
DIVISORIAL INERTIA AND CENTRAL ELEMENTS IN BRAID

GROUPS

F.CALLEGARO, G.GAIFFI, AND P. LOCHAK

Abstract. Given a complex reflection group W , we will show how the gener-

ators of the centers of the parabolic subgroups of the pure braid group P (W )
can be represented by loops around irreducible divisors of the corresponding

minimal De Concini-Procesi model XW . We will also show that a more sub-

tle construction gives representations of the generators of the centers of the
parabolic subgroups of the braid group B(W ) as loops in the (not smooth)

quotient variety XW /W .

1. Introduction

This paper explores the connection between the minimal De Concini-Procesi
wonderful model XW associated with a complex reflection group W and the pure
braid group P (W ): in particular we will show that the generators of the centers of
the parabolic subgroups of P (W ) can be described by loops around the boundary
components of XW .

Moreover, we will focus on the quotient YW of XW with respect to the action
of W . This is not a smooth variety, but we can still show that certain loops around
the boundary components of YW represent the generators of the centers of the
parabolic subgroups of B(W ), the braid group associated to W .

When a Garside structure is available on B(W ), Garside elements of parabolic
subgroups of B(W ) will come into play, since the above mentioned loops represent
their smallest central powers.

Let us describe our results more in detail. Given a subspace arrangement A
in a vector space V over a field K , with K = Q,R or C, De Concini and Pro-
cesi described in [DCP95a], [DCP95b] how to construct wonderful models for the
complement of the arrangement. This construction was at first motivated by an
approach to Drinfeld special solutions for Khniznik-Zamolodchikov equation (see
[Dri91]). Moreover, in [DCP95a] it was shown, using the cohomology description of
these models, that the mixed Hodge structure and the rational homotopy type of
the complement of a complex subspace arrangement depend only on its intersection
lattice.

Then real and complex De Concini-Procesi models turned out to play a relevant
role in several fields of mathematical research: toric and tropical geometry (see
[FY04], [FS05]), moduli spaces of curves and configuration spaces (see for instance
[EHKR10]), box splines and index theory (see the exposition in [DCP10]), discrete
geometry and combinatorics (see [Fei05], [Gai15], [Gai16]), representation theory
of reflection groups (see for instance [Hen04], [HR08], [Rai09], [CG15]).

Among the models associated to an arrangement A there is a minimal one: we
will recall the details of its construction in Section 2, in the case of the hyperplane
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arrangement associated to an irreducible complex reflection group W . Here we
point out the fact that this model XW adds to the complement of the arrangement
a boundary which is a normal crossing divisor: its irreducible components are
indexed by the parabolic subgroups of W . Now a loop in XW around the irreducible
component DA (the inertia) associated to a parabolic subgroup WA can be identified
with a loop in the complement of the arrangement, that is to say, up to the choice
of a fixed base point, with an element of P (W ). In Sections 4 and 5 we will prove
(see Theorem 5.1 and Corollary 5.1) that this element is in fact the generator of
the center of the parabolic subgroup of P (WA): in particular, when the parabolic
subgroup is W itself, the inertia represents the generator of Z(W ).

In Section 6 we deal with the quotient YW = XW /W . This is not a smooth
variety, yet for every parabolic subgroup WA of W we can consider in YW the image
LA of the divisor DA via the quotient map. The subvariety LA is not smooth too,
but we will indicate a dense set of smooth points such that the inertia ‘close’ to
these points represents the generator of the center of the parabolic subgroup B(WA)
(see Theorem 6.1). We will call these smooth points the Springer generic points of
LA, since the Springer regular elements defined in [Spr74] come into play.

We remark that to prove the above mentioned results we use the description
of the center of P (W ) and B(W ) (and of their parabolic subgroups) provided by
theorems from [BMR98], [Bes15], [DMM11] that are recalled in Section 3.

Finally we would like to mention that this paper may be considered a first step,
which in our opinion turns out to be of independent topological interest, of a project
whose aim is to transpose and adapt Grothendieck-Teichmüller theory to the setting
of complex braid groups and their classifying spaces, thus obtaining what could be
dubbed a ‘Grothendieck-Artin theory’ and an Artin (or Artin-Brieskorn) ‘lego’.
The ingredients of this project and a sketch of its first steps can be read in the last
sections of [CGL15].

2. Minimal models

In [DCP95a, DCP95b] De Concini and Procesi introduced and described what
they called wonderful models associated with subspace arrangements. We briefly
recall their construction in the special case of hyperplane arrangements. In the
next sections we will further specialize to arrangements associated with complex
reflection groups.

2.1. Irreducible subspaces. Let V be a complex finite dimensional vector space
which we identify with its dual by means of a given Hermitian nondegenerate pair-
ing. An hyperplane arrangement in V is finite collection A of affine hyperplanes in
V . The arrangement A is a central arrangement if ∩A 6= ∅. In this case we assume
that O ∈ ∩A. Let L(A) be the poset of all possible non-empty intersections of
elements of A, ordered by reverse inclusion. We call A essential if the maximal ele-
ments of L(A) are points. In particular if A is central we have that A is essential if
and only if ∩A = {O}. Let A be a central hyperplane arrangement in V . For every
subspace B ⊂ V , we write B⊥ for its orthogonal and denote A⊥ the arrangement
of lines in V , dual to A:

A⊥ = {A⊥ |A ∈ A};

finally let CA (or C(A)) be the closure of A⊥ in V under the sum.
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Definition 2.1. Given a subspace U ∈ CA, a decomposition of U in CA is a
collection {U1, . . . , Uk} (k > 1) of non zero subspaces in CA such that

(1) U = U1 ⊕ · · · ⊕ Uk;
(2) for every subspace A ∈ CA such that A ⊂ U , we have A∩U1, . . . , A∩Uk ∈ CA

and A = (A ∩ U1)⊕ · · · ⊕ (A ∩ Uk).

Definition 2.2 (Irreducible subspace and notation in the case of reflection groups).
A nonzero subspace F ∈ CA which does not admit a decomposition is called irre-
ducible and the set of irreducible subspaces is denoted FA (or F(A), or just F). In
the case when A = AW is the hyperplane arrangement associated with a complex
reflection group W we write FW (resp. F(W )) instead of FAW (resp. F(AW )).

Remark 2.1. Consider a root system Φ in a complexified vector space V and
its associated root arrangement, i.e. A is the (complex) hyperplane arrangement
defined by the hyperplanes orthogonal to the roots in Φ. Then the building set of
irreducibles is the set of the subspaces spanned by the irreducible root subsystems of
Φ (see [Yuz97]).

Definition 2.3. A subset S ⊂ FA is called (FA-)nested, if given any subset
{U1, . . . , Uh} ⊆ S (with h > 1) of pairwise non comparable elements, we have
U1 + · · ·+ Uh /∈ FA.

Example 2.1. Let us consider the case of the symmetric group W = Sn and let
ASn be its corresponding essential arrangement in V = Cn/ < (1, 1, ..., 1) >, i.e.
we consider the hyperplanes defined by the equations xi − xj = 0 in V .

Then F(Sn) consists of all the subspaces in V spanned by the irreducible root
subsystems, that is by the subspaces whose orthogonals are described by equations
of the form xi1 = xi2 = · · · = xik with k ≥ 2. Therefore there is a one-to-one
correspondence between the elements of F(Sn) and the subsets of {1, · · · , n} with at
least 2 elements: to an A ∈ F(Sn) whose orthogonal is described by the equations
xi1 = xi2 = · · · = xik there corresponds the set {i1, i2, . . . , ik}. As a consequence, a
F(Sn)-nested set S corresponds to a set of subsets of {1, · · · , n} with the property
that its elements have cardinality ≥ 2 and if I and J belong to S then either I∩J = ∅
or one of the two sets is included into the other.

Example 2.2. Let us consider the real reflection group WDn associated with the
root system of type Dn (n ≥ 4). The reflecting hyperplanes have equations xi−xj =
0 and xi + xj = 0 in V = Cn.

The subspaces in F(WDn) are all the subspaces of V spanned by the irreducible
root subsystems. They can be partitioned into two families. The subspaces in the
first family are the strong subspaces Hi1,i2,...,ik whose orthogonals are described by
equations of the form xi1 = xi2 = · · · = xik = 0 with k ≥ 3 (if k = 2 this subspace
is not irreducible). We can represent them by associating to Hi1,i2,...,it the subset
{0, i1, i2, ..., ik} of {0, 1, ..., n}.

The second family is made by the weak subspaces Hi1,i2,...,ik(ε2, ..., εk) whose
orthogonals have equations of the form xi1 = ε2xi2 = · · · = εkxik where εi = ±1
and k ≥ 2.

Let us suppose that i1 < i2 < · · · < ik; then we can represent these weak sub-
spaces by associating to Hi1,i2,...,it(ε2, ..., εk) the weighted subset {i1, ε2i2, ..., εkik}
of {1, ..., n}.
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According to the representation of the irreducibles by subsets of {0, 1, ...., n} de-
scribed here, a F(WDn)-nested set is represented by a set {A1, ..., Am} of (possibly
weighted) subsets of {0, ..., n} with the following properties:

• the subsets that contain 0 are not weighted; they are linearly ordered by
inclusion;
• the subsets that do not contain 0 are weighted;
• if in a nested set there is no pair of type {i,−j}, {i, j}, then for any pair of

subsets Ai, Aj, we have that, forgetting their weights, they are one included
into the other or disjoint; if Ai, Aj both represent weak subspaces one in-
cluded into the other (say Ai ⊂ Aj), then their weights must be compatible.
This means that, up to the multiplication of all the weights of Ai by ±1,
the weights associated to the same numbers must be equal.
• in a nested set there may be one (and only one) pair {i,−j}, {i, j} and

in this case any other element B of the nested set satisfies (forgetting its
weights) B ∩ {i, j} = ∅ or {0, i, j} ( B.

Example 2.3. Let us consider the real reflection group WG2
associated with the root

system G2. Since this is a two dimensional root system, the irreducible subspaces
are the subspaces spanned by the roots and the whole space V = C2.

Therefore the F(GG2)-nested are the sets of cardinality 1 made by one irreducible
subspace and the sets of cardinality 2 made by V and by the subspace spanned by
one root.

2.2. Definition of the models and main properties. Let A now be a (central)
hyperplane arrangement in the complex space V . We denote its complement by
XA (or X(A)) and again write simply XW (or X(W )) in the case of a complex
reflection group W . Then we can consider the embedding

i : X(A)→ V ×
∏

D∈F(A)

P(V/D⊥)

where the first coordinate is the inclusion and the map from X(A) to P(V/D⊥) is
the restriction of the canonical projection V \D⊥ → P(V/D⊥).

Definition 2.4. The minimal wonderful model X(A) is obtained by taking the
closure of the image of the map i.

Remark 2.2. Actually in [DCP95a] not one but many wonderful models are as-
sociated with a given arrangement (see [GS14] for a classification in the case of
root hyperplane arrangements); here we will focus on the minimal one. Note that
among these models there is always a maximal one, obtained by substituting C(A)
for F(A) in the definition above.

De Concini and Procesi proved in [DCP95a] that the complement D of X(A) in
X(A) is a divisor with strict normal crossings whose irreducible components are
naturally in bijective correspondence with the elements of F(A). They are denoted
by DF (or D(F )) for F ∈ F(A).

Next if π is the projection of X(A) onto the first component V , one observes that
the restriction of π to X(A) is an isomorphism and D(F ) can be characterized as the
unique irreducible component of the divisor at infinity D such that π(DF ) = F⊥.
A complete characterization of the boundary divisor D is then afforded by the
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observation that, if we consider a collection T of subspaces in FA, then

DT =
⋂
A∈T
DA

is non empty if and only if T is FA-nested; moreover in that case DT is smooth
and irreducible, and it is part of the stratification associated with D.

Nowadays this construction of the De Concini-Procesi wonderful models can be
viewed as a member of a family of constructions which, starting from a ‘good’
stratified variety, produce models by blowing up a suitable subset of the strata.
Among these constructions we recall the models described by Fulton-MacPherson
in [FM94], and by MacPherson and Procesi in [MP98] (see also [Hu03], [Gai03],
[Uly02], [Li09]). An interesting survey including tropical compactifications can be
found in Denham’s paper [Den14].

From this point of view, one considers V as a variety stratified by the subspaces in
F⊥A and the model X(A) is obtained by blowing up the strata in order of increasing
dimensions, proceeding as follows: First choose an ordering A0, A1, ..., Ak of the
subspaces in F⊥A which respects dimensions, i.e. such that dim(Ai) ≤ dim(Aj) if
i ≤ j. Assume that V ∈ F⊥A (which will always be the case in the sequel) and
so that A0 = {0}. Then one starts by blowing up the stratified variety V at the
origin 0, obtaining a variety X0; at the next step one blows up X0 along the proper
transform of A1 in order to obtain X1, and so on... The end result, after a finite
number of steps (=the cardinality of FA) is the wonderful model X(A).

3. The center of the complex braid groups

From now on we restrict attention to arrangements arising from complex reflec-
tion groups. As mentioned in the introduction, in order to describe the inertia
elements we will need a few pieces of information on the centers of the attending
braid groups, which we recall in this short group theoretic section. Let W be an ir-
reducible finite complex reflection group and let B = B(W ) and P = P (W ) denote
as usual the associated full and pure braid groups. We write Z(G) for the center
of a group G.

In [BMR98] central elements β ∈ Z(B) and π ∈ Z(P ) were introduced; they are
of infinite order, with β|Z(W )| = π. We recall the following results from [BMR98,
Bes15, DMM11]:

Theorem 3.1. The center Z(B(W )) is infinite cyclic, generated by β.

Theorem 3.2. The center Z(P (W )) infinite cyclic, generated by π.

Theorem 3.3. There is a short exact sequence:

(1) 1→ Z(P (W ))→ Z(B(W ))→ Z(W )→ 1.

We also recall from [BMR98] that the center Z(W ) has order

|Z(W )| = gcd(d1, d2, . . . , dr)

where d1, . . . , dr are the degrees of W .
Theorems 3.1, 3.2 and 3.3 were conjectured in [BMR98] and proved there for

infinite series G(de, e, n) and rank 2 cases. Moreover in [BMR98] Theorem 3.1
is proven for all Shephard groups. Some of the remaining cases of Theorem 3.1
are proved in [Bes15] and an argument due to Bessis and reported in [DMM11]
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completes the proof of Theorem 3.1. Theorem 3.3 is proven in [DMM11] and
together with Theorem 3.1 it implies Theorem 3.2.

Remark 3.1. The center of the irreducible Coxeter groups of type An, D2n−1 and
E6 is trivial, while it is isomorphic to Z/2 for all the other irreducible Coxeter
groups. The cardinality of the center of the other irreducible finite complex reflec-
tion groups can be determined using the table of the degrees given in [BMR98].

We recall that if n is the rank of a complex reflection group W , the latter is
called well generated if it can be generated by n reflections. In general, for a well
generated complex braid group B, there are many monoids such that B can be
presented as a group of fractions of the monoid. In several cases these monoids
admit a Garside structure, that in general is not unique.

For example we have the following result for Artin-Tits groups:

Theorem 3.4 ([DDG+15, IX, Prop. 1.29]). Assume that (W,Σ) is a Coxeter
system of spherical type and B (resp. B+) is the associated Artin-Tits group (resp.
monoid). Let ∆ be the lifting of the longest element of W . Then (B+,∆) is a
Garside monoid, and B is a Garside group. The element ∆ is the right-lcm of Σ,
which is the atom set of B+, and Div(∆) is the smallest Garside family of B+

containing 1.

Morover, with respect to this Garside structure, we have:

Proposition 3.1. [DDG+15, IX, Corollary 1.39] The center of an irreducible Artin-
Tits group of spherical type is infinite cyclic, generated by the smallest central power
of the Garside element ∆.

All the finite Coxeter groups are well generated; actually the only irreducible
complex reflection groups which are not well generated are G(de, e, n) for d 6= 1
and e 6= 1, some groups of rank 2 (namely G7, G11, G12, G13, G15, G19 and G22),
and G31. Now if W is well generated, B(W ) can be equipped with another Garside
structure, unrelated to the previous one: for any Coxeter element c ∈ W we can
define a dual braid monoid Garside structure on B(W ), see [Bes15, Theorem 8.2]
and β appears as the smallest central power of the Garside element with respect to
that structure (see [Bes15, Theorem 12.3]).

Example 3.1. In the classical braid group on n strands Brn, let σi, i = 1, . . . , n−1
be the standard set of generators. The Garside element according to the natural
Garside structure reads

∆ = σ1(σ2σ1) · · · (σn−1 · · ·σ1),

representing a global half twist. Let c ∈ Sn be the Coxeter element (1, 2, . . . , n).
The Garside element according to the dual braid monoid Garside structure is

∆∗ = a1,2 · · · an−1,n,
where ai,j = σi · · ·σj−2σj−1σj−2−1 · · ·σ−1i . So we can rewrite ∆∗ as

∆∗ = σ1 · · ·σn−1.
Setting the n points at the vertices of a regular n-gon, ∆∗ thus represents a 1/n-th
twist (see for example [DDG+15, I, Sec. 1.3 and IX, Prop. 2.7]). This confirms
that ∆2 = (∆∗)n is a generator of the center of Brn. Since ∆2 belongs to the pure
braid group PBrn, it is also a generator of its center.
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Example 3.2. The Artin group of type Dn is the braid group B(W ) associated
to the reflection group W = WDn , also denoted by G(2, 2, n) in the Shephard-Todd
classification. The group B(WDn) is generated by the elements s1, s

′
1, s2, . . . , sn−1

with s1, . . . , sn−1 and s′1, s2, . . . , sn−1 satisfying the relations of Brn, together with
s1s
′
1 = s′1s1.
The Garside element is

∆ = (s1s
′
1s2 · · · sn−1)n−1

and the center of the full braid group is generated by ∆ if n is even, by ∆2 if n is
odd (see Table 5 in [BMR98, Appendix I]). The center of the pure Artin-Tits group
P (WDn) is generated by ∆2. According to [Bes03, Section 5.1] the Garside element
corresponding to a dual Garside monoid structure for Dn is

∆∗ = (s1s
′
1s3s5 · · · )(s2s4 · · · )

and the image of ∆∗ in W is the Coxeter element c.

Example 3.3. The Artin group of type G2 is the braid group associated to the
reflection group WG2

. The group B(WG2
) is generated by two elements s, t satisfying

the relation (st)3 = (ts)3. The Garside element is ∆ = (st)3 (see Table 5 in
[BMR98, Appendix I]) which is also the generator of the center. The center of
the pure Artin-Tits group P (WG2) is generated by ∆2, while the Garside element
corresponding to a dual Garside monoid structure (see [Bes03, Section 5.1]) is ∆∗ =
st, whose image in the Coxeter group is the Coxeter element c.

We remark that in general there is no relation between the natural Garside struc-
ture (that is known only for finite type Artin-Tits groups) and the dual Garside
structure (that are defined for all well generated complex braid groups). Moreover,
several dual Garside structures can be defined, one for every Coxeter element. Nev-
ertheless, the Garside elements in those structures are related, since their smallest
central powers generate the center, that is infinite cyclic.

4. Inertia and the center

Let againW be an irreducible complex reflection group, A = AW the correspond-
ing hyperplane arrangement which we assume to be essential (see the definition in
Section 2.1), in the complex vector space V of dimension n. We write as usual
X = XW = V \ AW , X = XW for the associated minimal wonderful model, ob-
tained by a finite sequence of blowups of V viewed as a stratified variety, along
strata with non decreasing dimensions. We let P = P (W ) = π1(XW ) denote the
pure braid group associated with W .

In particular, let X0 be the first step in this process, namely the blowup of the
space V at its origin 0; let D0 ⊂ X0 be the corresponding exceptional divisor. We
write Ã for the proper transform in X0 of a subspace A ⊂ V and identify X with
the complement in X0 of the proper transforms of the hyperplanes in A and of D0:

X ' X0 \

(
D0 ∪

⋃
H∈A

H̃

)
.

Using this we denote by z ∈ P the topological inertia around the divisor D0. It
can be viewed as the homotopy class of a counterclockwise loop in X0 \

(⋃
H∈A H̃

)
around D0, identified with a loop in X (cf. e.g. [BMR98, Appendix I]). Here we
use the natural complex orientation of the normal bundle of a hypersurface in a
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complex variety. Note that z is a priori defined, as it should be, as a conjugacy
class in the pure braid group P ; we did not specify a basepoint for the fundamental
group π1(X) ' P. However z will be shown to be central in P and so a posteriori it
turns out to be well-defined as an element of P . Note as well that z also represents
the inertia around the divisor DV in X: it is the homotopy class of a loop in the
big open part of X0, which identifies with that of X; indeed they both identify with
X.

We recall from the definition of blow up (see for example [GH78, Chapter 1.4 ])
that X0 is defined as the closure of the image of the map

V \ {O} → V × P(V ),

therefore there is a well-defined projection π : X0 → P(V ). It defines a line bundle

C // X0

π

��
P(V )

whose 0-section is precisely the divisor D0. This line bundle is the normal bundle
of D0 in X0 and a representative of z is given by a loop around the origin in the
fiber at a generic point.

If we fix a hyperplane H ∈ A, we can restrict the line bundle to the complement
of P(H) in P(V ), which is affine. The fibre over any point [v] ∈ P(V ) \ P(H) is a
line l × {[v]} = {(λv, [v]) | λ ∈ C} ⊂ V × P(V ). We can fix a translation H + δ of
H in V that doesn’t contain the origin. Then H + δ intersects the line l in a point
p[v] = l ∩ (H + δ). This defines a nonzero section of π that trivializes our restricted
line bundle and we thus get a trivial bundle:

C // X0 \ H̃

π

��
P(V ) \ P(H).

Now recalling that X ⊂ V , consider the restriction of π to the preimage of P(X),
namely:

π : X0 \
( ⋃
H∈A

H̃
)
→ P(X).

From the argument above, since X is contained in the complement of an hyperplane
(simply choose any of the hyperplanes in the arrangement A), we have that the
restriction is actually a trivial line bundle.

Moreover, since D0 is the 0-section, we can restrict to X → P(X) and we obtain
the trivial fiber bundle

C∗ // X

π

��
P(X).

whose fiber is the punctured affine line (' C∗).
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So X factors as X ' P(X) × C∗ and the inertia element z is represented by a
nontrivial loop in the second factor. Given the base point x0 ∈ X ⊂ V , we can
choose (cf. [BMR98, Section 2.A]) as a representative of z the map

t 7→ ([x0], e2πıt).

This way we have essentially proved

Theorem 4.1. The inertia element z = zW generates the center of P (W ). If the
group B(W ) is an Artin-Tits group equipped with the classical Garside structure
or a well generated complex braid group equipped with the dual Garside structure z
represents, up to orientation, the smallest power of the Garside element that belongs
to P (W ) and is central.

Proof. This immediately follows from the factorization X ' P(X)×C∗, the descrip-
tion of Z(P (W )) given in Theorem 3.2 and the results on well generated groups
recalled in Section 3. �

The same argument of Theorem 4.1 will be used inductively (i.e. applied to
subspaces and subarrangements) in the next section to show the relation between
the inertia around the other divisors and the center of the corresponding parabolic
subgroups.

5. Inertia and the divisor at infinity

With the same setting as above, let A ∈ FW be an irreducible subspace and
define the parabolic subgroup

WA = {w ∈W | w fixes A⊥ pointwise}.
Noting that WA is itself an irreducible complex reflection group with an essential

action on A we let as usual AWA
be the associated hyperplane arrangement in

A ⊂ V and by XWA
= X(WA) its complement in A. Note that the ambient space

A is not made explicit in the notation but this is harmless in the sequel. If we
define, as is usual in the theory of hyperplane arrangements:

(AW )A⊥ = {H ∈ AW | A⊥ ⊂ H},
then the hyperplanes in AWA

can be seen as the intersections with A of the hyper-
planes of (AW )A⊥ . Further, we will denote, according to the standard notation used

for hyperplane arrangements, by (AW )A
⊥

the hyperplane arrangement in A⊥ ⊂ V
defined by the intersections with A⊥ of those hyperplanes of the original arrange-
ment AW which do not contain A⊥.

With this setup we can now generalize the construction of the previous sec-
tion and define an inertia generator (or rather a conjugacy class) attached to any
irreducible subspace A of the arrangement AW :

Definition 5.1. The inertia class zA ∈ P (W ) associated with the divisor DA ⊂ D,
is the homotopy class of a counterclockwise loop around DA in the big open part of
XW (which can be identified with XW ).

Now consider the restriction to XW = X(W ) of the natural projection

(2) πA⊥ : V → A⊥.

Intersecting X(W ) with an open tubular neighbourhood of A⊥ ⊂ V we find that

the fiber over a point of the complement of (AW )A
⊥

in A⊥ is isomorphic to X(WA):
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if the tubular neighborhood is small enough, the hyperplanes of A that do not fix
A⊥ are “far away” from this fiber.

This yields a natural inclusion

(3) iA : X(WA) ↪→ X = X(W ).

Let zWA
∈ Z(P (WA)) ⊂ P (WA) denote the inertia element as constructed in

the previous section, using WA (resp. A) instead of W (resp. V ). More precisely,
if we denote by DA,WA

the divisor in X(WA) associated to the maximal element of
the building set, that is A, then zWA

is the inertia around DA,WA
.

Remark 5.1. Here and in the sequel we will indicate with P (WA) two isomorphic
groups: the pure braid group associated with the complex reflection group WA and
the parabolic subgroup of P (W ) associated with the subspace A. It will be clear from
the context which is the group we are dealing with.

Theorem 5.1. The map

(iA)∗ : P (WA)→ P (W )

induced by the inclusion iA : X(WA) ↪→ X = X(W ) is injective. It maps the inertia
element zWA

∈ P (WA) to zA ∈ P = P (W ).

Proof. We start by showing that (iA)∗ is injective. This fact is already known from
[BMR98, Section 2.D], but we reprove it using our notation. To this end consider
the sub-arrangement (AW )A⊥ in V defined above (notice that in general (AW )A⊥
is not essential). The respective complements in the ambient space V determine
the inclusion X(W ) ⊂ X((AW )A⊥) and the composition

X(WA)
iA
↪→ X(W ) ↪→ X((AW )A⊥)

is easily seen to be a homotopy equivalence, hence induces an isomorphism on
fundamental groups. This shows that (iA)∗ is injective.

Moreover (see also [BMR98, Section 2.D]) the standard generators of P (WA),
which are given by loops in X(WA) around hyperplanes, map via iA to loops in X
around hyperplanes and these determine standard generators of P (W ).

Let now x be a point of the complement of (AW )A
⊥

in A⊥. Let us consider
the affine subspace Ax = π−1

A⊥
(x) ⊂ V and the intersection Ux = Ax ∩ Bx with an

open ball Bx centered at x, small enough to avoid the hyperplanes not containing
x. Denote by Ux the proper transform of Ux in X. Then Ux is isomorphic to
X(WA), since of all the blowups that contribute to the construction of X(W ) only
the ones that involve subspaces that contain A⊥ have an effect on Ux. Furthermore,
the big open parts of the varieties Ux and X(WA) are identified by the projection
πA : V → A. In the isomorphism mentioned above the intersection Ux ∩ DA
corresponds to the divisor DA,WA

in X(WA).

We then notice that a loop in Ux around Ux ∩ DA is also a loop in X around
DA, which is tantamount to saying that iA maps a representative of the inertia
zWA

∈ P (WA), that lies in the big open part of X(WA), to a loop that is homotopic
to a representative of zA ∈ P (W ). �

Remark 5.2. Take another wonderful model associated with the arrangement AW ,
for example the maximal one (see Remark 2.2), and consider the inertia class zA
around the divisor DA, which is a component of the divisor at infinity of our given
model and is associated to a reducible (i.e. not irreducible) subspace A. Then if A
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decomposes as a direct sum of irreducible subspaces, A = A1 ⊕ A2 ⊕ · · · ⊕ Ak, its
associated inertia class can be written as a product of commuting factors:

zA = zA1
zA2
· · · zAk .

The following statement is an immediate corollary of Theorems 4.1 and 5.1:

Corollary 5.1. The inertia class zA ∈ P (WA) ⊂ P attached to the irreducible
divisor DA ⊂ D ⊂ X generates the center of the parabolic subgroup P (WA) ⊂ P . If
moreover B(WA) is an Artin-Tits group equipped with the classical Garside struc-
ture or a well generated complex braid group equipped with the dual braid monoid
Garside structure, up to a change of orientation, zA is (the image via π1(iA) of)
the smallest power of the Garside element of B(WA) that belongs to P (WA) and is
central.

6. Inertia in the quotient model

Let us now consider the action of W on the spaces XW and XW . We denote
by YW the quotient space XW /W , which is a smooth variety (or scheme), and by
YW = XW /W the quotient of the model, which in general is not smooth; there
may be singular points on the divisor at infinity.

So let us focus on this divisor at infinity, i.e. on the quotient of the boundary
components of XW . First we notice that W acts naturally on the building set FW ;
for every A ∈ FW and w ∈ W we write w(DA) = DwA, O(DA) =

⋃
w∈W DwA. We

denote by LA the quotient
LA = O(DA)/W.

Clearly if A and B are in the same orbit of the action of W on FW , then LA = LB .
It turns out that even in the example of W=A3 the quotient divisor LA is not
smooth, but we will indicate a dense set of smooth points (see Proposition 6.2
below). The cardinality of the fibers of the projection map

O(DA)→ LA
is determined by the cardinality of the stabilizers of the points in DA, so that we
are interested in getting some information about these stabilizers.

Let us start by recalling that in [FK03] Feichtner and Kozlov provide a descrip-
tion of these groups. In order to describe the points in XW they use the following
encoding (see also [FM94]) which records the information coming from the projec-
tions of XW onto the factors of the product V ×

∏
A∈FW P(V/A⊥).

Every point ω ∈ XW is represented by a list:

ω = (x,A1, l1, A2, l2, ..., Ak, lk)

where:

• x is the point in V given by the image of ω in the projection π : XW → V ;
• A1 is the smallest subspace in FW that contains x, and it appears in the

list only if A1 6= V . If A1 = V then the encoding stops here: ω = (x);
• l1 is the line in A1 given by the image of ω in the projection π : XW →
P
(
V/(A1)⊥

)
(identifying A1 with V/(A1)⊥);

• A2 is the smallest subspace in FW that contains A1 and l1, and it appears
in the list only if A2 6= V , otherwise the list stops : ω = (x,A1, l1);
• l2 is the line in A2 defined by the image of ω in the projection π : XW →
P(V/(A2)⊥)
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and so on...

Proposition 6.1 (see Proposition 4.2 in [FK03]). The stabilizer stab ω of the
point ω = (x,A1, l1, A2, l2, ..., Ak, lk) is equal to

stab x ∩ stab l1 ∩ stab l2 ∩ · · · ∩ stab lk

where by stab li we mean the subgroup of W that sends li to itself (not necessarily
fixing li pointwise), i.e. the stabilizer of the point [li] ∈ P(V/(Ai)

⊥).

It is immediate to check that if ω is a generic point of the divisor DA, more
precisely if it doesn’t lie in an intersection of DA with other irreducible components
of the boundary, it can be representated by a triple (x,A, l = l1), with stabilizer

stab x ∩ stab l = WA ∩ stab l.

In other words the stabilizer of a generic point ω = (x,A, l) ∈ DA coincides with the
stabilizer in WA of [l] ∈ P(V/(A)⊥). Since we identify P(V/(A)⊥) with P(A), the
problem of describing stab ω for a generic ω is reduced to the study of the stabilizers
of the points of the projective space P(A) under the action of the parabolic subgroup
WA, for every A ∈ FW . The following notion of regular element of a complex
reflection group (from Springer’s paper [Spr74]) now comes into play.

Definition 6.1. Given an irreducible finite reflection group G in a vector space V ,
an element g ∈ G is called regular if it has an eigenvector that does not lie in any
of the reflecting hyperplanes of G. If g is not a multiple of the identity, we call such
an eigenvector a Springer regular vector of V .

A classification of regular elements of irreducible real finite reflection groups has
been provided by Springer in [Spr74]. Now we say that a generic point ω = (x,A, l)
in DA is a Springer generic point if the line l is not spanned by a Springer regular
vector in A for the action of WA. Finally a point y ∈ LA is Springer generic if it
is the image of a Springer generic point of DA.

Now we note that given an irreducible subspace A, and ω ∈ DA Springer generic,
its stabilizer WA ∩ stab l is trivial if the center of WA is trivial, and otherwise it is
a cyclic group generated by a multiple of the identity in GL(V ). Among the real
irreducible finite reflection groups, as recalled in Remark 3.1, only An, D2n−1 and
E6 have trivial center, while in the other cases the center is Z/2.

Proposition 6.2. For A ∈ FW , the component LA ⊂ YW of the divisor at infinity
is smooth at the Springer generic points.

Proof. Let ω = (x,A, l) be a Springer generic point. The statement is trivial if the
stabilizer of ω is trivial. If stabω is not trivial we can assume that Z(WA) ' Z/m;
the assumption that ω is Springer generic implies that there exists an element
ρ ∈ WA, with ρ|A = εmI|A, ρ|A⊥ = Id|A⊥ , where εm is an m-th primitive root

of unity and stabω = 〈ρ〉 = Z(WA). So ρ fixes pointwise the divisor DA in XW .
Moreover, a point (x,A, 〈v〉), t) (t ∈ C small enough) in the normal bundle of DA
maps onto a tubular neighborhood of DA via

((x,A, 〈v〉), t) 7→ x+ tv

with ρ(x+ tv) = x+ εmtv. Since ρ acts via a multiple of the identity on the normal
bundle of DA in a neighborhood of ω, the quotient LA is smooth near ω. �
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Theorem 6.1. Let W be an irreducible complex reflection group acting on the
complex vector space V . Let ζW ∈ π1(YW ) = B(W ) be the inertia generator around
a Springer generic point of LV . The loop ζW is a generator of Z(B(W )).

If the group B(W ) is an Artin-Tits group equipped with the classical Garside
structure or a well generated complex braid group equipped with the dual Garside
structure, then ζW is, up to orientation, the smallest central power of the Garside
element.

Proof. Up to homotopy we can assume that ζW is a loop around a point y ∈ LV
which is the projection of a Springer generic point ω ∈ XW .

Recall that in Theorem 4.1 we showed that the inertia zW around the divisor
DV generates the center of P (W ). If stabω is trivial, a neighborhood of y in
YW is homeomorphic to a neighborhood of ω in XW and ζW is the image of zW
via the homomorphism of topological fundamental groups induced by the quotient
map XW → YW . As we are assuming that stabω is trivial, the center Z(W )
is trivial. The short exact sequence (1) of Theorem 3.3 yields an isomorphism
Z(P (W )) = Z(B(W )) and the result follows.

Assume now that stabω is not trivial. Since ω is Springer generic, stab ω = 〈ρ〉,
with ρ = εmId ∈W (see above). We need to show that a) ζW belongs to the center
Z(B(W )), and that b) it generates that center.

To prove a) we recall from Section 4 that there is a trivial bundle π : XW →
P(XW ) with fiber C∗ determining a decomposition XW ' P(XW ) × C∗. Hence a
loop around ω in YW can be represented by a path in XW

t 7→ ([v], e
2πıt
m ) for t ∈ [0, 1].

In particular we can represent ζW as a path in XW ⊂ V

t 7→ e
2πıt
m v for t ∈ [0, 1],

where v is not a Springer regular vector. We know from the classical result of
[Che55] and [ST54] that V/W is an affine space with coordinates given by homo-
geneous polynomials on V , say p1(x), . . . , pn(x), of degrees d1, . . . , dn.

Hence ζW is represented by a loop γ in YW ⊂ V/W given by

t 7→ γ(t) = (e
2d1πıt
m p1(v), . . . , e

2dnπıt
m pn(v)) for t ∈ [0, 1].

Let γ′ : [0, 1] → YW be another closed path with the same base point in YW . We
claim that γ and γ′ commute. In fact the following map H : [0, 1]× [0, 1]→ YW

H(t, t′) = (e
2d1πıt
m γ′1(t′), . . . , e

2dnπıt
m γ′n(t′)) for (t, t′) ∈ [0, 1]× [0, 1],

provides a homotopy between γ ◦ γ′ and γ′ ◦ γ. This proves that indeed ζW is
central.

In order to show b), i. e. that ζW generates the center of B(W ), consider again
the short exact sequence (1) of Theorem 3.3. Since Z(W ) = Z/m we get

1→ Z(P (W ))→ Z(B(W ))→ Z/m→ 1.

By construction we know that zW is a generator of Z(P (W )) and it maps to ζmW .
Moreover ζW maps to the generator of Z/m. Since Z(B(W )) is infinite cyclic, it
follows that ζW generates Z(B(W )). �

We now observe that the inclusion iA : X(WA) ↪→ X = X(W ) given in Equation
(3) (see Section 5) is WA-equivariant, with the WA-action compatible with the
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inclusion WA ⊂W . Hence it induces an inclusion iA : Y (WA) ↪→ Y = Y (W ) and a
corresponding map between the fundamental groups. As in Section 5 we generalize
the definition of inertia for an irreducible subspace A.

Definition 6.2. The inertia class ζA ∈ B(W ) associated with the divisor LA is the
homotopy class of an oriented loop around a Springer generic point of LA in the
big open part of YW (which can be identified with YW ).

Now let us denote by LA,WA
the quotient divisor of Y (WA) associated to the

maximal element of the building set, namely A; then we denote by ζWA
the inertia

around LA,WA
. Below we use B(WA) to denote both the braid group associated

with the complex reflection group WA and the (isomorphic) parabolic subgroup
of B(W ) associated with the subspace A. It will be clear from the context which
group we are dealing with (see also Remark 5.1).

Theorem 6.2. The map

(iA)∗ = π1(iA) : B(WA)→ B = B(W )

induced by the inclusion iA : Y (WA) ↪→ Y = Y (W ) is injective. It maps the
inertia element ζWA

∈ B(WA) to ζA ∈ B. Moreover the loop ζA is a generator of
Z(B(WA)), the center of the parabolic subgroup B(WA).

If the group B(WA) is an Artin-Tits group equipped with the classical Garside
structure or a well generated complex braid group equipped with the dual Garside
structure then ζA is, up to orientation, the smallest central power of the Garside
element of B(WA).

Proof. Injectivity follows from the 5-Lemma (essentially, this rephrases the proof in
[BMR98, Section 2.D]): we already know that the natural maps P (WA) → P (W )
and WA →W are injective and they fit into the following commutative diagram

1 // P (WA) //

(iA)∗

��

B(WA) //

(iA)∗

��

WA
//

��

1

1 // P (W ) // B(W ) // W // 1

where the first and last vertical maps are injective.
We can choose as a representative of ζA ∈ π1(YW ) = B(W ) a loop around the

projection y ∈ LA of a Springer generic point ω ∈ DA. Since the stabilizer stabω
is the center of WA, the argument used in the proof of Theorem 5.1 shows that
ζWA

∈ B(WA) maps to ζA ∈ B = B(W ). The second part of the statement then
follows from Theorem 6.1.

�
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[EHKR10] Pavel Etingof, André Henriques, Joel Kamnitzer, and Eric M. Rains. The cohomology

ring of the real locus of the moduli space of stable curves of genus 0 with marked
points. Ann. of Math. (2), 171(2):731–777, 2010.

[Fei05] Eva Maria Feichtner. De Concini-Procesi wonderful arrangement models: a discrete

geometer’s point of view. In Combinatorial and computational geometry, volume 52 of
Math. Sci. Res. Inst. Publ., pages 333–360. Cambridge Univ. Press, Cambridge, 2005.

[FK03] Eva Maria Feichtner and Dmitry N. Kozlov. Abelianizing the real permutation action
via blowups. Int. Math. Res. Not., 2003(32):1755–1784, 2003.

[FM94] William Fulton and Robert MacPherson. A compactification of configuration spaces.

Ann. of Math. (2), 139(1):183–225, 1994.
[FS05] Eva Maria Feichtner and Bern Sturmfels. Matroid polytopes, nested sets and Bergman

fans. Port. Math. (N.S.), 62:437–468, 2005.

[FY04] Eva Maria Feichtner and Sergey Yuzvinski. Chow rings of toric varieties defined by
atomic lattices. Invent. math., 155(3):515–536, 2004.

[Gai03] Giovanni Gaiffi. Models for real subspace arrangements and stratified manifolds. Int.

Math. Res. Not., 2003(12):627–656, 2003.
[Gai15] Giovanni Gaiffi. Permutonestohedra. J. Algebraic Combin., 41(1):125–155, 2015.

[Gai16] Giovanni Gaiffi. Exponential formulas for models of complex reflection groups.

arXiv:1507.02090, to appear in European J. Combin., 2016.
[GH78] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley-

Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics.
[GS14] Giovanni Gaiffi and Matteo Serventi. Families of building sets and regular wonderful

models. European J. Combin., 36:17–38, 2014.

[Hen04] Anthony Henderson. Representations of wreath products on cohomology of De
Concini-Procesi compactifications. Int. Math. Res. Not., 2004(20):983–1021, 2004.

[HR08] Antony Henderson and Eric M. Rains. The cohomology of real De Concini-Procesi

models of Coxeter type. Int. Math. Res. Not., 2008:Art. ID rnn001, 29 pages, 2008.
[Hu03] Yi Hu. A compactification of open varieties. Trans. Amer. Math. Soc., 355(12):4737–

4753, 2003.

[Li09] Li Li. Wonderful compactification of an arrangement of subvarieties. Michigan Math.
J., 58(2):535–563, 2009.

[MP98] Robert MacPherson and Claudio Procesi. Making conical compactifications wonderful.

Selecta Math. (N.S.), 4(1):125–139, 1998.

[Rai09] Eric M. Rains. The action of Sn on the cohomology of M0,n(R). Selecta Math. (N.S.),
15(1):171–188, 2009.

[Spr74] Tonny Albert Springer. Regular elements of finite reflection groups. Invent. Math.,
25:159–198, 1974.

[ST54] Geoffrey Colin Shephard and John Arthur Todd. Finite unitary reflection groups.
Canadian J. Math., 6:274–304, 1954.



16 F.CALLEGARO, G.GAIFFI, AND P. LOCHAK

[Uly02] Alexander P. Ulyanov. Polydiagonal compactification of configuration spaces. J. Al-

gebraic Geom., 11(1):129–159, 2002.

[Yuz97] Sergey Yuzvinsky. Cohomology bases for the De Concini-Procesi models of hyperplane
arrangements and sums over trees. Invent. Math., 127(2):319–335, 1997.

F.C.: Dipartimento di matematica, Largo Bruno Pontecorvo, 5 56127 Pisa, Italia

E-mail address: callegaro@dm.unipi.it

G.G.: Dipartimento di matematica, Largo Bruno Pontecorvo, 5 56127 Pisa, Italia

E-mail address: gaiffi@dm.unipi.it
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