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Abstract

This paper is concerned with the macroscopic behavior of global energy minimizers
in the three-dimensional sharp interface unscreened Ohta-Kawasaki model of diblock
copolymer melts. This model is also referred to as the nuclear liquid drop model in
the studies of the structure of highly compressed nuclear matter found in the crust
of neutron stars, and, more broadly, is a paradigm for energy-driven pattern forming
systems in which spatial order arises as a result of the competition of short-range at-
tractive and long-range repulsive forces. Here we investigate the large volume behavior
of minimizers in the low volume fraction regime, in which one expects the formation of
a periodic lattice of small droplets of the minority phase in a sea of the majority phase.
Under periodic boundary conditions, we prove that the considered energy Γ-converges
to an energy functional of the limit “homogenized” measure associated with the minor-
ity phase consisting of a local linear term and a non-local quadratic term mediated by
the Coulomb kernel. As a consequence, asymptotically the mass of the minority phase
in a minimizer spreads uniformly across the domain. Similarly, the energy spreads
uniformly across the domain as well, with the limit energy density minimizing the en-
ergy of a single droplets per unit volume. Finally, we prove that in the macroscopic
limit the connected components of the minimizers have volumes and diameters that
are bounded above and below by universal constants, and that most of them converge
to the minimizers of the energy divided by volume for the whole space problem.
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1 Introduction

The liquid drop model of the atomic nucleus, introduced by Gamow in 1928, is a classical
example of a model that gives rise to a geometric variational problem characterized by a
competition of short-range attractive and long-range repulsive forces [1–4] (for more recent
studies, see e.g. [5–9]; for a recent non-technical overview of nuclear models, see, e.g., [10]).
In a nucleus, different nucleons attract each other via the short-range nuclear force, which,
however, is counteracted by the long-range Coulomb repulsion of the constitutive protons.
Within the liquid drop model, the effect of the short-range attractive forces is captured by
postulating that the nucleons form an incompressible fluid with fixed nuclear density and
by penalizing the interface between the nuclear fluid and vacuum via an effective surface
tension. The effect of Coulomb repulsion is captured by treating the nuclear charge as
uniformly spread throughout the nucleus. A competition of the cohesive forces which try
to minimize the interfacial area of the nucleus and the repulsive Coulomb forces that try to
spread the charges apart makes the nucleus unstable at sufficiently large atomic numbers,
resulting in nuclear fission [4, 11–13].
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TABLE I. Parameter set used in the RMF model.

gσN gωN gρN
b c mσ (MeV) mω (MeV) mρ (MeV)

6.3935 8.7207 4.2696 0.008659 −0.002421 400 783 769

within the Thomas-Fermi approximation,

µn =
√

kF,n(r)2 + m∗
N (r)2 + gωNω0(r) − gρNR0(r), (6)

µp =
√

kF,p(r)2 + m∗
N (r)2 + gωNω0(r)

+ gρNR0(r) − VCoul(r), (7)

ρe(r) = (µe − VCoul(r))3/3π2, (8)

where the local Fermi momentum kF,i(r) is simply related
to the density, k3

F,i(r)/(3π2) = ρi(r). Finally, baryon-number
conservation and charge neutrality are imposed besides these
equations. We use the same set of parameters as in Ref. [39]
listed in Table I, in order to compare the equation of state
(EOS) and structural changes of the pasta structure with
and without the WS approximation. With these parameters,
we can reproduce the properties of uniform nuclear matter
shown in Table II. The first and second quantities, ρ0 and
ε0, are the saturation density of symmetric nuclear matter
(≈ 0.16 fm−3) and its energy per nucleon, respectively. The
third and forth quantities, K and S0, are the incompressibility
and symmetry energy at ρ0, respectively. The last one, L,
is the slope parameter of symmetry energy at ρ0. By using
these parameters the binding energy per nucleon around the
saturation density is expressed as

E

A
= ε0 + K(ρ − ρ0)2

18ρ2
0

+
[
S0 + L(ρ − ρ0)

3ρ0

]
(1 − 2Yp)2.

(9)

To numerically simulate the nonuniform structure of infinite
matter, we use a cubic cell with a periodic boundary condition.
If the cell size is small and includes only one or two units of
the structure, the geometrical shape should be affected by the
boundary condition and the appearance of some structures is
implicitly suppressed. Therefore, the cell size should be so
large as to include several units of the pasta structure. We
divide the cell into three-dimensional grids. The desirable grid
width should be so small as to describe the detailed density
distribution, particularly at the nuclear surface. Due to this
requirement, we set the grid width to 0.3 fm at the largest. This
grid width is small enough to give an energy difference within
2 keV from that with 0.1 fm. Given the average baryon-number
density ρB , the initial density distributions of fermions are
randomly prepared on each grid point. Then proper density
distributions and the meson mean fields are searched for
until the chemical potentials are independent of the position.

TABLE II. EOS of uniform nuclear matter.

ρ0 (fm−3) ε0 (MeV) K (MeV) S0 (MeV) L (MeV)

0.153 −16.4 240 33.4 84

More detailed numerical procedures and treatment with a local
chemical potential will be discussed in the Appendix.

III. RESULTS

A. Fixed proton number fraction

First, we present here some results for fixed proton number
fraction Yp with Yp = 0.5 (symmetric nuclear matter), 0.3, and
0.1, which are roughly relevant to supernovae and neutron-star
crust. Shown in Fig. 1 are the proton density distributions in
cold symmetric matter. We can see that the typical pasta phases
with rods, slabs, tubes, and bubbles, in addition to spherical
nuclei (droplets), are reproduced by our calculation in which
no assumption on the structures was used. Furthermore,
these cells include several units and we can specify these
lattice structures. The crystalline configuration of droplets
and bubbles is fcc; rods and tubes exhibit a honeycomb
configuration.

No exotic mixtures appear as ground states at any density.
In a droplet, we have seen that the proton density is highest
near the surface due to Coulomb repulsion, while the neutron
density distribution is flat inside the droplet. Note that baryon
density outside the droplets is zero for Yp = 0.3 and 0.5.
Electron density is spread over all space but slightly localized

FIG. 1. (Color online) Proton density distributions in the ground
states of symmetric matter (Yp = 0.5). Typical pasta phases are
observed: (a) Spherical droplets with an fcc crystalline configuration
at baryon density ρB = 0.01 fm−3, of 98 fm each side. (b) Cylindrical
rods with a honeycomb crystalline configuration at 0.024 fm−3,
of 76 fm each side. (c) Slabs at 0.05 fm−3, of 95 fm each side.
(d) Cylindrical tubes with a honeycomb crystalline configuration at
0.08 fm−3, of 79 fm each side. (e) Spherical bubbles with an fcc
crystalline configuration at 0.09 fm−3, of 97 fm each side.

025801-3

Figure 1: Nuclear pasta phases in a relativistic mean-field model of low density nuclear
matter. The panels show a progression from “meatball” (a) to “spaghetti” (b) to “lasagna”
(c) to “macaroni” (d) to “swiss cheese” (e) phases, which are the numerically obtained
candidates for the ground state at different nuclear densities. Reproduced from Ref. [25].

It is worth noting that the liquid drop model is also applicable to systems of many
strongly interacting nuclei. Such a situation arises in the case of matter at very high den-
sities, occurring, for example, in the core of a white dwarf star or in the crust of a neutron
star, where large numbers of nucleons are confined to relatively small regions of space
by gravitational forces [14–16]. As was pointed out independently by Kirzhnits, Abrikosov
and Salpeter, at sufficiently low temperatures and not too high densities compressed matter
should exhibit crystallization of nuclei into a body-centered cubic crystal in a sea of de-
localized degenerate electrons [17–19]. At yet higher densities, more exotic nuclear “pasta
phases” are expected to appear as a consequence of the effect of “neutron drip” [16, 20–26]
(for an illustration, see Fig. 1). In all cases, the ground state of nuclear matter is deter-
mined by minimizing the appropriate (free) energy per unit volume of one of the phases
that contains contributions from the interface area and the Coulomb energy of the nuclei.

Within the liquid drop model, the simplest way to introduce confinement is to restrict
the nuclear fluid to a bounded domain and impose a particular choice of boundary conditions
for the Coulombic potential. Then, after a suitable non-dimensionalization the energy takes
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the form

E(u) :=

∫
Ω
|∇u| dx+

1

2

∫
Ω

∫
Ω
G(x, y)(u(x)− ū)(u(y)− ū) dx dy. (1.1)

Here, Ω ⊂ R3 is the spatial domain (bounded), u ∈ BV (Ω; {0, 1}) is the characteristic
function of the region occupied by the nuclear fluid (nuclear fluid density), ū ∈ (0, 1) is
the neutralizing uniform background density of electrons, and G is the Green’s function
of the Laplacian which, in the case of Neumann boundary conditions for the electrostatic
potential solves

−∆xG(x, y) = δ(x− y)− 1

|Ω|
, (1.2)

where δ(x) is the Dirac delta-function. The nuclear fluid density must also satisfy the global
electroneutrality constraint:

1

|Ω|

∫
Ω
u dx = ū. (1.3)

In writing (1.1) we took into account that because of the scaling properties of the Green’s
function one can eliminate all the physical constants appearing in (1.1) by choosing the
appropriate energy and length scales.

It is notable that the model in (1.1)–(1.3) also appears in a completely different physical
context, namely, in the studies of mesoscopic phases of diblock copolymer melts, where it
is referred to as the Ohta-Kawasaki model [27–29]. This is, of course, not surprising,
considering the fundamental nature of Coulomb forces. In fact, the range of applications
of the energy in (1.1) goes far beyond the systems mentioned above (for an overview,
see [30] and references therein). Importantly, the model in (1.1) is a paradigm for the
energy-driven pattern forming systems in which spatial patterns (global or local energy
minimizers) form as a result of the competition of short-range attractive and long-range
repulsive forces. This is why this model and its generalizations attracted considerable
attention of mathematicians in recent years (see, e.g., [31–49], this list is certainly not
exhaustive). In particular, the volume-constrained global minimization problem for (1.1)
in the whole space with no neutralizing background, which we will also refer to as the
“self-energy problem”, has been investigated in [34,37,45,49].

A question of particular physical interest is how the ground states of the energy in (1.1)
behave as the domain size tends to infinity. In [32], Alberti, Choksi and Otto showed that
in this so-called “macroscopic” limit the energy becomes distributed uniformly throughout
the domain. Another asymptotic regime, corresponding to the onset of non-trivial mini-
mizers in the two-dimensional screened version of (1.1) was studied in [33], where it was
shown that at appropriately low densities every non-trivial minimizer is given by the char-
acteristic function of a collection of nearly perfect, identical, well separated small disks
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(droplets) uniformly distributed throughout the domain (see also [38] for a related study
of almost minimizers). Further results about the fine properties of the minimizers were
obtained via two-scale Γ-expansion in [39], using the approach developed for the studies of
magnetic Ginzburg-Landau vortices [50] (more recently, the latter was also applied to three-
dimensional Coulomb gases [51]). In particular, the method of [39] allows, in principle, to
determine the asymptotic spatial arrangement of the droplets of the low density phase via
the solution of a minimization problem involving point charges in the plane. It is widely
believed that the solution of this problem should be given by a hexagonal lattice, which in
the context of type-II superconductors is called the “Abrikosov lattice” [52]. Proving this
result rigorously is a formidable task, and to date such a result has been obtained only
within a much reduced class of Bravais lattices [50,53].

It is natural to ask what happens with the low density ground state of the energy in (1.1)
as the size of the domain Ω goes to infinity in three space dimensions. As can be seen from
the above discussion, the answer to this question bears immediate relevance to the structure
of nuclear matter under the conditions realized in the outer crust of neutron stars. This is
the question that we address in the present paper. On physical grounds, it is expected that
at low densities the ground state of such systems is given by the characteristic function of
a union of nearly perfect small balls (nuclei) arranged into a body-centered cubic lattice
(known to minimize the Coulomb energy of point charges among body-centered cubic, face-
centered cubic and hexagonal close-packed lattices [54–56]). The volume of each nucleus
should maximize the binding energy per nucleon, which then yields the nucleus of an isotope
of nickel.

Our results concerning the minimizers of (1.1) proceed in that direction, but are still
far from rigorously establishing such a detailed physical picture. One major difficulty has
to do with the lack of the complete solution of the self-energy problem [37, 48]. Assuming
the solution of this problem, whenever it exists, is a spherical droplet, a mathematical
conjecture formulated by Choksi and Peletier [35] and a universally accepted hypothesis
in nuclear physics, we indeed recover spherical nuclei whose volume minimizes the self-
energy per unit nuclear volume (which is equivalent to maximizing the binding energy per
nucleon in the nuclear context). The question of spatial arrangement of the nuclei is another
major difficulty related to establishing periodicity of ground states of systems of interacting
particles, which goes far beyond the scope of the present paper. Nevertheless, knowing that
the optimal droplets are spherical should make it possible to apply the techniques of [50,51]
to relate the spatial arrangement of droplets to that of the minimizers of the renormalized
Coulomb energy.

In the absence of the complete solution of the self-energy problem, we can still establish,
although in a somewhat implicit manner, the limit behavior of the minimizers of (1.1)–(1.3)
in the case Ω = T`, where T` is the three-dimensional torus with sidelength `, as ` → ∞,
provided that ū also goes simultaneously to zero with an appropriate rate (low-density
regime). We do so by establishing the Γ-limit of the energy in (1.1), with the notion of
convergence given by weak convergence of measures (for a closely related study, see [38]).
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The limit energy is given by the sum of a constant term proportional to the volume occupied
by the minority phase (which is also referred to as “mass” throughout the paper) and the
Coulombic energy of the limit measure, with the proportionality constant in the first term
given by the minimal self-energy per unit mass among all masses for which the minimum of
the self-energy is attained. Importantly, the minimizer of the limit energy (which is strictly
convex) is given uniquely by the uniform measure. Thus, we establish that for a minimizer
of (1.1)–(1.3) the mass in the minority phase spreads (in a coarse-grained sense) uniformly
throughout the spatial domain and that the minimal energy is proportional to the mass,
with the proportionality constant given by the minimal self-energy per unit mass (compare
to [32]). We also establish that almost all the “droplets”, i.e., the connected components of
the support of a particular minimizer, are close to the minimizers of the self-energy with
mass that minimizes the self-energy per unit mass.

Mathematically, it would be natural to try to extend our results in two directions. The
first direction is to consider exactly the same energy as in (1.1) in higher space dimensions.
Here, however, we encounter a difficulty that it is not known that the minimizers of the
self-energy do not exist for large enough masses. Such a result is only available in three
space dimensions for the Coulombic kernel [37, 45]. In the absence of such a non-existence
result one may not exclude a possibility of a network-like structure in the macroscopic limit.
Another direction is to replace the Coulombic kernel in (1.1) with the one corresponding
to a more general negative Sobolev norm. Here we would expect our results to still hold
in two space dimensions. Furthermore, the physical picture of identical radial droplets
in the limit is expected for sufficiently long-ranged kernels, i.e., those kernels that satisfy
G(x, y) ∼ |x− y|−α for |x− y| � 1, with 0 < α� 1 [36, 47]. Note that although a similar
characterization of the minimizers for long-ranged kernels exists in higher dimensions as
well [44,46], these results are still not sufficient to be used to characterize the limit droplets,
since they do not give an explicit interval of existence of the minimizers of the self-interaction
problem. Also, since the non-existence result for the self-energy with such kernels is available
only for α < 2 [37], our results may not extend to the case of α ≥ 2 in dimensions three
and above.

Finally, a question of both physical and mathematical interest is what happens with
the above picture when the Coulomb potential is screened (e.g., by the background density
fluctuations). In the simplest case, one would replace (1.2) with the following equation
defining G:

−∆xG(x, y) + κ2G(x, y) = δ(x− y), (1.4)

where κ > 0 is the inverse screening length, and the charge neutrality constraint from (1.3)
is relaxed. Here a bifurcation from trivial to non-trivial ground states is expected under
suitable conditions (in two dimensions, see [33,38,39]). We speculate that in certain limits
this case may give rise to non-spherical droplets that minimize the self-energy. Indeed, in
the presence of an exponential cutoff at large distances, it may no longer be advantageous
to split large droplets into smaller disconnected pieces, and the self-energy minimizers for
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arbitrarily large masses may exist and resemble a “kebab on a skewer”. In contrast to the
bare Coulomb case, in the screened case the energy of such a kebab-shaped configuration
scales linearly with mass. Note that this configuration is reminiscent of the pearl-necklace
morphology exhibited by long polyelectrolyte molecules in poor solvents [57,58].

Organization of the paper. In Sec. 2, we introduce the specific model, the scaling
regime considered, the functional setting and the heuristics. In this section, we also discuss
the self-energy problem and mention a result about attainment of the optimal self-energy
per unit mass. In Sec. 3, we first state a basic existence and regularity result for the
minimizers (Theorem 3.1) and give a characterization of the minimizers of the whole space
problem that also minimize the self-energy per unit mass (Theorem 3.2). We then state
our main Γ-convergence result in Theorem 3.3. In the same section, we also state the
consequences of Theorem 3.3 to the asymptotic behavior of the minimizers in Corollary
3.4, as well as Theorem 3.5 about the uniform distribution of energy in the minimizers
and Theorem 3.6 that establishes the multidroplet character of the minimizers. Section 4
is devoted to generalized minimizers of the self-energy problem, where, in particular, we
obtain existence and uniform regularity for minimizers in Theorem 4.5 and Theorem 4.7.
This section also establishes a connection to the minimizers of the whole space problem with
a truncated Coulombic kernel and ends with a characterization of the optimal self-energy
per unit mass in Theorem 4.15. Section 5 contains the proof of the Γ-convergence result
of Theorem 3.3 and of the equidistribution result of Theorem 3.5. Section 6 establishes
uniform estimates for the problem on the rescaled torus, where, in particular, uniform
estimates for the potential are obtained in Theorem 6.9. Section 7 presents the proof of
Theorem 3.6. Finally, some technical results concerning the limit measures appearing in
the Γ-limit are collected in the Appendix.

Notation. Throughout the paper H1, BV , Lp, Ck, Ckc , Ck,α,M denote the usual spaces
of Sobolev functions, functions of bounded variation, Lebesgue functions, functions with
continuous derivatives up to order k, compactly supported functions with continuous deriva-
tives up to order k, functions with Hölder-continuous derivatives up to order k for α ∈ (0, 1),
and the space of finite signed Radon measures, respectively. We will use the symbol |∇u|
to denote the Radon measure associated with the distributional gradient of a function of
bounded variation. With a slight abuse of notation, we will also identify Radon measures
with the associated, possibly singular, densities (with respect to the Lebesgue measure) on
the underlying spatial domain. For example, we will write ν = |∇u| and dν(x) = |∇u(x)| dx
to imply ν ∈ M(Ω) and ν(Ω′) = |∇u|(Ω′) =

∫
Ω′ |∇u| dx, given u ∈ BV (Ω) and Ω′ ⊂ Ω.

For a set I ⊂ N, #I denotes cardinality of I. The symbol χF always stands for the char-
acteristic function of the set F , and |F | denotes its Lebesgue measure. We also use the
notation (uε) ∈ Aε to denote sequences of functions uε ∈ Aε as ε = εn → 0, where Aε are
admissible classes.
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2 Mathematical setting and scaling

Variational problem on the unit torus. Throughout the rest of this paper the spatial
domain Ω in (1.1) is assumed to be a torus, which allows us to avoid dealing with boundary
effects and concentrate on the bulk properties of the energy minimizers. We define T :=
R3/Z3 to be the flat three-dimensional torus with unit sidelength. For ε > 0, which should
be treated as a small parameter, we introduce the following energy functional:

Eε(u) := ε

∫
T
|∇u| dx+

1

2

∫
T
(u− ūε)(−∆)−1(u− ūε) dx, (2.1)

where the first term is understood distributionally and the second term is understood as the
double integral involving the periodic Green’s function of the Laplacian, with u belonging
to the admissible class

Aε :=

{
u ∈ BV (T; {0, 1}) :

∫
T
u dx = ūε

}
, (2.2)

where

ūε := λ ε2/3, (2.3)

with some fixed λ > 0. The choice of the scaling of ūε with ε in (2.3) will be explained
shortly. To simplify the notation, we suppress the explicit dependence of the admissible
class on λ, which is fixed throughout the paper.

It is natural to define for u ∈ Aε the measure µε by

dµε(x) := ε−2/3u(x) dx. (2.4)

In particular, µε is a positive Radon measure and satisfies µε(T) = λ. Therefore, on a
suitable sequence as ε→ 0 the measure µε converges weakly in the sense of measures to a
limit measure µ, which is again a positive Radon measure and satisfies µ(T) = λ.

Function spaces for the measure and potential. In terms of µε the Coulombic term
in (2.1) is given by

1

2

∫
T
(u− ūε)(−∆)−1(u− ūε) dx =

ε4/3

2

∫
T

∫
T
G(x− y) dµε(x) dµε(y), (2.5)

whereG is the periodic Green’s function of the Laplacian on T, i.e., the unique distributional
solution of

−∆G(x) = δ(x)− 1,

∫
T
G(x) dx = 0. (2.6)
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If the kernel G in (2.5) were smooth, then one would be able to pass directly to the limit
in the Coulombic term and obtain the corresponding convolution of the kernel with the
limit measure. This is not possible due to the singularity of the kernel at {x = y}. In
fact, the double integral involving the limit measure may be strictly less than the lim inf
of the sequence, and the defect of the limit is related to a non-trivial contribution of the
self-interaction of the connected components of the set {u = 1} and its perimeter to the
limit energy.

On the other hand, the singular character of the kernel provides control on the regularity
of the limit measure µ. To see this, we define the electrostatic potential vε ∈ H1(T) by

vε(x) :=

∫
T
G(x− y) dµε(y), (2.7)

which solves ∫
T
∇ϕ · ∇vε dx =

∫
T
ϕdµε − λ

∫
T
ϕdx ∀ϕ ∈ C∞(T). (2.8)

By (2.4), we can rewrite the corresponding term in the Coulombic energy as∫
T

∫
T
G(x− y) dµε(x) dµε(y) =

∫
T
vε dµε =

∫
T
|∇vε|2 dx. (2.9)

Hence, if the left-hand side of (2.9) remains bounded as ε→ 0, and since
∫
T vε dx = 0, the

sequence vε is uniformly bounded in H1(T) and hence weakly convergent in H1(T) on a
subsequence.

By the above discussion, the natural space for the potential is the space

H :=

{
v ∈ H1(T) :

∫
T
v dx = 0

}
with ‖v‖H :=

(∫
T
|∇v|2 dx

)1/2

. (2.10)

The space H is a Hilbert space together with the inner product

〈u, v〉H :=

∫
T
∇u · ∇v dx ∀u, v ∈ H. (2.11)

The natural class for measures µε to consider is the class of positive Radon measures on T
which are also in H′, the dual of H. More precisely, letM+(T) ⊂ M(T) be the set of all
positive Radon measures on T. We define the subsetM+(T) ∩H′ ofM+(T) by

M+(T) ∩H′ =
{
µ ∈M+(T) :

∫
T
ϕdµ ≤ C‖ϕ‖H ∀ϕ ∈ H ∩ C(T)

}
, (2.12)
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for some C > 0. This is the set of positive Radon measures which can be understood as
continuous linear functionals on H. Note that µ ∈M+(T) satisfies µ ∈M+(T)∩H′ if and
only if it has finite Coulombic energy, i.e.∫

T

∫
T
G(x− y) dµ(x) dµ(y) <∞, (2.13)

with the convention that G(0) = +∞. The proof of this characterization and related facts
aboutM+(T) ∩H′ are given in the Appendix.

The whole space problem. We will also consider the following related problem,
formulated on R3. We consider the energy

Ẽ∞(u) :=

∫
R3

|∇u| dx+
1

8π

∫
R3

∫
R3

u(x)u(y)

|x− y|
dx dy. (2.14)

The appropriate admissible class for the energy Ẽ∞ in the present context is that of con-
figurations with prescribed “mass” m > 0:

Ã∞(m) :=

{
u ∈ BV (R3; {0, 1}) :

∫
R3

u dx = m

}
. (2.15)

For a given mass m > 0, we define the minimal energy by

e(m) := inf
u∈Ã∞(m)

Ẽ∞(u). (2.16)

The set of masses for which the infimum of Ẽ∞ in Ã∞(m) is attained is denoted by

I :=
{
m ≥ 0 : ∃ um ∈ Ã∞(m), Ẽ∞(um) = e(m)

}
, (2.17)

The minimization problem associated with (2.14) and (2.15) was recently studied by two
of the authors in [37]. In particular, by [37, Theorem 3.3] the set I is bounded, and
by [37, Theorems 3.1 and 3.2] the set I is non-empty and contains an interval around the
origin.

For m ≥ 0, we also define the quantity (with the convention that f(0) := +∞)

f(m) :=
e(m)

m
, (2.18)

which represents the minimal energy for (2.14) and (2.15) per unit mass. By [37, Theorem
3.2] there is a universal m̃0 > 0 such that f(m) is obtained by evaluating Ẽ∞ on a ball of
mass m for all m ≤ m̃0. After a simple computation, this yields

f(m) = 62/3π1/3m−1/3 + 32/3 · 2−1/3 · 10−1 · π−2/3m2/3 for all 0 < m ≤ m̃0. (2.19)
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Note that obviously this expression also gives an a priori upper bound for f(m) for all
m > 0. In addition, by [37, Theorem 3.4] there exist universal constants C, c > 0 such that

c ≤ f(m) ≤ C for all m ≥ m̃0. (2.20)

It was conjectured in [35] that I = [0, m̃0] and that m̃0 = mc1, where

mc1 :=
40π

3

(
21/3 + 2−1/3 − 1

)
≈ 44.134. (2.21)

The quantity mc1 is the maximum value of m for which a ball of mass m has less energy
than twice the energy of a ball with mass 1

2m. However, such a result is not available at
present and remains an important challenge for the considered class of variational problems
(for several related results see [36,44,47]).

Finally, we define

f∗ := inf
m∈I

f(m) and I∗ := {m∗ ∈ I : f(m∗) = f∗} . (2.22)

Observe that in view of (2.19) and (2.20) we have f∗ ∈ (0,∞). Also, as we will show in
Theorem 3.2, the set I∗ is non-empty, i.e., the minimum of f(m) over I is attained. In
fact, the minimum of f(m) over I is also the minimum over all m ∈ (0,∞) (see Theorem
4.15). Note that this result was also independently obtained by Frank and Lieb in their
recent work [49]. The set I∗ of masses that minimize the energy Ẽ∞ per unit mass and
the associated minimizers (which in general may not be unique) will play a key role in the
analysis of the limit behavior of the minimizers of Eε. Note that if f(m) were given by (2.19)
and I = [0,mc1], then we would have explicitly I∗ = {10π} and f∗ = 35/3 · 2−2/3 · 5−1/3 ≈
2.29893. On the other hand, in view of the statement following (2.19), this value provides
an a priori upper bound on the optimal energy density.

Macroscopic limit & heuristics. The limit ε→ 0 with λ > 0 fixed is equivalent to the
limit of the energy in (1.1) with Ω = T`, where T` := R3/(`Z)3 is the torus with sidelength
` > 0, as `→∞. Indeed, introducing the notation

Ẽ`(ũ) :=

∫
T`
|∇ũ| dx+

1

2

∫
T`

(ũ− ¯̃u`)(−∆)−1(ũ− ¯̃u`) dx, (2.23)

for the energy in (1.1) with Ω = T`, and taking ¯̃u` = λ`−2 and ũ ∈ Ã`, where

Ã` :=

{
ũ ∈ BV (T`; {0, 1}) :

∫
T`
ũ dx = λ`

}
, (2.24)

it is easy to see that u(x) := ũ(`x) belongs to Aε with ūε = λε2/3 for ε = `−3, and we have
Eε(u) = `−5Ẽ`(ũ). It then follows that the two limits ` → ∞ and ε → 0 are equivalent.
Note that the full space energy Ẽ∞ is the formal limit of (2.23) for `→∞.
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The choice of the scaling of ūε with ε is determined by the balance of far-field and near-
field contributions of the Coulomb energy. Heuristically, one would expect the minimizers
of the energy in (2.1) to be given by the characteristic function of a set that consists of
“droplets” of size of order R � 1 separated by distance of order d satisfying R � d � 1
(for evidence based on recent molecular dynamics simulations, see also [26]). Assuming
that the volume of each droplet scales as R3 (think, for example, of all the droplets as non-
overlapping balls of equal radius and with centers forming a periodic lattice), from (2.23)
we find for the surface energy, self-energy and interaction energy, respectively, for a single
droplet:

Esurf ∼ εR2, Eself ∼ R5, Eint ∼
R6

d3
. (2.25)

Equating these three quantities and recalling that R3/d3 ∼ ūε, we obtain

R ∼ ε1/3, d ∼ ε1/9, ūε ∼ ε2/3, (2.26)

which leads to (2.3). Note that, in some sense, this is the most interesting low volume
fraction regime that leads to infinitely many droplets in the limit as ε→ 0, since both the
self-energy of each droplet and the interaction energy between different droplets contribute
comparably to the energy. For other scalings one would expect only one of these two terms
to contribute in the limit, which would, however, result in loss of control on either the
perimeter term or the Coulomb term as ε→ 0 and, as a consequence, a possible change in
behavior. Let us note that a different scaling regime, in which ūε = O(ε), leads instead to
finitely many droplets that concentrate on points as ε → 0 [34], while for ūε = O(1) one
expects phases of reduced dimensionality, such as rods and slabs (see Fig. 1).

3 Statement of the main results

We now turn to stating the main results of this paper concerning the asymptotic behavior of
the minimizers or the low energy configuration of the energy in (2.1) within the admissible
class in (2.2). Existence of these minimizers is guaranteed by the following theorem.

Theorem 3.1 (Minimizers: existence and regularity). For every λ > 0 and every 0 <
ε < λ−3/2 there exists a minimizer uε ∈ Aε of Eε given by (2.1) with ūε given by (2.3).
Furthermore, after a possible modification of uε on a set of zero Lebesgue measure the
support of uε has boundary of class C∞.

Proof. The proof of Theorem 3.1 is fairly standard. We present a few details below for the
sake of completeness.

By the direct method of the calculus of variations, minimizers of the considered problem
exist for all ε > 0 as soon as the admissible class Aε is non-empty, in view of the fact
that the first term is coercive and lower semicontinuous in BV (T), and that the second
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term is continuous with respect to the L1(T) convergence of characteristic functions. The
admissible class is non-empty if and only if ε < λ−3/2.

Hölder regularity of minimizers was proved in [59, Proposition 2.1], where it was shown
that the essential support of minimizers has boundary of class C3,α. Smoothness of the
boundary was established in [43, Proposition 2.2] (see also the proof of Lemma 4.4 below
for a brief outline of the argument in a closely related context).

In view of the regularity statement above, throughout the rest of the paper we always
choose the regular representative of a minimizer.

We proceed by giving a characterization of the quantity f∗ defined in (2.22) as the
minimal self-energy of a single droplet per unit mass, i.e., as the minimum of f(m) over I.

Theorem 3.2 (Self-energy: attainment of optimal energy per unit mass). Let f∗ be defined
as in (2.22). Then there exists m∗ ∈ I such that f∗ = f(m∗).

With the result in Theorem 3.2, we are now in the position to state our main result on the
Γ-limit of the energy in (2.1), which can be viewed as a generalization of [38, Theorem 1].

Theorem 3.3 (Γ-convergence). For a given λ > 0, let Eε be defined by (2.1) with ūε given
by (2.3). Then as ε→ 0 we have ε−4/3Eε

Γ→ E0, where

E0(µ) := λf∗ +
1

2

∫
T

∫
T
G(x− y) dµ(x) dµ(y), (3.1)

and µ ∈M+(T) ∩H′ satisfies µ(T) = λ. More precisely,

i) (Compactness and Γ-liminf inequality) Let (uε) ∈ Aε be such that

lim sup
ε→0

ε−4/3Eε(uε) <∞, (3.2)

and let µε and vε be defined in (2.4) and (2.7), respectively. Then, upon extraction of
a subsequence, we have

µε ⇀ µ inM(T), vε ⇀ v in H, (3.3)

as ε→ 0, for some µ ∈M+(T)∩H′ with µ(T) = λ, the function v has a representative
in L1(T, dµ) given by

v(x) =

∫
T
G(x− y) dµ(y), (3.4)

and

lim inf
ε→0

ε−4/3Eε(uε) ≥ E0(µ). (3.5)
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ii) (Γ-limsup inequality) For any measure µ ∈M+(T) ∩H′ with µ(T) = λ there exists a
sequence (uε) ∈ Aε such that (3.3) and (3.4) hold as ε → 0 for µε and vε defined in
(2.4) and (2.7), and

lim sup
ε→0

ε−4/3Eε(uε) ≤ E0(µ). (3.6)

Note that the weak convergence of measures was recently identified in [38] (see also [33])
as a suitable notion of convergence for the studies of the Γ-limit of the two-dimensional
version of the energy in (2.1).

Observe also that the limit energy E0 is a strictly convex functional of the limit measure
and, hence, attains a unique global minimum. By direct inspection, E0 is minimized by
µ = µ0, where dµ0 := λdx. Thus, the quantity f∗ plays the role of the optimal energy
density in the limit ε→ 0.

The remaining results are concerned with sequences of minimizers. We will hence assume
that the functions (uε) ∈ Aε are minimizers of the functional Eε. In this case, we can give
a more precise characterization for the asymptotic behavior of the sequence. We first note
the following immediate consequence of Theorem 3.3 for the convergence of sequences of
minimizers.

Corollary 3.4 (Minimizers: uniform distribution of mass). For λ > 0, let (uε) ∈ Aε be
minimizers of Eε, and let µε and vε be defined in (2.4) and (2.7), respectively. Then

µε ⇀ µ0 inM(T), vε ⇀ 0 in H, (3.7)

where dµ0 = λdx, and

ε−4/3Eε(uε)→ λf∗, (3.8)

where f∗ is as in (2.22), as ε→ 0.

The formula in (3.8) suggests that in the limit the energy of the minimizers is dominated
by the self-energy, which is captured by the minimization problem associated with the
energy Ẽ∞ defined in (2.14). Therefore, it would be natural to expect that asymptotically
every connected component of a minimizer is close to a minimizer of Ẽ∞ under the mass
constraint associated with that connected component. Note that in a closely related problem
in two space dimensions such a result was established in [33] for minimizers, and in [38,39]
for almost minimizers. The situation is, however, unique in two space dimensions, because
the non-local term in some sense decouples from the perimeter term. Hence, the minimizers
behave as almost minimizers of the perimeter and, therefore, are close to balls. In three
dimensions, however, the perimeter and the non-local term of the self-energy Ẽ∞ are fully
coupled, and, therefore, rigidity estimates for the perimeter functional alone [60] may not
be sufficient to conclude about the “shape” of the minimizers. Nevertheless, we are able to
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prove a result about the uniform distribution of the energy density of the minimizers as
ε→ 0 in the spirit of that of [32]. For a minimizer uε, the energy density is associated with
the Radon measure νε defined by

dνε := ε−4/3
(
ε|∇uε|+ 1

2ε
2/3uεvε

)
dx, (3.9)

where vε is given by (2.7) and (2.4). Furthermore, we are able to identify the leading order
constant in the asymptotic behavior of the energy density.

Theorem 3.5 (Minimizers: uniform distribution of energy). For λ > 0, let (uε) ∈ Aε be
minimizers of Eε and let νε be defined in (3.9). Then

νε ⇀ ν0 inM(T) as ε→ 0, (3.10)

where dν0 = λf∗dx and f∗ is as in (2.22).

Finally, we characterize the connected components of the support of the minimizers of
Eε and show that almost all of them approach, on a suitable sequence as ε → 0 and after
a suitable rescaling and translation, a minimizer of Ẽ∞ with mass in the set I∗.

Theorem 3.6 (Minimizers: droplet structure). For λ > 0, let (uε) ∈ Aε be regular rep-
resentatives of minimizers of Eε, let Nε be the number of the connected components of the
support of uε, let uε,k ∈ BV (R3; {0, 1}) be the characteristic function of the k-th connected
component of the support of the periodic extension of uε to the whole of R3 modulo trans-
lations in Z3, and let xε,k ∈ supp(uε,k). Then there exists ε0 > 0 such that the following
properties hold:

i) There exist universal constants C, c > 0 such that for all ε ≤ ε0 we have

‖vε‖L∞(T) ≤ C and

∫
R3

uε,k dx ≥ cε, (3.11)

where vε is given by (2.7).

ii) There exist universal constants C, c > 0 such that for all ε ≤ ε0 we have

supp(uε,k) ⊆ BCε1/3(xε,k) and cλε−1/3 ≤ Nε ≤ Cλε−1/3. (3.12)

iii) There exists Ñε ≤ Nε with Ñε/Nε → 1 as ε → 0 and a subsequence εn → 0 such
that for every kn ≤ Ñεn the following holds: After possibly relabeling the connected
components, we have

ũn → ũ in L1(R3), (3.13)

where ũn(x) := uεn,kn(ε
1/3
n (x + xεn,kn)), and ũ is a minimizer of Ẽ∞ over Ã∞(m∗)

for some m∗ ∈ I∗, where I∗ is defined in (2.22).
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The significance of this theorem lies in the fact that it shows that all the connected
components of the support of a minimizer for sufficiently small ε look like a collection of
droplets of size of order ε1/3 separated by distances of order ε1/9 on average. In particular,
the conclusion of the theorem excludes configurations that span the entire length of the
torus, such as the “spaghetti” or “lasagna” phases of nuclear pasta (see Fig. 1). Thus,
the ground state for small enough ε > 0 is a multi-droplet pattern (a “meatball” phase).
Furthermore, after a rescaling most of these droplets converge to minimizers of the non-local
isoperimetric problem associated with Ẽ∞ that minimize the self-energy per unit mass.

4 The problem in the whole space

In this section, we derive some results about the single droplet problem from (2.14)–(2.15)
and the rescaled problem from (2.23)–(2.24).

4.1 The truncated energy ẼR
∞

For reasons that will become apparent shortly, it is helpful to consider the energies where
the range of the nonlocal interaction is truncated at certain length scale R. We choose a
cut-off function η ∈ C∞(R) with η′(t) ≤ 0 for all t ∈ R, η(t) = 1 for all t ≤ 1 and η(t) = 0
for all t ≥ 2. In the following, the choice of η is fixed once and for all, and the dependence
of constants on this choice is suppressed to avoid clutter in the presentation. For R > 0,
we then define ηR ∈ C∞(R3) by ηR(x) := η(|x|/R). For u ∈ Ã∞(m), we consider the
truncated energy

ẼR∞(u) :=

∫
R3

|∇u| dx+

∫
R3

∫
R3

ηR(x− y)u(x)u(y)

8π|x− y|
dx dy. (4.1)

This functional will be useful in the analysis of the variational problems associated with
Ẽ∞ and Eε. We recall that by the results of [61], for each R > 0 and each m > 0 there
exists a minimizer of ẼR∞ in Ã∞(m). Furthermore, after a possible redefinition on a set
of Lebesgue measure zero, its support has boundary of class C1,1/2 and consists of finitely
many connected components. Below we always deal with the representatives of minimizers
that are regular.

The following uniform density bound for minimizers of the energy is an adaption of [37,
Lemma 4.3] for the truncated energy ẼR∞ and generalizes the corresponding bound for
minimizers of Ẽ∞.

Lemma 4.1 (Density bound). There exists a universal constant c > 0 such that for every
minimizer u ∈ Ã∞(m) of ẼR∞ for some R,m > 0 and any x0 ∈ F we have∫

Br(x0)
u dx ≥ cr3 for all r ≤ min(1,m1/3). (4.2)
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Proof. The claim follows by an adaption of the proof of [37, Lemma 4.3] to our truncated
energy ẼR∞. Indeed, it is enough to show that the statement of [37, Lemma 4.2] holds with
Ẽ∞ replaced by ẼR∞. The proof of this statement needs to be modified, since the kernel
in the definition of ẼR∞ is not scale-invariant. We sketch the necessary changes, using the
same notation as in [37].

The construction of the sets F̃ and F̂ proceeds as in the proof of [37, Lemma 4.3].
The upper bound [37, Eq. (4.6)] still holds since ẼR∞(u) ≤ Ẽ∞(u). Related to the cut-off
function in the definition of ẼR∞, we get an additional term in the right-hand side of the
first line of [37, Eq. (4.6)], which is of the form∫

`F1

∫
`F1

ηR(x− y)

|x− y|α
dx dy − `2n−α

∫
F1

∫
F1

ηR(x− y)

|x− y|α
dx dy

= `2n−α
∫
F1

∫
F1

ηR/`(x− y)− ηR(x− y)

|x− y|α
dx dy < 0, (4.3)

since ` > 1 and since the function η is monotonically decreasing (note that α = 1 in
our case). Since this term has a negative sign, [37, Eq. (4.6)] still holds. The rest of the
argument then carries through unchanged.

The following lemma establishes a uniform diameter bound for the minimizers of ẼR∞.
The idea of the proof is similar to the one in [45, Lemma 5].

Lemma 4.2 (Diameter bound). There exist universal constants R0 > 0 and D0 > 0 such
that for any R ≥ R0, any m > 0 and for any minimizer u ∈ Ã∞(m) of ẼR∞, the diameter
of each connected component F0 of supp(u) is bounded above by D0.

Proof. Let F0 be a connected component of the support of u with m0 := |F0|. Since u is
a minimizer, χF0 is also a minimizer of ẼR∞ over A∞(m0). Indeed, if not, replacing u with
u−χF0 +χ

F̃0
, where χ

F̃0
is a minimizer of ẼR∞ over A∞(m0) translated sufficiently far from

the support of u would lower the energy, contradicting the minimizing property of u.

We may assume without loss of generality that R ≥ 2 and diam F0 ≥ 2. Then there
is N ∈ N such that 2N ≤ diam F0 < 2(N + 1). In particular there exist x0, . . . , xN ∈ F 0

such that |xk − x0| = 2k for every 1 ≤ k ≤ N and, therefore, the balls B1(xk) are mutually
disjoint. If m0 ≤ 1, then by Lemma 4.1 we have |F0 ∩Br(xk)| ≥ cm0 for r = m

1/3
0 ≤ 1 and

some universal c > 0. Therefore,

m0 ≥
N∑
k=1

|F0 ∩Br(xk)| ≥ cm0N, (4.4)

implying that N ≤ N0 for some universal N0 ≥ 1 and, hence, diam F0 ≤ 2(N0 + 1). If, on
the other hand, m0 > 1, then by Lemma 4.1 we have |F0 ∩B1(xk)| ≥ c for some universal
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c > 0. By monotonicity of the kernel in |x− y|, we get∫
F0∩B1(x0)

∫
F0\B1(x0)

ηR(x− y)

|x− y|
dx dy ≥ c2

N∑
k=1

ηR(2k + 2)

2k + 2
≥ C min{logN, logR},

for some universal C > 0. Hence, if R and N are sufficiently large, then it is energetically
preferable to move the charge in B1(x0) sufficiently far from the remaining charge. More
precisely, consider ũ = u−χF0∩B1(x0) +χF0∩B1(x0)(·+b), for some b ∈ R3 with |b| sufficiently
large. Then ũ ∈ A∞(m0) and

ẼR∞(ũ) ≤ ẼR∞(u) + 4π − 1
2C min{logN, logR} < 0, (4.5)

for all R ≥ R0 and N > N0 for some universal constants R0 ≥ 2 and N0 ≥ 1. Therefore,
minimality of u implies that N ≤ N0 whenever R ≥ R0 and hence diam F0 ≤ 2(N0+1).

4.2 Generalized minimizers of Ẽ∞

We begin our analysis of Ẽ∞ by introducing the notion of generalized minimizers of the
non-local isoperimetric problem.

Definition 4.3 (Generalized minimizers). Given m > 0, we call a generalized minimizer
of Ẽ∞ in Ã∞(m) a collection of functions (u1, . . . , uN ) for some N ∈ N such that ui is a
minimizer of Ẽ∞ over Ã∞(mi) with mi =

∫
T ui dx for all i ∈ {1, . . . , N}, and

m =

N∑
i=1

mi and e(m) =

N∑
i=1

e(mi). (4.6)

Clearly, every minimizer of Ẽ∞ in Ã∞(m) is also a generalized minimizer (with N = 1). As
was shown in [37], however, minimizers of Ẽ∞ in Ã∞(m) may not exist for a given m > 0
because of the possibility of splitting their support into several connected components and
moving those components far apart. As we will show below, this possible loss of compactness
of minimizing sequences can be compensated by considering characteristic functions of sets
whose connected components are “infinitely far apart” and among which the minimum of
the energy is attained (by a generalized minimizer with some N > 1). We also remark that,
if (u1, . . . , uN ) is a generalized minimizer, then, as can be readily seen from the definition,
any sub-collection of ui’s is also a generalized minimizer with the mass equal to the sum of
the masses of its components.

We now proceed to demonstrating existence of generalized minimizers of Ẽ∞ for all
m > 0. We start by stating the basic regularity properties of the minimizers of Ẽ∞ and
the associated Euler-Lagrange equation.
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Lemma 4.4 (Regularity and Euler-Lagrange equation). For m > 0, let u be a minimizer
of Ẽ∞ in Ã∞(m), and let F = supp (u). Then, up to a set of Lebesgue measure zero, the
set F is a bounded connected set with boundary of class C∞, and we have

2κ(x) + vF (x) = λF for x ∈ ∂F, (4.7)

where λF ∈ R is a Lagrange multiplier, κ(x) is the mean curvature of ∂F at x (positive if
F is convex), and

vF (x) :=
1

4π

∫
F

dy

|x− y|
. (4.8)

Moreover, if m ∈ [m0,m1] for some 0 < m0 < m1, then vF ∈ C1,α(R3) and ∂F is of class
C3,α, for all α ∈ (0, 1), uniformly in m.

Proof. From [37, Proposition 2.1 and Lemma 4.1] it follows that, up to a set of Lebesgue
measure zero, the set F is bounded and connected, and ∂F is of class C1,1/2. Since the
function vF is the unique solution of the elliptic problem −∆v = χF with v(x) → 0 for
|x| → ∞, by [37, Lemma 4.4] and elliptic regularity theory [62] it follows that vF ∈ C1,α(R3)
for all α ∈ (0, 1), uniformly in m ∈ [m0,m1]. The Euler-Lagrange equation (4.7) can
be obtained as in [63, Theorem 2.3] (see also [30, 59]). Further regularity of ∂F follows
from [59, Proposition 2.1] and [43, Proposition 2.2].

Similarly, if (u1, . . . , uN ) is a generalized minimizer of Ẽ∞ and Fi := supp (ui) for
i ∈ {1, . . . , N}, the following Euler-Lagrange equation holds:

2κi(x) +
1

4π

∫
Fi

dy

|x− y|
= λ x ∈ ∂Fi, (4.9)

where κi is the mean curvature of ∂Fi (positive if Fi is convex) and λ ∈ R is a Lagrange
multiplier independent of i.

In contrast to minimizers, generalized minimizers of Ẽ∞ in Ã∞(m) exist for all m > 0:

Theorem 4.5 (Existence of generalized minimizers). For any m ∈ (0,∞) there exists a
generalized minimizer (u1, . . . , uN ) of Ẽ∞ in Ã∞(m). Moreover, after a possible modifi-
cation on a set of Lebesgue measure zero, the support of each component ui is bounded,
connected and has boundary of class C∞.

Proof. We may assume that m ≥ m̃0, where m̃0 > 0 was defined in Sec. 2, since otherwise
the minimum of Ẽ∞ is attained by a ball [37, Theorem 3.2] and the statement of the theorem
holds true. In [61, Theorems 5.1.1 and 5.1.5], it is proved that the functional ẼR∞ admits
a minimizer u = χFR ∈ Ã∞(m), FR ⊂ R3, for any R > 0, and after a possible redefinition
on a set of Lebesgue measure zero, the set FR is regular, in the sense that it is a union of
finitely many connected components whose boundaries are of class C1,1/2. Let F1, . . . , FN
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⊂ R3 be the connected components of FR. By Lemma 4.1, we have N ≤ N0, |Fk| ≥ δ0

and diam Fk ≤ D0 for all 1 ≤ k ≤ N and for some N0 ≥ 1 and some constants D0, δ0 > 0
depending only on m. Furthermore, we have

dist(Fi, Fj) ≥ 2R for i 6= j, (4.10)

since otherwise it would be energetically preferable to increase the distance between the
components. In particular, if R ≥ D0 the family of sets F1, . . . , FN ⊂ R3 generates a
generalized minimizer (u1, . . . , uN ) of Ẽ∞ by letting ui := χFi . Indeed, we have

e(m) ≥ inf
|F |=m

ẼR∞(u) =
N∑
i=1

ẼR∞(ui) =
N∑
i=1

Ẽ∞(ui) ≥
N∑
i=1

e(|Fi|) ≥ e(m), (4.11)

and so all the inequalities in (4.11) are in fact equalities. Since Ẽ∞(χFi) ≥ e(|Fi|) for each
1 ≤ i ≤ N , from (4.11) we obtain that each set Fi is a minimizer of Ẽ∞ in Ã∞(|Fi|). By
Lemma 4.4, each set Fi is bounded and connected, and ∂Fi are of class C∞.

The arguments in the proof of the previous theorem in fact show the following relation
between minimizers of the truncated energy ẼR∞ and generalized minimizers of Ẽ∞.

Corollary 4.6 (Generalized minimizers as minimizers of the truncated problem). Let m >
0 and R > 0, let u ∈ Ã∞(m) be a minimizer of ẼR∞, and let u =

∑N
i=1 ui, where ui are

the characteristic functions of the connected components of the support of u. Then there
exists a universal constant R1 > 0 such that if R ≥ R1, then (u1, . . . , uN ) is a generalized
minimizer of Ẽ∞ in Ã∞(m).

Proof. We choose R1 = max{R0, D0}, where R0 and D0 are as in Lemma 4.2. Then we
have ẼR∞(χF0) = Ẽ∞(χF0) for every connected component F0 of the minimizer. With the
same argument as the one used in the proof of Theorem 4.5, this yields the claim.

We now provide some uniform estimates for generalized minimizers.

Theorem 4.7 (Uniform estimates for generalized minimizers). There exist universal con-
stants δ0 > 0 and D0 > 0 such that, for any m > m̃0, where m̃0 is defined in Sec. 2, the
support of each component of a generalized minimizer of Ẽ∞ in Ã∞(m) has volume bounded
below by δ0 and diameter bounded above by D0 (after possibly modifying the components on
sets of Lebesgue measure zero). Moreover, there are universal constants C, c > 0 such that
the number N of the components satisfies

cm ≤ N ≤ Cm. (4.12)
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Proof. Let m ≥ m̃0 and let (χF1 , . . . , χFN ) be a generalized minimizer of Ẽ∞ in Ã∞(m),
taking all sets Fi to be regular. By [37, Theorem 3.3] we know that there exists a universal
m̃2 ≥ m̃0 such that

|Fi| ≤ m̃2 for all i ∈ {1, . . . , N} . (4.13)

Then by [37, Lemma 4.3] and the argument of [37, Lemma 4.1] we have

diam(Fi) ≤ D0, (4.14)

for some universal D0 > 0. On the other hand, we claim that taking R ≥ D0 we have that

u(x) :=
N∑
i=1

χFi(x+ 4iRe1), (4.15)

where e1 is the unit vector in the first coordinate direction, is a minimizer of ẼR∞ in Ã∞(m).
Indeed, since the connected components of the support of u are separated by distance 2R,
we have

ẼR∞(u) =

N∑
i=1

ẼR∞(χFi) =

N∑
i=1

Ẽ∞(χFi) = e(m). (4.16)

At the same time, by the argument in the proof of Theorem 4.5 we have inf
u∈Ã∞(m)

ẼR∞(u) =

e(m) for all R sufficiently large depending on m. Hence, u is a minimizer of ẼR∞ in Ã∞(m)
for large enough R. The universal lower bound |Fi| ≥ δ0 then follows from Lemma 4.1 and
our assumption on m.

Finally, the lower bound in (4.12) is a consequence of (4.13), while the upper bound
follows directly from the lower bound on the volume of the components just obtained.

4.3 Properties of the function e(m)

In this section, we discuss the properties of the functions e(m) = inf
u∈Ã∞(m)

Ẽ∞(u) and
f(m) = e(m)/m, in particular their dependence on m.

We start by showing that e(m) is locally Lipschitz continuous on (0,∞).

Lemma 4.8 (Lipschitz continuity of e). The function e(m) is Lipschitz continuous on
compact subsets of (0,∞).

Proof. Letm,m′ ∈ [m0,m1] ⊂ (0,∞) and let (u1, . . . , uN ) be a generalized minimizer of Ẽ∞
in Ã∞(m). For λ = (m′/m)1/3, we define the rescaled functions uλi with uλi (x) = ui(λ

−1x).
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For sufficiently large R > 0, we define uλ ∈ Ã∞(m′) by uλ(x) :=
∑N

i=1 ui(λ
−1x + iRe1),

where e1 is the unit vector in the first coordinate direction. We then have

Ẽ∞(uλ) = λ2
N∑
i=1

∫
R3

|∇ui| dx+ λ5
N∑
i=1

∫
R3

∫
R3

ui(x)ui(y)

8π|x− y|
dx dy + g(R), (4.17)

where the term g(R) refers to the interaction energy between different components uλi , u
λ
j ,

i 6= j, of uλ. Clearly, we have g(R)→ 0 for R→∞. It follows that

Ẽ∞(uλ)−e(m) ≤
∣∣λ2 − 1

∣∣ N∑
i=1

∫
R3

|∇ui| dx+
∣∣λ5 − 1

∣∣ N∑
i=1

∫
R3

∫
R3

ui(x)ui(y)

8π|x− y|
dx dy+g(R).

(4.18)

In the limit R → ∞, this yields e(m′) ≤ Ẽ∞(uλ) ≤ e(m)(1 + C|m −m′|) for a constant
C > 0 that depends only on m0, m1. Since m,m′ are arbitrary and since e(m) is bounded
above by the energy of a ball of mass m1, it follows that e is Lipschitz continuous on
[m0,m1] for all 0 < m0 < m1.

We next establish a compactness result for generalized minimizers.

Lemma 4.9 (Compactness for generalized minimizers). Let mk be a sequence of positive
numbers converging to some m > m̃0, where m̃0 is defined in Sec. 2, as k → ∞, and let
(uk,1, . . . , uk,Nk) be a sequence of generalized minimizers of Ẽ∞ in Ã∞(mk). Then, up to
extracting a subsequence we have that Nk = N ∈ N for all k, and after suitable translations
uk,i ⇀ ui in BV (R3) as k → ∞ for all i ∈ {1, . . . , N}, where (u1, . . . , uN ) ∈ Ã∞(m) is a
generalized minimizer of Ẽ∞ in Ã∞(m).

Proof. By Theorem 4.7, we know that Nk ≤ M ∈ N for all k large enough. Hence, upon
extraction of a subsequence we can asume that Nk = N for all k, for some N ∈ N. For any
i ∈ {1, . . . , N}, we also have

sup
k

∫
R3

|∇uk,i| dx ≤ sup
m∈I

Ẽ∞(χB
m1/3

) <∞. (4.19)

Moreover, again by Theorem 4.7 we have mk,i ≥ δ0 and supp(uk,i) ⊂ BD0(0), after suitable
translations. Hence, up to extracting a further subsequence, there exist mi ≥ δ0 and
ui ∈ Ã∞(mi) such that mk,i → mi and uk,i ⇀ ui in BV (R3), as k → ∞. Passing to the
limit in the equalities mk =

∑N
i=1mk,i and e(mk) =

∑N
i=1 e(mk,i), we obtain that

m =
N∑
i=1

mi and e(m) =
N∑
i=1

e(mi), (4.20)

where we used Lemma 4.8 to establish the last equality. Finally, again by Lemma 4.8 and
by lower semicontinuity of Ẽ∞ we have e(mi) ≤ Ẽ∞(ui) ≤ lim infk→∞ e(mk,i) = e(mi),
which yields the conclusion.
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With the two lemmas above, we are now in a position to prove the main result of this
subsection.

Lemma 4.10. The set I defined in (2.17) is compact.

Proof. Since I is bounded by [37, Theorem 3.3], it is enough to prove that it is closed. Let
mk → m > 0, with mk ∈ I, and let uk ∈ Ã∞(mk) be such that Ẽ∞(uk) = e(mk) for all
k ∈ N, i.e., let uk be a minimizer of the whole space problem with mass mk. We need to
prove that m ∈ I. By Lemma 4.9 there exists a minimizer u ∈ Ã∞(m) such that uk ⇀ u
weakly in BV (R3) and uk → u strongly in L1(R3). In particular, there holds Ẽ∞(u) = e(m)
and hence m ∈ I.

Finally, we establish a few further properties of e(m).

Lemma 4.11. Let λ+
m and λ−m be the supremum and the infimum, respectively, of the

Lagrange multipliers in (4.9), among all generalized minimizers of Ẽ∞ with mass m > 0.
Then the function e(m) has left and right derivatives at each m ∈ (0,∞), and

lim
h→0+

e(m+ h)− e(m)

h
= λ−m ≤ λ+

m = lim
h→0+

e(m)− e(m− h)

h
. (4.21)

In particular, e is a.e. differentiable and e′(m) = λ−m = λ+
m =: λm for a.e. m > 0.

Proof. First of all, note that for m ≤ m̃0, where m̃0 is defined in Sec. 2, the function
e(m) = mf(m) is given via (2.19), and the statement of the lemma can be verified explicitly.
On the other hand, by definition we have λ−m ≤ λ+

m. Fix m > m̃0 and let (u1, . . . , uN ), with
ui = χFi , be a generalized minimizer of Ẽ∞ with mass m. We first show that

λ−m ≥ lim sup
h→0+

e(m+ h)− e(m)

h
and λ+

m ≤ lim inf
h→0+

e(m)− e(m− h)

h
. (4.22)

Indeed, for h > 0 let uhi = χFhi
with F hi = (m+h

m )1/3Fi, so that |F hi | = (m+h
m )|Fi|. Since

(m+h
m )1/3 = 1 + h

3m + o(h), we have

Ẽ∞(uhi ) = Ẽ∞(ui) +
2h

3m

∫
∂Fi

κ(x) (x · ν(x)) dH2(x)

+
h

12πm

∫
∂Fi

∫
Fi

(x · ν(x))

|x− y|
dy dH2(x) + o(h), (4.23)

where ν(x) is the outward unit normal to ∂Fi at point x. In view of the Euler-Lagrange
equation (4.9), we hence obtain

Ẽ∞(uhi )− Ẽ∞(ui) =
λh

3m

∫
∂Fi

(x · ν(x)) dH2(x) = λ
(
|F hi | − |Fi|

)
+ o(h), (4.24)
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where λ is the Langrage multiplier in (4.9). Passing to the limit as h→ 0+, this gives

lim sup
h→0+

e(m+ h)− e(m)

h
≤ lim sup

h→0+

1

h

( N∑
i=1

Ẽ∞(uhi )−
N∑
i=1

Ẽ∞(ui)
)
≤ λ. (4.25)

Since (4.25) holds for all generalized minimizers, this yields the first inequality in (4.22).
Following the same argument with h replaced by −h, and taking the limit as h → 0+, we
obtain the second inequality in (4.22).

Now, by Lemma 4.8 the function e(m) is a.e. differentiable on (0,∞), and at the points
of differentiability we have e′(m) = λ−m = λ+

m =: λm. Hence, for any h > 0 there exists
mh ∈ (m,m+ h) such that e is differentiable at mh and

e(m+ h)− e(m)

h
≥ e′(mh) = λmh , (4.26)

so that

lim inf
h→0+

e(m+ h)− e(m)

h
≥ λ̄ := lim inf

h→0+
λmh . (4.27)

Let hk → 0+ be a sequence such that λmhk → λ̄ as k →∞. If (uk1, . . . , u
k
N ) are generalized

minimizers with mass mhk then by Lemma 4.9 they converge, up to a subsequence, to a
generalized minimizer with mass m. In view of Lemma 4.4, up to another subsequence
we also have that the boundaries of the components of the generalized minimizers with
mass mhk converge strongly in C2 to those of the limit generalized minimizer with mass
m. Therefore, by (4.9) we have that λ̄ is the Lagrange multiplier associated with the limit
minimizer. It then follows that λ̄ ≥ λ−m, so that recalling (4.22) and (4.27) we get

lim
h→0+

e(m+ h)− e(m)

h
= λ−m. (4.28)

This is the first equality in (4.21). The last equality in (4.21) follows analogously by taking
the limit from the other side.

Remark 4.12. From the proof of Lemma 4.11 it follows that λ±m are in fact the maximum
and the minimum (not only the supremum and the infimum) of the Lagrange multipliers
in (4.9), i.e., that λ±m are attained by some generalized minimizers with mass m.

Corollary 4.13. The function e(m) is Lipschitz continuous on [m0,∞) for any m0 > 0.

Proof. This follows from (4.21), noticing that for all m ≥ m0 there holds

−∞ < inf
m′∈[m0,M ]

λ−m′ ≤ λ
−
m ≤ λ+

m ≤ sup
m′∈[m0,M ]

λ+
m′ < +∞, (4.29)

whereM > 0 is such that I ⊂ [0,M ], and we used (4.9) together with the uniform regularity
from Lemma 4.4 for the components of the generalized minimizers.
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4.4 Proof of Theorem 3.2

In lieu of a complete characterization of the function f(m) and the set I, we show that
f(m) is continuous and attains its infimum on I.

The next result follows directly from Theorem 4.5, Theorem 4.7 and [37, Theorem 3.2].

Lemma 4.14. There exists a universal constant δ0 > 0 such that for any m ∈ (0,∞) there
exist N ≥ 1 and m1, . . . ,mN ∈ I such that mi ≥ min{δ0,m} for all i = 1, . . . , N and

m =
N∑
i=1

mi and f(m) =
N∑
i=1

mi

m
f(mi). (4.30)

Theorem 3.2 is a corollary of the following result.

Theorem 4.15. The function f(m) is Lipschitz continuous on [m0,∞) for any m0 > 0.
Furthermore, f(m) attains its minimum, i.e.,

I∗ :=

{
m∗ ∈ I : f(m∗) = inf

m∈I
f(m)

}
6= ∅. (4.31)

Furthermore, we have f(m) ≥ f∗ for all m > 0 and

lim
m→0

f(m) =∞, lim
m→∞

f(m) = f∗, lim
m→∞

‖f ′‖L∞(m,∞) = 0. (4.32)

Proof. Since f(m) = e(m)/m, the Lipschitz continuity of f(m) follows from Corollary
4.13. By the continuity of f(m) and since I is compact, it then follows that there exists a
(possibly non-unique) minimizer m∗ > 0 of f(m) over I.

Turning to (4.32), the first statement there follows from (2.19). Let now u∗ = χF ∗ ∈
A∞(m∗) be a minimizer of Ẽ∞ with m = m∗ for some m∗ ∈ I∗. Given k ∈ N, we can
consider k copies of F ∗ at sufficiently large distance as a test configuration. We hence get
f(km∗) ≤ f(m∗) for any k ∈ N, which implies f(m∗) ≥ lim infm→∞ f(m). On the other
hand, since f(m∗) ≤ f(m) for all m ∈ I, by Lemma 4.14 we obtain

f(m) =

N∑
i=1

mi

m
f(mi) ≥

N∑
i=1

mi

m
f(m∗) = f(m∗) ∀m > 0, (4.33)

which gives the second identity in (4.32). Finally, by Corollary 4.13 we have

lim
m→∞

|f ′(m)| = lim
m→∞

∣∣∣∣e′(m)m− e(m)

m2

∣∣∣∣ ≤ lim
m→∞

f(m∗) + 2‖e′‖L∞(m∗,∞)

m
= 0, (4.34)

which yields the third identity in (4.32).
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5 Proof of Theorems 3.3 and 3.5

5.1 Compactness and lower bound

In this section, we present the proof of the lower bound part of the Γ-limit in Theorem 3.3:

Proposition 5.1 (Compactness and lower bound). Let (uε) ∈ Aε, let µε be given by (2.4),
let vε be given by (2.7) and suppose that

lim sup
ε→0

ε−4/3Eε(uε) <∞. (5.1)

Then the following holds:

i) There exists µ ∈ M+(T) ∩ H′ and v ∈ H such that upon extraction of subsequences
we have µε ⇀ µ inM(T) and vε ⇀ v in H. Furthermore,

−∆v = µ− λ in D′(T). (5.2)

ii) The limit measure satisfies

E0(µ) ≤ lim inf
ε→0

ε−4/3Eε(uε). (5.3)

Proof. The proof proceeds via a sequence of 4 steps.

Step 1: Compactness. Since
∫
T dµε = λ, it follows that there is µ ∈M+(T) with

∫
T dµ = λ

and a subsequence such that µε ⇀ µ inM(T). Furthermore, from (5.1) we have the uniform
bound

1

2

∫
T
|∇vε|2 dx =

1

2

∫
T

∫
T
G(x− y) dµε(x) dµε(y) ≤ ε−4/3Eε(uε) ≤ C. (5.4)

By the definition of the potential, we also have
∫
T vε dx = 0. Upon extraction of a further

subsequence, we hence get vε ⇀ v in H. Since µε ⇀ µ inM(T) and since the convolution
of G with a continuous function is again continuous, we also have∫

T

(∫
T
G(x− y)ϕ(x) dx

)
dµε(y)→

∫
T

(∫
T
G(x− y)ϕ(x) dx

)
dµ(y) ∀ϕ ∈ D(T). (5.5)

This yields by Fubini-Tonelli theorem and uniqueness of the distributional limit that

v(x) =

∫
G(x− y) dµ(y) for a.e. x ∈ T. (5.6)

Furthermore, since vε satisfies

−∆vε = µε − λ in D′(T), (5.7)
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taking the distributional limit, it follows that v satisfies (5.2). In particular, (5.2) implies
that µ defines a bounded functional on H, i.e. µ ∈ H′.

Step 2: Decomposition of the energy into near field and far field contributions. We split the
nonlocal interaction into a far-field and a near-field component. For ρ ∈ (0, 1) and x ∈ T,
let ηρ(x) := η(|x|/ρ), where η ∈ C∞(R) is a monotonically increasing function such that
η(t) = 0 for t ≤ 1

2 and η(t) = 1 for t ≥ 1. The far-field part Gρ and the near-field part Hρ

of the kernel G are then given by

Gρ(x) = ηρ(x)G(x), Hρ := G−Gρ. (5.8)

For any u ∈ Aε, we decompose the energy accordingly as Eε = E
(1)
ε + E

(2)
ε , where

ε−4/3E(1)
ε (u) =

1

2
ε−4/3

∫
T

∫
T
Gρ(x− y)u(x)u(y) dx dy

ε−4/3E(2)
ε (u) = ε−1/3

∫
T
|∇u| dx+

1

2
ε−4/3

∫
T

∫
T
Hρ(x− y)u(x)u(y) dx dy

(5.9)

In the rescaled variables, the far field part E(1)
ε of the energy can also be expressed as

ε−4/3E(1)
ε (u) =

1

2

∫
T

∫
T
Gρ(x− y) dµε(x) dµε(y), (5.10)

where µε is given by (2.4). For the near field part E(2)
ε of the energy, we set `ε := ε−1/3

and define ũ : T`ε → R by

ũ(x) := u(x/`ε), (5.11)

where T`ε is a torus with sidelength `ε (cf. Sec. 2). In the rescaled variables, we get

ε−4/3E(2)
ε (u) = ε1/3

(∫
T`ε
|∇ũ|dx+

1

2

∫
T`ε

∫
T`ε

ε1/3Hρ(ε
1/3(x− y))ũ(x)ũ(y) dx dy

)
.

(5.12)

Step 3: Passage to the limit: the near field part. Our strategy for the proof of the lower
bound for (5.12) is to compare E(2)

ε with the whole space energy treated in Section 4 and
use the results of this section. We claim that

lim inf
ε→0

ε−4/3E(2)
ε (u) ≥ (1− cρ)λf∗, (5.13)

for some universal constant c > 0.
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Let Γ(x) := 1
4π|x| , x ∈ R3, be the Newtonian potential in R3 and let Γ#(x) := 1

4π|x| ,
x ∈ T, be the restriction of Γ(x) to the unit torus. We also define the corresponding
truncated Newtonian potential Γ#

ρ : T→ R by

Γ#
ρ (x) := (1− ηρ(x))Γ#(x). (5.14)

By a standard result, we have

G(x) = Γ#(x) +R(x), x ∈ T, (5.15)

for some R ∈ Lip(T). Hence

Hρ(x) = (1− ηρ(x))G(x) ≥ (1− ηρ(x))(Γ#(x)− ‖R‖L∞(T))

≥ (1− ηρ(x))Γ#(x)(1− 4πρ‖R‖L∞(T)) = (1− cρ)Γ#
ρ (x), (5.16)

where c = 4π‖R‖L∞(T). Inserting this estimate into (5.12), for cρ < 1 we arrive at

ε−4/3E
(2)
ε (u)

1− cρ
≥ ε1/3

(∫
T`ε
|∇ũ| dx+

1

2

∫
T`ε

∫
T`ε

ε1/3Γ#
ρ (ε1/3(x− y))ũ(x)ũ(y) dx dy

)

= ε1/3

(∫
T`ε
|∇ũ| dx+

∫
T`ε

∫
T`ε

(1− ηρ(ε1/3(x− y)))

8π|x− y|
ũ(x)ũ(y) dx dy

)
.

(5.17)

Next we want to pass to a whole space situation by extending the function ũ periodically
to the whole of R3 and then truncating it by zero outside one period. We claim that after a
suitable translation there is no concentration of the periodic extension of ũ, still denoted by
ũ for simplicity, on the boundary of a cube Q`ε := (−1

2`ε,
1
2`ε)

3. More precisely, we claim
that ∫

∂Q`ε

ũ(x− x∗) dH2(x) ≤ 6λ, (5.18)

for some x∗ ∈ Q`ε . Indeed, by Fubini’s theorem we have

λ`ε =

∫
Q`ε

ũ dx =

∫ 1
2
`ε

− 1
2
`ε

H2({u(x) = 1} ∩ {x · e1 = t}) dt, (5.19)

where e1 is the unit vector in the first coordinate direction. This yields existence of x∗1 ∈
(−1

2`ε,
1
2`ε) such that H2({u(x) = 1} ∩ {x · e1 = x∗1}) ≤ λ. Repeating this argument in

the other two coordinate directions and taking advantage of periodicity of ũ, we obtain
existence of x∗ ∈ Q`ε such that (5.18) holds.
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Now we set

û(x) :=

{
ũ(x− x∗) x ∈ Q`ε ,
0 x ∈ R3\Q`ε .

(5.20)

We also introduce the truncated Newtonian potential on R3 by

Γρ(x) :=
1− ηρ(x)

4π|x|
, x ∈ R3. (5.21)

By (5.18), the additional interfacial energy due to the extension (5.20) is controlled:∫
T`ε
|∇ũ| dx =

∫
R3

|∇û| dx−
∫
∂Q`ε

û dx ≥
∫
R3

|∇û| dx− 6λ. (5.22)

We hence get from (5.17):

ε−4/3E
(2)
ε (u)

1− cρ
≥ ε1/3

(∫
R3

|∇û| dx+
1

2

∫
R3

∫
R3

Γε−1/3ρ(x− y)û(x)û(y) dx dy − 6λ

)
≥ λ∫

R3 û dx

(∫
R3

|∇û| dx+
1

2

∫
R3

∫
R3

Γρ0(x− y)û(x)û(y) dx dy

)
− 6λε1/3, (5.23)

for any ρ0 > 0, provided that ε is sufficiently small (depending on ρ0). By Corollary 4.6
and Theorem 4.15, the first term on the right hand side is bounded below by λf∗ as soon
as ρ0 ≥ R1. Therefore, passing to the limit as ε→ 0, we obtain (5.13).

Step 4: Passage to the limit: the far field part. Passing to the limit µε ⇀ µ inM(T), for
the far field part of the energy we obtain

lim
ε→0

ε−4/3E(1)
ε (uε) =

1

2

∫
T

∫
T
Gρ(x− y) dµ(x) dµ(y). (5.24)

At the same time, by (A.13) in Lemma A.2 in the appendix the set {(x, y) ∈ T : x = y} is
negligible with respect to the product measure µ⊗µ on T×T. Therefore, since Gρ(x−y)↗
G(x − y) as ρ → 0 for all x 6= y, by the monotone convergence theorem the right-hand
side of (5.24) converges to

∫
T
∫
TG(x− y) dµ(x) dµ(y). Finally, the lower bound in (5.3) is

recovered by combining this result with the limit of (5.13) as ρ→ 0.

5.2 Upper bound construction

We next give the proof of the upper bound in Theorem 3.3:

Proposition 5.2 (Upper bound construction). For any µ ∈ M+(T) ∩ H′ with
∫
T dµ = λ,

there exists a sequence (uε) ∈ Aε such that

µε ⇀ µ inM(T) and vε ⇀ v in H, (5.25)
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as ε→ 0, where µε, vε and v are defined in (2.4), (2.7) and (3.4), respectively, and

lim sup
ε→0

ε−4/3Eε(uε) ≤ E0(µ). (5.26)

Proof. We first note that the limit energy is continuos with respect to convolutions. In
particular, we may assume without loss of generality that dµ(x) = g(x)dx for some g ∈
C∞(T), and that there exist C ≥ c > 0 such that

c ≤ g(x) ≤ C for all x ∈ T. (5.27)

We proceed now to the construction of the recovery sequence. For δ > 0, we partition T
into cubes Qδi with sidelength δ. Let u∗ ∈ BV (T`ε ; {0, 1}), where `ε = ε−1/3, be a minimizer
of Ẽ∞ over Ã∞(m) withm = m∗ ∈ I∗ (cf. Theorem 4.15), suitably translated, restricted to
a cube with sidelength `ε and then trivially extended to T`ε (the latter is possible without
modifying either the mass or the perimeter by Theorem 4.7 for universally small ε). For a
given set of centers a(j)

ε,δ , j = 1, . . . , Nε,δ, and a given set of scaling factors θ(j)
ε,δ ∈ [1,∞), we

define uε,δ : T→ R by

uε,δ(x) :=

Nε,δ∑
j=1

u∗
(
θ

(j)
ε,δε
−1/3(x− a(j)

ε,δ)
)

for x ∈ T, (5.28)

as the sum of Nε,δ suitably rescaled minimizers of Ẽ∞(u)/
∫
R3 u dx. Note that∫

T`ε
u∗(ε−1/3x) dx = εm∗. To decide on the placement of a(j)

ε,δ , we denote the number

of the centers in each cube as N (i)
ε,δ , i.e.,

N
(i)
ε,δ := #

{
j ∈ {1, . . . , Nε,δ} : a

(j)
ε,δ ∈ Q

δ
i

}
. (5.29)

With this notation we have Nε,δ =
∑

iN
(i)
ε,δ , provided that supp(uε,δ) ∩ ∂Qδi = ∅ for all

i. The measure µ is then locally approximated in every cube Qδi by “droplets” uniformly
distributed throughout each cube. Namely, we set

N
(i)
ε,δ =

⌈
µ(Qδi )

ε1/3m∗

⌉
, (5.30)

and choose a(j)
ε,δ so that

Kε1/9 ≤ dε,δ ≤ K ′ε1/9, (5.31)

where dε,δ := mini 6=j |a
(j)
ε,δ − a

(i)
ε,δ| is the minimal distance between the centers, for some

K ′ > K > 0 depending only on µ. We also set

θ
(j)
ε,δ :=

ε1/3m∗N
(i)
ε,δ

µ(Qδi )

1/3

if a(j)
ε,δ ∈ Q

δ
i . (5.32)
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Then, if ε is sufficiently small depending only on δ and µ, we find that uε,δ ∈ Aε for ε
sufficiently small depending only on δ and µ.

Finally, we define the measure µε,δ associated with the test function uε,δ constructed
above, dµε,δ(x) := ε−2/3uε,δ(x) dx, as in (2.4) and choose a sequence of δ → 0. Choosing a
suitable sequence of ε = εδ → 0, we have µεδ,δ ⇀ µ in M(T). For simplicity of notation,
in the following we will suppress the δ-dependence, e.g., we will simply write uε instead of
uεδ,δ, etc.

It remains to prove (5.26). As in the proof of the lower bound, for a given ρ ∈ (0, 1) we
split the kernel G into the far field part Gρ and the near field part Hρ. Decomposing the
energy into the two parts in (5.9) and using (5.10), we have

ε−4/3E(1)
ε (uε) =

1

2

∫
T

∫
T
Gρ(x− y) dµε(x) dµε(y). (5.33)

Since µε ⇀ µ inM(T), we can pass to the limit ε→ 0 in (5.33). Then, since the limit mea-
sure µ belongs to H′, by the monotone convergence theorem we recover the full Coulombic
part of the limit energy E0 in (3.1) in the limit ρ→ 0.

For the estimate of the near field part of the energy, we observe that

Hρ(x) ≤ (1 + cρ)Γ#
ρ (x), (5.34)

for some universal c > 0 (cf. the estimates in (5.16)). With this estimate, we get

ε−4/3E(2)
ε (uε) ≤ ε−1/3

∫
T
|∇uε| dx+

1

2
ε−4/3(1 + cρ)

∫
T

∫
T

Γ#
ρ (x− y)uε(x)uε(y) dx dy

≤ ε−1/3

∫
T
|∇uε| dx+ ε−4/3(1 + cρ)

∫
T

∫
B 1

2 dε
(x)

uε(x)uε(y)

8π|x− y|
dy dx

+ ε−4/3(1 + cρ)

∫
T

∫
Bρ(x)\B 1

2 dε
(x)

uε(x)uε(y)

8π|x− y|
dy dx. (5.35)

By the optimality of u∗ and the fact that all θ(j)
ε,δ ≥ 1, we hence get

ε−1/3

∫
T
|∇uε| dx+ (1 + cρ)ε−4/3

∫
T

∫
B 1

2 dε
(x)

uε(x)uε(y)

8π|x− y|
dy dx ≤ (1 + cρ)(λ+ oε(1))f∗,

(5.36)

where the oε(1) term can be made to vanish in the limit by choosing εδ small enough for
each δ to ensure that all θ(j)

ε,δ → 1. Since we can choose ρ > 0 arbitrary, this recovers the
first term in the limit energy E0 in (3.1).
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It hence remains to estimate the last term in (5.35). We first note that

ε−4/3

∫
T

∫
Bρ(x)\B 1

2 dε
(x)

uε(x)uε(y)

|x− y|
dy dx ≤ λ sup

x∈T

∫
Bρ(x)\B 1

2 dε
(x)

dµε(y)

|x− y|
. (5.37)

To control the last term, for any given x ∈ T we introduce a family of dyadic balls Bk :=
B2−kρ(x), k = 0, 1, . . .. By (5.31), we have Bρ(x)\B 1

2
dε

(x) ⊂
⋃Kε
k=0Bk\Bk+1 for Kε :=

dlog2(ρ/dε)e ≤ 1 + log2(ρ/dε), or, equivalently, 2−Kερ ≥ dε
2 , provided that ε is sufficiently

small depending only on δ and µ. Therefore, with our construction we have µε(Bk) ≤
2−3kCρ3 for some C > 0 depending only on µ and all 0 ≤ k ≤ Kε. This yields

sup
x∈T

∫
Bρ(x)\B 1

2 dε
(x)

dµε(y)

|x− y|
≤

Kε∑
k=0

∫
Bk\Bk+1

dµε(y)

|x− y|

≤
Kε∑
k=0

2k+1µε(Bk)

ρ
≤

Kε∑
k=0

2Cρ2

4k
≤ 8Cρ2

3
. (5.38)

Since we can choose ρ > 0 arbitrarily small, this concludes the proof.

Remark 5.3. We note that the construction in Proposition 5.2 still yields, upon extraction
of a subsequence, a recovery sequence for a given sequence of ε = εn → 0.

5.3 Equidistribution of energy

We now prove Theorem 3.5. First, we observe that

dνε = ε−1/3|∇uε| dx+
1

2
vεdµε, (5.39)

where µε is defined in (2.4). We claim that the following lower bound for measures νε, given
x̄ ∈ T and δ ∈ (0, 1), holds true:

lim inf
ε→0

νε(Bδ(x̄)) ≥ |Bδ(x̄)|λf∗. (5.40)

As in (5.8), we split G into the far field part Gρ and the near field part Hρ, for some fixed
ρ ∈ (0, δ). Since supp(Hρ) ⊂ Bδ(0), we obtain

νε(Bδ(x̄)) = ε−1/3

∫
Bδ(x̄)

|∇uε| dx+
1

2
ε−4/3

∫
Bδ(x̄)

∫
Bδ(x)

Hρ(x− y)uε(x)uε(y) dy dx

+
1

2

∫
Bδ(x̄)

∫
T
Gρ(x− y) dµε(y) dµε(x). (5.41)
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Then, since Gρ is smooth and µε(T) = λ, by Corollary 3.4 the integral
∫
TGρ(x− y) dµε(y)

converges to λ
∫
TGρ(y) dy uniformly in x ∈ T as ε→ 0. At the same time, by the definition

of G and (5.34) we have 0 =
∫
TG(y) dy =

∫
TGρ(y) dy +

∫
THρ(y) dy ≤

∫
TGρ(y) dy + Cρ2

for some universal C > 0. Hence, we get

νε(Bδ(x̄)) ≥ ε−1/3

∫
Bδ(x̄)

|∇uε| dx+
1

2
ε−4/3

∫
Bδ(x̄)

∫
Bδ(x)

Hρ(x− y)uε(x)uε(y) dy dx− Cλρ2,

(5.42)

for ε sufficiently small and C > 0 universal.
We now identify uε with its periodic extension to the whole of R3. By Fubini’s theorem,

for a given δ′ ∈ (0, δ), there is t = tδ′,δ ∈ (δ′, δ) such that∫
∂Bt(x̄)

uε(x) dH2(x) ≤ 1

δ − δ′

∫ δ

δ′

(∫
∂Bs(x̄)

uε(x) dH2(x)

)
ds =

1

δ − δ′

∫
Bδ(x̄)\Bδ′ (x̄)

uε dx.

(5.43)

We then define ũε ∈ BV (R3; {0, 1}) by ũε = uεχBt(x̄). Recalling again Corollary 3.4, we
obtain ∫

R3

|∇ũε| dx =

∫
Bt(x̄)

|∇uε| dx+

∫
∂Bt(x̄)

uε(x) dH2(x)

≤
∫
Bδ(x̄)

|∇uε| dx+ Cλδ2ε2/3, (5.44)

for some universal C > 0, provided that ε is sufficiently small. We note that ũε(x) ≤ uε(x)
for every x ∈ R3. Furthermore, for sufficiently small δ we have Hρ ≥ 0 and

Hρ(x− y) ≥ (1− cρ)Γ(x− y) for all |x− y| ≤ 1
2ρ, (5.45)

for some universal c > 0 (where Γ is the Newtonian potential in R3, as above). From (5.42),
(5.44) and (5.45) we then get

νε(Bδ(x̄)) ≥ ε−1/3

∫
R3

|∇ũε| dx+
1− cρ

2
ε−4/3

∫
R3

∫
Bρ/2(x)

Γ(x− y)ũε(x)ũε(y) dy dx− Cλρ2,

(5.46)

for ε small enough. Letting now ûε(x) := ũε(ε
1/3x) be the rescaled function which satisfies∫

R3

ûε dx =
1

ε

∫
R3

ũε dx = λ|Bt(x̄)|ε−1/3 + o(ε−1/3), (5.47)
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for every fixed ρ0 > 0 and ε sufficiently small, we get

νε(Bδ(x̄))

≥ (1− cρ)ε1/3

(∫
R3

|∇ûε| dx+
1

2

∫
R3

∫
Bρ0 (x)

Γ(x− y)ûε(x)ûε(y) dy dx

)
− Cλρ2

≥ (1− 2cρ)λ|Bt(x̄)|∫
R3 ûε dx

(∫
R3

|∇ûε| dx+
1

2

∫
R3

∫
R3

Γρ0(x− y)ûε(x)ûε(y) dy dx

)
− Cλρ2,

(5.48)

where Γρ0 is defined via (5.21). Recalling Corollary 4.6 and choosing ρ0 ≥ R1, we obtain

lim inf
ε→0

νε(Bδ(x̄)) ≥ (1− 2cρ)λf∗|Bt(x̄)| − Cλρ2, (5.49)

which gives (5.40) by first letting ρ→ 0 and then δ′ → δ.
We now prove a matching upper bound. Notice that by the definition we have vε(x) ≥

C := −λ|miny∈TG(y)| for every x ∈ T. Therefore, the negative part ν−ε of νε obeys
ν−ε (U) = −1

2

∫
U∩{vε<0} vεdµε ≤

1
2 |C|µε(U) for every open set U ⊂ T. In turn, since

νε(T) = λf∗ + oε(1) by (3.8), it follows that the positive part ν+
ε of ν obeys ν+

ε (U) =∫
U∩{vε≥0}

(
ε−1/3|∇uε| dx+ 1

2vε dµε
)
≤ λf∗ + 1

2 |C|λ + oε(1). Hence |νε| = ν+
ε + ν−ε is

uniformly bounded as ε → 0, and up to a subsequence νε ⇀ ν for some ν ∈ M(T) with
ν(T) = λf∗. Since from the lower bound (5.40) we have ν(U) ≥ λf∗|U |, it then follows
that dν = λf∗dx. Finally, in view of the uniqueness of the limit measure, the result holds
for the original sequence of ε→ 0.

6 Uniform estimates for minimizers of the rescaled energy

In this section, we establish uniform estimates for the minimizers of the rescaled problem
associated with Ẽ` over Ã` from (2.23) and (2.24), respectively. The main result is a uniform
bound on the modulus of the potential, independently of the domain size `.

Throughout this section, F ⊂ T` with |F | = λ` is always taken to be such that ũ` = χF
is a regular representative of a minimizer of Ẽ` over Ã` for a given λ > 0 (for simplicity
of notation, we suppress the explicit dependence of F on ` throughout this section). The
estimates below are obtained for families of minimizers (ũ`n) as `n → ∞ and hold for all
`n ≥ `0, where `0 > 0 may depend on λ and the choice of the family. For simplicity of
notation, we indicate this by saying that an estimate holds for `� 1.

Following [61,64] we recall the notion of (Λ, r0)-minimizer of the perimeter (for a different
approach that leads to the same regularity results, see [65]).
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Definition 6.1. Given Λ, r0 > 0 we say that a set F ⊂ T` is a volume-constrained (Λ, r0)-
minimizer if

P (F ) ≤ P (F ′) + Λ|F∆F ′| ∀F ′ ⊂ T`, s.t. (F∆F ′) ⊂ Br0 and |F ′| = |F | , (6.1)

where P (F ) denotes the perimeter of the set F , and Br denotes a generic ball of radius r
contained in T`.

The following result is a consequence of the regularity theory for minimal surfaces with
volume constraint (see for instance [64, Chapters III–IV], [61, Section 4]).

Proposition 6.2. Let F ⊂ T` be a volume-constrained (Λ, r0)-minimizer, with
|F | ∈

(
r3

0, `
3 − r3

0

)
. Then ∂F is of class C1,1/2, and there exist universal constants δ > 0

and c > 0 such that for all x0 ∈ F we have

|F0 ∩Br(x0)| ≥ cr3 for all r ≤ min

(
r0,

δ

Λ

)
, (6.2)

where F0 is the connected component of F such that x0 ∈ F 0.

Let Γ(x) := 1
4π|x| , x ∈ R3, be the Newtonian potential in R3 and let Γ#

` (x) := 1
4π|x| , x ∈

T`, be the restriction of Γ(x) to T`. Letting

G̃`(x) :=
1

`
G
(x
`

)
, x ∈ T`, (6.3)

by (5.15) we have for all ` ≥ 1:

G̃`(x) = Γ#
` (x) +R`(x) for all x ∈ T`, (6.4)

with R` ∈ Lip(T`) satisfying

|R`(x)| ≤ C

`
and |∇R`(x)| ≤ C

`2
for all x ∈ T` , (6.5)

with a universal C > 0.
Let now

vF (x) :=

∫
F
G̃`(x− y) dy, x ∈ T`, (6.6)

be the potential associated with F . Notice that vF satisfies

−∆vF = χF −
λ

`2
and

∫
T`
vF dx = 0. (6.7)

In particular, by standard elliptic regularity vF ∈ C1,α(T`) for any α ∈ (0, 1) [62], and vF
is subharmonic outside F , so that the maximum of vF is attained in F . Moreover, we have
the following a priori bounds for vF throughout the rest of this section, vF always refers to
the potential associated with the minimizer F ).
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Lemma 6.3. There exists a universal constant C > 0 such that

−C ≤ vF ≤ C(λ`)2/3, (6.8)

for all `� 1.

Proof. First of all, observe that vF (x) = vε(ε
1/3x) for ε = `−3, where vε is defined in (2.7),

in which µε is given by (2.4) with uε(x) = χF (ε−1/3x). Furthermore, by a rescaling we
have that uε is a minimizer of Eε over Aε. Therefore, to establish a lower bound for vF , it
is sufficient to do so for vε.

Let Gρ and Hρ be as in (5.8) (with the choice of η fixed once and for all), and note that
there exists a universal ρ0 > 0 such that Hρ ≥ 0 for all ρ ∈ (0, ρ0) and, hence,

vε(x) ≥
∫
T
Gρ(x− y) dµε(y). (6.9)

At the same time, by Corollary 3.4 and the boundedness of |∇Gρ| we have∫
T
Gρ(x− y) dµε(y)→ λ

∫
T
Gρ(y) dy uniformly in x ∈ T, (6.10)

as ε → 0. Notice that from the definition of G we have 0 =
∫
TG(x) dx =

∫
TGρ(x) dx +∫

THρ(x) dx. Therefore, by (5.15) we get

−Cρ2 ≤
∫
T
Gρ(x) dx ≤ 0, (6.11)

for some universal C > 0 and all ρ ∈ (0, ρ0). Choosing ρ = min{ρ0, λ
−1/2}, we then obtain

vε ≥ −2C for all ε > 0 sufficiently small.
On the other hand, by (6.5) there exists a universal constant C > 0 such that

vF (x) ≤ C
∫
F

dy

|x− y|
≤ C

(∫
BR(x)

dy

|x− y|
+
|F\BR(x)|

R

)
≤ C(2πR2 +R−1|F |), (6.12)

for any ` ≥ 1 and R > 0. The claim then follows by choosing R = |F |1/3 = (λ`)1/3.

Remark 6.4. Let λ0 > 0 and let λ ∈ (0, λ0). Since vF ≥ λminx∈TG(x), it is also possible
to obtain a lower bound on vF which depends only on λ0, and not on the family of the
minimizers, provided that ` ≥ `0 for some `0 > 0 depending only on λ. In this case all the
estimates of this section still hold, but with constants that depend on λ0.

We next obtain a pointwise estimate of the gradient of vF in terms of vF itself.
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Lemma 6.5. There exists a universal constant C > 0 such that for every `� 1 we have

|∇vF (x)| ≤ 3

2
(vF (x) + C) , (6.13)

for any x ∈ T`.

Proof. Without loss of generality we may assume that x = 0. Arguing as in the proof of
Lemma 6.3 and with the same notation, we can write

|∇vF (0)| ≤
∫
F
|∇G̃`(y)| dy = `

∫
T
|∇G(y)|χF (y`) dy = ε1/3

∫
T
|∇G(y)| dµε(y)

≤ ε1/3

∫
T
|∇Gρ(y)| dµε(y) + ε1/3

∫
T
|∇Hρ(y)| dµε(y), (6.14)

where we recalled that ε = `−3. Using (5.15), we have

|∇Hρ(y)| ≤ (1 + cρ)|y|−1Hρ(y) + C|y|−1ρ−1χBρ\Bρ/2(y), (6.15)

for some universal c, C > 0 and all ρ ∈ (0, ρ0). Substituting this into (6.14) and recalling
(2.4) and (5.34), we obtain

|∇vF (0)|
1 + cρ

≤
∫
T\B

ε1/3
(0)
Hρ(y) dµε(y) + ε−1/3

∫
B
ε1/3

(0)
|y|−1Hρ(y)uε(y) dy

+ Cε1/3ρ−1

∫
Bρ(0)\Bρ/2(0)

|y|−1 dµε(y) + ε1/3

∫
T
|∇Gρ(y)| dµε(y) (6.16)

≤
∫
T
Hρ(y) dµε(y) + C ′(1 + ε1/3ρ−2λ) + ε1/3

∫
T
|∇Gρ(y)| dµε(y),

for some universal C,C ′ > 0. Since by Corollary 3.4 and the smoothness of Gρ we have∫
T |∇Gρ(x − y)| dµε(y) → λ

∫
T |∇Gρ(y)| dy uniformly in x ∈ T as ε → 0, it is possible to

choose ε0 > 0 sufficiently small independently of x such that the last two terms in the
right-hand side of (6.16) are bounded by a universal constant for all ε < ε0. Thus, for every
ρ ≤ 1/(2c) and ε < ε0, with ε0 depending on ρ, we have

2

3
|∇vF (0)| ≤ vF (0) + C −

∫
T
Gρ(y) dµε(y), (6.17)

where we also took into account that vF (0) =
∫
TGρ(y) dµε(y) +

∫
THρ(y) dµε(y). Finally,

using (6.10) and (6.11), we obtain

|∇vF (0)| ≤ 3

2
vF (0) + C(1 + λρ2), (6.18)

for some universal C > 0 and all ε < ε0, possibly decreasing the value of ε0. The proof is
concluded by choosing ρ ≤ λ−1/2.
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Corollary 6.6. Let `� 1 and let x̄ ∈ F be a global maximum of vF . Then

vF (y) ≥ 3

4
vF (x̄)− 1

4
C for all y ∈ B1/6(x̄) , (6.19)

where C is as in (6.13). Furthermore, if
∫
Br(x0) vF (x) dx ≤ C ′|Br| for some x0 ∈ T`, r ≤ 1

6

and C ′ > 0, then

vF (y) ≤ C + 2C ′ for all y ∈ Br(x0) , (6.20)

Proof. Since vF ∈ C1(T`), for any y ∈ B1/6(x̄) there exists θ ∈ (0, 1) such that with the
help of (6.13) we have

vF (x̄)− vF (y) = ∇vF (θx̄+ (1− θ)y) · (x̄− y)

≤ 1

6
|∇vF (θx̄+ (1− θ)y)|

≤ 1

4
vF (θx̄+ (1− θ)y) +

1

4
C

≤ 1

4
vF (x̄) +

1

4
C . (6.21)

Similarly, letting ȳ be a global maximum of vF in Br(x0) and letting x1 ∈ Br(x0) be
such that vF (x1) = |Br|−1

∫
Br(x0) vF (x) dx, we may write

vF (ȳ) ≤ vF (ȳ)− vF (x1) + C ′

≤ |∇vF (θx1 + (1− θ)ȳ)| |ȳ − x1|+ C ′

≤ 1

2
vF (θx̄1 + (1− θ)ȳ) +

1

2
C + C ′

≤ 1

2
vF (ȳ) +

1

2
C + C ′ , (6.22)

which completes the proof.

The next lemma provides a basic estimate for the variation of the Coulombic energy
under uniformly bounded perturbations.

Lemma 6.7. There exists a universal constant C > 0 such that for any ` ≥ 1 and for any
F ′ ⊂ T`, with F∆F ′ ⊂ Br(x0) for some x0 ∈ T` and r > 0, there holds∣∣∣∣∫

F
vF dx−

∫
F ′
vF ′ dx

∣∣∣∣ ≤ (2‖vF ‖L∞(T`) + Cr2
)
|F∆F ′| . (6.23)
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Proof. By direct computation, we have∣∣∣∣∫
F
vF dx−

∫
F ′
vF ′ dx

∣∣∣∣ =

∣∣∣∣∫
T`

∫
T`

(
χF (x)G̃`(x− y)χF (y)− χF ′(x)G̃`(x− y)χF ′(y)

)
dx dy

∣∣∣∣
=

∣∣∣∣∫
T`

∫
T`

(χF (x) + χF ′(x))G̃`(x− y)(χF (y)− χF ′(y)) dx dy

∣∣∣∣
≤ 2

∣∣∣∣∫
T`

∫
T`
χF (x)G̃`(x− y)(χF (y)− χF ′(y)) dx dy

∣∣∣∣
+

∣∣∣∣∫
T`

∫
T`

(χF (x)− χF ′(x))G̃`(x− y)(χF (y)− χF ′(y)) dx dy

∣∣∣∣
≤ 2

∣∣∣∣∫
T`
vF (y)(χF (y)− χF ′(y)) dy

∣∣∣∣+ 2

∣∣∣∣∣
∫
T`

∫
Br(y)

G̃`(x− y)(χF (y)− χF ′(y)) dx dy

∣∣∣∣∣
≤
(
2‖vF ‖L∞(T`) + Cr2

)
|F∆F ′|, (6.24)

for some universal C > 0, where we used (6.4) and (6.5) in the last line.

Lemma 6.7 implies that minimizers of Ẽ` are volume constrained (Λ, r0)-minimizers of
the perimeter for r0 = 1 and Λ = ‖vF ‖L∞(T`) + C, with C > 0 universal. In particular, by
Lemma 6.3 we get Λ ≤ C(λ`)2/3, provided that `� 1. Therefore, from Proposition 6.2 we
obtain the following result.

Proposition 6.8. There exist universal constants c > 0 and δ > 0 such that for all `� 1
and all x0 ∈ F there holds

|F0 ∩Br(x0)| ≥ cr3 for all r ≤ δ

(λ`)2/3
, (6.25)

where F0 is the connected component of F such that x0 ∈ F 0.

We now show that the potential vF is bounded in L∞(T`) by a universal constant as
`→∞.

Theorem 6.9 (L∞-estimate on the potential). There exists a universal constant C > 0
and a constant `0 > 0 such that for all ` ≥ `0 we have

‖vF ‖L∞(T`) ≤ C. (6.26)

Proof. Observe first that by (6.8) we have vF ≥ −C, for some universal constant C > 0
and `� 1. Therefore, letting V := max

x∈T`
vF (x), the thesis is equivalent to showing that

V ≤ C, (6.27)
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for some universal C > 0 and large enough `.
We first prove (6.27) with the constant depending only on λ. Partition T` into N

cubes of sidelength L = `N−1/3, with N1/3 chosen to be the smallest integer such that
L ≤ min

(
1
6c

1/3λ−1δ, 1
3

)
, where c and δ are as in (6.25). Note that with our choice of L

we have N ≥ 216λ3`3/(cδ3). If ` is sufficiently large (depending on λ), we also have that
δ(λ`)−2/3 ≤ 1

2L ≤
1
12c

1/3λ−1δ. In particular, any ball of radius δ(λ`)−2/3 can be inscribed
into a union of 27 adjacent cubes of the partition and stay at least distance δ(λ`)−2/3 from
the boundary of that union. Hence, by (6.25) and a counting argument we get that at
least 7

8N cubes do not intersect F , so that we can find disjoint balls B1, . . . , BM of radius
1
2L ≤

1
6 not intersecting F , with M ≥ 7

8N .
Recalling that

∫
T` vF dx = 0 and that vF is bounded below by −C, for `� 1 we get

0 =

∫
T`
vF dx ≥

M∑
i=1

∫
Bi

vF dx− C`3. (6.28)

It follows that there exists an index i such that, for some universal C ′ > 0, we have∫
Bi

vF dx ≤ CM−1`3 ≤ C ′|Bi| . (6.29)

We then apply the second part of Corollary 6.6 with x0 = xi, where xi is the center of Bi,
to obtain

|vF (x)| ≤ C for all x ∈ Bi, (6.30)

for some universal C > 0.
Let now x̄ ∈ F be a global maximum of vF , so that vF (x̄) = V , and assume that

H2(F ∩ ∂Br(x̄)) ≥ 1

9
V |F ∩Br(x̄)| for any r ∈ (0, L/2) . (6.31)

Letting m(r) := |F ∩ Br(x̄)|, so that dm(r)
dr = H2(F ∩ ∂Br(x̄)) for a.e. r, (6.31) can be

written as

dm(r)

dr
≥ 1

9
V m(r) for a.e. r ∈ (0, L/2) . (6.32)

Integrating (6.32) over (r0, L/2), we get (for a similar argument, see the proof of [37,
Theorem 3.3])

m(r0) ≤ m(L/2) eV (r0−L/2)/9 . (6.33)

Notice now that, as in Proposition 6.8, from Lemma 6.7 it follows that

m(r) ≥ cr3 for all r ≤ min

(
1,
δ

V

)
. (6.34)
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In particular, if r0 = δ/V ≤ L/4, we have

cδ3

V 3
≤ m(r0) ≤ CL3e−LV/36 , (6.35)

for some universal constant C > 0, which implies (6.27) with the constant depending only
on λ.

On the other hand, if (6.31) does not hold, there exists r ∈ (0, L/2) such that

H2(F ∩ ∂Br(x̄)) <
1

9
V |F ∩Br(x̄)| . (6.36)

We claim that, as in the proof of Lemma 4.2, if (6.27) does not hold, it is convenient to
move the set F ∩Br(x̄) inside the ball Bi. Indeed, we define Fi := (xi − x̄) + (F ∩Br(x̄))
and û = ũ` − χF∩Br(x̄) + χFi . Note that by construction F ∩ Bi = ∅, so û is admissible.
By minimality of ũ` and using (6.5), (6.30) and (6.36), we get

Ẽ`(ũ`) ≤ Ẽ`(û)

= Ẽ`(ũ`) + 2H2(F ∩ ∂Br(x̄)) +

∫
Fi

vF dx−
∫
F∩Br(x̄)

vF dx

−
∫
Fi

∫
F∩Br(x̄)

G̃`(x− y) dx dy +

∫
F∩Br(x̄)

∫
F∩Br(x̄)

G̃`(x− y) dx dy

< Ẽ`(ũ`) +

(
2

9
V + C

)
|F ∩Br(x̄)| −

∫
F∩Br(x̄)

vF dx , (6.37)

for some universal C > 0, provided that `� 1. Notice now that Corollary 6.6 implies that

vF (x) ≥ 3

4
V − C for any x ∈ Br(x̄), (6.38)

for a universal C > 0. Hence

0 <

(
C − 1

2
V

)
|F ∩Br(x̄)|, (6.39)

for some universal C > 0 and `� 1, which leads to a contradiction if V is too large.

Lastly, to establish (6.27) with C universal, we note that using (6.27) with the constant
depending on λ one gets that the density estimate in (6.25) holds for all r ≤ r0 with some
r0 > 0 depending only on λ, for ` � 1. We can then repeat the covering argument at the
beginning of the proof with L > 0 universal, provided that `� 1, and obtain the conclusion
by repeating the above argument.

From Theorem 6.9 and the arguments leading to Proposition 6.8, we obtain an improved
density estimate for minimizers of Ẽ`.
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Corollary 6.10. There exist a universal constant c > 0 and a constant `0 > 0 such that
for all x0 ∈ F and all ` ≥ `0 we have

|F0 ∩Br(x0)| ≥ cr3 for all r ≤ 1, (6.40)

where F0 is the connected component of F such that x0 ∈ F 0.

Finally, we establish a uniform diameter bound for the connected components of the
minimizers in Theorem 6.9.

Lemma 6.11 (Diameter bound). Let F0 be a connected component of F . Then there exists
a universal constant C > 0 such that

diamF0 ≤ C, (6.41)

for all `� 1.

Proof. Assume that diamF0 ≥ 2. Arguing as in the proof of Lemma 6.5 and using its
notations, for any x ∈ T` and a universally small ρ0 > 0 we have

vF (x) ≥
∫
F∩B

ε−1/3ρ/2
(x)

dy

8π|x− y|
+

∫
T
Gρ(ε

1/3x− y) dµε(y), (6.42)

for all ρ ∈ (0, ρ0). Observe that by (6.10) and (6.11) the last term in the right-hand side of
(6.42) can be bounded below by −2Cλρ2, for `� 1 and C > 0 universal. Taking ρ ≤ λ−1/2

and using (6.26), we then get ∫
F∩BR(x)

dy

|x− y|
≤ C, (6.43)

with a universal C > 0, for any R ≥ 1 and x ∈ T`, provided that `� 1 independently of x.
Recalling (6.40) and arguing as in Lemma 4.2, for all ` � 1 there exists x0 ∈ F 0 such

that

C ≥
∫
F0∩BR(x0)

dy

|x0 − y|
≥ cmin{log (diamF0) , logR} , (6.44)

for some universal c, C > 0. The claim then follows by choosing a universal R that is
sufficiently large.

7 Proof of Theorem 3.6

For λ > 0, let (uε) ∈ Aε be a family of the regular representatives of minimizers of Eε, and
let Nε and uε,k ∈ BV (R3; {0, 1}) be as in the statement of the theorem. Without loss of
generality we may set xε,k = 0 in the statements below. We need to show that there exists
ε0 > 0 such that for all ε ≤ ε0:
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i) There exist universal constants C, c > 0 such that

‖vε‖L∞(T`) ≤ C,
∫
R3

uε,k(x) dx ≥ cε. (7.1)

ii) There exist universal constants C, c > 0 such that

supp(uε,k) ⊆ BCε1/3(0), cλε−1/3 ≤ Nε ≤ Cλε−1/3. (7.2)

iii) There exists a collection of indices Iε such that (#Iε)/Nε → 1 as ε → 0 and, upon
extraction of a subsequence, for every sequence εn → 0 and every kn ∈ Iεn there holds
ũn → ũ in L1(R3), where ũn(x) := uεn,kn(ε

1/3
n x), and ũ is a minimizer of Ẽ∞ over

Ã∞(m∗) for some m∗ ∈ I∗.

The estimate for the potential in (i) follows from Theorem 6.9, setting ũ`ε = uε(·/`ε) ∈ Ã`ε
with `ε = ε−1/3 and noting that with ũ`ε = χF we have vF = vε(·/`ε). Similarly, the volume
estimate in (i) follows from Corollary 6.10. The inclusion in (ii) follows from Lemma 6.11 by
a rescaling. The estimate for Nε in (ii) follows from (i) and the fact that

∫
T uε dx = λε2/3.

We turn to the proof of statement (iii). Given δ > 0, let Nε,δ ≥ 0 be the number of the
components uε,k such that for ũε,k(x) := uε,k(ε

1/3x), we have

Ẽ∞(ũε,k) ≥ (f∗ + δ)

∫
R3

ũε,k dx. (7.3)

By (3.8), (3.12) and the arguments in the proof of Proposition 5.1 we have, as ε→ 0,

λf∗ = ε−4/3Eε(uε) + oε(1) ≥ ε1/3
Nε∑
k=1

Ẽ∞(ũε,k) + oε(1)

≥ ε1/3
(

(f∗ + δ)

Nε,δ∑
k=1

∫
R3

ũε,k dx+ f∗
Nε∑

k=Nε,δ+1

∫
R3

ũε,k dx
)

+ oε(1)

≥ λf∗ + c δNε,δ ε
1/3 + oε(1), (7.4)

where we suitably ordered all ũε,k and included a possibility that the range of summation
is empty in either of the two sums. Hence, Nε,δ = o(ε−1/3), and by (ii) it follows that
Nε,δ = o(Nε) for all δ > 0. This implies that for every δ > 0 there is εδ > 0 and a
collection of indices Iεδ satisfying (#Iεδ)/Nεδ → 1 such that Ẽ∞(ũεδ,k)/

∫
R3 ũεδ,k dx → f∗

uniformly in k ∈ Iεδ as δ → 0. By (ii), for every sequence of δn → 0 and every choice
of kn ∈ Iεδn the sequence ũn := ũεδn ,kn is supported in BR(0) for some R > 0 universal
and equibounded in BV (R3). Hence, upon extraction of a subsequence we have ũn → ũ
in L1(R3) with m :=

∫
R3 ũ dx > 0. At the same time, by lower semicontinuity of Ẽ∞ we
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also have Ẽ∞(ũ)/m ≤ f∗. Then, by Theorem 4.15 the latter is, in fact, an equality, and
so un(x) := ũ(λnx) with λn := (m−1

∫
R3 ũε,k dx)1/3 → 1, is a minimizing sequence for Ẽ∞

over Ã∞(m) (cf. (4.17)). Thus, ũ is a minimizer of Ẽ∞ over Ã∞(m). Again, by Theorem
4.15 we then have m ∈ I∗.
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A Appendix

We recall that by the Riesz-Fischer theorem, the space of signed Radon measuresM(T) is
embedded in the space of distributions via the identification

〈ϕ, µ〉 :=

∫
T
ϕdµ ∀ϕ ∈ C∞(T). (A.1)

On the other hand, any measure µ ∈ M+(T) ∩ H′ (recall the definition in (2.12)) can be
extended by continuity to an element of the dual space H′, which we still denote by µ, such
that ∫

T
ϕdµ = H〈ϕ, µ〉H′ ∀ϕ ∈ H ∩ C0(T). (A.2)

Lemma A.1. Let µ ∈M+(T)∩H′ and u ∈ H. Then, up to taking the precise representa-
tive, u belongs to L1(T, dµ) and

H〈u, µ〉H′ =

∫
T
u dµ. (A.3)

Proof. The result follows as in [66, Theorem 1]. For the reader’s convenience we include a
simple alternative proof here. Since u ∈ H, by [67, Section 4.8: Theorem 1] we can identify
u with its precise representative and find a sequence uk ∈ H ∩ C0(T) such that uk → u in
H, and

uk(x)→ u(x) for all x 6∈ N , (A.4)
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where N ⊂ T is a set of zero inner capacity, that is, for any compact set K ⊂ N there
exists a sequence ϕn ∈ H ∩ C0(T) such that ϕn → 0 in H and ϕn = 1 on K. Since µ ∈ H′
we have µ(K) = 0 for all compact K ⊂ N , so that

µ(N) = sup
K⊂N

µ(K) = 0 . (A.5)

Since the functions uk are continuous for all k ∈ N, we have

H〈uk, µ〉H′ =

∫
T
ukdµ, (A.6)

Therefore, by (A.2) we get

H〈|uk − uk′ | − αk,k′ , µ〉H′ =

∫
T
|uk − uk′ |dµ− αk,k′ µ(T), (A.7)

for all k′ ∈ N, where

αk,k′ :=

∫
T
|uk − uk′ | dx . (A.8)

It then follows

‖uk − uk′‖L1(T,dµ) ≤ ‖|uk − uk′ | − αk,k′‖H‖µ‖H′ + µ(T)‖uk − uk′‖L1(T)

= ‖∇(uk − uk′)‖L2(T)‖µ‖H′ + µ(T)‖uk − uk′‖L1(T). (A.9)

Since uk is a Cauchy sequence in H, hence also in L1(T), from (A.9) it follows that uk is
a Cauchy sequence in L1(T, dµ) and, therefore, converges to some ũ ∈ L1(T, dµ). In fact,
passing to a subsequence and using (A.4) and (A.5), we have ũ(x) = u(x) for µ-a.e. x ∈ T.
Therefore, from (A.6) we get

H〈u, µ〉H′ = lim
k→∞

H〈uk, µ〉H′ = lim
k→∞

∫
T
uk dµ =

∫
T
u dµ, (A.10)

which concludes the proof.

The following lemma characterizes the measures in terms of the Coulombic potential,
see [38, Lemma 3.2] for a related result.

Lemma A.2. Let µ ∈M+(T)∩H′, and let G : T→ (−∞,+∞] be the unique distributional
solution of (2.6) with G(0) = +∞. Then the function

v(x) :=

∫
T
G(x− y) dµ(y) x ∈ T (A.11)
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belongs to H and solves

−
∫
T
v∆ϕdx =

∫
T
ϕdµ ∀ϕ ∈ C∞(T) ∩H. (A.12)

Moreover v ∈ L1(T, dµ) and∫
T

∫
T
G(x− y) dµ(x) dµ(y) =

∫
T
v dµ =

∫
T
|∇v|2 dx . (A.13)

Proof. By the definition of G and the fact that G ∈ L1(T), the function v belongs to L1(T),
solves (A.12) and has zero average on T. On the other hand, by (2.12) one can define a
functional Tµ ∈ H′ such that Tµ(ϕ) =

∫
T ϕdµ for every ϕ ∈ C∞(T) ∩ H. Therefore, by

Riesz Representation Theorem there exists ṽ ∈ H such that

−
∫
T
v∆ϕdx = 〈ϕ, ṽ〉H = −

∫
T
ṽ∆ϕdx ∀ϕ ∈ C∞(T) ∩H. (A.14)

Thus, since ∆ is a one-to-one map from C∞(T)∩H to itself, we conclude that v = ṽ almost
everywhere with respect to the Lebesgue measure on T and, hence, v ∈ H.

Let now ρ ∈ C∞(T) be a radial symmetric-decreasing mollifier supported on B1/8(0),
let ρn(x) := n3ρ(nx), so that ρn → δ0 in D′(T), and let fn ∈ C∞(T) be defined as

fn(x) :=

∫
T
ρn(x− y) dµ(y) x ∈ T. (A.15)

Then, if the measures µn ∈ M+(T) ∩ H′ are such that dµn = fn dx, we have Tµn → Tµ
in H′ and µn ⇀ µ in M(T). Letting also vn(x) :=

∫
TG(x − y) dµn(y), we observe that

vn → v ∈ H, and µn ⊗ µn ⇀ µ⊗ µ inM(T× T). For all M > 0, we then get∫
T

∫
T
GM (x− y) dµ(x) dµ(y) = lim

n→∞

∫
T

∫
T
GM (x− y) dµn(x) dµn(y) , (A.16)

where we set GM (x) := min(G(x),M) ∈ C(T). By Monotone Convergence Theorem we
also have∫

T

∫
T
G(x− y) dµ(x) dµ(y) = lim

M→∞

∫
T

∫
T
GM (x− y) dµ(x) dµ(y) . (A.17)

Recalling (A.16), it then follows∫
T

∫
T
G(x− y) dµ(x) dµ(y) = lim

M→∞
lim
n→∞

∫
T

∫
T
GM (x− y) dµn(x) dµn(y)

≤ lim
n→∞

∫
T

∫
T
G(x− y) dµn(x) dµn(y)

= lim
n→∞

∫
T
vn dµn = lim

n→∞
‖vn‖2H = ‖v‖2H . (A.18)
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Together with the fact that G is bounded from below, by Fubini-Tonelli theorem this implies
that v ∈ L1(T, dµ), with ‖v‖L1(T,dµ) ≤ ‖v‖2H.

It remains to prove (A.13). We reason as in [68, Theorem 1.11] and pass to the limit,
as n→∞, in the equality ∫

T
vn dµn =

∫
T
|∇vn|2 dx , (A.19)

which holds for all n ∈ N. Notice that the right-hand side of (A.19) converges since vn → v
in H, so that

lim
n→∞

∫
T
|∇vn|2 dx =

∫
T
|∇v|2 dx . (A.20)

In order to pass to the limit in the left-hand side of (A.19), we write∫
T
vn dµn =

∫
T

∫
T
G(x− y) dµn(x)dµn(y) =

∫
T

∫
T
Gn(x− y) dµ(x)dµ(y) , (A.21)

where we set

Gn(x) :=

∫
T
G(x− y)ρ̃n(y) dy, (A.22)

ρ̃n(x) :=

∫
T
ρn(x− y)ρn(y) dy . (A.23)

We claim that there exists C > 0 such that

|Gn(x)| ≤ C (1 + |G(x)|) (A.24)

for all x ∈ T. Indeed, we can write G = Γ# +R as in (5.15). Letting

Γ#
n (x) :=

∫
T

Γ#(x− y)ρ̃n(y) dy and Rn(x) :=

∫
T
R(x− y)ρ̃n(y) dy , (A.25)

we have that Rn → R uniformly as n → ∞. Moreover, since Γ#, Γ#
n and ρ̃n are periodic

when viewed as functions on R3, rewriting the integrals as integrals over subsets of R3 and
applying Newton’s Theorem we get

Γ#
n (x)

Γ#(x)
= 4π|x|

∫
B1/4(0)

Γ#(x− y)ρ̃n(y) dy = |x|
∫
B1/4(0)

ρ̃n(y)

|x− y|
dy =

∫
B|x|(0)

ρ̃n(y) dy

+|x|
∫
B1/4(0)\B|x|(0)

ρ̃n(y)

|y|
dy ≤

∫
B1/4(0)

ρ̃n(y) dy = 1 for all |x| < 1

4
.

(A.26)
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Since also

Γ#
n (x)

Γ#(x)
= 4π|x|

∫
B1/8(0)

Γ#(x− y)ρ̃n(y) dy ≤ C for all
1

4
≤ |x| ≤

√
3

2
, (A.27)

this proves (A.24).
From the fact that Gn(x)→ G(x) for all x ∈ T, by (A.24) and the Dominated Conver-

gence Theorem we get

lim
n→∞

∫
T
vn dµn = lim

n→∞

∫
T

∫
T
Gn(x− y) dµ(x)dµ(y)

=

∫
T

∫
T
G(x− y) dµ(x)dµ(y) =

∫
T
v dµ. (A.28)

From (A.19), (A.20) and (A.28) we obtain (A.13).

Lemma A.3. Let G be as in Lemma A.2 and let µ ∈ M+(T) satisfy (2.13). Then µ ∈
M+(T) ∩H′.

Proof. Let ϕ ∈ C0(T) ∩ H. Using the same notation and arguments as in the proof of
Lemma A.2, with the help of Cauchy-Schwarz inequality we obtain∫

T
ϕdµ = lim

n→∞

∫
T
ϕdµn = lim

n→∞

∫
T
∇ϕ · ∇vn dx

≤ ‖ϕ‖H lim
n→∞

(∫
T

∫
T
G(x− y) dµn(x) dµn(y)

) 1
2

= ‖ϕ‖H lim
n→∞

(∫
T

∫
T
Gn(x− y) dµ(x) dµ(y)

) 1
2

= ‖ϕ‖H
(∫

T

∫
T
G(x− y) dµ(x) dµ(y)

) 1
2

, (A.29)

which yields the inequality in (2.12).
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