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Abstract  

Particulate airborne pollution is associated with increased cardiopulmonary morbidity. 

Microparticles are extracellular vesicles shed by cells upon activation or apoptosis involved 

in physiological processes such as coagulation and inflammation, including airway 

inflammation. We investigated the hypothesis that particulate matter causes the shedding 

of microparticles by human mononuclear and endothelial cells. 

Cells, isolated from the blood and the umbilical cords of normal donors, were cultured in 

the presence of particulate from a standard reference. Microparticles were assessed in the 

supernatant as posphatidylserine concentration. Microparticle-associated tissue factor was 

assessed by a on-stage clotting assay. Nanosight technology was used to evaluate 

microparticle size distribution.  

Particulate matter induces a dose- and time- dependent, rapid (1 h) increase in 

microparticle generation in both cells. These microparticles express functional tissue 

factor. Particulate matter increases intracellular calcium concentration and phospholipase 

C inhibition reduces microparticle generation. Nanosight analysis confirmed that upon 

exposure to particulate matter both cells express particles with a size range consistent with 

the definition of microparticles (50-1000 nm). 

Exposure of mononuclear and endothelial cells to particulate matter upregulates the 

generation of microparticles at least partially mediated by calcium mobilization. This 

observation might provide a further link between airborne pollution and cardiopulmonary 

morbidity. 
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1. Introduction 

Particulate matter (PM) is a complex mixture of small particles and liquid droplets. Particle 

pollution is made up of a number of components, including acids (such as nitrates and 

sulfates), organic chemicals, metals, and soil or dust particles. The size of particles is 

directly linked to their potential to cause health problems, as it is in turn directly linked to 

the ability of particles to penetrate more or less deeply into the respiratory system. PM 

exposure has wide effects on health (Alfaro-Moreno et al., 2007) and a large body of 

evidence has consistently shown that both short and long term exposure to PM are 

associated with increased cardiovascular and pulmonary related morbidity and mortality 

[see (Pelucchi et al., 2009) and (Franklin et al., 2015) for  comprehensive reviews]. 

However, the mechanisms behind this association are not fully understood.  

Microparticles (MP), also referred to as microvesicles or ectosomes, are small (diameter 

0.05-1 μm) vesicles that originate from the cell surface of most (if not all) cell types during 

activation or apoptosis. MP are heterogeneous in nature, varying in both size and content, 

and present cell surface markers and cytoplasmic components of the parent cells from 

which they originate. MP are involved in numerous physiologically relevant processes, 

such as blood coagulation (Falati et al., 2003, Celi et al., 2004) and inflammation (Celi et 

al., 2004, Leroyer et al., 2010, Ardoin et al., 2007, Distler et al., 2006), including airway 

inflammation (Cerri et al., 2006, Neri et al., 2011, Cordazzo et al., 2014). Accordingly, MP 

have recently gained attention as both biomarkers and effectors in human diseases, 

including cardiac and pulmonary diseases (Takahashi et al., 2014, Takahashi and Kubo, 

2014, Amabile et al., 2014, Hu et al., 2014, Duarte et al., 2013). 

Two well-known cellular processes lead to the formation of MP, i.e. cell activation, either 

chemical or physical, by agonists or shear stress respectively, and apoptosis, through the 

action of growth factor deprivation or apoptotic inducers (VanWijk et al., 2003, Mostefai et 

al., 2008). We have previously demonstrated that a number of agonists, including two 
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different peroxisome proliferator-activated receptor-γ agonists, angiotensin II and cigarette 

smoke extract cause a rapid, calcium dependent, upregulation of MP shedding from 

leukocytes and that different calcium inhibitors largely prevented MP shedding (Neri et al., 

2012, Cordazzo et al., 2013, Cordazzo et al., 2014). Since PM induces cytosolic calcium 

mobilization in monocytes (Brown et al., 2007), we speculated that PM, more specifically 

PM10,  induces the generation of MP by peripheral blood mononuclear cells (PBMC) and 

human umbilical vein endothelial cells (HUVEC), thus providing a novel link between 

airborne pollutants and cardiopulmonary risk.  

 

2. Materials and Methods 

2.1 Reagents and kits 

RPMI 1640 medium, penicillin, streptomycin, L-glutamine, fetal bovine serum, trypan blue, 

phosphate buffered saline, Ficoll-Hystopaque, dextran T500 and U73122 were obtained 

from Sigma (Milano, Italy). Thromboplastin standard was obtained from Beckman Coulter 

(Milano, Italy). Human anti-tissue factor (TF) antibody was obtained from America 

Diagnostica (Instrumentation Laboratory, Milano, Italy). The Zymuphen MP-Activity kit was 

obtained from Hyphen BioMed (Neuville-sur-Oise, France). The Fluo-4 NW Calcium Assay 

kit was obtained from Molecular Probes (Invitrogen, Milano, Italy). Standard reference 

material 1648a Urban Particulate Matter (SRM1648a) was obtained from National Institute 

of Standard Technology (Gaithersburg, MD, USA). 

2.2 Cell isolation and culture  

2.2.1 HUVEC  

HUVEC were isolated from humbilical vein cords as described (Del Fiorentino et al., 2010) 

by digestion with 0.1% collagenase (specific activity: 316 U/mL, Gibco, Invitrogen) and 

grown to confluence at 37°C in 5% CO2 humidified incubator, on 25-cm2 tissue culture 

flasks previously coated with 1% gelatine in supplemented culture medium (M199 with 
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10% heat inactivated foetal calf serum, 100 U/mL penicillin, 100 μg/mL streptomycin, 2mM 

l-glutamine, 10mM HEPES pH 7.4, heparin 12 IU/mL, 1% retinal derived growth factor, all 

from Sigma). Following trypsin treatment, the cells were detached from the flasks and final 

mono-layers were prepared by seeding HUVEC on gelatine-precoated culture plates and 

then incubated for 24–48 h to ensure confluence. HUVEC were identified by their typical 

cobblestone morphology and immunofluorescence staining by monoclonal antibodies 

against von Willebrand Factor (Immunotech, Milano, Italy). Cells up to the fourth passage 

were used for all experiments.  

The investigation conformed with the principles outlined in the declaration of Helsinki for 

use of human tissue. 

2.2.2 PBMC  

PBMC were isolated either from fresh buffy coats obtained from the local blood bank or 

from the peripheral blood of normal volunteers as described (Cerri et al., 2006). Briefly, 

after obtaining the necessary consent from the donor, a fresh buffy coat was mixed gently 

with an equal volume of 2,5% Dextran T500, and left for 40 minutes for erythrocyte 

sedimentation. Ten mL of leukocyte-rich supernatant was recovered and layered over 5 

mL of Ficoll-Hystopaque and centrifuged for 30 minutes at 350 x g at 4°C. The PBMC-rich 

ring was recovered and washed twice in phosphate buffered saline. PBMC were then 

resuspended in RPMI supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin, 

2mM l-glutamine and allowed to adhere for 30 minutes at 37°C on 24-well plates (2x106 

cells/well). Then the cells were washed two times with pre-warmed phosphate buffered 

saline and resuspended in RPMI, 100 U/mL penicillin, 100 μg/mL streptomycin, 2mM l-

glutamine, 5%FBS and incubated overnight at 37°C.  

All procedures related to the use of human blood and tissues were approved by the ethical 

committee of the Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy (protocol number 

16715). 
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2.3 MP generation and purification                                                                                      

PBMC and HUVEC were washed twice with pre-warmed phosphate buffered saline. For 

MP release analysis, SRM1648a was resuspended in cell media and added; after the time 

of incubation indicated in the relevant figures at 37°C the supernatants were recovered, 

cleared by centrifugation at 14,000 x g for 5 min at room temperature to remove dead cells 

and big cell fragments that might have detached during the stimulation and immediately 

used for further experiments. In selected experiments, MP were further purified by 

ultracentrifugation (100,000 x g for 2 hours, 4°C); the pellet was resuspended in 250 μL of 

normal saline and used in a one-stage clotting assay to measure TF-dependent 

coagulation. For Nanosight analysis, an aliquot of cell medium was centrifuged at 4°C at 

1000g for 15 minutes, at 2000g for 15 minutes and then at 3000g for 15 minutes. 

Supernatants were then submitted to ultracentrifugation at 110,000 x g for 2 hours at 4°C. 

2. 4 Measurement of MP-associated phosphatidylserine (PS) 

PS-positive MP in each sample were detected using the Zymuphen MPactivity kit (Hyphen 

BioMed, Neuville-sur-Oise, France) according to the manufacturer’s instructions and 

expressed as PS concentration (nM PS). 

2.5 Nanosight detection of MP 

The number and dimension of MP were assessed by nanoparticle tracking analysis (NTA). 

Using a Nanosight LM10-HS system (NanoSight Ltd., Amesbury, UK), MP were visualized 

by laser light scattering. Briefly, MP-enriched pellets were resuspended in 300 µL of 0.1 

µm filtered sterile phosphate buffered saline and five recordings of 30 seconds were 

performed for each sample. Collected data were analyzed with NTA software, which 

provided high-resolution particle size distribution profiles and concentration measurements 

of the vesicles in solution. 

2.6 Measurement of intracellular calcium concentration 

Molecular Probes Fluo-4 NW Calcium Assay kit was used to measure the 
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changes in the intracellular calcium concentration ([Ca2+]i) of PBMC and HUVEC. 

Prewashed PBMC (0.33 x 106 cells/well) or HUVEC (15 x 103 cells/well) were loaded with 

100 μL of the dye loading solution containing Fluo-4 NW dye and probenecid, according to 

the manufacturer’s instructions. The 96-well plate was incubated at 37 °C for 45-60 min in 

the dark and SRM1648a (500μg/mL) was added to the cells. The changes in Fluo-4 NW 

fluorescence were measured by the Wallac 1420 Victor 2 (PerkinElmer, Milan, Italy) at λex 

494 nm and λem 516 nm. Calcium mobilization was observed over time (up to 150 sec) and 

analyzed by the Wallac 1420 Software version 3 (PerkinElmer Life and Analytical 

Sciences, Wallac, Milan, Italy). The increase in [Ca2+]i fluorescence was expressed as 

relative fluorescence units (RFU). 

2.7 Assessment of MP-bound TF activity 

TF activity was measured in MP generated in vitro from PBMC and HUVEC by a one-

stage clotting time assay as described, except that the normal human plasma was made 

MP-poor by ultracentrifugation (100,000xg for 2 h, 4°C). Briefly, disrupted MP (100 μL) 

were mixed with 100 μL of MP-poor normal human plasma at 37°C; 100 μI of 25 mM 

CaCl2 at 37°C was added to the mixture and the time to clot formation was recorded. The 

results were expressed in arbitrary milliunits of procoagulant activity by comparison with a 

standard curve obtained using a human brain thromboplastin standard. This preparation 

was assigned a value of 1,000 arbitrary mU for a clotting time of 30 s. An anti-human TF 

antibody (American Diagnostica, Instrumentation Laboratory, Milano, Italy; 30 μg/mL) 

largely inhibited the procoagulant activity, thus confirming its identity with TF (Neri et al., 

2012) (data not shown). 

2.8 Data presentation and statistical analysis 

Unless otherwise indicated, data are shown as mean+SEM from n independent, 

consecutive experiments; comparisons among groups were made by either ANOVA for 

repeated measures followed by Tukey’s analysis or Student’s paired t-test, as appropriate, 
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using Prism Software (GraphPad, San Diego, CA, USA). Values of p<0.05 were 

considered statistically significant. 

 

3. Results 

3.1 PM induces MP generation by PBMC and HUVEC 

To investigate whether PM induces the release of MP, PBMC and HUVEC were stimulated 

with increasing concentrations of SRM1648a for 1 hour. Both PBMC and HUVEC 

generated MP upon stimulation with SRM1648a. The effect was concentration dependent 

and reached a plateau at approximately 250 and 125 μg/mL for PBMC (2A) and HUVEC 

(2B), respectively (figure 1). Due to the relatively high dispersion of data,, we used 500 

μg/mL SRM1648a, a concentration that caused a consistent increase in MP generation, 

for all subsequent experiments with both cell types. As shown in figure 2, the increase in 

MP generation was statistically significant with both PBMC (2A) and HUVEC (2B).  

 

figure 1 

 

 

figure 2 
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3.2 Kinetics of MP generation upon exposure to PM 

MP generation can be caused by different mechanisms; accordingly, the kinetics vary 

depending, for example, on whether calcium mobilization, cell activation or apoptosis is 

involved (VanWijk et al., 2003). We treated cells with SRM1648a and assessed MP 

generation at different time points. As shown in figure 3, MP generation increased steadily 

with time both in the absence and in the presence of the agonist; however, the difference 

between SRM1648a treated and untreated cells tended to level off and was maximal at 

early time points (1 h) for both PBMC (3A) and HUVEC (3B). 

 

figure 3 

 

3.3 MP analysis by Nanosight 

MP released in medium after SRM1648a treatment and in untreated control were isolated 

and their number and size distribution analyzed by Nanosight analysis. As shown in figure 

4, both PBMC (4A) and HUVEC (4B) stimulated with SRM1648a for 1 h showed an 

increased production of MP. In particular, for PBMC, the mean number of particles (mean 

of ten replicates) was 2.56.108/mL in untreated controls and 8.54.108/mL in SRM1648a 

stimulated cells while, for HUVEC cells, the mean number of particles was 11.44.108/ml 

and 22.25.108/ml for control and SRM1548a stimulated cells, respectively. MP size peaked 

at 120.6 nm and at 132.3 nm for control and SRM1648a-treated PBMC, and at 160.3 and 

at 156.1 nm for control and SRM1648a-treated HUVEC. 
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figure 4 

 

3.4 PM  induces the mobilization of intracellular calcium in PBMC and HUVEC 

PM has been shown to induce an increase in intracellular calcium concentration (Brown et 

al., 2007). Because calcium mobilization is involved in rapid MP generation (Neri et al., 

2012, Cordazzo et al., 2013, Cordazzo et al., 2014) we investigated whether SRM1648a 

increases [Ca2+]i in our experimental conditions. Figure 5 confirms that SRM1648a  (500 

μg/mL) induces a rapid and significant increase in [Ca2+]i in PBMC (5A) and HUVEC (5B). 

 

 

figure 5 
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3.5 PM-induced MP generation is mediated through phospholipase C  

To further characterize the role of calcium in the induction of MP by SRM1648a-stimulated 

cells, we used the phospholipase C  inhibitor, U73122, to investigate the role of calcium 

ions stored in the endoplasmic reticulum. Cells were pre-treated with U73122 (1 μM) for 30 

minutes prior to stimulation with SRM1648a for 1 h. Figure 6 shows that U73122 inhibits 

SRM1648a1648a-induced MP generation in PBMC (A) and HUVEC (B). 

 

       

figure 6 

 

3.6 SRM 1648a induces the expression of MP-bound TF 

The procoagulant activity of MP is due to the exposure of PS on their surface and is also 

enhanced by the presence of functional TF (reference). To evaluate whether SRM1648a 

induces the generation of TF-bearing MP by PBMC and HUVEC, we analyzed the 

procoagulant activity of purified MP released by SRM1648a treated (1 h) and untreated 

cells through a one-stage clotting test. As shown in Figure 7A and 7B respectively, 

SRM1648a induces a 2- to 2.5-fold increase in procoagulant activity of MP by PBMC and 

3- to 3.5-fold increase in procoagulant activity of MP by HUVEC. A monoclonal antibody to 

TF (epitope specific for amino acids 1–25; American Diagnostica, Stamford, CT, USA; 30 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

μg/mL) inhibited most of the procoagulant activity (not shown), confirming its identity with 

TF. 

 

 

figure 7 

  

4. Discussion 

The present study aimed at investigating the possible role of PM on the generation of MP 

by PBMC and HUVEC. Our data demonstrate that SRM1648a, a standard reference 

source of PM, is able to induce the generation of MP in both PBMC and HUVEC. The 

observation that SRM1648a causes an increase in [Ca2+]i in both cell lines is consistent 

with the hypothesis that PM stimulates MP shedding  through calcium mobilization. The 

demonstration that the phospholipase C inhibitor, U73122, largely inhibits the effect 

suggests a scenario whereby MP shedding requires calcium mobilization from intracellular 

storage pools that takes place via phosphatidylinositol (3,4,5) trisphosphate (Fruhbeck, 

2006).  

MP were detected and enumerated through the ability of the negatively charged 

phosopholipids expressed on the outer leaflet of their membrane to activate the 

prothrombinase complex. Therefore, these MP are by definition procoagulant. However, 

the procoagulant potential of MP of different origin may be increased by the expression of 

TF on their membrane (Owens and Mackman, 2011). Our data demonstrate that MP 
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generated upon exposure of PBMC and HUVEC to SRM1648a carry functionally active TF 

and can therefore trigger the activation of the extrinsic pathway of blood coagulation, thus 

contributing to thrombotic disorders. Of potential interest in this context, an abnormal 

activation of the coagulation process has also been described in idiopathic pulmonary 

fibrosis (Chambers, 2008) and we have recently described a potential role for 

procoagulant, TF bearing MP in this disease (Novelli et al., 2014). 

Flow cytometry is a well established method of MP analysis and has been used 

successfully by many Authors, including ourselves (Cordazzo et al., 2013, Amabile et al., 

2014, Thomashow et al., 2013). The approach, however, carries significant theoretical 

problems due to the small size of the vesicles that are of the same order of magnitude as 

the incident wavelength (Zwicker et al., 2009, Headland et al., 2014), and it is likely that 

only bigger MP are accurately recognized. Furthermore, in the experiments reported in this 

work large PM could not be consistently removed from the samples and clogging of the 

flow cytometer was observed.  For these reasons, we used nanosight technology as an 

alternative approach to confirm the main data. The results indicate that both PBMC and 

HUVEC shed vesicles with a diameter that ranges form 50 to 500 nm, therefore consistent 

with MP, and that exposure to PM increase the number of events. 

Experimental evidence indicates that peaks of particulate air pollution correlate with 

increased morbidity and mortality from respiratory and cardiovascular causes (Pelucchi et 

al., 2009), (Franklin et al., 2015). Epidemiological studies have shown an increase in 

circulating procoagulant and proinflammatory MP after exposure to airborne pollutants 

(Emmerechts et al., 2012). Our data provide mechanistic bases to the observation. 

Furthermore, a better understanding of the mechanisms of MP generation might prove 

useful for a pharmacological modulation of their detrimental effects. 
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4. Legends to the figures 

Figure 1 - Dose response curve of MP generation by PBMC (A) and HUVEC (B) upon 

incubation with SRM1648a (1 h).  Data from one experiment representative of three for 

each cell type.  

Figure 2 - MP generation by PBMC (A) and HUVEC (B) upon incubation with SRM1648a 

(500 µg/mL; 1 h). *p<.05 for SRM1648a-treated cells compared with baseline (ANOVA); 

n=4. 

Figure 3 - Time-response curve for MP generation by PBMC (A) and HUVEC (B) upon 

incubation with SRM1648a (500 µg/mL). Hatched bars: unstimulated cells; solid bars: PM 

stimulated cells. *p<.05 for SRM1648a-treated cells compared with baseline (ANOVA); 

n=4  

Figure 4 - MP size measurement and quantification. A) size distribution of PBMC MP 

assessed by Nanosight in untreated control and after SRM1648a stimulation (1h). B) size 

distribution of HUVEC MP assessed by Nanosight in untreated control and after 

SRM1648a stimulation (1 h). Solid line: unstimulated cells; dotted line: PM stimulated cells. 

Figure 5 - Comparison of intracellular calcium concentration in PBMC (A) and HUVEC (B) 

in baseline conditions (open circles) and after SRM1648a (500 μg/mL) treatment (solid 

circles), as assessed by Fluo4-NW incorporation (RFU: relative fluorescence units); n= 3 

Figure 6 - MP generation, expressed as PS concentration, by PBMC (A) and HUVEC (B) 

incubated in the absence and in the presence of SRM1648a (1 h; 500 µg/mL) and U73122 

(1 µM; 30 minutes preincubation). * p<.05 for SRM1648a treated cells in the presence of 

U73122 compared with SRM1648a-treated cells in the absence of the inhibitor; (ANOVA 

analysis with Tukey post-test); n=4. 

Figure 6 - SRM1648a induces the generation of TF bearing MP by PBMC (A) and HUVEC 

(B). Cells were incubated with SRM1648a (500µg/mL; 1 h).The supernatants were then 
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tested for TF activity with a one-stage clotting assay. ***p<.001 for SRM1648a-treated 

cells compared with baseline, n=3 for PBMC and n=6 for HUVEC (Student’s paired t-test). 



 

· Exposure of cells to particulate causes shedding of prothrombotic microparticles 

· The phenomenon is mediated by calcium mobilization 

· Microparticles could link exposure to particulate to cardiopulmonary morbidity 
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