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Abstract: Recent studies on human-machine and human-robot affective interaction, highlighting the1

importance of physical experience in empathic exchanges, led to the development of touch sensors2

for robotics and interactive objects. Most of these sensors are implemented as matrix of pressure3

sensors. Often of rigid nature they are not suited for all shapes, especially when the device can be4

subject to deformation. Furthermore, they can usually only capture the pressure without sensing the5

interaction context which is extremely useful in interaction scenarios. This paper presents a tactile6

flux sensor able to capture the entire context of the interaction including gestures and patterns.7

The soft nature of the sensor makes it adaptable to complex and deformable bodies. It is made of8

successive layers of sensitive and insulating silicone: the sensing layer is obtained by doping the9

silicone with carbon particles giving it intrinsic piezo-resistive properties. The main features from10

electrical signals are extracted with the Principal Component Analysis, and a self organising neural11

network is in charge of the classification and spatial identification of the events, to acknowledge12

and measure the gesture. The results open to interesting application from toy manufacturing, to13

human-robot interaction, and even to sport and biomedical equipment and applications.14

Keywords: tactile interaction; affective robotics; touch sensor; flexible silicone sensor; principal15

component analysis and neural network; electrical characterisation16

PACS: J010117

1. Introduction18

Affective objects represent an emerging field of human-robot interaction and robotics research19

focusing on the development of “social intelligence” for machines aimed establishing lifelike20

empathic relationships with their partners. The term “social intelligence” implies the ability to21

interact with other people, to interpret and convey emotional signals and to perceive and react22

to people’s intentions with socially and affectively aligned actions [1,2]. Physical shape and23

embodiment, acting as major affordance [3,4], strongly influence people’s expectations inducing the24

need of a physical contact with affective objects [5,6]. Touch and contact experience are amongst the25

most important affective communication channels used by human beings for empathic exchanges.26

As human beings we are able to discriminate various touch typologies that strongly correlate with27

emotions as: anger, fear, disgust, love, gratitude, happiness, sadness and sympathy [7]. Empathic28

touch is more than a simple analysis of contact point size, position and pressure. Empathic touch29

requires the recognition of the contact “affective type”. Caress or pet are affectively very far from30
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pointing touch or slept but very similar if analysed by the point of view of force and pressure applied31

to the skin. In this paper a soft and stretchable touch sensor for affective objects and social robotics32

is presented. The sensor is made of silicone allowing an easy integration with other soft material33

typically used for the fabrication of social robot and “touchable” objects. Together with the sensor, a34

dedicated signal acquisition electronic board and a signal elaboration algorithm, based on a neural35

network (NN) were developed, allowing the system to classify the affective category of the perceived36

touch.37

2. State of the Art38

Affective touch-based interactions between human and robots or interactive objects have39

recently become an active field of human-robot and human-machine interaction research. The MIT40

Media Lab team guided by Breazel developed in 2006 Huggable [8]. Huggable was an affective robot41

endowed with sensitive skin integrated in the robot fur and able to discriminate the type of contact42

and touch performed by the user interacting with it. In the Haptic Creature Project Yohanan and43

MacLean [9] designed an animal-like robot with affective haptic sensing able to perceive affective44

touch. In the last decade the evolution of human-machine interaction has radically changed an45

underlying assumption that has been in place for centuries: it was up to the humans adapting to46

know how machines operates, without particular efforts by the machines to support humans in47

this process. In this new era we are putting humans at the centre of the equation designing a new48

family of “interactive things” that are invading the affective and empathic fields often considered49

exclusive to humans [10,11]. Affective touch research has been focused on the design of systems50

able to endow robots with skins capable of classifying the typology of the perceived interactions51

[12]. On the other side, touch sensors developed for classic robotics have been designed as systems52

able to analyse several high resolution parameters of the contact points as force, pressure, size, and53

vector orientation giving to robots general haptic capabilities [13]. This tendency has been motivated54

by the recent growth of robotic grasping research aimed at giving to the last generation of robots55

manipulation capabilities inspired to the human anatomy and cognitive processing. Available tactile56

sensors usually consist of arrays or touch-sensitive areas, able to generate a contact pressure map.57

Contact forces and pressures are then used to extrapolate various information related to the physical58

and topological properties of the contact allowing the analysis of surface properties, the identification59

of mechanical interactions and of slipping events [14,15]. Many of the latest developed tactile sensors60

are based on a thin polymer film that acts as a piezo-electric or piezo-resistive detector [16]. Another61

class of haptic devices is based on magnetic transduction. These sensors exhibit the advantages of62

having high sensitivity linear behaviour and high robustness [17]. Nevertheless, the design of a63

system integrating magnetic sensing technology is very complicated and is not always compliant64

with soft robots and interactive objects. Optical tactile sensors can be also used for touch detection65

and for torque and applied force measurement. This type of sensors are useful in the detection66

of slipping detection and for the measurement of its area [18] but are difficult to be integrated in67

humanoids and social robots. In recent years a new technology for the fabrication of sensorised68

textiles has also emerged. The production of the sensors on substrates that are not only flexible,69

but also adaptable to the human body is increasingly widespread. The transduction properties can70

be obtained by exploiting the intrinsic electromechanical properties of special conductive threads71

[19]. Alternatively, the detection system is made of rubber doped with carbon black that is used72

to build sensorial patterns on wearable substrates [20–22]. Sensors developed for robotic grasping73

and manipulation have usually miniaturized sizes and high spatial resolution in order to be easily74

embeddable in robotics hands and grippers. These devices can be made of rigid materials covered75

by soft and elastic layers that partially act as soft interface between the rigid robot structure and the76

grasped objects. These devices are unfortunately not usable for the fabrication of a new generation77

of affective objects on which softness and elasticity are considered as main peculiarities. Indeed,78

socially touchable robots, in order to do not evoke misleading affordances, can’t have a rigid or79
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semi-rigid touchable interface. For this reason in this paper a novel approach for the fabrication80

of stretchable silicone-made touch sensitive surface is presented. The designed sensor is based on a81

matrix topology composed of various sensitivities areas connected to a dedicated electronic driving82

circuit that acquires and digitizes the signals. A Principal Component Analysis (PCA) is then used83

to reduce the size of the data and then Kohonen NN for the identification of the touch interaction84

nature.85

3. Sensor Design and Development86

3.1. Materials87

Some polymers and plastic compounds possess intrinsic properties of transduction88

(piezo-resistivity, piezo-electricity, photo-elasticity, magneto-elasticity, etc.), which make these89

materials particularly suitable for the fabrication of stretchable tactile sensors. The sensor proposed90

in this work is composed of sensing and insulating layers made of silicone-based materials having91

similar elastic properties that allow a high mechanical compatibility and integration. The insulating92

layers are made of Cine-skin Silicone (Burman Company, USA) having a Young modulus which can93

be modulated between 50 and 250 kPa [21], while the sensing component is made of Elastosil LR94

3162 A/B (Wacker Chemie, Italy), a silicone polymer doped with carbon particles having a Young95

modulus of 5500 kPa, according to the producer. The carbon doping confers intrinsic piezo-resistive96

properties to the silicone without altering the visco-elastic properties.97

3.2. Fabrication Process and Concepts98

The sensor is composed of 3 insulating and 2 sensible layers, for a total of five layers. The sensible99

layers are characterized by a conductive serpentine structures (Figure 1A), and they are mutually100

orthogonally oriented. Thanks to this geometry, each sensible layer will provide a coordinate (X or Y101

in a Cartesian reference frame) and the projection of the direction (on one of the axis) of the contact102

event. The deformation of the sensor instead will furnish information about the intensity of the touch.103

Coupling the signals coming from the layers we will able to infer about vector field magnitude and104

direction. The bottom substrate is an insulating layer obtained mixing Cine-Skin silicone monomer105

and catalyser in ratio 10:1 (w/w). In order to obtain a Young Modulus of almost 200 kPa the plasticizer106

is added in ratio 45% (w/w) respect the first solution [21]. Once the three components are mixed, the107

final solution is degassed under vacuum and then casted in a petri dish in order to have a thickness108

layer of 2 mm. The layer is then left at room temperature for 24h to allow its complete polymerisation.109

Once the insulating base layer is cured the first conductive serpentine is fabricated. Elastosil monomer110

is mixed with catalyser in ratio 1:1 (w/w) and diluted with 5 ml of trichloroethylene (Sigma-Aldrich,111

Italy) in order to reduce the solution viscosity allowing a uniform distribution of the polymer during112

the lithography deposition procedure. The solution is then sonicated for 4 minutes at 0.2 V obtaining113

a dense and uniform conductive ink that is finally degassed in a vacuum chamber for 30 minutes.114

The lithography procedure is performed through the application on the insulating layer of a cellulose115

acetate mask (0.1 mm in thickness, Figure 1B) on which the sensor serpentine geometry is impressed116

through laser cutting technique. Once the mask has tightly adhered to the insulation layer the117

Elastosil conductive ink is screen-printed using a metallic spatula. The serpentine has a length of118

55 mm with a total width of 14 mm. Each serpentine is composed of 4 lines of 2 mm in thickness119

insulated by a 2 mm space (Figure 1B). After 5 minute, the mask is gently removed and electric wires120

embedded on the dedicated ending parts of each serpentine. The device is than cured in oven at121

50◦C for 24h allowing the complete polymerization of the conductive layer. The second insulating122

layer, as the first one, is than laid down with a thickness of 1 mm. Once the second insulating layer123

is cured, another serpentine is built, with orthogonal orientation respect to the first one, using the124

same technique. Finally the external insulating layer is added with a thickness of 1 mm. The final125

total thickness of the device is consequently 4 mm. The chosen sandwich geometry, in addition,126
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will prevent any possible dispersion of carbon particles from the Elastosil silicon layers: the external127

surfaces (both top and bottom) are fabricated with the Cine-skin silicone, creating a biocompatible128

barrier that guarantees users’ safety. Figure 1C shows the device in its final configuration with the129

connection wires.130

Figure 1. Design principle, structure and topological organization of the sensor (A); cellulose acetate
mask used for the serpentine deposition procedure - the geometry of a single serpentine is highlighted
by the dashed rectangle (B); final embodiment of the devices, with the connection wiring (C).

3.3. Electronic driving unit131

The sensible serpentines are made of a piezo-resistive material which acts as a variable resistance.132

A dedicated electronic driving circuit was designed to drive a constant current in each serpentine133

integrating 8 trans-conductive voltage driven current generators in a single board. The voltage control134

input of each current generator is connected to a dedicated buffer amplifier in order to avoid any135

interference between the various serpentine driving circuits. The inputs of the voltage control buffers136

are then connected in parallel to an external microcontroller Digital to Analog Converter (DAC)137

pins allowing the control of the sensor gain. The voltage generated by the current flow on each138

resistive serpentine is acquired using eight buffer amplifiers, whose outputs are amplified through a139

non-inverting amplification stage. Each one of these signals is then sent to one of the 8 parallel ADC140

channels of the micro-controller. An Arduino UNO microcontroller has been used implementing a141

simple acquisition routine aimed at acquiring at 1 kHz the 8 10bit ADC channels. Acquired raw data142

are streamed through the USB serial connection to the computer on which the data analysis algorithm143

runs.144

4. Tests and Characterization145

The mechanical behaviour of the sensor was analysed by a cyclic compression test using the146

Zwick-Roell Z005 uniaxial testing machine with 100 N load cell. Test protocol consisted of three cycles147

with a deformation up to 20% with a strain rate of 10%/min. The registered stress-strain curves were148

analysed.149

4.1. Electromechanical characterization150

Electromechanical characterization tests were conducted applying a pressure stimulus and151

acquiring the sensor signal for 10 seconds in order to analyse the time dependent behaviour induced152

by deformation impressed on the sensor. Controlled pressure in the range 0-138 kPa was applied in153

various sensors positions for 0.1 seconds. The resistance of each conductive serpentine was measured154

before the stimulus application (t < 0), at the stimulus application (t = 0.1) and then for 10 seconds155

after the stimulus application (t = 10) with a sampling rate of 1 Hz using a laboratory tester (ICE156

Strumentazione, Italy). Data was acquired from all the device’s channels in parallel in order to analyse157

stimuli cross influences. Raw resistance data were elaborated extracting various derived parameters158
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such as rise time, answer time, recovery time. Due to the goal of applications in affective robotics159

scenario, in which the temperature of the environment may vary and may also give information160

about the feeling context, the influence of the environmental temperature on the resistance value was161

also investigated, performing experiments at several temperatures (10◦C, 22◦C, 27◦C, 30◦C, 35◦C and162

50◦C).163

4.2. Signal analysis and touch classification algorithm164

Signals received from the electronic unit are elaborated following the signal analysis protocol165

illustrated in Figure 2, implemented in a dedicated Matlab R© routine (The Mathworks Inc.,166

Massachusetts - US).167

Figure 2. Routine for data analysis.

The first stage is the low pass filtering routine implementing a moving-average filter with168

sampling window N=10. Each signal is then ratiometrically normalized dividing the actual reading169

by the signal initial value (V0). Thanks to this signal normalisation, the analysis is not influenced170

by the initial position and stretch of the sensor. V0 is acquired when the system is started and is171

resampled every minute; such procedure lets the device to accommodate for changes in rest state172

rejecting input due to robot/object position and environment changes. In order to have spatial173

information of interaction between user and the device, two new virtual channels, called 5th and174

9th Channels, were created, summing the 4 real channels (from top and bottom) at each sampling175

time. The 5th and 9th channels can be considered as measure of the total sensor layer detected force.176

For each of the nine channels the following signal features were extracted:177

• Maximum Value;178

• Maximum Derivative;179

• Minimum Derivative;180

• Integral over 5 second;181

• Steady Value after excitation detection;182

• Point in time related to Maximum Value.183

For the analysis of touch typology classification, in order to study the sensor capability to be184

used also in application where very thin skin and surfaces are required, signal coming from the 4 top185

serpentines only have been used as data input (plus the 5th virtual channel). Moreover, in order to186

allow the implementation of a very lightweight classification algorithm runnable also in embedded187

devices the complexity of the inputs was reduced by means of a PCA. PCA matrix was designed in188

order to keep the information necessary for the identification of the following user-device interaction189

typologies:190

• Touch on zone 1;191

• Touch on zone 2;192
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• Touch on zone 3;193

• Touch on zone 4;194

• Caress moving from zone 1 to 4;195

• Caress moving from zone 4 to 1;196

In application where dimensions and computational load are not limited, the described197

algorithm can be easily extended for the analysis of the bottom layer giving the system the possibility198

to add an orthogonal analysis dimension. A total of 150 events per type of interaction were199

recorded creating a PCA input matrix of 900 rows and 30 columns (6 signal extracted features per200

5 channels). The extracted principal components (8 components explains the 90% of variance, see201

results section) were used as input for the classification stage, implemented as a Kohonen NN. The202

NN is characterised by unsupervised training routine and classification layer of 7 × 7 neurons; the203

network weights were initialized through a Gaussian Random Function with values between 0.1 and204

0.9. The neighbour radius was initialized as max dimension of network: r=RMAX= 7. The number205

of epochs used in the training was set to 1000. During the training phase the winning neuron was206

selected comparing the outputs of all neurons and choosing the one having the weights vector more207

similar to the presented input. The neighbourhood effect is introduced by the θ(d) (eq. 1) which208

represents the set of neuron whose distance is lower than r from the winning neuron:209

θ(d) = e−
(xk−xwin)

2+(yk−ywin)
2

r(t) (1)

r is reduced at each epoch, reducing consequently the neighbourhood until it will include the
winning neuron only. Once the winning neuron is elected, its synapses and those of neighbour
neurons were updated on the basis of their distance from winning neuron using the following law
(eq. 2):

wkj(t) = wkj(t − 1) + α(t)θ(d)[xij − wkj(t − 1)] (2)

where α is the learning rate. Neurons outside the neighbourhood bubble will not have their210

weights updated. At the end of training phase the space was divided in several regions corresponding211

to different interaction classes. Each neuron was therefore specialised in recognizing a specific input212

gesture.213

5. Results and discussion214

5.1. Mechanical properties215

The result of the compression test on the device is represented in Figure 3, where the stress-strain216

curves of the three cyclic loads are plotted. It is possible to note the following features:217

• the device does not change its mechanical behaviour during cyclic test: i.e. the differences in218

terms of maximum load (17 kPa at 20% of deformation) are less than 3%. This result allows us219

to infer that the various layers, which compose the sensor, present high mechanical compatibility220

(no detach or delamination);221

• for small deformations (less than 6%, see Figure 3B), and high deformations (more than 12%) the222

device exhibits a linear behaviour, connected by the so-called toe region;223

• for small deformation the hysteresis is practically zero, while the loading and unloading phases224

are different for high deformations, although the difference is constant across the various cycles.225

Because it was possible to identify two different regions, we defined two Elastic Moduli as the slope226

of the linear tracts in these regions: they are equal to 2.8±0.2 kPa and 232.0±2.5kPa respectively.227
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Figure 3. Stress strain curves of the sensor: the three cycles are practically superimposed. In the inset,
the stress strain curve for small deformation is presented.

It is interesting to compare these values with those of human skin. The mechanical properties228

of human skin, a living complex material mainly composed of three layers (epidermis, dermis and229

hypodermis) [23], whose thickness is a function of age, body zone or hydration, strongly depends on230

the experimental conditions. In the literature, the Young’s modulus of the skin can vary between 0.42231

MPa and 0.85 MPa for torsion tests [24], and between 0.05 MPa and 0.15 MPa for suction tests [25,26].232

These values are in the same range of the ones of the proposed sensor.233

5.2. Electromechanical properties234

Data recorded during the pressure stimulation experiment were analysed in order to extract the235

electromechanical behaviour of the sensor. As shown in Figure 4A-B, the resistance of serpentines236

increases linearly with applied pressure due to the elongation of the conductive path induced by237

the stretch of the sensor silicone matrix. The relationship between applied stimulus and serpentine238

resistance is clearly linear as highlighted in Figure 4B: the linear fitting has an R2 of 0.996. However239

the piezo-resistive and visco-elastic properties of the material induce a hysteresis effect which240

comport a serpentine resistance relaxation time of almost 7 seconds (Figure 4A). Making also in this241

case a biological comparison, the presented sensor is similar to the slow adapting mechanoreceptors,242

since it is able to register the interaction and slowly returns to the original position with a behaviour243

independent from stimulation duration [27].244
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Figure 4. Resistance variation during stimulus application test (A), and the pressure-resistance
relationship (B). The test was performed at 22◦C.

Environmental temperature influences the sensor sensitivity linearly increasing the gain from245

4.67 Ohm/kPa to 15.99 Ohm/kPa with a temperature dependence of 0.28 Ohm/(kPa◦C) as shown in246

Figure 5. Moreover, due to the piezo-resistive nature of the device, the baseline resistance also increase247

with the temperature going from 519.6 Ohm @10◦C to 560.92 Ohm @ 50◦C with an increasing rate of248

1.03 Ohm/◦C.249

Figure 5. Pressure-resistance relationship at various temperatures.

Stimulus propagation on adjacent serpentines was also measured. For example, as shown250

in Figure 6A-B, the sensor displays a measurable cross-stimulation effect on both top and bottom251

perceptive layers, after a stimulus given at zone 1 (Figure 1A). This phenomenon does not prevent the252

system capability to perceive the touch position, but, on the contrary, it generates, during stimulation,253
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a multi signals behaviour that is at the base of the contact typology classification process performed254

by the implemented NN (see next section).255

Figure 6. Cross-talk test: the pressure is applied at zone 1, while signals from all channels (of both
Top (A) and Bottom (B) layers) are recorded.

5.3. Affective contact classification256

A typical behaviour of the signals generated by the sensor exhibits a peak with a slow return to257

the initial value (Figure 6A-B): this behaviour is confirmed also in case of more complex interaction,258

such as a caress (Figure 7A). From each of the five signals, six different features were extracted259

(maximum Value, maximum Derivative; minimum Derivative; integral over 5 seconds, steady Value260

after excitation detection, point in time related to Maximum Value), leading to a total of 30 features.261

Figure 7. Sensor behaviour during a complex interaction (a caress from zone 1 to zone 4) (A); these
types of signals were analysed using the PCA, and described using few parameters: the circle of
correlation (B) and the cluster graph (C) indicates the various phases of this analysis.
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In order to simplify the data processing in the NN we used PCA: variance analysis showed that262

the first 8 Principal Components were able to represent the 90% of the total dataset variance. Features263

which are more correlated to the two principal components (Y1 and Y2) are found by performing264

a “Circle of Correlations” (Figure 7B). The “Cluster Graph” of Figure 7C was used to see spatial265

disposition of different classes (types of interaction) into the space where the axes are the first three266

main components (Y1, Y2 and Y3) (Figure 7C). The NN is in charge to classify 6 different types of267

interaction (Touch on zone 1, Touch on zone 2, Touch on zone 3, Touch on zone 4, Caress from zone 1268

to zone 4, Caress from zone 4 to zone 1). Following the algorithm presented in materials and methods269

section, at the end of each training epoch, the error representing the distance between the winning270

neuron and the input is calculated: in Figure 8A, the maximum and mean classification errors as271

function of epochs are represented. At the end of the training phase, the space is divided regions,272

corresponding to the different classes (Figure 8B).273

Figure 8. Maximum and average errors during the training phases of the NN (A); subdivision of the
NN into various regions, corresponding to the different classes of interaction (B); confusion matrix (C)

During the “Test Phase” new inputs were presented to the NN without specifying corresponding274

labels. When classification was completed, it was verified if the network generated the correct result.275

The confusion matrix (Figure 8C), that gives an index of correct classification, was evaluated. It was a276

square matrix size equal to number of classes: the rows represent the input classes while the columns277

the output classes. The classification was correct only if the element along its diagonal were different278

from zero. With this data processing we were able to discriminate the various kinds of interactions279

(touch or caress, area of touch and direction of caress), Concluding, the choice of an unsupervised280
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learning is due to its ability to extract similarities into complex patterns, working on a big number281

of real data: a “data intensive” procedure, characterised by more data than computation, is more282

suitable in applications in which real-time and low computational power are important. A “number283

crunching” procedure, with several operation on few data, may result in an undesired lag.284

6. Conclusion285

In this paper we presented a novel tactile sensor and the algorithm used to discriminate the286

different types of integrations, from a simple touch to a caress. The sensor can be seen as a vector287

field, whose intensity and direction map was analysed by a NN combined with PCA necessary to288

give meaning to input signals. The dependence of these signals from environmental conditions,289

such as temperature, was investigated. The comparison with human skin is straightforward: the290

mechanical properties are very close, and the sensor behaviour can be assimilated to slow adapting291

human mechanoreceptors. Further research will overcome current sensor limitations, by improving292

the sensor structure, adding new geometries of the sensing paths, and, of course, faster classification293

algorithms. Moreover preliminary experiments have been performed integrating fur in the sensors294

top insulating layer. These experiments shown an increased sensitive of the sensor that can be295

probably correlated with an amplification effect due to the mechanical torsion of the top layer296

performed by bended hairs. The developed sensor can be easily manufactured and its production297

scaled for industrial purposes. The system can be embedded in commercial products allowing298

the integration of tactile flow sensing in various kinds of objects, for applications ranging from299

entertainment, to sport, social robotics and thanks to its biocompatibility also to healthcare.300
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