
Teaching networks in the cloud

Augusto Ciuffoletti (augusto@di.unipi.it)
–

Università di Pisa, Dept. of Computer Science
P.le B.Pontecorvo, I-56122 Pisa (ITALY)

Abstract—The Web is populated by a growing number of
services that provide access to remote IT resources: they are col-
lectively addressed as the Cloud. Such incoherent and expanding
number of services is investigated to find those that can help the
task of teaching, focusing on a challenging case study for which
I have a direct experience: a couobrse in computer networks with
the purpose of giving the students a hands-on experience using
production-grade techniques.

The outcome of the case study is that on-line services can
complement traditional frontal lectures, to enrich the communi-
cation between the teacher and the student, and to improve the
learning experience. This is a hint for teachers, and characterizes
a potential market for developers and providers.

I. INTRODUCTION

The availability of distributed services and resources is
reshaping the way in which people learns and teaches: the
successful diffusion of MOOCs, online tutorials, screen-casts
and all sorts of online learning supports corroborates the
statement. Not only the organizational aspects of educational
institutions are under stress, as shown by the success of the
Moodle project, but the tools themselves that the teacher uses
to transfer his knowledge and competence to the students are
under discussion [3].

In this latter perspective, the Internet provides the teacher
with new tools and services, with a modality that has become
popular under the term of cloud computing. They complement
the traditional interactions between the teacher and the students
taking place during frontal lectures, to help the teacher to
improve the quantity of information conveyed during the
lecture, to make it more appealing, to give the student the
opportunity to retrieve documentation, to trial expertise, and
to communicate outside lecture hours.

Such services are available in the Internet, and require
a minimal preparation of the host. The administration of a
Laboratory Classroom is thus simplified, and in many cases
we may even address a Bring Your Own Device (BYOD)
approach. Before embracing this latter option one should take
into account that the users may not be proficient in technology,
that the computational platform is going to be heterogeneous,
and that service costs are an issue. As a matter of fact, most
Cloud Computing services fit such context, and thus BYOD is
of real interest.

The focus of this paper is on a quite specific branch of
teaching, that directly interferes with the tools under study:
computer networking. Practical activity plays a relevant role in
a networking course, since it prepares students to participate
into projects involving cutting edge technologies. However, the
provision of a networking laboratory entails prohibitive costs,

even when supported by a departmental cluster [1], [9], [2]:
the adoption of cloud resources may solve the problem and
cut the costs.

The intention of this paper is to evaluate the impact of some
available cloud related technologies on the organization of the
practical activity associated with a course on computer net-
works [4]. In the closing section three use cases are discussed,
with examples of how existing cloud services can effectively
improve the learning experience.

II. REQUIREMENTS AND ASSUMPTIONS

Hardware resources are considered first, since it is impor-
tant to minimize this kind of investment. As a consequence
performance limits are an issue, and in a BYOD context
their definition becomes fuzzy: the less critical assumption is
that students have access to an entry level computing device.
Connectivity plays a vital role, and it is assumed that it is
supported by a WiFi network inside the university campus,
characterized by a capacity that is widely variable during the
day. It is supplemented by a broadband connection of limited
capacity for off-campus activity (i.e. homework).

In a BYOD context resources are partially defined since
personal devices may run any of the available operating
systems in any of the available versions and revisions: a valid
solution should be seamlessly portable on any device that
can be assimilated with a personal computer. This brings our
discussion to consider software resources.

Besides their availability, software tools that need to be
installed by the user should exhibit the following features:

• robustness – here intended as short term: the student
must be confident that software tools will behave as
expected during the lecture, or during homework, and that
they will resist to misuse;

• inexpensive – and manufacturers are in fact inclined to
provide free plans to diffuse their products;

• easy to install – since installation is either left as a
homework, therefore unattended, or carried out during a
laboratory lecture, in which case it needs to be successful
in most cases in a few tens of minutes;

• easy to use – but with a graceful learning slope; in fact
students are initially not proficient in the technology they
are using but, at least in our case of study, they should
develop some ability.

Given the requirements, let us see the kinds of task that can
be demanded to the Cloud. Two basic aspects are distinguished
here: one strictly aimed to provide tools that are useful to
exercise the course topics, another for the realization of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80268006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

virtual classroom, that expands and reflects the real class-room
in the Web domain. In both cases we are going to see that there
is a cross-fertilization between the technologies that are used,
and the purpose of the course.

As for the first aspect, each student needs to have a network
to play with. This statement extends to nearly all levels in the
Internet protocols stack: from link level to application level.
Even if a specific course may focus on one of these levels, in
practice it is impossible to ignore the existence of others. Thus,
a teaching approach that ignores the inter-dependencies among
networking layers does not adhere to reality, while student’s
experience should be close to what is found in the real world.

For instance, consider the case of a laboratory activity
consisting in the implementation of a TCP client/server pair in
a language of choice. A realistic hands-on experience requires
that the student faces the problem of deploying the software
and of launching it on a remote site: both problems have their
place in the engineering of a real world solution. Using the
loop-back interface to see TCP at work hides all the details
regarding the network layer, as well as the access to the
server to deploy the software, and the student has a superficial
and somewhat misleading experience of relevant aspects of
network programming.

An answer to the demand of a realistic networking ex-
perience comes from virtualization techniques. This is one
of the driving factors of Cloud Computing: the provision of
a resource “on demand” (a key word in cloud computing
definition [7]) becomes realistic when it is assembled using
raw resources, not when it is already in stock. In addition,
as a side effect, the student that uses virtualization techniques
to implement a networking laboratory, although shielded from
technical details, gets in touch with topics that play a relevant
role in information technology.

Once each student has a virtual network to play with,
the following step is to connect it to the Internet. This is
preliminary to the implementation of the Virtual Classroom,
a virtual place where the teacher makes available the tools
needed to carry out practical activities, and where the students
deliver their results to the teacher. It is not a replacement
of the physical classroom, in the spirit of [5], but extends
communication beyond our senses through the Internet, more
like [11].

Consider again the example of the client/server laboratory.
In this case the teacher shows lines of code on the blackboard,
and the students type them on their PCs: it is not much different
if they are copied from a USB stick, or downloaded from a
Web page. Indeed, this is not the way in which programmers
exchange IT artifacts: an opportunity to practice real-world
tools [10] is lost.

In the next sections three categories of products are studied
that may help in the implementation of a Virtual Classroom
in our course. To give a practical slant to our discussion,
for each case of study one commercial product is indicated
as a reference; however, the market is rapidly evolving and
new products are going to appear in the near future, and
trademarks will change. The case studies are based on the
experience gained with two courses recently given at the
University of Pisa, in Italy: one specific on hands-on activity
given to students of the ”Computer Science” course (https:

//sites.google.com/site/laboratoriodireti/), the other covering
both blackboard lectures and hands-on activity on the same
subject to the students of the ”Humanities Computer Science”
course (https://sites.google.com/site/telematicaunipi/).

A. Provisioning of a virtual network

Among the applications that allow the user to virtualize
resources, e.g. User Mode Linux, that has been successfully
used for purposes similar to those dealt with in this paper [8],
VirtualBox (https://www.virtualbox.org/) by Oracle, Virtual PC
by Microsoft, to name only those that specifically target the
utilization of a single host computer.

These products not only allow the user to virtualize several
guest computing devices, possibly running a different oper-
ating system, on an ordinary host computer, but they also
allow to virtualize an Ethernet network connecting together the
guests and the host, and to bridge guest connections across the
network interface of the host. Using such tools it is possible
to synthesize a virtual network that is useful for educational
purposes.

However, the management of a group of virtual entities to
form a network has long been a task requiring specific skills.
For instance, realizing a virtual computer with VirtualBox
requires the creation of a box with given hardware capabilities,
network interfaces included. Next the user imports a hard disk
image with the Operating System of choice, or installs one
from scratch. Networking requires the definition of a new
domain, typically the configuration of a DHCP server, and
the link between the virtual Ethernet and the virtual interfaces.
Each of the above tasks may exceed student’s competence, so
that he should blindly follow a ”recipe” given by the teacher.

The Mininet is a successful open source tool that simplifies
the task of configuring a network of virtual machines running
on a single PC [6]. This same operation is needed to set up
development test-beds in real production environments, and a
relevant effort has been spent in recent years to obtain simple,
and reliable, ways to perform that task, which is now called
provisioning. So that production-grade tools are now available:
let us see how one of them — Vagrant (https://docs.vagrantup.
com) — can be used for teaching purposes.

Once the hard disk image containing the operating system
— a single file sized hundreds of Megabytes — and the
configuration script — the Vagrantfile, a piece of Ruby code
that can be easily embedded in a Web page to allow cut and
paste operation in the classroom — are ready, the creation
of a sandbox network is a matter of single command. Most
cloud storage providers offer free plans that exceed the size of
a hard disk image, and the Atlas (https://atlas.hashicorp.com/)
service (formerly VagrantCloud) simplifies the reference to the
hard disk image, independently from the provider used to store
the image. Let us see the interplay of the various services, as
shown in Figure 1.

A working example is in Table I: it implements two guest
virtual machines, both connected to the Internet through a
bridge across the network interface of the host PC, and sharing
a local Ethernet network with the host PC (see Figure I). It
is written in Ruby and it is split into two stanzas, one for
each guest virtual machine. Once the teacher has implemented

https://sites.google.com/site/laboratoriodireti/
https://sites.google.com/site/laboratoriodireti/
https://sites.google.com/site/telematicaunipi/
https://www.virtualbox.org/
https://docs.vagrantup.com
https://docs.vagrantup.com
https://atlas.hashicorp.com/

Fig. 1. How several services contribute to the provision of a sandbox network,
and the actions of the student to implement the virtual network

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.define "pc0" do |pc0|
pc0.vm.hostname = "pc0"
pc0.vm.network :private_network, ip: "192.168.5.2"

end
config.vm.define "pc1" do |pc1|
pc1.vm.hostname = "pc1"
pc1.vm.network :private_network, ip: "192.168.5.3"

end
config.vm.box = "labreti/labvm"
config.ssh.forward_x11 = true

end

TABLE I. A Vagrantfile AND ITS DEPLOYMENT

the solution, the creation of the network sandbox on student’s
premises consists of installing Vagrant and VirtualBox, copy-
ing the Vagrantfile, and launching the vagrant up command
from a terminal.

The minimal example in Table I is functional, and fits the
purpose: the two virtual machines are reachable using a remote
shell (like ssh), using the dedicated IP addresses, just as if
they were remote.

Vagrant and VirtualBox conform to the requirements stated
in the introduction, since they are distributed for free, and
are available for all major operating systems. They are widely
diffused, and this is a guarantee of stability and robustness.

B. A Git repository for training coding skills

Coding is one of the activities carried out during a net-
working lab lecture. Students and teachers manipulate and
distribute source code: just like in a production environment, at
the core there is a revision control system. However, the data
flow is different from that of a traditional development chain,
where there is one single repository from which contributors
download the code, and occasionally produce an update. A
teaching environment is closer to an open source programming
environments: students download and alter the code distributed
by the teacher using a mechanism called branching. Each
student owns a different branch, that coexists in the same

repository of teacher’s source, or is recorded in a new reposi-
tory.

There are several Revision Control System but not all are
equally effective: one that is currently receives growing interest
is Git (http://git-scm.com/) [10], and cloud services exists that
are specialized in hosting Git repositories.

The distributed nature of Git meets our use cases: there
is no centralized repository, and branching is implemented
effectively, as well as the creation of an entirely new repository.
In a typical scenario, the teacher delivers the software, that may
be a practical demonstration, but also an incomplete or buggy
application to exercises programming skills. The students are
asked to interact with the code received from the teacher, which
may remain local inside student PC, until when it is shared
with the teacher, or with the colleagues, as it would happen
in the case of a collaborative project. At that point the virtual
classroom is again the place where the sharing takes place,
and the student uses the repository hosting service to share his
work, since the user of the service can create a new remote
repository in his own account.

In our typical scenario, the teacher and the students all have
personal accounts, and the teacher pushes demos and exercises
as individual repositories. The students in their turn clone
teacher’s repositories, and perform their activities on the local
copies. Using Git capabilities they can try alternative solutions,
restore checkpoints, and share their work with others creating
a new repository and pushing their solution: the teacher will
be granted access to the students repositories when needed.

One company that offers a service that meets our require-
ments is Atlassian, with the BitBucket (https://bitbucket.org/)
service. Each user is allowed an unlimited number of projects,
that are distinguished in public and private. Teacher’s repos-
itories typically fall in the former category, while students
projects are generally private. To take advantage of the free
plan offered by BitBucket a user cannot share his private
repositories with more than four other users, which limits the
size of a team to four students plus the teacher.

Given its popularity, Git is supported by many program-
ming tools, Integrated Design Environments (IDE) included:
for instance, Eclipse has an official plugin for it. Not only
exchanging an Eclipse project across a Git repository is far
easier than sending a source jar by email, but the student
experiences the utilization of tools that are effectively used
in production environments.

To conclude this section, in Figure 2 the work-flow of a
complex activity is shown: a learning assessment consisting
in debugging a program. On the left hand the activity of the
teacher that writes the correct program as the master branch
in a local repository is shown. Next she injects programming
errors and records the buggy version as a branch of the reposi-
tory; this latter is pushed as the master branch in the repository
hosted by the public service. A link to this repository is passed
to the students together with the assignment. Each student
clones locally the repository, and performs the assignment, the
last step consisting in the creation of a new repository, shared
with the teacher. To assess the performance of the student, the
teacher clones the student’s repository, and checks the solution.

http://git-scm.com/
https://bitbucket.org/

Fig. 2. Using a service hosting a Git repository for learning assessment

C. Offshore experience on a PaaS

A hand-on course about networking must include an open
Internet experience, outside the boundaries of the campus: the
availability of Platform as a Service (PaaS) providers opens
the way to this kind of experience.

A PaaS provides the user computing resources configured
to support a specific task. Providers offer a range of tools to
differentiate and configure the capability of the involved com-
puting resources. The basic options offered by most providers
allows carrying out a number of interesting didactic activities,
focusing on web services and dynamic web pages, but po-
tentially expanding to other kinds of network functionality. A
provider that offers a service fitting the needs of a rich educa-
tional experience is OpenShift (https://www.openshift.com/)

In OpenShift terminology, the computing resource is called
gear, and roughly corresponds to a server for which the user
has a non-privileged access. A gear is configured, by default,
as a plain Web server, but the user can add further capabilities
packaged as cartridges. This operation is carried out either
through a Web browser, making access to the OpenShift Web-
site using the user’s credentials, or through a command line
interface. The web interface is probably the most appropriate
for our case, since the user — in our case a student — is
able to configure a server with a few mouse clicks, and a very
limited training and awareness.

One relevant aspect of this operation is that the network
bandwidth consumed during the creation and configuration of
an OpenShift gear has a negligible footprint on the local net-
work: software packages and hard disk images are not down-
loaded locally — an activity that would deteriorate network
performance — but are managed on provider’s premises. So
that the configuration of the remote server could be the subject
of a hands-on class, instead of being left as a homework. The
educational institution does not have to deploy any additional
infrastructure for the virtual machines.

The counterpart for having a configured server in the
Internet for free is that the user has no administrative privileges
on the gear: notably, the user can neither install software pack-
ages, nor create Internet sockets (unless those managed through
the installed cartridges). However, there is a wide range of
exercises that can be carried out under such limitations, that

<html>
<head>
<title> Datagrams computer </title>
</head>
<body>
<h3>Datagrams computer</h3>
<p>
Compute how many datagrams to send a stream (MTU = 576)
<form name="numbytes">
Number of bytes in the stream:
<input type="text" name="nbytes"

value="" onchange="compute(this.value)">
</form>
</body>
<script>
function compute(bytes) {
packets=Math.ceil(bytes/(576-(20+8)));
alert(bytes+" bytes are encapsulated in "+packets+" packets")
}
</script>

TABLE II. AN ACTIVE HTML PAGE WITH A SIMPLE SCRIPT RUNNING
ON THE gear AT HTTP://DYNWP-ACIUFFOLETTI.RHCLOUD.COM/

have the side effect of protecting the sandbox from misuse or
intrusion.

The user populates the gear with custom functions that
are uploaded using the Git version control system: the user
replaces the (default) repository recorded in the gear with
customized content. This may consist of the engine of a Web
service, an active Web page, or the content of a database. The
operation consists of cloning the remote repository in the local
computer, and later pushing the code on the repository located
in the gear. Depending on the application, this operation can
be carried out using Git terminal commands, or using an
integrated development environment.

As it is frequently the case for Web services, OpenShift
offers a free plan consisting in the provision of a maximum
of three gears that are publicly accessible: they have a DNS
name associated with them. This exceeds what is needed to
practice the deployment of a service in the real Internet, with
an affordable complexity. More important, the student is able to
put in place the workbench with a minimal effort, and makes
a hands-on experience with the kind of tools that are used
in production environments. The simplest activity that can be
carried out using a PaaS involves reactive Web pages, an HTML
file containing some Javascript code: the example in Figure II
shows how simple it can be.

However, the gears may be equipped with sophisticated
software tools: from an educational point of view the most
interesting probably are the following, listed according with
an increased maturity requested to the student:

• content management systems – like Maven, or Word-
Press, a tool that is often used for training site managers;

• database systems – including NoSQL databases that are
the first choice for large amounts of data

• enterprise bus systems – like JBoss, for an experience
in middleware design.

What is notable here is the simplicity with which these
sophisticated tools are prepared: in the case of OpenShift one
click is sufficient to have the cartridge installed on the remote
machine. It is equally simple to download from a similar gear
an example prepared by the teacher: in a matter of minutes
the student clones teacher’s gear, and later it may update the

https://www.openshift.com/
http://dynwp-aciuffoletti.rhcloud.com/

code and push the result on its own gear.

III. THREE EXAMPLES

In this section three examples are shown of how a virtual
classroom that can help during a frontal lecture. Students have
their laptops, and they have an Internet connection with a
bandwidth that is sufficient for Web browsing. The examples
are based on tools and services that have been introduced in
the previous section.

The preparation of student’s laptops is described in the
example, but performed outside class hours: this option saves
lecture time and avoids a relevant peak of network traffic, but
entails that the operation must not require specific skills.

These are the first practical lectures, therefore the most
critical ones, of three distinct courses each focusing on one
of the networking layers: network, transport, application. The
teacher practices some elementary concepts already introduced
in previous lectures, and prepares the grounds on which to
build other training lectures: simplicity is a requirement since
technical details may divert the attention from the topic.

A. Network layer: packet sniffing

This a training lecture that may be part of a classical com-
puter networking course. The teacher has already explained
the basics of the IP and TCP protocols, and it is now time to
see them at work.

The lecture should have been prepared at home by each
student: during a preliminary lecture the teacher illustrates the
three packages that are going to be used, that later the student
installs on his own premises. The sequence of steps is the
following:

1) download and install VirtualBox
2) download and install Vagrant
3) download the Vagrantfile
4) launch the command vagrant up from a console, and

wait.

During the lecture the teacher shows how to access the
virtual machine (vagrant ssh) and illustrates the virtual
network, for instance using basic console commands like
ifconfig, ping, route. Using Wireshark (which should
be already installed on virtual machines) the teacher demon-
strates the protocol used by ICMP Ping, illustrates the IP header
and how Wireshark can filter based on header content.

Next the teacher introduces the nc command, and how it
can be used to put in place a simple TCP client/server pair
between two VMs. Finally, the students are asked to produce
the trace of a three-way handshake.

The interested reader finds the Vagrantfile in Figure I, or
in https://sites.google.com/site/tnitcloud/ .

B. Transport layer: Java sockets

The following training lecture might conclude the ex-
planation of the basics of client/server programming. As in
the former case, the teacher asks the students to prepare
their computers for the activity: besides the tools seen in
the previous example, the students are requested to install

the Eclipse integrated development environment, with the Egit
extension to manage Git repositories, and to subscribe to the
free plan of the BitBucket repository service.

The practical lecture starts downloading a TCP client/server
pair written in Java: this is obtained cloning a repository
indicated by the teacher inside the Eclipse IDE. The Java code
may be incomplete or contain bugs, and the students are asked
to produce a working version.

To test their products, the students compile the code and
save the runnable jars in the sandbox directory containing the
Vagrantfile, so that they are available in each of the virtual
machines in the /vagrant directory. For instance, on server
side:

bob@hislaptop:˜/home/sandbox$ vagrant ssh pc1
...
vagrant@pc1:$ java -jar /vagrant/Server.jar

The interested reader finds a link to a repository with code
to play with at https://sites.google.com/site/tnitcloud/.

C. Application layer: Javascript in a Web page

This lecture can be included as a hands-on exercise in a
course on the implementation of dynamic Web pages: it does
not require a network intensive preparation of the device, so
it can be presented on the fly during the second half of the
lecture.

As a first step the teacher invites the students to subscribe
for a free plan to OpenShift. Next the teacher demonstrates
how to create a gear, and indicates the repository containing
the code of the dynamic page. During the creation of the
gear the students indicate this repository as the source of
the content. The interested reader can try with the repository
indicated at URL https://sites.google.com/site/tnitcloud/. Now
each student has a Web server reachable with the browser with
the dynamic page installed, and it is possible to inspect the
traffic generated by a request, starting the DNS query.

The lecture can be extended cloning the content locally
(this requires the installation of Git) and modifying it. For
instance, adding another box for the MTU, or extracting the
Java code in a .js file. The modified the code is later pushed
on the gear with a Git push command.

IV. DISCUSSION AND CONCLUSIONS

Cloud technology has the potential to improve the quality
of our teaching, reducing at the same time the investment in
the computing infrastructure of educational institutions. The
paper shows that it is possible to extend a traditional classroom
with a virtual classroom that the students reach using their
own devices. In this sense the virtual classroom extends, and
does not replace, the face to face experience of a traditional
classroom.

Starting from experience, examples of various facets of
teaching of a Computer Networks course are shown, high-
lighting how the virtual classroom takes advantage of Cloud
technologies. In the examples, the student uses a private IaaS
cloud for training, finds didactic resources through public
SaaSs, and experiences Web technologies using a public PaaS
provision.

https://sites.google.com/site/tnitcloud/
https://sites.google.com/site/tnitcloud/
https://sites.google.com/site/tnitcloud/

There is a strong impact on the quality of the course, that
can be split into the following two components.

One is in common with any other e-learning experience,
and can be summarized as follows: the classroom does not
dissolve when the lecture finishes, but persists as a group
supported by shared Web resources. The quality of shared
resources improves day by day, and it is a task of the
researcher to indicate new directions for this evolution [4].
This paper contributes by adapting to a teaching environment
some resources that have been created for a different purpose,
and thus encourages the providers to adapt in their turn their
offer to an educational environment. For instance creating
a commercial offer for a software repository that meet the
needs of a virtual classroom. New kinds of shared resources,
some of them discussed in this paper, are emerging besides
traditional ones: software repositories, on demand platforms
and infrastructures have an impact in the future of education,
and might be the next frontier for the Moodle.

Another aspect is apparently specific for our use case:
for the courses in networking discussed in the paper the
tools have been found that bring the students into a realistic
experience. This is relevant since the content of the course is
strongly technical, and it is desirable that the student has a
realistic experience, not mediated by didactic expedients. In
other words, showing an animation of a three-way handshake
is of little purpose compared with capturing and inspecting
real packets in a real network. While it is true that the case
study and the examples are very specific for the purpose,
nonetheless the approach can be extended to any course with a
computational flavor. It is often possible to find in the Internet
the resources that allow a realistic practical experience, that
meet the requirements announced in the introduction: robust,
inexpensive, ease to install and use. For instance, consider a
course in ”technical writing”: the in the cloud option might
envision the use of an on-line word processor, like the Google
Documents one. As in the case explored in this paper, the
students might use their own equipment, and use a uniform
learning platform.

The introduction outlines the requirements for cloud ser-
vices and network infrastructures. Such an analysis, that is
based on experience, is of help for two other categories of ICT
professionals: cloud developers and providers on one side, and
managers of educational infrastructures on the other.

Cloud developers and providers know that education is a
promising market: two examples, besides those extensively an-
alyzed, in this paper are Moodle, that concentrates on the social
and management of an educational institution, and Codio, that
provides a programming IDE in the cloud and specifically
addresses education institutions. The relevant features of a
successful educational tool in the cloud have been pointed
out: short term robustness, low cost, easy installation and
utilization. They are clear indications for the emerging market
of educational services.

On the side of infrastructure management, the examples
given in the paper show that there is a relevant organiza-
tional impact of an in the cloud education, since it almost
entirely relieves the educational institution from the burden
of managing computing devices, concentrating instead on the
aspects that allow the students and the teachers to use their

own devices in the institution premises. The accent is therefore
on the network infrastructure, that should allocate bandwidth
on a per classroom basis, possibly taking into account the
network load expected from a given lecture: just as the today
teacher asks for a classroom with an electronic blackboard,
tomorrow he should be able to ask for a 10 Megabytes/second
per student. Similarly, the power supply should be available
for each student. Such requirements are technically feasible,
and have a moderate economic impact, and their relevance is
often underestimated.

Examples have been introduced to show that the tools to
implement a virtual classroom are available for free: some
effort is needed to compose existing services and to adapt
their use to the expected competence of the students. In the
future, the emergence of products that specifically address
teaching is expected, with needs similar to those of open source
development.

V. BIBLIOGRAPHY

REFERENCES

[1] Ka Ching Chan and M. Martin. An integrated virtual and physical
network infrastructure for a networking laboratory. In Computer Science
Education (ICCSE), 2012 7th International Conference on, pages 1433–
1436, July 2012.

[2] F. Gomez-Folgar, R. Valin, A. Garcia-Loureiro, F. Pena, and I. Zablah.
Cloud computing for teaching and learning MPI with improved network
communications. In Proceedings of the 1st International Workshop on
Cloud Education Environments, pages 22–27, 2012.

[3] Agustin de La Varga Gonzalez. The importance of ”cloud education”
at development organizations. In Proceedings of the 1st International
Workshop on Cloud Education Environments, pages 1–6, 2012.

[4] Keith Jeferry, George Kousiouris, Dimosthenis Kyriazis, Jrn Altmann,
Augusto Ciuffoletti, Ilias Maglogiannis, Paolo Nesi, Bojan Suzic, and
Zhiming Zhao. Challenges emerging from future cloud application
scenarios. Procedia Computer Science, 68:227 – 237, 2015. 1st Inter-
national Conference on Cloud Forward: From Distributed to Complete
Computing.

[5] A. Krukowski and I. Kale. Virtual classroom. In Advanced Learning
Technologies, 2001. Proceedings. IEEE International Conference on,
pages 279–282, 2001.

[6] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
Rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,
pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[7] Peter Mell and Timothy Grance. The NIST definition of cloud com-
puting. Technical Report Special Publication 800-145, US Department
of Commerce, October 2011.

[8] Maurizio Pizzonia and Massimo Rimondini. Netkit: Easy emulation of
complex networks on inexpensive hardware. In Proceedings of the 4th
International Conference on Testbeds and Research Infrastructures for
the Development of Networks & Communities, TridentCom ’08, pages
7:1–7:10, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[9] J. Prieto-Blazquez, J. Arnedo-Moreno, and J. Herrera-Joancomarti. An
integrated structure for a virtual networking laboratory. Industrial
Electronics, IEEE Transactions on, 55(6):2334–2342, June 2008.

[10] Gowtham S. Revision control system (RCS) in computational sciences
and engineering curriculum. In Proceedings of the 2014 Annual Con-
ference on Extreme Science and Engineering Discovery Environment,
XSEDE ’14, pages 76:1–76:3, New York, NY, USA, 2014. ACM.

[11] V. Tam, A. Yi, and E.Y. Lam. Building an interactive simulator on
a cloud computing platform to enhance students’ understanding of
computer systems. In Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on, pages 154–155, July 2013.

http://codio.com/

	Introduction
	Requirements and assumptions
	Provisioning of a virtual network
	A Git repository for training coding skills
	Offshore experience on a PaaS

	Three examples
	Network layer: packet sniffing
	Transport layer: Java sockets
	Application layer: Javascript in a Web page

	Discussion and conclusions
	Bibliography
	References

