.

Definition 1.1. We say that a function u is a weak solution of (P) if

(i) u ∈ K;
(ii) for any w ∈ K,∫ T

0

∫
Ω

[∂tu(w − u) + ∆u∆(w − u)] dxdt ≥ 0 .(1.5)

Let us denote by Ω0 the coincidence set of f and g, i.e.,

Ω0 = {x ∈ Ω | f(x) = g(x) }.(1.6)

The main result of this paper is the following:

Theorem 1.1. Let N ≤ 3. Let f and g satisfy (1.1)-(1.2). Then, for any initial datum
u0 satisfying (1.3), the problem (P) possesses a unique weak solution

u ∈ L∞(R+;H
2
0 (Ω)) ∩H1(R+;L

2(Ω)).(1.7)

Moreover the quantity µt := ∂tu(·, t) + ∆2u(·, t) defines a signed measure in Ω for a.e.
t ∈ R+, and for any T > 0 there exists a constant C > 0 such that∫ T

0

µt(Ω)
2 dt < C + T‖∆2f‖2L∞(Ω0)

.(1.8)

Furthermore the following regularity properties hold :

(i) u ∈ L2(R+;W
2,∞(Ω)). In particular, if N = 1,

u ∈ C0,β(R+;C
1,γ(Ω)) with 0 < γ <

1

2
and 0 < β <

1− 2γ

8
,(1.9)

if N ∈ {2, 3},

u ∈ C0,β(R+;C
0,γ(Ω)) with 0 < γ <

4−N

2
and 0 < β <

4−N − 2γ

8
;(1.10)

(ii) the signed measure µt satisfies

µtbΩ0= ∆2f,(1.11)

suppµtbΩ\Ω0⊂ { (x, t) ∈ (Ω \ Ω0)× R+ | u(x, t) = f(x) or u(x, t) = g(x) } ,(1.12)

with

µt

{
≥ 0 in { (x, t) ∈ (Ω \ Ω0)× R+ | u(x, t) = f(x) },
≤ 0 in { (x, t) ∈ (Ω \ Ω0)× R+ | u(x, t) = g(x) }.

(1.13)

In particular, u satisfies (P) in the sense of distributions.
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The restriction on the dimension N ≤ 3 in Theorem 1.1 has two motivations. The first
is related to the continuity of the approximate solutions. We construct the solution of
(P) as a suitable limit of solutions of the obstacle problem for the corresponding elliptic
equation, which is a biharmonic equation with a lower order perturbation. Here a difficulty
arises from the presence of the set Ω0. To overcome this difficulty, first we construct the
solution of the two obstacle problem replaced f with f − ε, for ε > 0. If the solution uε of
the modified two obstacle problem is uniformly continuos with respect to ε in Ω, then one
can obtain a solution of the original obstacle problem as a limit of uε as ε ↓ 0. Thus the
point is to obtain the uniform continuity of uε, and this is given by Sobolev’s embedding
if N ≤ 3. For the same reason, the two obstacle problem for the elliptic biharmonic
equation was studied in [8] under the same assumption N ≤ 3.

Even if Ω0 = ∅, we still need the restriction on the dimension in order to prove the C1,1

regularity of the approximate solutions. Here the difficulty proving the continuity of the
discrete velocities, which converge to ∂tu. Again, such continuity can be obtained from
Sobolev’s embedding if N ≤ 3.

We note that Theorem 1.1 can be extended to the problem (P) replaced Neumann
boundary condition by Navier boundary condition, i.e., u = ∆u = 0 on ∂Ω. Indeed,
replacing H2

0 (Ω) by H2(Ω) ∩H1
0 (Ω), we onbain the same conclusion as Theorem 1.1

The paper is organized as follows: We shall construct the solution of (P) by way of
an implicit time discretization so called minimizing movements, which was given by De
Giorgi. We give a formulation via minimizing movement in Section 2. In Section 3, we
construct an approximate solution of the problem (P) and investigate its regularity. In
Section 4, we prove Theorem 1.1. Indeed, we first prove that the approximate solution
converges to a function in a suitable sense. And then we observe that the limit is the
required solution of (P).

2. Notation

In this paper, we shall construct a solution of (P) via minimizing movements (i.e., see
[1]). We first note that the problem (P) is the L2-gradient flow for the functional

E(u) :=
1

2

∫
Ω

|∆u(x)|2 dx(2.1)

with constraint u ∈ K. Let T > 0 and n ∈ N, and set τn = T/n. We define a sequence
{ui,n}ni=0 inductively. To begin with, we let u0,n := u0. Let us denote by ui,n the minimizer
of the problem

min{Gi,n(u) | u ∈ K }(Mi,n)

with

Gi,n(u) := E(u) + Pi,n(u)(2.2)

where

Pi,n(u) :=
1

2τn

∫
Ω

[u(x)− ui−1,n(x)]
2 dx.(2.3)

The set K is given by

K = {u ∈ H2
0 (Ω) | f ≤ u ≤ g in Ω }.(2.4)
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Let us set

Vi,n(x) =
ui,n(x)− ui−1,n(x)

τn
.(2.5)

Definition 2.1. Let us define un(x, t) : Ω× [0, T ] → R as

un(x, t) = ui−1,n(x) + (t− (i− 1)τn)Vi,n(x)(2.6)

in Ω× [(i− 1)τn, iτn] for each i = 1, 2, · · · , n.

Definition 2.2. Let us define ũn(x, t) : Ω× (0, T ] → R and Vn(x, t) : Ω× (0, T ] → R as

ũn(x, t) = ui,n(x),(2.7)

Vn(x, t) = Vi,n(x),(2.8)

in Ω× ((i− 1)τn, iτn] for each i = 1, 2, · · · , n.

3. Existence of approximate solution

To begin with, we show the existence of the solution of (Mi,n).

Theorem 3.1. Let f and g satisfy (1.1)-(1.2). Let u0 satisfy (1.3). Then there exists a
unique minimizer of (Mi,n).

Proof. Let {uj} ⊂ K be a minimizing sequence for the functional (2.2). Since

0 ≤ inf
K

Gi,n(u) ≤ Gi,n(ui−1,n) = E(ui−1,n),

we may assume {uj} that supj∈N Gi,n(uj) < ∞. Recalling that ‖∆v‖L2(Ω) is equivalent to
‖v‖H2

0 (Ω) on H2
0 (Ω), we deduce that {uj} is uniformly bounded in H2

0 (Ω), and then there

exists u ∈ H2
0 (Ω) such that

uj ⇀ u in H2(Ω),(3.1)

in particular,

∆uj ⇀ ∆u in L2(Ω),(3.2)

up to a subsequence. Since (3.1) implies that uj uniformly converges to u in Ω up to a
subsequence, we have f ≤ u ≤ g in Ω. It follows from Fatou’s Lemma that

Pi,n(u) ≤ lim inf
j→∞

Pi,n(uj).

Moreover we infer from (3.2) that

E(u) ≤ lim inf
j→∞

E(uj).

The uniqueness of the minimizer of (Mi,n) follows from the convexity of Gi,n. �

Set

fε(x) = f(x)− ε.(3.3)

We denote by (M ε
i,n) the problem (Mi,n) replaced f by fε. The proof of Theorem 3.1

implies that the problem (M ε
i,n) has a unique minimizer uε

i,n. From now on, let us set

V ε
i,n =

uε
i,n − uε

i−1,n

τn
.(3.4)

Moreover let V ε
n denote the piecewise constant interpolation of V ε

i,n.
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Lemma 3.1. uε
i,n uniformly converges to ui,n in Ω as ε → 0.

Proof. By the fact that ‖uε
i,n‖H2(Ω) ≤ C, for any sequence {εm} with εm → 0 as m → ∞,

there exist {εm′} ⊂ {εm} and ūi,n ∈ H2
0 (Ω) such that

u
εm′
i,n ⇀ ūi,n weakly in H2(Ω) as m′ → ∞,(3.5)

in particular,

∆u
εm′
i,n ⇀ ∆ūi,n weakly in L2(Ω) as m′ → ∞.(3.6)

Since N ≤ 3, Sobolev’s embedding theorem implies that u
εm′
i,n uniformly converges to ūi,n

as ε ↓ 0. Recalling that the solution u
εm′
i,n of (M

εm′
i,n ) satisfies∫

Ω

[
∆u

εm′
i,n ∆(w − u

εm′
i,n ) + V

εm′
i,n (w − u

εm′
i,n )

]
dx ≥ 0 for any w ∈ Kεm′ ,

we deduce from (3.5)-(3.6) that∫
Ω

[
∆ūi,n∆(w − ūi,n) + V̄i,n(w − ūi,n)

]
dx

≥ lim inf
m′→∞

∫
Ω

[
∆u

εm′
i,n ∆(w − u

εm′
i,n ) + V

εm′
i,n (w − u

εm′
i,n )

]
dx ≥ 0 for any w ∈ K,

where we used the fact K ⊂ Kεm′ . Moreover it follows from the uniqueness of the solution
of (Mi,n) that ūi,n = ui,n. �

Along the same lines as in the proof of Theorem 2.2 in [19], we obtain the following
uniform estimates:

Proposition 3.1. Let uε
i,n be the solution of (M ε

i,n). Then, for any n ∈ N,∫ T

0

∫
Ω

V ε
n (x, t)

2 dxdt ≤ 2E(u0),(3.7)

sup
i

‖∆uε
i,n‖2L2(Ω) ≤ 2E(u0).(3.8)

Since N ≤ 3, combining Proposition 3.1 with Sobolev’s embedding theorem, we have

uε
i,n is uniformly continuous in Ω, with modulus of continuity(3.9)

independent of ε, i, and n.

Set

Cε,+
i,n = {x ∈ Ω | uε

i,n(x) = fε(x) },
Cε,−
i,n = {x ∈ Ω | uε

i,n(x) = g(x) }.

By the fact that fε < g in Ω, we observe from (3.9) that the sets Cε,+
i,n and Cε,−

i,n are disjoint.
Here we set

µε
i,n = ∆2uε

i,n + V ε
i,n.
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In the following, we show that µε
i,n is a signed measure in Ω. To this aim, let us define

γρ(λ) :=


λ2

ρ
if λ < 0,

0 if λ > 0,

βρ(λ) := γ′
ρ(λ),

for each ρ > 0. Regarding the following minimization problem

min
v∈H2

0 (Ω)
Gε,ρ

i,n(v)(M ε,ρ
i,n )

with

Gε,ρ
i,n(v) :=

∫
Ω

[ 1

2
(∆v)2 +

1

2τn
(v − uε

i−1,n)
2 + γρ(v − fε) + γρ(g − v)

]
dx,

we show the following:

Proposition 3.2. The problem (M ε,ρ
i,n ) has a unique solution wε,ρ

i,n with

wε,ρ
i,n ⇀ uε

i,n weakly in H2(Ω) as ρ ↓ 0.(3.10)

Proof. By a standard argument, we deduce that the problem (M ε,ρ
i,n ) has a unique solution

wε,ρ
i,n satisfying

∆2wε,ρ
i,n +

1

τn
(wε,ρ

i,n − uε
i−1,n) + βρ(w

ε,ρ
i,n − fε)− βρ(g − wε,ρ

i,n) = 0 in Ω

in the classical sense. Since it follows from the minimality of wε,ρ
i,n that

Gε,ρ
i,n(w

ε,ρ
i,n) ≤ Gε,ρ

i,n(u
ε
i−1,n) = E(uε

i−1,n),(3.11)

we observe from Proposition 3.1 that

‖∆wε,ρ
i,n‖2L2(Ω) ≤ 2E(u0),(3.12)

1

2τn
‖wε,ρ

i,n − uε
i−1,n‖2L2(Ω) ≤ E(u0),(3.13)

and

max{ ‖(wε,ρ
i,n − fε)

−‖2L2(Ω), ‖(g − wε,ρ
i,n)

−‖2L2(Ω) } ≤ ρE(u0).(3.14)

The inequality (3.12) yields that there exist a sequence {ρm} with ρm → 0 as m → ∞
and a function ũ ∈ H2

0 (Ω) such that

wε,ρm
i,n ⇀ ũ weakly in H2(Ω),(3.15)

in particular,

wε,ρm
i,n → ũ a.e. in Ω,(3.16)

as ρm → 0. Recalling (3.14) and (3.16), we deduce from Chebyshev’s inequality that
fε ≤ ũ ≤ g in Ω. This implies ũ ∈ Kε.

We claim that ũ is a minimizer of (M ε
i,n). Indeed, for any v ∈ Kε, it holds that

Gε
i,n(v) = Gε,ρm

i,n (v) ≥ Gε,ρm
i,n (wε,ρm

i,n ) ≥ Gε
i,n(w

ε,ρm
i,n ).(3.17)

Recalling (3.15)-(3.16) and letting ρm → 0 in (3.17), we infer that

Gε
i,n(v) ≥ lim inf

ρm↓0
Gε

i,n(w
ε,ρm
i,n ) = Gε

i,n(ũ).
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This implies that ũ is a minimizer of (M ε
i,n). Then it follows from the uniqueness of the

solutions to (M ε
i,n) that ũ = uε

i,n. We thus completed the proof. �

Theorem 3.2. Let ε > 0 and i ∈ { 1, 2, · · · , n }. Then the quantity µε
i,n is a signed

measure in Ω with

suppµε
i,n ⊂ Cε,+

i,n ∪ Cε,−
i,n , µε

i,n

{
≥ 0 in Cε,+

i,n ,

≤ 0 in Cε,−
i,n .

(3.18)

Moreover there exists a positive constant C > 0 independent of ε and n such that

τn

n∑
i=1

µε
i,n(Ω)

2 < C.(3.19)

Proof. To begin with, we shall verify that the quantity

µε,ρ
i,n := ∆2wε,ρ

i,n + (wε,ρ
i,n − uε

i−1,n)/τn

defines a signed measure in Ω. Let us set

I+ρ = {x ∈ Ω | wε,ρ
i,n(x) ≤ fε(x) }, I−ρ = {x ∈ Ω | wε,ρ

i,n(x) ≥ g(x) }.

It follows from βρ ≤ 0 that

∆2wε,ρ
i,n +

wε,ρ
i,n − uε

i−1,n

τn
= −βρ(w

ε,ρ
i,n − fε) + βρ(g − wε,ρ

i,n)


≥ 0 in I+ρ ,

= 0 in Ω \ (I+ρ ∪ I−ρ ),

≤ 0 in I−ρ ,

i.e., µε,ρ
i,n defines a signed measure in Ω.

We claim that the measure µε,ρ
i,n converges to µε

i,n as ρ ↓ 0 up to a subsequence. Indeed,
we shall show that, for each ε, i, and n, the quantity µε,ρ

i,n(U) is uniformly bounded with
respect to ρ for any U ⊂⊂ Ω. From now on, we write µε,ρ

i,n = νρ
+ − νρ

−, where νρ
± are

positive measures with their support in I±ρ , respectively. For any ϕ ∈ C∞
c (Ω) with ϕ ≡ 1

in U and 0 ≤ ϕ ≤ 1 elsewhere, we observe that

νρ
±(U) ≤

∫
U

ϕdνρ
± = ±

∫
U

[
∆wε,ρ

i,n∆ϕ+
1

τn
(wε,ρ

i,n − uε
i−1,n)ϕ

]
dx

≤ E(wε,ρ
i,n)

1
2E(ϕ)

1
2 +

√
2

τn

(
1

2τn

∫
Ω

(wε,ρ
i,n − uε

i−1,n)
2 dx

) 1
2
(∫

Ω

ϕ2 dx

) 1
2

.

Since it follows from (3.11) that

1

2τn

∫
Ω

(wε,ρ
i,n − uε

i−1,n)
2 dx ≤ E(uε

i−1,n)− E(wε,ρ
i,n),(3.20)

we observe from (3.12) and (3.20) that

νρ
±(U) ≤ C(U)

[
E(u0)

1
2+

( E(uε
i−1,n)− E(wε,ρ

i,n)

τn

) 1
2
]
.(3.21)

Thus there exist a sequence {ρm′} ⊂ {ρm} and measures µ̄± such that

ν
ρm′
± ⇀ µ̄± as m′ → ∞,(3.22)
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i.e., for any ζ ∈ Cc(Ω) ∫
Ω

ζdν
ρm′
± →

∫
Ω

ζdµ̄± as m′ → ∞,

where {ρm} is the sequence obtained in the proof of Proposition 3.2. Since Proposition
3.2 asserts that∫

Ω

ζdν
ρm′
± = ±

∫
Ω

[
∆w

ε,ρm′
i,n ∆ζ +

1

τn
(w

ε,ρm′
i,n − uε

i−1,n)ζ
]
dx

→ ±
∫
Ω

[
∆uε

i,n∆ζ + V ε
i,nζ

]
dx for any ζ ∈ C2

c (Ω) as m′ → ∞,

the relation (3.22) implies µ̄± = ±(∆2uε
i,n + V ε

i,n), respectively. We claim that

supp µ̄+ ⊂ Cε,+
i,n , supp µ̄− ⊂ Cε,−

i,n .(3.23)

It is sufficient to show the former relation. Let x0 ∈ Ω \ Cε,+
i,n be chosen arbitrarily. Then

there exist a neighborhood W of x0 and a constant δ > 0 such that

uε
i,n(x)− fε(x) > δ in W ⊂ Ω.

Since w
ε,ρm′
i,n uniformly converges to uε

i,n as m′ → ∞, there exists a constant M > 0 such
that for any m′ > M ∣∣wε,ρm′

i,n − uε
i,n

∣∣ ≤ δ

2
in W.

Thus we deduce that, for any m′ > M ,

w
ε,ρm′
i,n (x)− fε(x) ≥ (uε

i,n − fε(x))−
∣∣wε,ρm′

i,n − uε
i,n

∣∣ > δ

2
,

i.e., W ⊂ Ω \ I+ρm′ for any m′ > M . Hence we see that for any ζ ∈ C2
c (W )∫

Ω

ζ dµ̄+ = lim
m′→∞

∫
Ω

ζdν
ρm′
+ = 0.

This is equivalent to the former relation in (3.23). Recalling that Cε,+
i,n and Cε,−

i,n are disjoint
set, we observe that µε

i,n is a signed measure satisfying (3.18).
We turn to the proof of (3.19). For any U ⊂⊂ Ω, it follows from (3.21) that

µε
i,n ≤ µε

i,nbCε,+
i,n

≤ C(U)E(u0)
1
2 + C(U) lim inf

ρm′↓0

( E(uε
i−1,n)− E(w

ε,ρm′
i,n )

τn

) 1
2

= C(U)E(u0)
1
2 + C(U)

( E(uε
i−1,n)− E(uε

i,n)

τn

) 1
2

and

µε
i,n ≥ µε

i,nbCε,−
i,n

≥ −C(U)E(u0)
1
2 − C(U) lim inf

ρm′↓0

( E(uε
i−1,n)− E(w

ε,ρm′
i,n )

τn

) 1
2

= −C(U)E(u0)
1
2 − C(U)

( E(uε
i−1,n)− E(uε

i,n)

τn

) 1
2
.
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Multiplying τn and summing over i = 0, 1, · · · , n, we find

τn

n∑
i=0

µε
i,n(U)2 ≤ C ′(U)E(u0)T + C ′(U)(E(u0)− E(un,n)) ≤ C ′(U)(T + 1)E(u0).(3.24)

It follows from the condition (1.2) that there exists a constant δ∗ > 0 such that

d(∂Ω, Cε,±
i,n ) ≥ δ∗.

Thus it follows from (3.18) that suppµε
i,n ⊂ Ωδ∗/2, where Ωρ := {x ∈ Ω | dist(x, ∂Ω) > ρ}.

Letting U = Ωδ∗/2, we obtain the conclusion. �

We shall now prove the C1,1 regularity of uε
i,n in Ω. In the following, for each h ∈ L2(Ω),

we denote by ∆−1h the solution of{
−∆w = h in Ω,

w = 0 on ∂Ω.

We start with the following lemma:

Lemma 3.2. For each ε > 0, n ∈ N, and i ∈ { 1, · · · , n }, there exists a function vεi,n
satisfying the following :

(a) vεi,n = ∆uε
i,n +∆−1V ε

i,n a.e. in Ω;

(b) vεi,n is upper semicontinuous in Ω \Cε,−
i,n . On the other hand, vεi,n is lower semicon-

tinuous in Ω \ Cε,+
i,n ;

(c) for any x0 ∈ Ω \ Cε,−
i,n and any sequence of balls Bρ(x0) ⊂ Ω \ Cε,−

i,n , it holds that

1

|Bρ(x0)|

∫
Bρ(x0)

vεi,n dx ↓ vεi,n(x0) as ρ ↓ 0.

On the other hand, for any x1 ∈ Ω\Cε,+
i,n and any sequence of balls Bρ(x1) ⊂ Ω\Cε,+

i,n ,
we have

1

|Bρ(x1)|

∫
Bρ(x1)

vεi,n dx ↑ vεi,n(x1) as ρ ↓ 0.

Proof. Let us set

vε,ρi,n(x) =
1

|Bρ(x)|

∫
Bρ(x)

[
∆uε

i,n(y) + ∆−1V ε
i,n(y)

]
dy.

If uε
i,n ∈ C∞(Ω), then Green’s formula yields that for each x0 ∈ Ω

∆uε
i,n(x0) + ∆−1V ε

i,n(x0) =
1

|∂Bρ(x0)|

∫
∂Bρ(x0)

[
∆uε

i,n +∆−1V ε
i,n

]
dS(3.25)

−
∫
Bρ(x0)

[
∆2uε

i,n(x) + V ε
i,n(x)

]
Gρ(x− x0) dx,
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where Gρ is Green’s function defined by

Gρ(r) =



1

2
(r − ρ) if N = 1,

1

2π
log

ρ

r
if N = 2,

1

N(N − 2)ω(N)
(rN−2 − ρN−2) if N ≥ 3.

(3.26)

We note that ω(N) denotes the volume of unit ball in RN . Thanks to (3.18) and the fact
that Gρ′ > Gρ if ρ′ > ρ, we observe from (3.25) that

vε,ρi,n(x0) ≤ vε,ρ
′

i,n (x0) if ρ < ρ′ and Bρ′(x0) ⊂ Ω \ Cε,−
i,n(3.27)

and

vε,ρi,n(x0) ≥ vε,ρ
′

i,n (x0) if ρ < ρ′ and Bρ′(x0) ⊂ Ω \ Cε,+
i,n(3.28)

For general uε
i,n ∈ H2

0 (Ω), making use of the molification of ∆uε
i,n +∆−1V ε

i,n, we are able
to verify (3.27) and (3.28). Hence it follws from (3.27) and (3.28) that

vε,ρi,n(x) ↓ v̄εi,n(x) as ρ ↓ 0 in Ω \ Cε,−
i,n

and

vε,ρi,n(x) ↑ ṽεi,n(x) as ρ ↓ 0 in Ω \ Cε,+
i,n ,

for some functions v̄εi,n and ṽεi,n.
Since vε,ρi,n is continuous in Ω, setting

vεi,n(x) =

{
v̄εi,n(x) if x ∈ Ω \ Cε,−

i,n ,

ṽεi,n(x) if x ∈ Ω \ Cε,+
i,n ,

we deduce that vεi,n is upper semicontinuous in Ω \ Cε,−
i,n , and is lower semicontinuous in

Ω \ Cε,+
i,n . Recalling that ∆uε

i,n +∆−1V ε
i,n ∈ L2(Ω), we see that

vε,ρi,n → ∆uε
i,n +∆−1V ε

i,n as ρ ↓ 0 a.e. in Ω.

Therefore we conclude that vεi,n = ∆uε
i,n +∆−1V ε

i,n a.e. in Ω. �

Lemma 3.3. For any x0 ∈ Cε,+
i,n , it holds that

vεi,n(x0)−∆−1V ε
i,n(x0) ≥ ∆f(x0).(3.29)

On the other hand, for any x1 ∈ Cε,−
i,n , we have

vεi,n(x1)−∆−1V ε
i,n(x1) ≤ ∆g(x1).(3.30)

Proof. Since the proof of (3.29) is similar to the proof of Lemma 3.3 in [19], we shall
prove the latter assertion. Let x1 ∈ Cε,−

i,n . Since Cε,+
i,n and Cε,−

i,n are disjoint, it holds that

Cε,−
i,n ⊂ Ω \ Cε,+

i,n . Then there exists a sequence {ym} ⊂ Ω \ Cε,+
i,n with ym → x1 as m → ∞

such that

uε
i,n(ym)− g(ym) ↑ 0.(3.31)
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For each ym, let ρ be small enough such that Bρ,m := { y ∈ RN | |y− ym| < ρ } ⊂ Ω\Cε,+
i,n .

It follows from Green’s formula that

uε
i,n(ym) =

1

|∂Bρ,m|

∫
∂Bρ,m

uε
i,n dS −

∫
Bρ,m

∆uε
i,n(y)Gρ(ym − y) dy(3.32)

and

g(ym) =
1

|∂Bρ,m|

∫
∂Bρ,m

g dS −
∫
Bρ,m

∆g(y)Gρ(ym − y) dy,(3.33)

Since uε
i,n ≤ g in Ω, we infer from (3.31)–(3.33) that

lim inf
m→∞

∫
Bρ,m

[
∆g(y)−∆uε

i,n(y)
]
Gρ(ym − y) dy ≥ 0.

Thanks to Lemma 3.2, the relation is reduced to

lim inf
m→∞

∫
Bρ,m

[
∆g(y)− vεi,n(y) + ∆−1V ε

i,n(y)
]
Gρ(ym − y) dy ≥ 0.(3.34)

Recalling that V ε
i,n ∈ H2

0 (Ω), we observe from the elliptic regularity, e.g., see [17], that

∆−1V ε
i,n ∈ H4(Ω). We note that Sobolev’s embedding theorem implies that ∆−1V ε

i,n is

continuous in Ω provided N ≤ 7. Since vεi,n is lower semicontinuous in Ω \ Cε,+
i,n , there

exists a point ym,ρ ∈ Bρ,m such that the maxmum of ∆g(y)− vεi,n(y)+∆−1V ε
i,n(y) in Bρ,m

attains at y = ym,ρ. Hence it follows from (3.34) that there exists a sequence {δm} with
δm ↓ 0 as m → ∞ such that

∆g(ym,ρ)− vεi,n(ym,ρ) + ∆−1V ε
i,n(ym,ρ) ≥ −δm.

As m → ∞, ym,ρ converges to a point yρ ∈ { y ∈ RN | |y− x1| ≤ ρ } up to a subsequence,
for the sequence {ym,ρ} is bounded. Thanks to the lower semicontinuity of vεi,n, we find

∆g(yρ)− vεi,n(yρ) + ∆−1V ε
i,n(yρ) ≥ 0

for any ρ > 0 small enough. Letting ρ ↓ 0 and making use of the lower semicontinuity of
vεi,n, we conclude (3.30). �

Lemma 3.4. For each ε > 0, n ∈ N, and i = 1, . . . , n, it holds that ∆uε
i,n ∈ L∞(Ω).

Moreover, there exists a positive constant C independent of ε, n, and i, such that

‖∆uε
i,n‖L∞(Ω) ≤ CE(u0)

1
2 + ‖V ε

i,n‖L2(Ω) +max{‖∆fε‖L∞(Ω), ‖∆g‖L∞(Ω)}(3.35)

+ C

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

.

Proof. Let us set

U ε
i,n := uε

i,n + (∆2)−1V ε
i,n,(3.36)

where (∆2)−1V ε
i,n denotes the unique solution of{

∆2w = V ε
i,n in Ω,

w = 0, ∆w = 0, on ∂Ω.

Fix x0 ∈ Ω arbitrarily. Let Bρ denote the ball center x0 and the radius ρ. For any R > 0
with BR ⊂ Ω, let ζ ∈ C∞

c (BR) be a test function with ζ = 1 in B2R/3, 0 ≤ ζ ≤ 1
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elsewhere. By the same argument as in the proof of Lemma 3.4 in [19], we see that for
any x ∈ BR/2

vεi,n(x) = −
∫
BR/2

GR(x− y)dµε
i,n(y)− I1(x) + α(x)(3.37)

with

I1(x) :=

∫
DR/2

ζ(y)GR(x− y)∆2U ε
i,n(y) dy.

and

|α(x)| ≤ C1‖∆U ε
i,n‖L2(Ω) in BR/2.

Here GR is Green’s function given by (3.26) with ρ = R. We note that for any x ∈ BR/3

|I1(x)| ≤ C
∣∣µε

i,n

∣∣ (DR/2) ≤ C2E(u0)
1
2 + C3

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

,

where the constants C2 and C3 are independent of ε and n. Set

G̃R(x) =

∫
BR/2

GR(x− y)dµε
i,n(y).

Thanks to Lemma 3.3, we observe from (3.37) that

G̃R(x) = −vεi,n(x)− I1(x) + α(x) ≤ −∆−1V ε
i,n(x)−∆fε(x) + |I1(x)|+ α(x)

< C1‖∆U ε
i,n‖L2(Ω) + C2E(u0)

1
2 + C3

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

+ C4‖V ε
i,n‖L2(Ω) + ‖∆fε‖L∞(Ω) in Cε,+

i,n ∩BR/3,

and while

G̃R(x) = −vεi,n(x)− I1(x) + α(x) ≥ −∆−1V ε
i,n(x)−∆g(x)− |I1(x)|+ α(x)

> −C1‖∆U ε
i,n‖L2(Ω) − C2E(u0)

1
2 − C3

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

− C4‖V ε
i,n‖L2(Ω) − ‖∆g‖L∞(Ω) in Cε,−

i,n ∩BR/3.

Then, along the same lines as in the proof of Theorems 1.6 and 1.10 of [18], we deduce
that

lim sup
d(x,Cε,+

i,n )→0

G̃R(x) ≤ C1‖∆U ε
i,n‖L2(Ω) + C2E(u0)

1
2 + C3

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

+ C4‖V ε
i,n‖L2(Ω) + ‖∆fε‖L∞(Ω)

and

lim sup
d(x,Cε,−

i,n )→0

G̃R(x) ≥ −C1‖∆U ε
i,n‖L2(Ω) − C2E(u0)

1
2 − C3

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

− C4‖V ε
i,n‖L2(Ω) − ‖∆g‖L∞(Ω).
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Thus the maximal principle implies that

|G̃R(x)| ≤ C1‖∆U ε
i,n‖L2(Ω) + C2E(u0)

1
2 + C3

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

+ C4‖V ε
i,n‖L2(Ω) +max{ ‖∆fε‖L∞(Ω), ‖∆g‖L∞(Ω) } in BR/3.

Combining (3.37) with Theorem 3.2 and Lemma 3.2, we obtain (3.35). �

Lemma 3.5. ([8]) Let N ≤ 3. Let w ∈ H2(Ω) be a non-negative function satisfying

‖∆w‖L∞(Ω) ≤ M0.

Then there exists a constant M depending only on M0 such that if

x0 ∈ J := {x ∈ Ω | w(x) = 0}

then it holds that

|w(x)| ≤ M |x− x0|2, |∇w(x)| ≤ M |x− x0|, in B(x0, ρ/2),(3.38)

where ρ = dist(x0, ∂Ω).

Lemma 3.6. For any x ∈ Ω \ (Cε,+
i,n ∪ Cε,−

i,n ), it holds that

|D2uε
i,n(x)| ≤ C(‖∆uε

i,n‖L2(Ω) + ‖V ε
i,n‖L2(Ω) + ‖D2f‖L∞(Ω) + ‖∆2f‖L2(Ω)

+ ‖D2g‖L∞(Ω) + ‖∆2g‖L2(Ω)).

Proof. Since uε
i,n is continuous in Ω, we see that δ := dist(Cε,+

i,n ∪ Cε,−
i,n , ∂Ω) > 0. To begin

with, recall that

∆2uε
i,n + V ε

i,n = 0 in Ω \ Ωδ,

where Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ}. By the elliptic regularity theory (i.e., see [17]), we
deduce from ∂Ω ∈ C4 that

‖∆uε
i,n‖H2(Ω\Ωρ) ≤ C(‖∆uε

i,n‖L2(Ω) + ‖V ε
i,n‖L2(Ω)) for any 0 < ρ < δ,(3.39)

where the constant C > 0 is independent of i, n and ε. Setting ũ := ηuε
i,n, where

η ∈ C∞
c (Ω \ Ωδ) with 0 ≤ η ≤ 1 and

η(x) =

{
1 in Ω \ Ω3δ/4,

0 in Ω7δ/8,

we find {
∆2ũ = F (η, uε

i,n)− ηV ε
i,n in Ω \ Ω7δ/8,

ũ = ∂ν ũ = 0 on ∂(Ω \ Ω7δ/8),

where

F (η, uε
i,n) := ∆2ηuε

i,n + 2∇∆η · ∇uε
i,n + 2∆(∇η · ∇uε

i,n) + 2∆η∆uε
i,n + 2∇η · ∇∆uε

i,n.

Thanks to Theorem 2.20 in [14], we observe from (3.39) and ∂Ω ∈ C4 that

‖ũ‖H4(Ω\Ω7δ/8) ≤ C(‖F (η, uε
i,n)‖L2(Ω\Ω7δ/8) + ‖ηV ε

i,n‖L2(Ω\Ω7δ/8))

≤ C(‖∆uε
i,n‖L2(Ω) + ‖V ε

i,n‖L2(Ω)).
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Since ‖uε
i,n‖H4(Ω\Ω3δ/4) = ‖ũ‖H4(Ω\Ω3δ/4) ≤ ‖ũ‖H4(Ω\Ω7δ/8), the estimate implies

‖D2uε
i,n‖H2(Ω\Ω3δ/4) ≤ C(‖∆uε

i,n‖L2(Ω) + ‖V ε
i,n‖L2(Ω)).

Then it follows from Sobolev’s embedding theorem that

‖D2uε
i,n‖L∞(Ω\Ω3δ/4) ≤ C(‖∆uε

i,n‖L2(Ω) + ‖V ε
i,n‖L2(Ω)),(3.40)

where the constant C is independent of i, n, and ε.
Let x0 ∈ Ωδ/2 \ (Cε,+

i,n ∪ Cε,−
i,n ) satisfy dist(x0, Cε,+

i,n ∪ Cε,−
i,n ) ≤ δ. Here we may assume that

dist(x0, Cε,+
i,n ∪ Cε,−

i,n ) = dist(x0, Cε,−
i,n ).

From Lemmas 3.4 and 3.5, there exists a constant C > 0 independent of i, n, and ε such
that

|(uε
i,n − g)(x)| ≤ C‖∆(uε

i,n − g)‖L∞(Ω)dist(x, Cε,−
i,n )2,(3.41)

|∇(uε
i,n − g)(x)| ≤ C‖∆(uε

i,n − g)‖L∞(Ω)dist(x, Cε,−
i,n ),(3.42)

in B(x0, d), where d = dist(x0, Cε,−
i,n ). We consider

wd(x) =
1

d2
(uε

i,n − g)(d(x− x0)) in B(x0, 1).

For the simplicity, we may assume x0 = 0. Then it follows from (3.41)-(3.42) that

|wd(x)| ≤ C‖∆(uε
i,n − g)‖L∞(Ω), |∇wd(x)| ≤ C‖∆(uε

i,n − g)‖L∞(Ω), in B(0, 1).

Since

∆2wd(x) = −d2V ε
i,n(d(x− x0))− d2∆2g(d(x− x0)) in B(0, 1),

we observe from the same argument as in the derivation of (3.40) that

|D2wd(x)| ≤ C(‖∆uε
i,n‖L2(Ω) + ‖V ε

i,n‖L2(Ω) +
2∑

i=1

‖∆ig‖L2(Ω)) in B(0, 1
2
).

Thus it holds that

|D2uε
i,n(x)| ≤ C(‖∆uε

i,n‖L2(Ω) + ‖V ε
i,n‖L2(Ω)(3.43)

+ ‖D2g‖L∞(Ω) + ‖∆2g‖L2(Ω)) in B(x0, d/2).

If dist(x0, Cε,+
i,n ∪ Cε,−

i,n ) = dist(x0, Cε,+
i,n ), then we obtain (3.43) replaced g by f . We thus

completed the proof. �

Theorem 3.3. It holds that uε
i,n ∈ W 2,∞(Ω). Moreover, there exists a positive constant

C independent of ε and n such that

τn

n∑
i=1

‖D2uε
i,n‖2L∞(Ω) ≤ C(E(u0) + ‖D2f‖L∞(Ω) + ‖∆2f‖L2(Ω)

+ ‖D2g‖L∞(Ω) + ‖∆2g‖L2(Ω)).

Proof. Let ej be the unit vector in the direction of the positive xj axis. Fix x ∈ Ω. For
|h| ∈ R small enough, we consider the second order differencial quotient

D2
hu

ε
i,n(x) =

uε
i,n(x+ hej) + uε

i,n(x− hej)− 2uε
i,n(x)

2h2
.
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If dist(x, Cε,+
i,n ∪ Cε,−

i,n ) < 4|h|, then there exists x0 ∈ Cε,+
i,n ∪ Cε,−

i,n such that

|x− x0| = dist(x, Cε,+
i,n ∪ Cε,−

i,n ) < 4|h|.

We may assume x0 ∈ Cε,−
i,n Making use of (3.41), we find

|D2
h(u

ε
i,n − g)(x)|

≤ C

h2
‖∆(uε

i,n − g)‖L∞(Ω)

[
dist(x+ hej, Cε,−

i,n )2 + dist(x− hej, Cε,−
i,n )2 + dist(x, Cε,−

i,n )2
]

≤ C‖∆(uε
i,n − g)‖L∞(Ω).

On the other hand, if dist(x, Cε,+
i,n ∪ Cε,−

i,n ) ≥ 4|h|, then we observe from Lemma 3.6 that

|D2
hu

ε
i,n(x)| ≤ |Dxjxj

uε
i,n(x̃)| ≤ C(‖∆uε

i,n‖L2(Ω) + ‖V ε
i,n‖L2(Ω) + ‖D2f‖L∞(Ω)

+ ‖∆2f‖L2(Ω) + ‖D2g‖L∞(Ω) + ‖∆2g‖L2(Ω)),

where x̃ ∈ B(x, 2dist(x, Cε,+
i,n ∪ Cε,−

i,n )). Consequently we see that, for any x ∈ Ω, if |h| is
small enough,

|D2
hu

ε
i,n(x)| ≤ C(‖∆uε

i,n‖L∞(Ω) + ‖V ε
i,n‖L2(Ω) + ‖D2f‖L∞(Ω)

+ ‖∆2f‖L2(Ω) + ‖D2g‖L∞(Ω) + ‖∆2g‖L2(Ω)),

where C > 0 is independent of x and h. Therefore we deduce that

|Dxjxj
uε
i,n(x)| ≤ C(‖∆uε

i,n‖L∞(Ω) + ‖V ε
i,n‖L2(Ω) + ‖D2f‖L∞(Ω)(3.44)

+ ‖∆2f‖L2(Ω) + ‖D2g‖L∞(Ω) + ‖∆2g‖L2(Ω)) in Ω.

Combining (3.44) with Proposition 3.1 and Lemma 3.4, we obtain the conclusion. �

Let us set

C+
i,n = {x ∈ Ω \ Ω0 | ui,n(x) = f(x) },(3.45)

C−
i,n = {x ∈ Ω \ Ω0 | ui,n(x) = g(x) },(3.46)

where Ω0 is defined in (1.6).

Theorem 3.4. As ε ↓ 0, the signed measure µε
i,n converges to a signed Radon measure

µi,n in Ω defined by

µi,n =

{
∆2ui,n + Vi,n in Ω \ Ω0,

∆2f in Ω0.

Moreover it holds that suppµi,n ⊂ C+
i,n ∪ C−

i,n ∪ Ω0,

µi,n

{
≥ 0 in C+

i,n,

≤ 0 in C−
i,n,

and there exists a positive constant C > 0 independent of n such that

τn

n∑
i=1

µi,n(Ω)
2 < CE(u0) + T‖∆2f‖2L∞(Ω0)

.(3.47)
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Proof. To begin with, we shall prove that µε
i,nbΩ0⇀ ∆2f as ε ↓ 0, i.e.,∫

Ω

[
∆uε

i,n∆ϕ+ V ε
i,nϕ

]
dx →

∫
Ω

∆f∆ϕdx as ε ↓ 0 for any ϕ ∈ C∞
c (Ω0).(3.48)

Since it holds that ∣∣uε
i,n(x)− f(x)

∣∣ ≤ ε in Ω0,

we infer that∣∣∣∣∫
Ω

(
∆uε

i,n −∆f
)
∆ϕdx

∣∣∣∣ ≤ ‖uε
i,n − f‖L∞(Ω0)

∫
Ω

∣∣∆2ϕ
∣∣ dx ≤ ε

∫
Ω

∣∣∆2ϕ
∣∣ dx.(3.49)

On the other hand, from∣∣V ε
i,n

∣∣ ≤ 1

τn

{∣∣uε
i,n − f

∣∣+ ∣∣uε
i−1,n − f

∣∣} ≤ 2

τn
ε,

we have ∣∣∣∣∫
Ω

V ε
i,nϕdx

∣∣∣∣ ≤ 2

τn
ε

∫
Ω

|ϕ| dx.(3.50)

Then (3.49) and (3.50) implies (3.48).
From now on, we write µε

i,nbΩ\Ω0= νε,+
i,n − νε,−

i,n , where νε,±
i,n are positive measure in Ω

with supp νε,±
i,n ⊂ Cε,±

i,n , respectively. By the proof of Theorem 3.2, there exist measures

µ̄±
i,n in Ω such that

νε,±
i,n ⇀ µ̄±

i,n as ε ↓ 0,

i.e., ∫
Ω

ζdνε,±
i,n →

∫
Ω

ζdµ̄±
i,n for any ζ ∈ Cc(Ω \ Ω0) as ε ↓ 0.

Since ∫
Ω

ζdνε,±
i,n = ±

∫
Ω

[
∆uε

i,n∆ζ + V ε
i,nζ

]
dx → ±

∫
Ω

[∆ui,n∆ζ + Vi,nζ] dx

for any ζ ∈ C2
c (Ω \ Ω0) as ε ↓ 0, it holds that µ̄±

i,n = ±(∆2ui,n + Vi,n). We claim that

supp µ̄+
i,n ⊂ C+

i,n, supp µ̄−
i,n ⊂ C−

i,n.(3.51)

It is sufficient to show the former relation. Let x0 ∈ Ω \ (C+
i,n ∪ Ω0). Then there exist a

neighborhood W ⊂ Ω \ Ω0 of x0 and a constant δ > 0 such that

ui,n(x)− f(x) > δ in W.

Since uε
i,n uniformly converges to ui,n, there exists ε∗ > 0 such that for any ε < ε∗∣∣uε

i,n(x)− ui,n(x)
∣∣ < δ

3
in W.

Thus, for any ε < min{ε∗, δ/3}, we have

uε
i,n(x)− fε(x) > ui,n(x)− f(x)−

∣∣uε
i,n(x)− ui,n(x)

∣∣− |fε(x)− f(x)| > δ

3
in W,
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i.e., W ⊂ Ω \ (Cε,+
i,n ∪ Ω0) for ε > 0 small enough. Hence we infer that for any ζ ∈ Cc(W )∫

Ω

ζdµ̄+
i,n = lim

ε↓0

∫
Ω

ζdνε,+
i,n = 0.

Therefore the relation (3.51) holds.
Finally we turn to (3.47). It follows from the proof of Theorem 3.2 that

µ̄±
i,n(Ω) ≤ lim inf

ε↓0
νε,±
i,n (Ω) ≤ C(U)E(u0)

1
2 + C(U)

(
E(uε

i−1,n)− E(uε
i,n)

τn

) 1
2

.

Moreover it holds that

τn

n∑
i=1

µi,nbΩ0(x)
2 = τn

n∑
i=1

∣∣∆2f(x)
∣∣2 = T

∣∣∆2f(x)
∣∣2 ≤ T‖∆2f‖2L∞(Ω0)

in Ω0.

Recalling that supµi,n ⊂ C+
i,n ∪ C−

i,n ∪ Ω0, we obtain

τn

n∑
i=1

µi,n(Ω)
2 ≤ C1TE(u0) + C2

n∑
i=1

{E(uε
i−1,n)− E(uε

i,n)}+ T‖∆2f‖2L∞(Ω0)

≤ CE(u0) + T‖∆2f‖2L∞(Ω0)
.

We thus completed the proof. �

4. Proof of the main theorem

In this section, we prove Theorem 1.1. First we shall prove the convergence of the piece-
wise linear interpolation un of {ui,n}. The proof is followed from the uniform estimates
on {un}. Since the estimates have already obtained by Proposition 3.1, we are able to
prove the following result along the same lines as in the proof of Theorem 4.1 in [19].

Theorem 4.1. Let un be the piecewise linear interpolation of {ui,n}. Then there exists a
function

u ∈ L∞(0, T ;H2
0 (Ω)) ∩H1(0, T ;L2(Ω))

such that for any T < ∞

un ⇀ u in L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) as n → ∞,

up to a subsequence. Moreover∫ T

0

∫
Ω

|∂tu|2 dxdt ≤ 2E(u0),

f(x) ≤ u(x, t) ≤ g(x) for x ∈ Ω and every t ∈ [0, T ], and for each α ∈ (0, 1/2), it holds
that

un → u in C0,α([0, T ];L2(Ω)) as n → ∞.

Next we investigate the regularity of the limit u obtained by Theorem 4.1. The proof
depends only on the uniform estimate on un obtained in Theorem 3.3. The same argument
as in the proof of Theorems 4.2 and 4.3 in [19] gives us the following:
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Theorem 4.2. Let u be the function obtained by Theorem 4.1. Then it holds that

un → u weakly∗ in L2(0, T ;W 2,∞(Ω)) as n → ∞.

Moreover, if N = 1,

un → u in C0,β([0, T ];C1,α(Ω)) as n → ∞
for every α ∈ (0, 1/2) and β ∈ (0, (1− 2α)/8), and if N = 2, 3,

un → u in C0,β([0, T ];C0,α(Ω)) as n → ∞
for every

0 < α < 2− N

2
, 0 < β <

(
1

2
− N

8

)(
1− α

2−N/2

)
.

In order to complete the proof of Theorem 1.1, we make use of the convergence result
on the piecewise constant interpolation of {ui,n}.

Lemma 4.1. ([19]) Let ũn be the piecewise constant interpolation of {ui,n}. If N = 1,

ũn → u in L∞(0, T ;C1,α(Ω)) as n → ∞
for every α ∈ (0, 1/2), where u is the function obtained by Theorem 4.1. If N = 2, 3,

ũn → u in L∞(0, T ;C0,α(Ω)) as n → ∞
for every α ∈ (0, 2−N/2). Moreover, for any N ≥ 1, it holds that

∆ũn ⇀ ∆u in L2(0, T ;L2(Ω)) as n → ∞.

We are in a position to complete the proof of Theorem 1.1. Let us define

µn(t) = µi,n if t ∈ ((i− 1)τn, iτn],(4.1)

and set

Cf = { (x, t) ∈ (Ω \ Ω0)× R+ | u(x, t) = f(x) },(4.2)

Cg = { (x, t) ∈ (Ω \ Ω0)× R+ | u(x, t) = g(x) }.(4.3)

Proof of Theorem 1.1 Let u be the function obtained by Theorem 4.1. To begin with,
along the same lines as in [19], we see that∫ T

0

∫
Ω

[∂tu(w − u) + ∆u∆(w − u)] dxdt ≥ 0 for any w ∈ K,(4.4)

i.e., u is a weak solution of (P). Moreover the uniqueness follows from the results in [4].
By virtue of Theorem 3.4, we deduce that∫ T

0

µn(Ω)
2 dt =

n∑
i=1

∫ iτn

(i−1)τn

µi,n(Ω)
2 dt = τn

n∑
i=1

µi,n(Ω)
2 < CE(u0) + T‖∆2f‖2L∞(Ω0)

.

Thus, as n → ∞,

µn ⇀ µ̄ weakly in L2(0, T ;M(Ω)),

i.e., ∫ T

0

∫
Ω

ϕdµndt →
∫ T

0

∫
Ω

ϕdµ̄dt for any ϕ ∈ L2(0, T ;C∞
c (Ω)) as n → ∞.
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Since µi,nbΩ0= ∆2f , we observe from the definition of µn that

µn(t)bΩ0= ∆2f in [0, T ) for any n ∈ N.

From now on, we set µnbΩ\Ω0= ν+
n − ν−

n with

ν±
n (t) = µ±

i,n if t ∈ ((i− 1)τn, iτn],

where µ+
i,n and µ−

i,n denote respectively the positive part and the negative part of µi,nbΩ\Ω0 .
Since Theorem 3.4 deduces that ∫ T

0

ν±
n (Ω)

2 dt < C,

there exist measures µ̄± such that

ν±
n ⇀ µ̄± weakly in L2(0, T ;M(Ω)) as n → ∞,

i.e., for any ϕ ∈ L2(0, T ;C∞
c (Ω \ Ω0)),∫ T

0

∫
Ω

ϕdν±
n dt →

∫ T

0

∫
Ω

ϕdµ̄±dt as n → ∞.

On the other hand, it holds that∫ T

0

∫
Ω

ϕdν±
n dt = ±

∫ T

0

∫
Ω

[∆ũn∆ϕ+ Vnϕ] dxdt

→ ±
∫ T

0

∫
Ω

[∆u∆ϕ+ ∂tuϕ] dxdt as n → ∞.

Thus we infer that µ̄± = ±(∆2u+ ∂tu). We claim that

supp µ̄+ ⊂ Cf , supp µ̄− ⊂ Cg.(4.5)

We shall prove the former relation. Let x0 ∈ Ω \ (Cf ∪ Ω0). Since u is continuous in
Ω× R+, there exist an open set W ⊂ Ω \ Ω0, 0 < t1 < t2 < T , and δ > 0 such that

u(x, t)− f(x) > δ in W × (t1, t2).

It follows from Lemma 4.1 that there exists a constant N > 0 such that

ũn(x, t)− u(x, t) > −δ

2
in W × (t1, t2) for any n ≥ N,

so that

ũn(x, t)− f(x) >
δ

2
in W × (t1, t2) for any n ≥ N.

This means that, for any n ≥ N ,

W × (t1, t2) ⊂ Ω \ (C+
i,n ∪ Ω0) for each

[
t1
τn

]
≤ i ≤

[
t2
τn

]
.(4.6)

Thus we deduce that for any ϕ ∈ Cc((t1, t2);C
∞
c (W ))∫ T

0

∫
Ω

ϕdµ̄+dt = lim
n→∞

∫ T

0

∫
Ω

ϕdν+
n dt = lim

n→∞

∫ T

0

∫
Ω

[∆ũn∆ϕ+ Vnϕ] dxdt

= lim
n→∞

n∑
i=1

∫ iτn

(i−1)τn

∫
Ω

[∆ui,n∆ϕ+ Vi,nϕ] dxdt = 0.
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The last equality follows from (4.6). This implies the relation (4.5). �
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