
J
H
E
P
1
2
(
2
0
1
3
)
0
8
9

Published for SISSA by Springer

Received: November 14, 2013

Accepted: December 3, 2013

Published: December 20, 2013

Investigating the near-criticality of the Higgs boson

Dario Buttazzo,a,b Giuseppe Degrassi,c Pier Paolo Giardino,a,d Gian F. Giudice,a

Filippo Sala,b,e Alberto Salviob,f and Alessandro Strumiad

aCERN, Theory Division,

CH-1211 Geneva 23, Switzerland
bScuola Normale Superiore and INFN, sezione di Pisa,

Piazza dei Cavalieri 7, Pisa, Italy
cDipartimento di Matematica e Fisica, Università di Roma Tre and
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1 Introduction

The discovery of the Higgs boson [1, 2] was expected to be the herald of new physics soon to

be found at the TeV scale. So far, however, no signal of new physics nor any clear deviation

from the SM Higgs properties have been detected at the LHC. Moreover, the Higgs mass

has not provided unambiguous indications for new physics. The measured value Mh =

125.66±0.34 GeV [3–7] is a bit high for supersymmetry and a bit low for composite models,

making theoretical interpretations rather uncomfortable. Neither option is unequivocally

favoured, although neither option is excluded. On the other hand, Mh = 125.66±0.34 GeV

lies well within the parameter window in which the SM can be extrapolated all the way

up to the Planck mass MPl, with no problem of consistency other than remaining in the

dark about naturalness. Remarkably, in the context of the SM the measured value of Mh

is special because it corresponds to a near-critical situation in which the Higgs vacuum

does not reside in the configuration of minimal energy, but in a metastable state close to

a phase transition [8] (for earlier considerations see [9–31]; for related studies see [32–57]).

We believe that near-criticality of the SM vacuum is the most important message we

have learnt so far from experimental data on the Higgs boson. Near-criticality gives us

a unique opportunity to obtain information about physics taking place at energy scales

well beyond the reach of any collider experiment. Its consequences are so intriguing and

potentially so revolutionary that they deserve accurate calculations and dedicated studies.

In this paper we continue our programme of investigating the status and implications

of near-criticality. We make advancements on both sides: on the computational side,

we improve the calculation of the large-field extrapolation of the Higgs potential and of

the critical value of Mh for absolute stability; on the interpretation side, we explore the

significance of near-criticality in terms of high-energy SM parameters.

The main new calculations presented in this paper are the results for the ms quartic

Higgs coupling λ(µ̄), for the top Yukawa coupling yt(µ̄), for the electroweak gauge cou-

plings at NNLO precision (two loops) in terms of physical observables: the pole masses of

the Higgs (Mh), of the top (Mt), of the Z (MZ), of the W (MW ), the ms strong coupling

α3(MZ), and the Fermi constant Gµ. We improve on the study in ref. [8] where 2-loop

threshold corrections to λ(µ̄) had been computed in the limit of vanishing weak gauge

couplings, and 2-loop electroweak threshold corrections to yt(µ̄) had been neglected. As
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a byproduct of our two-loop calculation of λ(µ̄) we also obtain the ms quadratic Higgs

coupling m2(µ̄) at the NNLO level.

Recently, many authors have contributed towards the completion of the calculation of

the renormalisation-group (RG) evolution (β-functions and thresholds) of the sizeable SM

couplings at NNLO precision. We summarise the present status of these calculations in

table 1. Our new calculation of threshold corrections, together with the results collected

in table 1, allows us to refine the determination of the critical value of Mh that ensures

absolute vacuum stability within the Standard Model (SM) up to the Planck scale. Fur-

thermore, our precision extrapolation of the SM to high energy scales is relevant for testing

any new physics scenario able of making predictions, such as unification of gauge couplings

constants, or high-scale supersymmetric models that restrict or predict the quartic Higgs

coupling.

The paper is organised as follows. In section 2 we outline the general strategy for the

two-loop computations and describe our new results. In section 3 we present numerical

results for the ms couplings at the weak scale. The implications of these results for Planck

scale physics are discussed in sections 4–6. The results are summarised in the conclusions.

We complemented the paper with several appendices where we collect all the known results

on the RG equations and the threshold corrections that we used in our computation.

2 Computing the ms parameters with two-loop accuracy

In this section we first outline the general strategy followed to determine the ms parameters

in terms of physical observables at the two-loop level. Then, in sects. 2.1 and 2.2, we will dis-

cuss the results for the quartic and quadratic Higgs couplings, respectively, while section 2.3

is dedicated to the calculation of two-loop threshold corrections to the top Yukawa coupling.

First of all, all ms parameters have gauge-invariant renormalisation group equa-

tions [88, 89] and are gauge invariant, as we now prove.1 Let us consider a generic ms

coupling θ measuring the strength of a gauge invariant term in the Lagrangian and a

generic gauge fixing parametrized by ξ (for example the Rξ gauges). Let us first recall the

definition of θ in terms of the bare coupling θ0,

µ̄d−4θ0 =

∞∑
k=0

ck(θ, ξ)

(d− 4)k
, (2.1)

where the ck are defined to be the residues at the divergence d = 4. The important point

is that c0 = θ, with no dependence on ξ. Since θ0 is gauge independent, we have

0 = µ̄d−4dθ0

dξ
=
dθ

dξ
+
∞∑
k=1

1

(d− 4)k
dck(θ, ξ)

dξ
. (2.2)

Since this equation is valid for any d, and θ has no poles at d = 4 by definition, we obtain

dθ/dξ = 0, that is θ is gauge invariant (as well as all the residues ck).
2

1Gauge invariance of fermion pole masses has been proved in refs. [90–92] and here we generalise their

proof.
2Notice that this proof does not apply to the Higgs vev v, because it is not the coefficient of a gauge-

invariant term in the Lagrangian.
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Renormalisation Group Equations

LO NLO NNLO NNNLO

1 loop 2 loop 3 loop 4 loop

g3 full [58, 59] O(α2
3) [60, 61] O(α3

3) [62, 63] O(α4
3) [64, 65]

O(α3α1,2) [66] O(α2
3αt) [67]

full [68] full [69, 70]

g1,2 full [58, 59] full [68] full [69, 70] —

yt full [71] O(α2
t , α3αt) [72] full [73, 74] —

full [75]

λ,m2 full [71] full [76, 77] full [78, 79] —

Threshold corrections at the weak scale

LO NLO NNLO NNNLO

0 loop 1 loop 2 loop 3 loop

g2 2MW /V full [80, 81] full [This work] —

gY 2
√
M2
Z −M2

W /V full [80, 81] full [This work] —

yt
√

2Mt/V O(α3) [82] O(α2
3, α3α1,2) [38] O(α3

3) [83–85]

O(α) [86] full [This work]

λ M2
h/2V

2 full [87] for g1,2 = 0 [8] —

full [This work]

m2 M2
h full [87] full [This work] —

Table 1. Present status of higher-order computations included in our code. With the present

paper the calculation of the SM parameters at NNLO precision is complete. Here we have defined

V ≡ (
√

2Gµ)−1/2 and g1 =
√

5/3gY .

To determine the ms parameters in terms of physical observables two strategies can

be envisaged.

i) Perform an ms renormalisation to obtain directly the ms quantity of interest in terms

of ms parameters. Then express the ms parameters in terms of the physical ones via

appropriately derived two-loop relations.

ii) Use a renormalisation scheme in which the renormalised parameters are directly ex-

pressed in terms of physical observables (we call this scheme generically on-shell

(OS) and label quantities in this scheme with an OS). Then relate the parameters as

expressed in the OS scheme to their ms counterparts we are looking for.
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MW = 80.384± 0.014 GeV Pole mass of the W boson [93, 94]

MZ = 91.1876± 0.0021 GeV Pole mass of the Z boson [95]

Mh = 125.66± 0.34 GeV Pole mass of the higgs [3–7]

Mt = 173.10± 0.59± 0.3 GeV Pole mass of the top quark [96–99]

V ≡ (
√

2Gµ)−1/2 = 246.21971± 0.00006 GeV Fermi constant for µ decay [100]

α3(MZ) = 0.1184± 0.0007 ms gauge SU(3)c coupling (5 flavours) [101]

Table 2. Input values of the SM observables used to fix the SM fundamental parameters

λ,m, yt, g2, gY . The pole top mass, Mt, is a naive average of TeVatron, CMS, ATLAS measure-

ments, all extracted from difficult MonteCarlo modellings of top decay and production in hadronic

collisions. Furthermore, Mt is also affected by a non-perturbative theoretical uncertainty of order

ΛQCD, that we quantify as ±0.3 GeV. Throughout the paper we give explicitly the dependence

of all physical quantities on Mt, and thus the impact of larger theoretical uncertainties on the top

mass is always manifest in our results.

This last step can be easily done using the relation

θ0 = θOS − δθOS = θ(µ̄)− δθms (2.3)

or

θ(µ̄) = θOS − δθOS + δθms , (2.4)

where θ0 is the bare parameter, θ(µ̄) (θOS) is the renormalised ms (OS) version and

δθms (δθOS) the corresponding counterterm. By definition δθms subtracts only the

terms proportional to powers of 1/ε and γ − ln(4π) in dimensional regularisation, with

d = 4 − 2 ε being the space-time dimension. Concerning the structure of the 1/ε poles

in the OS and ms counterterms, one notices that it should be identical once the poles in

the OS counterterms are expressed in terms of ms quantities. Then, after this operation

is performed, the desired θ(µ̄) is obtained from

θ(µ̄) = θOS − δθOS|fin + ∆θ, (2.5)

where the subscript ‘fin’ denotes the finite part of the quantity involved and ∆ is the

two-loop finite contribution that is obtained when the OS parameters entering the 1/ε

pole in the OS counterterm are expressed in terms of ms quantities, the finite contribution

coming from the O(ε) part of the shifts.

In the following we adopt strategy ii).

The quantities of interests are θ = (m2, λ, v, yt, g2, g1), i.e. the quadratic and quartic

couplings in the Higgs potential, the vacuum expectation value (vev), the top Yukawa

coupling, the SU(2)L and U(1)Y gauge couplings g2 and gY (with g1 =
√

5/3gY being the

hypercharge coupling rewritten in SU(5) normalisation), and are directly determined in

terms of the pole masses of the Higgs (Mh), of the top (Mt), of the Z (MZ), of the W

(MW ), the Fermi constant Gµ and the ms strong coupling α3(MZ). Their input values are

listed in table 2. Then, using eq. (2.5), the ms quantities are obtained. We notice that the
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weak-scale values for the ms gauge couplings at the scale µ̄ are given in terms of Gµ, MW

and MZ and not in terms of the fine structure constant and the weak mixing angle at the

MZ scale as usually done.

In order to fix the notation we write the classical Higgs potential as (the subscript 0

indicates a bare quantity)

V0 = −m
2
0

2
|H0|2 + λ0|H0|4 . (2.6)

The classical Higgs doublet H0 is defined by

H0 =

(
χ

(v0 + h+ i η)/
√

2

)
(2.7)

in terms of the physical Higgs field h, and of the neutral and charged would-be Goldstone

bosons η and χ. The renormalisation of the Higgs potential, eq. (2.6), was discussed at the

one-loop level in [87] and extended at the two-loop level in [8]. We refer to these papers for

details. We recall that in ref. [8] the renormalised vacuum is identified with the minimum

of the radiatively corrected potential3 and it is defined through Gµ. Writing the relation

between the Fermi constant and the bare vacuum as

Gµ√
2

=
1

2v2
0

(1 + ∆r0) , (2.8)

one gets

v2
OS =

1√
2Gµ

, δv2
OS = − ∆r0√

2Gµ
. (2.9)

The quadratic and quartic couplings in the Higgs potential are defined through Mh via

m2
OS = 2λOSv

2
OS , M2

h = 2λOSv
2
OS , (2.10)

or

λOS =
Gµ√

2
M2
h , m2

OS = M2
h . (2.11)

Writing the counterterm for the quartic Higgs coupling as

δλOS = δ(1)λOS + δ(2)λOS , (2.12)

where the superscript indicates the loop order, one finds

δ(1)λOS =
Gµ√

2
M2
h

{
∆r

(1)
0 +

1

M2
h

[
T (1)

vOS
+ δ(1)M2

h

]}
, (2.13)

δ(2)λOS =
Gµ√

2
M2
h

{
∆r

(2)
0 +

1

M2
h

[
T (2)

vOS
+ δ(2)M2

h

]
+

−∆r
(1)
0

(
∆r

(1)
0 +

1

M2
h

[
3T (1)

2 vOS
+ δ(1)M2

h

])}
. (2.14)

3This condition is enforced choosing the tadpole counterterm to cancel completely the tadpole graphs.
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In eqs. (2.13)–(2.14) iT represents the sum of the tadpole diagrams with external leg

extracted, and δM2
a labels the mass counterterm for the particle a.

Similarly, one finds for the counterterm of the quadratic Higgs coupling in the potential

δ(1)m2
OS = 3

T (1)

vOS
+ δ(1)M2

h , (2.15)

δ(2)m2
OS = 3

T (2)

vOS
+ δ(2)M2

h −
3T (1)

2 vOS
∆r

(1)
0 . (2.16)

The top Yukawa and gauge couplings are fixed using Mt, MW and MZ via

Mt =
ytOS√

2
vOS, M2

W =
g2

2OS

4
v2

OS, M2
Z =

g2
2OS

+ g2
YOS

4
v2

OS, (2.17)

or

ytOS = 2

(
Gµ√

2
M2
t

)1/2

, g2OS = 2
(√

2Gµ

)1/2
MW , gYOS

= 2
(√

2Gµ

)1/2√
M2
Z −M2

W .

(2.18)

The corresponding counterterms are found to be

δ(1)ytOS = 2

(
Gµ√

2
M2
t

)1/2
(
δ(1)Mt

Mt
+

∆r
(1)
0

2

)
, (2.19)

δ(2)ytOS = 2

(
Gµ√

2
M2
t

)1/2
(
δ(2)Mt

Mt
+

∆r
(2)
0

2
− ∆r

(1)
0

2

[
δ(1)Mt

Mt
+

3 ∆r
(1)
0

4

])
, (2.20)

for the top Yukawa coupling, and

δ(1)g2OS =
(√

2Gµ

)1/2
MW

(
δ(1)M2

W

M2
W

+ ∆r
(1)
0

)
, (2.21)

δ(2)g2OS =
(√

2Gµ

)1/2
MW

(
δ(2)M2

W

M2
W

+ ∆r
(2)
0 +

− ∆r
(1)
0

2

[
δ(1)M2

W

M2
W

+
3∆r

(1)
0

2

]
+

1

4

(
δ(1)M2

W

M2
W

)2
 , (2.22)

for the SU(2)L gauge coupling, and

δ(1)gYOS
=
(√

2Gµ

)1/2√
M2
Z −M2

W

(
δ(1)M2

Z − δ(1)M2
W

M2
Z −M2

W

+ ∆r
(1)
0

)
, (2.23)

δ(2)gYOS
=
(√

2Gµ

)1/2√
M2
Z −M2

W

(
δ(2)M2

Z − δ(2)M2
W

M2
Z −M2

W

+ ∆r
(2)
0 +

−∆r
(1)
0

2

[
δ(1)M2

Z − δ(1)M2
W

M2
Z −M2

W

+
3∆r

(1)
0

2

]
+

1

4

(
δ(1)M2

Z − δ(1)M2
W

M2
Z −M2

W

)2
 . (2.24)

for the hypercharge gauge coupling.
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2.1 Two-loop correction to the Higgs quartic coupling

The ms Higgs quartic coupling is given by

λ(µ̄) =
Gµ√

2
M2
h + λ(1)(µ̄) + λ(2)(µ̄), (2.25)

with

λ(1)(µ̄) = − δ(1)λOS

∣∣∣
fin
,

λ(2)(µ̄) = − δ(2)λOS

∣∣∣
fin

+ ∆λ . (2.26)

The one-loop contribution in eq. (2.25), λ(1), is given by the finite part of eq. (2.13). Con-

cerning the two-loop part, λ(2)(µ̄), the QCD corrections were presented in refs. [8, 38],

and the two-loop electroweak (EW) part, λ
(2)
EW(µ̄), was computed in ref. [8] in the so-called

gauge-less limit of the SM, in which the electroweak gauge interactions are switched off. The

main advantage of this limit results in a simplified evaluation of ∆r
(2)
0 . The computation of

the two-loop EW part in the full SM requires instead the complete evaluation of this quan-

tity and we outline here the derivation of λ
(2)
EW(µ̄) starting from the term ∆r

(2)
0 in δ(2)λOS.

We recall that the Fermi constant is defined in terms of the muon lifetime τµ as

computed in the 4-fermion V − A Fermi theory supplemented by QED interactions. We

extract Gµ from τµ via

1

τµ
=
G2
µm

5
µ

192π3
F

(
m2
e

m2
µ

)
(1 + ∆q)

(
1 +

3m2
µ

5M2
W

)
, (2.27)

where F (ρ) = 1−8ρ+ 8ρ3−ρ4−12ρ2 ln ρ = 0.9981295 (for ρ = m2
e/m

2
µ) is the phase space

factor and ∆q = ∆q(1)+∆q(2) = (−4.234+0.036)×10−3 are the QED corrections computed

at one [102] and two loops [103]. From the measurement τµ = (2196980.3 ± 2.2) ps [100]

we find Gµ = 1.1663781(6) 10−5/GeV2. This is 1σ lower than the value quoted in [100]

because we do not follow the convention of including in the definition of Gµ itself the last

term of (2.27), which is the contribution from dimension-8 SM operators.

The computation of ∆r0 requires the subtraction of the QED corrections by matching

the result in the SM with that in the Fermi theory. However, it is well known that the

Fermi theory is renormalisable to all order in the electromagnetic interaction but to lowest

order in Gµ due to a Ward identity that becomes manifest if the 4-fermion interaction is

rewritten via a Fierz transformation in the “charge retention order”. As a consequence, in

the limit of neglecting the fermion masses, ∆r0 as computed in the Fermi theory vanishes

and we are just left with the calculation in the SM.4

Starting from eq. (2.8) we write ∆r0 as a sum of different terms:

∆r0 = VW −
AWW

M2
W0

+ 2 v2
0BW + E +M , (2.28)

where MW0 is the bare W mass; AWW is the W self-energy at zero momentum, AWW =

AWW (0); VW is the vertex contribution; BW is the box contribution; E is the term due

4We explicitly verified that ∆r0 vanishes when computed in the Fermi theory.
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to the renormalisation of the external legs; M is the mixed contribution due to product

of different objects among VW , AWW , BW and E (see below for an explicit expression at

two-loops). All quantities in eq. (2.28) are computed at zero external momenta. We point

out that in the right-hand side of eq. (2.28) no tadpole contribution is included because

of our choice of identifying the renormalised vacuum with the minimum of the radiatively

corrected potential. As a consequence ∆r0 is a gauge-dependent quantity.

From eq. (2.28) the one-loop term is given by:

∆r
(1)
0 = V

(1)
W − A

(1)
WW

M2
W

+

√
2

Gµ
B(1)
W + E(1) , (2.29)

where we have used that M(1) = 0, while at two-loops

∆r
(2)
0 = V

(2)
W − A

(2)
WW

M2
W

+
√

2
B(2)
W

Gµ
+ E(2) +M(2) +

−δ(1)M2
W

A
(1)
WW

M4
W

+

√
2

Gµ
B(1)
W

(
V

(1)
W − A

(1)
WW

M2
W

+
√

2
B(1)
W

Gµ
+ E(1)

)
. (2.30)

Here

δ(1)M2
W = Re ΠWW (M2

W ) (2.31)

with ΠWW (M2
W ) the W boson self-energy evaluated at external momentum equal to MW ,

and

M(2) =

√
2

Gµ
E(1) B(1)

W +
∑
i<j

E(1)
i E

(1)
j + E(1)V (1) −

(
E(1) + V (1)

) A(1)
WW

M2
W

. (2.32)

The indices i, j in eq. (2.32) label the different species in the muon decay: µ, e, νµ and νe
with the sum that runs over i < j because the terms with i = j are included in E(2).

We recall that ∆r0 is an infrared (IR) safe quantity but not ultraviolet (UV) finite.

However, the E and BW terms in eq. (2.29) and (2.30) contain IR-divergent contributions

from photon diagrams. To separate the UV-divergent terms from the IR ones we regulated

the latter giving a small mass to the photon. We then explicitly verified the cancellation

of all IR divergent contributions.

The other proper two-loop contributions to λ
(2)
EW(µ̄) are the two-loop tadpole diagrams

and the two-loop Higgs boson mass counterterm. The Higgs mass counterterm, not taking

into account negligible width effects, is given by

δM2
h = Re Πhh(M2

h) (2.33)

with Πhh(M2
h) the Higgs self-energy evaluated at external momentum equal to Mh. The

Higgs mass counterterm as defined in eq. (2.33) is a gauge-dependent quantity. Yet, as

proved at the beginning of section 2, λ(µ̄) is a gauge-invariant object.

The diagrams contributing to δ(2)λOS were generated using the Mathematica package

Feynarts [104]. The reduction of the two-loop diagrams to scalar integrals was done
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using the code Tarcer [105] that uses the Tarasov’s algorithm [106] and it is now part of

the Feyncalc [107] package. In order to extract the VW and BW terms in ∆r0 from the

relevant diagrams we used the projector presented in ref. [108]. The two-loop self-energy

diagrams at external momenta different from zero were reduced to the set of loop-integral

basis functions introduced in ref. [109]. The evaluation of the basis functions was done

numerically using the code TSIL [110].

The two loop correction to λ is the sum of a QCD term and of an electroweak (EW)

term. The QCD correction λ
(2)
QCD(µ̄) is reported as an approximated formula in eq. (47)

of [8]. For simplicity here we present it also in a numerical form:

λ
(2)
QCD(µ̄ = Mt) =

g2
3

(4π)4

[
− 23.89 + 0.12

(
Mh

GeV
− 125

)
− 0.64

(
Mt

GeV
− 173

)]
. (2.34)

The result for λ
(2)
EW(µ̄) is too long to be displayed explicitly. Here we present it in a

numerical form valid around the measured values of Mh and Mt. Using the inputs in

table 2 we find

λ
(2)
EW(µ̄ = Mt) =

1

(4π)4

[
− 9.45− 0.11

(
Mh

GeV
− 125

)
− 0.21

(
Mt

GeV
− 173

)]
. (2.35)

The numerical expression in eq. (2.35) is accidentally very close to the gaugeless limit of the

SM presented in eq. (2.45) of [8]. Furthermore, as a check of our result, we verified that in

the (physically irrelevant) limit Mh = 0, it agrees with an independent computation of λ(2)

performed using the known results for the two-loop effective potential in the Landau gauge.

2.2 Two-loop correction to the Higgs mass term

The result for the mass term in the Higgs potential can be easily obtained from that on

λ(µ̄). We write

m2(µ̄) = M2
h + δ(1)m2(µ̄) + δ(2)m2(µ̄), (2.36)

with

δ(1)m2(µ̄) = − δ(1)m2
OS

∣∣∣
fin
,

δ(2)m2(µ̄) = − δ(2)m2
OS

∣∣∣
fin

+ ∆m2 . (2.37)

The one-loop contribution in eq. (2.36), δ(1)m2(µ̄), is given by the finite part of eq. (2.15).

The two-loop corrections in eq. (2.36), δ(2)m2(µ̄), can be divided into a QCD contribution

plus an EW contribution.

The QCD contribution, δ
(2)
QCDm

2(µ̄), can be obtained evaluating the relevant diagrams

via a Taylor series in xht ≡M2
h/M

2
t up to fourth order

δ
(2)
QCDm

2(µ̄) =
GµM

4
t√

2(4π)4
NcCF g

2
3

[
− 96 +

(
41− 12 ln2 M

2
t

µ̄2
+ 12 ln2 M

2
t

µ̄2

)
xht +

+
122

135
x2
ht +

1223

3150
x3
ht +

43123

661500
x4
ht

]
, (2.38)
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where Nc and CF are colour factors (Nc = 3, CF = 4/3), such that it is numerically

approximated as

δ
(2)
QCDm

2(µ̄ = Mt) =
g2

3M
2
h

(4π)4

[
−140.50 + 2.89

(
Mh

GeV
− 125

)
−3.71

(
Mt

GeV
− 173

)]
. (2.39)

The two-loop EW part, δ
(2)
EWm

2(µ̄), can be obtained as a byproduct of the calculation

of λ
(2)
EW(µ̄). Also in this case the result is too long to be displayed and we present an

interpolating formula. Using the inputs in table 2 we find

δ
(2)
EWm

2(µ̄ = Mt) =
M2
h

(4π)4

[
− 149.47 + 2.53

(
Mh

GeV
− 125

)
− 4.69

(
Mt

GeV
− 173

)]
. (2.40)

2.3 Two loop correction to the top Yukawa coupling

The ms top Yukawa coupling is given by

yt(µ̄) = 2

(
Gµ√

2
M2
t

)1/2

+ y
(1)
t (µ̄) + y

(2)
t (µ̄), (2.41)

with

y
(1)
t (µ̄) = − δ(1)ytOS

∣∣∣
fin
,

y
(2)
t (µ̄) = − δ(2)ytOS

∣∣∣
fin

+ ∆yt . (2.42)

According to eqs. (2.19)–(2.20) the corrections to the tree-level value of yt are given in

terms of ∆r0 and the top mass counterterm. Regarding the latter, a general discussion on

the mass counterterm for unstable fermions in parity-nonconserving theories is presented

in ref. [111]. Writing the fermion self-energy as

Σ(p) = Σ1(p) + Σ2(p)γ5,

Σ1,2(p) = /pB1,2(p2) +m0A1,2(p2), (2.43)

the fermion propagator is given by

iS(p)=
i

/p−m0 − Σ(p)
=

i

/p−m0 − Σeff(p)

[
1− Σ2(p)

/p− Σ1(p) +m0[1 + 2A1(p2)]
γ5

]
, (2.44)

where m0 is the bare fermion mass and

Σeff(p) = Σ1(p) +
Σ2(p)

[
Σ2(p)− 2m0A2(p2)

]
/p− Σ1(p) +m0[1 + 2A1(p2)]

. (2.45)

Identifying the position /p = M̃ of the complex pole in eq. (2.44) by

M̃ = m0 + Σeff(M̃) (2.46)

and parametrizing M̃ = M − iΓ/2 with M the pole mass of the unstable fermion and Γ its

width, the mass counterterm for the unstable fermion is found to be

δM = Re Σeff(M̃) . (2.47)
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Specialising the above discussion to the top, we find, including up to two-loop contributions,

δMt = Re

[
Σ1(M̃t) +

Σ2(Mt)
[
Σ2(Mt)− 2MtA2(M2

t )
]

2Mt

]
(2.48)

with M̃t = Mt − iΓt/2. The mass counterterm defined in eq. (2.48) is expressed in terms

of the self-energy diagrams only, without including the tadpole contribution. While this

definition follows from our choice of identifying the renormalised vacuum with the minimum

of the radiatively corrected potential, it gives rise to a δMt that is gauge-dependent and, as

a consequence, in this framework, the ms top mass, Mt(µ̄), is a gauge-dependent quantity.

However, a ms mass is not a physical quantity nor a Lagrangian parameter and therefore

the requirement of gauge-invariance is not mandatory. A gauge-invariant definition of

Mt(µ̄) can be obtained by including the tadpole contribution in the mass counterterm [86].

However, with this choice the relation between the pole and ms masses of top quark acquires

a very large electroweak correction [112]. The top Yukawa coupling computed in this paper

is a parameter of the Lagrangian, and thereby does not suffer of these problems.

Concerning the two-loop contributions in eq. (2.41), we have computed the QCD cor-

rections to the one-loop term and the two-loop EW contribution.

These contributions are too long to be displayed explicitly, and we report them as

interpolating formulæ. Using the inputs in table 2 we find

y
(2)
t (µ̄ = Mt) =

1

(4π)4

[
5.22− 0.01

(
Mh

GeV
− 125

)
+ 0.15

(
Mt

GeV
− 173

)]
+

+
g2

3

(4π)4

[
− 7.53 + 0.09

(
Mh

GeV
− 125

)
− 0.23

(
Mt

GeV
− 173

)]
+

+
g4

3

(4π)4

[
− 145.08− 0.84

(
Mt

GeV
− 173

)]
, (2.49)

where the last term is the well known pure QCD contribution; the second term is the mixed

QCD/EW contribution that agrees with [38]; the first term is the pure EW contribution

computed in this paper for the first time.

2.4 Two-loop correction to weak and hypercharge gauge couplings

The g2 and gY gauge couplings are given by

g2(µ̄) = 2(
√

2Gµ)1/2MW + g
(1)
2 (µ̄) + g

(2)
2 (µ̄),

gY (µ̄) = 2(
√

2Gµ)1/2
√
M2
Z −M2

W + g
(1)
Y (µ̄) + g

(2)
Y (µ̄), (2.50)

with

g
(1)
2 (µ̄) = − δ(1)g2OS

∣∣∣
fin
, g

(2)
2 (µ̄) = − δ(2)g2OS

∣∣∣
fin

+ ∆g2 ,

g
(1)
Y (µ̄) = − δ(1)gY OS

∣∣∣
fin
, g

(2)
Y (µ̄) = − δ(2)gYOS

∣∣∣
fin

+ ∆gy . (2.51)
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µ̄ = Mt λ yt g2 gY m/GeV

LO 0.13023 0.99425 0.65294 0.34972 125.66

NLO 0.12879 0.94953 0.64755 0.35937 132.80

NNLO 0.12710 0.93849 0.64822 0.35760 131.99

Table 3. Values of the fundamental SM parameters computed at tree level, one loop, two loops

in the ms scheme and renormalised at µ̄ = Mt for the central values of the measurements listed in

table 2.

The one-loop contributions in eq. (2.51) are given by the finite part of eqs. (2.21), (2.23).

Also in this case the results of the two-loop corrections in eq. (2.51) are too long to be dis-

played and we present them with interpolating formulas. Using the inputs in table 2 we find

g
(2)
2 (µ̄ = Mt) =

1

(4π)4

[
5.83 + 0.01

(
Mh

GeV
− 125

)
+ 0.01

(
Mt

GeV
− 173

)]
+

+
g2

3

(4π)4

[
7.98 + 0.01

(
Mt

GeV
− 173

)]
. (2.52)

and

g
(2)
Y (µ̄ = Mt) =

1

(4π)4

[
− 12.58− 0.01

(
Mh

GeV
− 125

)
− 0.11

(
Mt

GeV
− 173

)]
+

+
g2

3

(4π)4

[
− 23.12− 0.14

(
Mt

GeV
− 173

)]
(2.53)

3 SM couplings at the electroweak scale

In this section we give practical results for the SM parameters θ = {λ,m2, yt, g2, gY }
computed in terms of the observables Mh,Mt,MW ,MZ , Gµ and α3(MZ), whose measured

values are listed in table 2. Each ms parameter θ is expanded in loops as

θ = θ(0) + θ(1) + θ(2) + · · · (3.1)

where

1. the tree-level values θ(0) are listed in table 1;

2. the one-loop corrections θ(1) are analytically given in appendix A;

3. the two-loop corrections θ(2) are computed in section 2.

After combining these corrections, we give in the following the numerical values for the SM

parameters renormalised at the top pole mass Mt in the ms scheme.
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3.1 The Higgs quartic coupling

For the Higgs quartic coupling, defined by writing the SM potential as V = −1
2m

2|H|2 +

λ|H|4, we find

λ(µ̄ = Mt) = 0.12711+0.00206

(
Mh

GeV
− 125.66

)
−0.00004

(
Mt

GeV
− 173.10

)
±0.00030th .

(3.2)

The dependence on Mt is small because λ is renormalised at Mt itself. Here and below the

theoretical uncertainty is estimated from the dependence on µ̄ (varied around Mt by one

order of magnitude) of the higher-order unknown 3 loop corrections. Such dependence is

extracted from the known SM RGE at 3 loops (as summarized in appendix B).5

3.2 The Higgs mass term

For the mass term of the Higgs doublet in the SM Lagrangian (normalised such that

m = Mh at tree level) we find

m(µ̄ = Mt)

GeV
= 132.03 + 0.94

(
Mh

GeV
− 125.66

)
+ 0.17

(
Mt

GeV
− 173.10

)
± 0.15th. (3.3)

3.3 The top Yukawa coupling

For the top Yukawa coupling we get

yt(µ̄ = Mt) = 0.93558 + 0.00550

(
Mt

GeV
− 173.10

)
+ (3.4)

−0.00042
α3(MZ)− 0.1184

0.0007
− 0.00042

MW − 80.384 GeV

0.014 GeV
± 0.00050th .

The central value differs from the NNLO value in table 3 because we include here also

the NNNLO (3 loop) pure QCD effect [83–85]. The theoretical uncertainty is estimated

accordingly, and does not take into account the non-perturbative theoretical uncertainty

of order ΛQCD in the definition of Mt.

3.4 The weak gauge couplings

For the weak gauge couplings g2 and gY computed at NNLO accuracy in terms of MW and

MZ we find

g2(µ̄=Mt) = 0.64822 + 0.00004

(
Mt

GeV
− 173.10

)
+ 0.00011

MW − 80.384 GeV

0.014 GeV
, (3.5)

gY (µ̄=Mt) = 0.35761 + 0.00011

(
Mt

GeV
− 173.10

)
− 0.00021

MW − 80.384 GeV

0.014 GeV
, (3.6)

where the adopted value for MW and its experimental error are reported in table 2.

5Recently the calculation of the three-loop SM effective potential at leading order in strong and top

Yukawa couplings has appeared [113]. The resulting three-loop contributions to the Higgs quartic coupling

are within our estimated error. Combining the three loop effective potential with 1 and 2-loop renormal-

izations, we extract the 3-loop pure QCD correction to λ(µ̄ = Mt) in the limit Mh,MW ,MZ �Mt:

λ
(3)
QCD = − 8

135

g4
3G

2
µM

4
t

(4π)6

[
176π4 + 240π2(3 + 4 ln2 2 + 6 ln 2) + 15(607− 64 ln4 2− 1536Li4

(
1

2

)
+ 576ζ(3)

]
.
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3.5 The strong gauge coupling

Table 2 contains the value of α3(MZ), as extracted from the global fit of [101] in the

effective SM with 5 flavours. Including RG running from MZ to Mt at 4 loops in QCD

and at 2 loops in the electroweak gauge interactions, and 3 loop QCD matching at Mt to

the full SM with 6 flavours, we get

g3(µ̄ = Mt) = 1.1666 + 0.00314
α3(MZ)− 0.1184

0.0007
− 0.00046

(
Mt

GeV
− 173.10

)
. (3.7)

The SM parameters can be renormalised to any other desired energy by solving the

SM renormalisation group equations summarised in appendix B. For completeness, we

include in the one- and two-loop RG equations the contributions of the small bottom and

tau Yukawa couplings, as computed from the ms b-quark mass, mb(mb) = 4.2 GeV, and

from Mτ = 1.777 GeV. Within the ms scheme β functions are gauge-independent [88, 89];

similarly the ms parameters are gauge independent too.

4 Extrapolation of the SM up to the Planck scale

The most puzzling and intriguing outcome of the Higgs discovery has been the finding that

Mh lies very close to the boundary between stability and metastability regions. This result

is the main motivation for our refined NNLO calculation of the SM Higgs potential at

large field values. Indeed, the special Higgs mass found by ATLAS and CMS is so close to

criticality that any statement about stability or metastability of the EW vacuum requires

a careful analysis of theoretical and experimental errors. The discovered proximity to

criticality also naturally stimulates many theoretical speculations on its possible hidden

significance or on special matching conditions at very high energy scales. In the rest of the

paper, we will explore the implications of our improved computation of the Higgs quartic

coupling extrapolated to very high scales.

4.1 SM couplings at the Planck scale

The first issue we want to address concerns the size of the SM coupling constants. When we

try to extract information from the values of the coupling constants, it is reasonable to anal-

yse their values not at the weak scale, but at some high-energy scale where we believe the

SM matches onto some extended theory. So, using our NNLO results, we extrapolate the

SM couplings from their weak-scale values (as determined in section 3) to higher energies.

The evolution of the SM couplings up to a large cut-off scale is shown in figure 1. At

the Planck mass, we find the following values of the SM parameters:

g1(MPl) = 0.6133 + 0.0003

(
Mt

GeV
− 173.10

)
− 0.0006

MW − 80.384 GeV

0.014 GeV
(4.1a)

g2(MPl) = 0.5057 (4.1b)

g3(MPl) = 0.4873 + 0.0002
α3(MZ)− 0.1184

0.0007
(4.1c)

yt(MPl) = 0.3813 + 0.0051

(
Mt

GeV
− 173.10

)
− 0.0021

α3(MZ)− 0.1184

0.0007
(4.1d)
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Figure 1. Renormalisation of the SM gauge couplings g1 =
√

5/3gY , g2, g3, of the top, bottom

and τ couplings (yt, yb, yτ ), of the Higgs quartic coupling λ and of the Higgs mass parameter m.

All parameters are defined in the ms scheme. We include two-loop thresholds at the weak scale and

three-loop RG equations. The thickness indicates the ±1σ uncertainties in Mt,Mh, α3.

λ(MPl) = −0.0113− 0.0065

(
Mt

GeV
− 173.10

)
+ (4.1e)

+0.0018
α3(MZ)− 0.1184

0.0007
+ 0.0029

(
Mh

GeV
− 125.66

)
m(MPl) = 140.3 GeV + 1.6 GeV

(
Mh

GeV
− 125.66

)
+ (4.1f)

−0.25 GeV

(
Mt

GeV
− 173.10

)
+ 0.05 GeV

α3(MZ)− 0.1184

0.0007

All Yukawa couplings, other than the one of the top quark, are very small. This is the

well-known flavour problem of the SM, which will not be investigated in this paper.

The three gauge couplings and the top Yukawa coupling remain perturbative and are

fairly weak at high energy, becoming roughly equal in the vicinity of the Planck mass.

The near equality of the gauge couplings may be viewed as an indicator of an underlying

grand unification even within the simple SM, once we allow for threshold corrections

of the order of 10% around a scale of about 1016 GeV (of course, in the spirit of this

paper, we are disregarding the acute naturalness problem). It is amusing to note that the

ordering of the coupling constants at low energy is completely overturned at high energy.

The (properly normalised) hypercharge coupling g1 becomes the largest coupling in the

SM already at scales of about 1014 GeV, and the weak coupling g2 overcomes the strong

coupling at about 1016 GeV. The top Yukawa becomes smaller than any of the gauge

couplings at scales larger than about 1010 GeV.

The Higgs quartic coupling remains weak in the entire energy domain below MPl. It

decreases with energy crossing λ = 0 at a scale of about 1010 GeV, see figure 2 (upper
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Figure 2. Upper: RG evolution of λ (left) and of βλ (right) varying Mt, α3(MZ), Mh by

±3σ. Lower: same as above, with more “physical” normalisations. The Higgs quartic coupling

is compared with the top Yukawa and weak gauge coupling through the ratios sign(λ)
√

4|λ|/yt
and sign(λ)

√
8|λ|/g2, which correspond to the ratios of running masses mh/mt and mh/mW , re-

spectively (left). The Higgs quartic β-function is shown in units of its top contribution, βλ(top

contribution) = −3y4
t /8π

2 (right). The grey shadings cover values of the RG scale above the

Planck mass MPl ≈ 1.2× 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/
√

8π.

left). Indeed, λ is the only SM coupling that is allowed to change sign during the RG

evolution because it is not multiplicatively renormalised. For all other SM couplings, the

β functions are proportional to their respective couplings and crossing zero is not possible.

This corresponds to the fact that λ = 0 is not a point of enhanced symmetry.

In figure 2 (lower left) we compare the size of λ with the top Yukawa coupling yt and

the gauge coupling g2, choosing a normalisation such that each coupling is equal to the

corresponding particle mass, up to the same proportionality constant. In other words, we
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are plotting the ratios

sign(λ)×
√

4|λ|/yt and sign(λ)×
√

8|λ|/g2 , (4.2)

equal to the ratios of running masses mh/mt and mh/mW , respectively. Except for the

region in which λ vanishes, the Higgs quartic coupling looks fairly “normal” with respect

to the other SM couplings. Nonetheless, the RG effect reduces significantly the overall size

of λ in its evolution from low to high energy. Although the central values of Higgs and

top masses do not favour a scenario with vanishing Higgs self coupling at the Planck scale

(MPl) — a possibility originally proposed in ref. [116, 117] and discussed more recently

in ref. [8, 118–121] — the smallness of λ around MPl offers reasons for speculation, as we

will discuss later.

Another important feature of the RG evolution of λ is the slowing down of the running

at high energy. As shown in figure 2 (upper right), the corresponding Higgs quartic β-

function vanishes at a scale of about 1017–1018 GeV. In order to quantify the degree of

cancellation in the β-function, we plot in figure 2 (lower right) βλ in units of its pure top

contribution. The vanishing of βλ looks more like an accidental cancellation between various

large contributions, rather than an asymptotic approach to zero. Given that the β-functions

of the other SM couplings are all different than zero, it is not evident to find valid symmetry

or dynamical reasons for the vanishing of βλ alone near MPl. However, the smallness of βλ
(and λ) at high energy implies that tiny variations of the input values of the couplings at

MPl lead to wide fluctuations of the instability scale, thus justifying our refined calculation.

4.2 Derivation of the stability bound

In order to compute the stability bound on the Higgs mass one has to study the full

effective potential and identify the critical Higgs field above which the potential becomes

smaller than the value at the EW vacuum. We will refer to such critical energy as the

instability scale ΛI .

A first estimate of the instability scale can be obtained by approximating the effective

potential with its RG-improved tree level expression. The analysis shows that the instability

scale occurs at energies much bigger than the EW scale. Thus, for our purposes, the

approximation of neglecting v with respect to the value of the field h is amply justified.

Under this assumption, the effective potential (in the relevant region h� v) becomes

Veff(h) = λeff(h)
h4

4
. (4.3)

The quantity λeff can be extracted from the effective potential at two loops [122] and is

explicitly given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are

the Higgs and top-quark masses. In figure 3 we update the phase diagram given in ref. [8]

with our improved calculation of the evolution of the Higgs quartic coupling. The regions of
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Figure 3. Left: SM phase diagram in terms of Higgs and top pole masses. The plane is divided into

regions of absolute stability, meta-stability, instability of the SM vacuum, and non-perturbativity of

the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative for Mt > 230 GeV.

The dotted contour-lines show the instability scale ΛI in GeV assuming α3(MZ) = 0.1184. Right:

zoom in the region of the preferred experimental range of Mh and Mt (the grey areas denote

the allowed region at 1, 2, and 3σ). The three boundary lines correspond to 1-σ variations of

α3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size of the theoretical error.

stability, metastability, and instability of the EW vacuum are shown both for a broad range

ofMh andMt, and after zooming into the region corresponding to the measured values. The

uncertainty from α3 and from theoretical errors are indicated by the dashed lines and the

colour shading along the borders. Also shown are contour lines of the instability scale ΛI .

As previously noticed in ref. [8], the measured values of Mh and Mt appear to be rather

special, in the sense that they place the SM vacuum in a near-critical condition, at the

border between stability and metastability. In the neighbourhood of the measured values

of Mh and Mt, the stability condition is well approximated by

Mh > 129.1 GeV + 2.0(Mt − 173.10 GeV)− 0.5 GeV
α3(MZ)− 0.1184

0.0007
± 0.3 GeV . (4.4)

The quoted uncertainty comes only from higher order perturbative corrections. Other

non-perturbative uncertainties associated with the relation between the measured value of

the top mass and the actual definition of the top pole mass used here (presumably of the

order of ΛQCD) are buried inside the parameter Mt in eq. (4.4). For this reason we include

a theoretical error in the top pole mass and take Mt = (173.10 ± 0.59exp ± 0.3th) GeV.

Combining in quadrature theoretical uncertainties with experimental errors, we find

Mh > (129.1± 1.5) GeV (stability condition). (4.5)
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From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2.2σ (98.6% C.L. one-sided). Since the main source of uncertainty in eq. (4.4)

comes from Mt, any refinement in the measurement of the top mass is of great importance

for the question of EW vacuum stability.

Since the experimental error on the Higgs mass is already fairly small and will be further

reduced by future LHC analyses, it is becoming more appropriate to express the stability

condition in terms of the pole top mass. We can express the stability condition of eq. (4.4) as

Mt < (171.53± 0.15± 0.23α3 ± 0.15Mh
) GeV = (171.53± 0.42) GeV. (4.6)

In the latter equation we combined in quadrature the theoretical uncertainty with the

experimental uncertainties on Mh and α3.

Notice that the stability bound is scheme and gauge independent. While intermediate

steps of the computation (threshold corrections, higher-order RG equations, and the

effective potential) are scheme-dependent, the values of the effective potential at its local

minima are scheme-independent physical observables, and thus the stability condition has

the same property.

We find that the instability scale (defined as the scale at which λeff vanishes) is

log10

ΛI
GeV

= 11.3 + 1.0

(
Mh

GeV
− 125.66

)
− 1.2

(
Mt

GeV
− 173.10

)
+ 0.4

α3(MZ)− 0.1184

0.0007
.

(4.7)

The scale Λ0 at which the ms running coupling λ vanishes is a scheme-dependent quantity

and is slightly smaller than the scale ΛI . We find Λ0 ≈ 0.15ΛI , with the same dependence

on the SM parameters as in eq. (4.7). Even if ΛI is much smaller than MPl, new physics

at the Planck scale can affect the stability condition [57].

4.4 The SM phase diagram in terms of Planck-scale couplings

The discovery of the SM near-criticality has led to many theoretical speculations [8, 31–55,

120, 121]. In order to address such speculations and to investigate if the measured value of

Mh is really special in the SM, it is more appropriate to study the phase diagram in terms of

the Higgs quartic and the top Yukawa coupling evaluated at some high-energy scale, rather

than at the weak scale. This is because of our theoretical bias that the SM is eventually

embedded into a new framework at short distances, possibly as short as the Planck length.

Therefore, it is more likely that information about the underlying theory is directly encoded

in the high-energy coupling constants. For this reason in figure 4 we recast the phase

diagram of figure 3 in terms of λ(MPl) and yt(MPl). The diagram is shown in a broad range

of couplings allowed by perturbativity, and also after zooming into the interesting region.

The new area denoted as ‘no EW vacuum’ corresponds to a situation in which λ is negative

at the weak scale, and therefore the usual Higgs vacuum does not exist. In the region

denoted as ‘Planck-scale dominated’ the instability scale ΛI is larger than 1018 GeV. In

this situation we expect that both the Higgs potential and the tunnelling rate receive large

gravitational corrections and any assessment about vacuum stability becomes unreliable.

From the left panel of figure 4 it is evident that, even when we consider the situation in

terms of high-energy couplings, our universe appears to live under very special conditions.
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Figure 4. Left: SM phase diagram in terms of quartic Higgs coupling λ and top Yukawa coupling yt
renormalised at the Planck scale. The region where the instability scale ΛI is larger than 1018 GeV

is indicated as ‘Planck-scale dominated’. Right: zoom around the experimentally measured values

of the couplings, which correspond to the thin ellipse roughly at the centre of the panel. The dotted

lines show contours of ΛI in GeV.

The interesting theoretical question is to understand if the apparent peculiarity of λ(MPl)

and yt(MPl) carry any important information about phenomena well beyond the reach

of any collider experiment. Of course this result could be just an accidental coincidence,

because in reality the SM potential is significantly modified by new physics at low or

intermediate scales. Indeed, the Higgs naturalness problem corroborates this possibility.

However, both the reputed violation of naturalness in the cosmological constant and the

present lack of new physics at the LHC cast doubts on the validity of the naturalness

criterion for the Higgs boson. Of course, even without a natural EW sector, there are good

reasons to believe in the existence of new degrees of freedom at intermediate energies.

Neutrino masses, dark matter, axion, inflation, baryon asymmetry provide good motiva-

tions for the existence of new dynamics below the Planck mass. However, for each of these

problems we can imagine solutions that either involve physics well above the instability

scale or do not significantly modify the shape of the Higgs potential. As a typical example,

take the see-saw mechanism. As shown in ref. [33], for neutrino masses smaller than 0.1 eV

(as suggested by neutrino-oscillation data without mass degeneracies), either neutrino

Yukawa couplings are too small to modify the running of λ or the right-handed neutrino

masses are larger than the instability scale. In other words, a see-saw neutrino does not

modify our conclusions about stability of the EW vacuum. Couplings of weak-scale dark

matter to the Higgs boson are constrained to be small by WIMP direct searches (although

dark-matter particles with weak interactions would modify the running of the weak gauge

couplings, making the Higgs potential more stable).
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Thus, it is not inconceivable that the special values of λ(MPl) and yt(MPl) carry

a significance and it is worth to investigate their consequences. In the next section we

discuss several possible classes of solutions that explain the apparent peculiarity of the

SM parameters.

Finally, we notice that extrapolating SM parameters above the Planck scale ignoring

gravity (this is a questionable assumption) the hypercharge couplings hits a Landau pole

at about 1042 GeV. Demanding perturbativity up to such scale (rather than up to the

Planck scale), the bounds on the top and Higgs masses become stronger by about 10 and

20 GeV stronger respectively, and their measured values still lie in the region that can be

extrapolated up to such high scale.

5 Interpretations of the high-energy SM couplings

The first possible interpretation, discussed in section 5.1, is the result of new dynamics

occurring at some high-energy scale, the others find their most natural implementations

in the multiverse.

5.1 Matching conditions

The special value of the Higgs quartic coupling could be the result of a matching condition

with some high-energy theory in the vicinity of MPl. It is not difficult to imagine theories

able to drive λ(MPl) to zero: high-scale supersymmetry with tanβ = 1 [123–128]; partial

N = 2 supersymmetry insuring D-flatness [129, 130]; an approximate Goldstone or shift

symmetry [131, 132]; an infrared fixed-point of some transplanckian physics [121]; a power-

law running in a quasi-conformal theory. Present data suggest that an exact zero of λ is

reached at scales of about 1010–1012 GeV, see eq. (4.7), well below the Planck mass. It is

not difficult to imagine theories that give λ(MPl) in agreement with eq. (4.1e) as a result

of a vanishing matching condition modified by threshold corrections.

Supersymmetry is probably one of the best candidates able to explain the vanishing of

λ as a high-energy boundary condition, because of the natural appearance of radiatively-

stable flat directions. Such flat directions give a well-grounded justification for scalar

particles with vanishing potentials, and yet interacting at zero momentum (contrary to

the case of Goldstone bosons).

Note also that the smallness of the Higgs quartic β-function at high energy is the key

ingredient that allows for the possibility of extending the SM up to a matching scale much

larger than ΛI . If λ ran fast above ΛI , it would rapidly trigger vacuum instability and the

region of metastability would be limited to SM cut-off scales only slightly larger than ΛI .

This is another peculiarity of the measured values of Mh and Mt.

5.2 Criticality as an attractor

Statistical properties of the multiverse offer alternatives to dynamical determinations of

λ(MPl) from matching conditions with new theories. The first possibility we consider is

motivated by the observation that the measured value of Mh looks special, in the sense that

it corresponds to a near-critical parameter separating two phases. As remarked in ref. [133],
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also Higgs naturalness can be viewed as a problem of near-criticality between two phases

(i.e. why is the Higgs bilinear carefully selected just to place our universe at the edge

between the broken and unbroken EW phases?). This leads to the speculation that, within

the multiverse, critical points are attractors. If this vision is correct, the probability density

in the multiverse is peaked around the boundaries between different phases, and generic

universes are likely to live near critical lines. Then, near-criticality would be the result of

probability distributions in the multiverse, and would not necessarily follow from anthropic

considerations. In this picture, the Higgs parameters found in our universe are not at all

special. On the contrary, they correspond to the most likely occurrence in the multiverse.

There are many natural phenomena in which near-criticality emerges as an attrac-

tor [134]. A typical example is given by the slope angle of sand dunes. While one could

expect to find in a beach sand dunes with any possible slope angles, in practice the vast

majority of dunes have a slope angle roughly equal to the so-called “angle of repose”. The

angle of repose is the steepest angle of descent, which is achieved when the material forming

the pile is at a critical condition on the verge of sliding. The angle of repose depends on size

and shape of the material granularity, and for sand is usually about 30–35 degrees. The typ-

icality of finding sand dunes with slope angles near the critical value is simply understood in

terms of the forces that shape dunes. Wind builds up the dune moving sand up to the top;

gravity makes the pile collapse under its own weight when the dune is too steep. As a result,

near-criticality is the most likely condition, as a compromise between two competing effects.

Something similar could happen with the Higgs parameters in the multiverse. Suppose

that the probability distribution of the Higgs quartic coupling in the multiverse is not

uniform, but is a monotonically decreasing function of λ. In other words, there is a pressure

in the multiverse towards the smallest (possibly negative) λ. However, in universes where

λ is sufficiently negative, the Higgs field is destabilised, forming a bubble of AdS space

with a negative cosmological constant of order −M4
Pl in its interior. Such regions of

space would rapidly contract and finally disappear. Therefore, the cosmological evolution

removes regions that correspond to unstable EW vacua, leaving the vast majority of

universes crowded around the critical boundary. It is amusing to note the strict analogy

with the case of sand dunes. The “wind” of the multiverse pushes the Higgs quartic

coupling towards smaller values until space collapses under the effect of AdS gravity. As

a result, the typical Higgs quartic coupling lies around the critical value.

We can also imagine alternative scenarios. Suppose that the Higgs quartic coupling is

a function of some new fields Φ participating in Planckian dynamics and that their vacuum

structure prefers low values of λ, as before. Once λ becomes smaller than the critical value,

the Higgs potential develops an instability at large field values. If tunnelling is sufficiently

fast, the Higgs field slides towards Planckian scales. Such large Higgs configurations will

in general affect the scalar potential of the fields Φ, which will readjust into a different

vacuum structure. The new vacua will give a different probability distribution for the

Higgs quartic coupling λ and it is imaginable that now larger values of λ are preferred. In

summary: universes in the stable or metastable phases will experience pressure towards

small λ; universes in the unstable phase will experience pressure towards large λ. As a

result, the most probable universes lie around the critical line separating the two phases.
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We stress that these examples do not use anthropic arguments: near-criticality is

achieved by cosmological selection and/or by probability distributions in the multiverse.

Nevertheless, the proximity of our universe to an inhospitable phase, as shown in figure 4,

could be viewed as an indication that the principle of ‘living dangerously’ is at work, in

a way similar to the case of the cosmological constant [135]. One can assume, as before,

that the probability distribution function of λ(MPl) in the multiverse is skewed towards

the lowest possible values, making it more likely for our universe to live in the leftmost

region of figure 4. The anthropic boundary of EW instability limits the allowed parameter

space, giving a justification of why our universe is ‘living dangerously’, with conditions for

stability barely satisfied.

5.3 Double criticality of Higgs and top couplings

From figure 4 we can infer more than just criticality of the Higgs quartic coupling. Indeed,

this figure shows that the measured values of the Higgs and top masses lie in the region

corresponding not only to the lowest possible values of λ(MPl) allowed by (meta)stability,

but also to the smallest possible value of yt(MPl), once λ(MPl) has been selected. Indeed,

for small Higgs quartic (λ(MPl) < 0.02), there is a non-vanishing minimum value of

yt(MPl) required to avoid instability.

This special feature is related to the approximate vanishing of βλ around the Planck

mass. Indeed, for fixed λ(MPl), the top Yukawa coupling has the effect to stabilise the

potential, as we evolve from high to low energies. Without a sizeable contribution from

yt, the gauge couplings tend to push λ towards more smaller (and eventually negative)

values, leading to an instability. Therefore, whenever λ(MPl) is small or negative, a non-

zero yt(MPl) is necessary to compensate the destabilising effect of gauge couplings. These

considerations assume that λ(MPl) and yt(MPl) scan widely in the multiverse, while gauge

couplings do not. The case of scanning gauge couplings will be discussed in section 6.1.

It is a remarkable coincidence that the measured values of the Higgs and top masses

correspond rather precisely to the simultaneous minima of both λ(MPl) and yt(MPl). In

other words, it is curious that not only do we live in the narrow vertical yellow stripe

of figure 4 — the minimum of λ(MPl) — but also near the bottom of the funnel — the

minimum of yt(MPl). Near-criticality holds for both the Higgs quartic and the top Yukawa

coupling. Our universe is doubly enjoying a ‘dangerous life’ with respect to EW stability.

5.4 Statistics

We can also envisage a different situation within the multiverse hypothesis, namely that

λ(MPl) and yt(MPl) are determined statistically, while neither criticality nor anthropic

arguments play any role. To illustrate this possibility we argue that some of the features

of the high-energy SM couplings described in section 4.1 can be explained, at a purely

qualitative level, by the existence of a multiverse in which SM coupling constants scan. We

will not try to address the hierarchies in the Yukawa couplings. These could emerge as the

result of an underlying flavour symmetry, remnant of a sector external to the SM, although

it is not excluded that the pattern of Yukawa couplings is the result of the statistical
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properties of the multiverse [136–139]. Here we keep an agnostic point of view on the issue

of flavour and concentrate only on Higgs quartic, top-Yukawa, and gauge couplings.

In order to describe the multiverse, we introduce some new scalar fields Φi

(i = 1, . . . , N), each having p different vacuum configurations. The total number of

possible vacua is pN , which is huge for large N . If this multiverse of vacua is a viable

candidate to solve the cosmological constant problem (i.e. to explain why somewhere in

the multiverse the cosmological constant could be 10120 times smaller than M4
Pl), then it

is reasonable that pN should be at least 10120. So we envisage a situation in which N is

at least O(102), which is not inconceivable in a string framework.

To describe the scanning of the SM couplings within this multiverse, we assume that

the SM fields are coupled to the fields Φ in the most general way,

L = −ZG(Φ)

4
FµνF

µν +ZH(Φ) |DµH|2 +
(
iZψ(Φ)ψ̄D/ψ + Yab(Φ)ψ̄aHψb + h.c.

)
−Λ(Φ)|H|4.

(5.1)

Here Fµν and ψ collectively denote the SM gauge and fermion fields, and H is the Higgs

doublet. The physical SM coupling constants are given by

g = Z
−1/2
G , yt = Z

−1/2
tL

YtZ
−1/2
H Z

−1/2
tR

, λ = Z−2
H Λ , (5.2)

where the functions ZG,ψ,H , Y , and Λ are evaluated at a vacuum of the fields Φ. Since the

fields Φ have pN vacua, the SM couplings effectively scan in this multiverse. The coupling

constants in eq. (5.2) are evaluated at the high-energy scale, here identified with MPl,

where the new dynamics is integrated out.

For simplicity, we consider the toy example of multiverse proposed in ref. [140], in

which each field Φi has two vacua (p = 2) called Φ
(+)
i and Φ

(−)
i . We also assume that each

of the functions ZG,ψ,H , Y , Λ (let us call them collectively Z, to simplify notation) can be

split as a sum of the contributions of the different fields Φi,

Z(Φ1, . . . ,Φn) =
N∑
i=1

Zi(Φi), Z = {ZG, Zψ, ZH , Y,Λ}. (5.3)

This is a consistent hypothesis, as long as the fields Φ are mutually weakly-interacting. In

this case, any mixed interaction is generated only by small loop effects and can be ignored.

Under this hypothesis, the 2N values of Z corresponding to the vacua of Φ can written as

Z =
N∑
i=1

(
Z

(S)
i + ηiZ

(D)
i

)
, Z

(S)
i =

Zi(Φ
(+)
i ) + Zi(Φ

(−)
i )

2
, Z

(D)
i =

Zi(Φ
(+)
i )− Zi(Φ(−)

i )

2
,

(5.4)

where ηi = ±1. Each of the 2N vacua (and each of the 2N values of Z) is labeled by the

vector η = (ηi, . . . , ηN ).

The normalised probability distribution of Z within the multiverse of vacua is given by

ρ(Z) = 2−N
∑
η

δ

(
Z −NZ̄ −

N∑
i=1

ηiZ
(D)
i

)
, Z̄ ≡ 1

N

N∑
i=1

Z
(S)
i . (5.5)
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Using the central limit theorem, the discrete sum over the 2N configurations of η in

eq. (5.5) can be approximated for large N with a Gaussian distribution [140]

ρ(Z) =
1√

2πN∆2
exp

[
−(Z −NZ̄)2

2N∆2

]
, ∆2 =

1

N

N∑
i=1

Z
(D)
i

2
. (5.6)

This shows that Z densely scans around NZ̄ with an approximately flat distribution in

the range |Z −NZ̄| <
√
N∆.

For generic couplings, we expect that Z̄ and ∆ are quantities of order unity, and thus

Z is O(N) with a relative uncertainty of order 1/
√
N . Plugging this result (which is valid

for Z = ZG,ψ,H , Y , Λ) into eq. (5.2), we find

g, yt ∼
1√
N
, λ ∼ 1

N
. (5.7)

For N ∼ 100, we obtain that gauge and top-Yukawa couplings are predicted to be O(10−1)

at around MPl, while the Higgs quartic coupling is O(10−2), in good qualitative agreement

with experimental data. Indeed, adopting a ‘physical’ normalisation of couplings as in

figure 2 (lower left), the SM predicts g1,2,3(MPl)/
√

2 ≈ yt(MPl) ≈
√

4|λ(MPl)| ≈ 0.3.

The different behaviour with N in eq. (5.7) arises because λ is a quartic coupling,

while g and yt are cubic couplings. Note that this framework suggests a hierarchy between

g, yt on one side, and λ on the other side, but does not predict that λ should vanish at

MPl, again as indicated by data. Actually, since λ scans by a relative amount O(1/
√
N),

a vanishing value of λ(MPl) turns out to be fairly improbable in this setup.

6 More on SM phase diagrams

6.1 The SM phase diagram in terms of gauge couplings

So far we have been studying the phase diagram in terms of Higgs and top masses or

couplings, keeping the other SM parameters fixed. This is reasonable, since the EW vac-

uum is mostly influenced by the Higgs and top quark. However, in the multiverse, other

parameters can scan too and it is interesting to study how they affect our results.

We start by considering the scanning of weak couplings defined at some high-energy

scale, which we identify with MPl. The impact of the gauge couplings g1 and g2 can be

understood from the leading terms of the RG equation for the Higgs quartic coupling

(4π)2 dλ

d ln µ̄2
= −3y4

t +6y2
t λ+12λ2+

9

16

(
g4

2 +
2

5
g2

2g
2
1 +

3

25
g4

1

)
−9

2
λ

(
g2

2 +
g2

1

5

)
+· · · . (6.1)

For small λ(MPl), the weak gauge couplings have the effect of reducing even further the

Higgs quartic coupling in its evolution towards lower energies, thus contributing to desta-

bilise the potential. For large λ(MPl), they tend to make λ grow at lower energy.

We quantify the situation by plotting in figure 5 (left) the SM phase diagram in terms

of λ(MPl) and g2(MPl). For simplicity, we scan over the hypercharge coupling g1(MPl) by

keeping fixed the ratio g1(MPl)/g2(MPl) = 1.22 as in the SM, while yt(MPl) and g3(MPl)
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Figure 5. SM phase diagram in terms of the Higgs quartic coupling λ(MPl) and of the gauge

coupling g2(MPl). Left: a common rescaling factor is applied to the electro-weak gauge couplings

g1 and g2, while g3 is kept constant. Right: a common rescaling factor is applied to all SM gauge

couplings g1, g2, g3, such that a 10% increase in the strong gauge coupling at the Planck scale

makes ΛQCD larger than the weak scale. The measured values of the couplings correspond to the

small ellipse marked as ‘SM’.

are held to their SM values. As in previous cases, also the phase diagram in terms of weak

gauge couplings shows the peculiar characteristic of the SM parameters to live close to the

phase boundary. (Note that the figure is zoomed around the region of the physical values,

so that the proximity to the boundary is not emphasised.)

Figure 5 (left) shows that the weak gauge couplings in the SM lie near the maximum

possible values that do not lead to a premature decay of the EW vacuum. Were g2 and g1

50% larger than their actual values, we wouldn’t be here speculating on the peculiarity of

the Higgs mass.

Next, we discuss the impact of scanning the strong gauge coupling constant. In

figure 5 (right) we show the phase diagram in the plane λ(MPl), g2(MPl), obtained by

varying all three gauge couplings by a common rescaling factor. The top Yukawa coupling

yt(MPl) is held fixed at its SM value and so, as the other couplings scan, the top mass

does not correspond to the measured value.

The coupling g3 affects βλ only at two loops, but it has a more important role in the

RG evolution of the top Yukawa coupling, whose leading terms are given by

(4π)2 dy2
t

d ln µ̄2
= y2

t

(
9

2
y2
t − 8g2

3 −
9

4
g2

2 −
17

20
g2

1

)
+ · · · . (6.2)

When the value of g3 is reduced at fixed yt(MPl), the low-energy top Yukawa coupling

becomes smaller. This reduces the stabilising effect of the top for a given λ(MPl) and

explains the appearance in figure 5 (right) at small gauge couplings of a ‘No EW vacuum’

region (where λ is negative at the weak scale).
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Figure 6. Phase diagram of the SM in terms of the parameters of the Higgs potential evaluated at

the Planck scale. In the metastability region, there is an upper bound on m from the requirement

of a Higgs vacuum at a finite field value. The green region is simple thanks to the fact that

β(λ) = 0 at MPl. On the vertical axis we plot |m(MPl)|, in the case of negative (above) and

positive (below) Higgs quadratic term.

On the other hand, when g3 is increased, the value of ΛQCD grows rapidly. Whenever

α3(MPl) >
6π

21 ln(MPl/Mt)
, (6.3)

which corresponds to g3(MPl) > 0.54, the value of ΛQCD becomes larger than Mt,

preventing a perturbative extrapolation from the Planck to the weak scale. As shown in

figure 5 (right), this region is reached as soon as the SM gauge couplings are increased by

only 11%. Once again, the SM gauge couplings live near the top of the range allowed by

simple extrapolations of the minimal theory.

6.2 The SM phase diagram in terms of Higgs potential parameters

The Higgs mass parameter m in the Higgs potential is the origin of the well-known

naturalness problem. Here we show that the simple requirement of the existence of a

non-trivial EW vacuum sets an upper bound on m, which is completely independent of

any naturalness argument.

Let us start by considering the tree-level Higgs potential in eq. (2.6). For m2 > 0 and

λ > 0, the potential has the usual non-trivial vacuum at 〈h〉 = v = m/
√

2λ. However,

since v is proportional to m and λ is negative above the instability scale ΛI , the Higgs

vacuum at finite field value no longer exists when m2 is too large. The upper bound on

m2 can be estimated by considering the minimisation condition of the potential, including

only the logarithmic running of λ, but neglecting the evolution of m (which is a good
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approximation, as shown in figure 1):[
2λ(v) +

βλ(v)

2

]
v2 = m2. (6.4)

For values of v in the neighbourhood of ΛI , we can approximate6 λ(v) ≈ βλ(ΛI) ln v/ΛI
and βλ(v) ≈ βλ(ΛI). Then we see that eq. (6.4) has a solution only if

m2 < −βλ(ΛI) e
−3/2Λ2

I . (6.5)

Note that βλ(ΛI) is negative in the SM.

Figure 6 shows the SM phase diagram in terms of the parameters λ(MPl) and m(MPl).

The sign of each one of these parameters corresponds to different phases of the theory, such

that λ(MPl) = m(MPl) = 0 is a tri-critical point.

The region denoted by ‘〈h〉 ≈ MPl’ corresponds to the case in which eq. (6.5) is not

satisfied and there is no SM-like vacuum, while the Higgs field slides to large values.

In the region of practical interest, the upper limit on m is rather far from its actual

physical value m = Mh, although it is much stronger than MPl, the ultimate ultraviolet

cutoff of the SM. A much more stringent bound on m can be derived from anthropic

considerations [141] and the corresponding band in parameter space is shown in figure 6.

We find it remarkable that the simple request of the existence of a non-trivial Higgs

vacuum, without any reference to naturalness considerations, gives a bound on the Higgs

bilinear parameter m. Unfortunately, for the physical value of λ, the actual numerical

value of the upper bound is not of great practical importance.

6.3 Lifetime of the SM vacuum

The measured values of Mh and Mt indicate that the SM Higgs vacuum is not the true

vacuum of the theory and that our universe is potentially unstable. The rate of quantum

tunnelling out of the EW vacuum is given by the probability d℘/dV dt of nucleating a

bubble of true vacuum within a space volume dV and time interval dt [142–144]

d℘ = dt dV Λ4
B e
−S(ΛB) . (6.6)

In eq. (6.6), S(ΛB) is the action of the bounce of size R = Λ−1
B , given by

S(ΛB) =
8π2

3|λ(ΛB)|
. (6.7)

At the classical level, the Higgs theory with only quartic coupling is scale-invariant

and the size of the bounce Λ−1
B is arbitrary. The RG flow breaks scale invariance and

the tree level action gets replaced by the one-loop action, as calculated in ref. [28]. Then,

ΛB is determined as the scale at which Λ4
Be
−S(ΛB) is maximised. In practice this roughly

amounts to minimising λ(ΛB), which corresponds to the condition βλ(ΛB) = 0. As long as

ΛB � MPl, gravitational effects are irrelevant, since corrections to the action in minimal

6In this analysis, we can safely neglect the non-logarithmic corrections to the effective potential and so

we do not distinguish between λ and λeff .
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Figure 7. Left: the probability that electroweak vacuum decay happened in our past light-cone,

taking into account the expansion of the universe. Right: the life-time of the electroweak vacuum,

with two different assumptions for future cosmology: universes dominated by the cosmological

constant (ΛCDM) or by dark matter (CDM).

Einstein gravity are given by δSG = 256π3Λ2
B/45|λ|M2

Pl [119]. The effect of gravitational

corrections is to slow down the tunnelling rate [145]. Whenever ΛB > MPl, one can only

obtain a lower bound on the tunnelling probability by setting λ(ΛB) = λ(MPl). In some

cases, unknown Planckian dynamics can affect the tunnelling rate [57] .

The total probability ℘ for vacuum decay to have occurred during the history of the

universe can be computed by integrating eq. (6.6) over the space-time volume of our past

light-cone, ∫
dt dV =

∫ t0

0
dt

∫
|x|<a(η0−η)

d3x =
4π

3

∫ η0

0
dη a4(η0 − η)3 ≈ 0.15

H4
0

. (6.8)

Here a is the scale factor, η is conformal time (dη/dt = 1/a), η0 ≈ 3.4/H0 is the present

conformal time and H0 ≈ 67.4 km/sec Mpc is the present Hubble rate. Equation (6.8)

roughly amounts to saying that the ‘radius’ of the universe is given by cTU , where

TU ≈ 0.96/H0 is the present age. The present value of the vacuum-decay probability ℘ is

℘0 = 0.15
Λ4
B

H4
0

e−S(ΛB) , (6.9)

and is dominated by late times and this makes our result more robust, since it is

independent of the early cosmological history. In figure 7a we plot, as a function of the

top mass, the probability ℘0 that the EW vacuum had decayed during the past history of

the universe. We find that the probability is spectacularly small, as a consequence of the

proximity of the SM parameters to the boundary with the region of absolute stability.

The lifetime of the present EW vacuum τEW depends on the future cosmological history.

If dark energy shuts off and the future universe is matter dominated, the space-time volume
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of the past light-cone at time t0 is given by∫
dt dV =

4π

3

∫ η0

0
dη a4(η0 − η)3 =

16π

1485H4
0

. (6.10)

Here H0 is the Hubble parameter at time t0, and we have performed the integral using the

relations a1/2 = H0η/2 = (3H0t/2)1/3 and t0 = 2/(3H0), valid in a matter-dominated flat

universe. The lifetime τEW is given by the time at which ℘ = 1:

τEW =

(
55

3π

)1/4 eS(ΛB)/4

ΛB
≈ TU

℘
1/4
0

(Matter Domination), (6.11)

where ℘0 is given in eq. (6.9) and shown in figure 7a.

If instead the universe keeps being accelerated by the cosmological constant, entering

into a de Sitter phase with Hubble constant H = H0

√
ΩΛ, at a time t0 in the far future

the volume of the past light-cone will be∫
dt dV =

4π

3

∫ η0

0
dη a4(η0 − η)3 =

4π

3H4

[
Ht0 −

11

6
+O(e−Ht0)

]
. (6.12)

Here we have used the relations a = (1 − Hη)−1 = eHt, valid in a vacuum-energy

dominated universe. The lifetime τEW is now equal to

τEW =
3H3eS(ΛB)

4πΛ4
B

≈ 0.02 TU
℘0

(Vacuum Energy Domination). (6.13)

The lifetime of the present EW vacuum is plotted in figure 7b in both cases of matter

or vacuum-energy domination. As shown, the SM vacuum is likely to survive for times

that are enormously longer than any significant astrophysical age (e.g. the sun will exhaust

its fuel in about five billion years).

7 Summary and conclusions

The measurement of the Higgs mass Mh has determined the last unknown parameter

of the SM, fixing the Higgs quartic coupling λ. Now that the experimental result is in

our hands, our task as theoreticians is to interpret it, investigating whether it contains

any useful information about physics at shorter distances. The first thing to try is to

extrapolate λ to high energy in search for clues. Just as high-energy extrapolations of the

gauge coupling constants gave us hints about a possible grand unification of fundamental

forces, so the extrapolation of λ has revealed an unexpected feature of the SM that opens

new avenues for theoretical speculation. The intriguing result is that, assuming the validity

of the SM up to very high energy scales, the measured value of Mh is near-critical, in the

sense that it places the EW vacuum right at the border between absolute stability and

metastability. Because of the present experimental uncertainties on the SM parameters

(mostly the top quark mass), we cannot conclusively establish the fate of the EW vacuum,

although metastability is now preferred at 99.3% CL.
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The special coincidence found in the value of Mh warrants a refined calculation of

the high-energy extrapolation of λ and this was the first objective of this paper. We

extracted the fundamental SM parameters λ (quartic Higgs coupling), m (Higgs mass

term), yt (top quark Yukawa coupling), g2 and gY (electroweak gauge couplings) from the

precisely measured values of the Higgs, top, W and Z masses and from the Fermi constant

at full NNLO, by performing dedicated 2-loop computations. All couplings have been

extrapolated to large energies using the RGE equations, now known at NNLO order (3

loops). We could then compute the effective potential known with 2-loop accuracy.

The second objective of this paper was to investigate the significance of the measured

value of Mh, in view of its high-energy extrapolation. A first observation is that λ, together

with all other SM coupling constants, remains perturbative in the entire energy domain be-

tween the Fermi and the Planck scales. This gives an indirect indication that EW-breaking

dynamics is probably weakly interacting. Of course, strongly-interacting dynamics is not

excluded, but there is simply no need for introducing it at any intermediate energy scale.

The most important observation concerns the stability of the Higgs potential. The

critical condition for stability is defined as the vanishing of the effective coupling λeff , see

eq. (4.3), at some energy scale ΛI . We find ΛI = 1010–1012 GeV, see eq. (4.7), suggesting

that the instability is reached well below the Planck mass. The presence of an instability at

an intermediate scale could be interpreted as a sign of a new-physics threshold around ΛI .

It is suggestive that neutrino masses, axion, and inflation give independent indications for

new dynamics at roughly similar energy scales. The hypothetical new physics could be re-

sponsible for a matching condition λ ≈ 0 at a scale near ΛI . The vanishing of λ could be the

result of special dynamics occurring above ΛI , such that the evolution of the Higgs quartic

is power-law suppressed, or the result of symmetry, as in the case of an approximate Gold-

stone boson. One of the most appealing explanations of λ ≈ 0 is offered by supersymmetry,

since flat directions provide a valid justification of vanishing quartic couplings for scalar

particles that have other kinds of interactions at zero momentum. In this way, supersym-

metry convincingly evades the problem, encountered by Goldstone bosons, of explaining

why λ ≈ 0 is compatible with sizeable gauge and Yukawa couplings of the Higgs boson.

The scheme can be automatically realised in N = 2 supersymmetry, while a dynamical

vacuum alignment with tanβ ≈ 1 is required in the case of N = 1 supersymmetry.

Another peculiarity found in the extrapolation of λ is its slow running at high energy.

This is due to a combination of two factors: the reduction of all SM couplings at high

energy and an accidental zero of βλ at a scale of about 1017–1018 GeV. It is the slow

running of λ at high energy that saves the EW vacuum from premature collapse, in a

situation where ΛI � MPl. Were βλ large and negative above ΛI , we could not live with

an instability scale much smaller than the cutoff scale, without being confronted with

early vacuum decay. Unfortunately, for the moment we have no way to tell whether this

special condition allowing for a prolonged vacuum lifetime is just a numerical coincidence

or an important feature of the SM.

At any rate, the smallness of βλ at high energy makes it possible to assume that there

is no new-physics threshold around ΛI and that the SM continues to be valid up to the

quantum-gravity scale, since the tunnelling probability remains small. In this context, the
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value of λ(MPl) may be regarded as ‘normal’ for a SM coupling. Indeed, as discussed in

section 4.1, the ratios
√

4|λ|/yt and
√

8|λ|/g2 (which, at low energy, correspond to Mh/Mt

and Mh/MW , respectively) are of order unity both at the Fermi and Planck scales. The

vanishing of λ at an intermediate scale could then be purely accidental. After all, the

Higgs quartic is the only SM coupling that can cross zero during its RG evolution, since

λ = 0 is not a point of enhanced symmetry.

In our view, the most interesting aspect of the measured value of Mh is its near-

criticality. In this paper we have thoroughly studied the condition of near-criticality in

terms of the SM parameters at a high scale, which we identified with the Planck mass.

This procedure is more appropriate than a study in terms of physical particle masses,

since it is more likely that special features are exhibited by high-energy parameters, just

like in the case of gauge coupling unification.

We have found that near-criticality is manifest also when we explore the phase

diagram as a function of high-energy SM couplings. Moreover, we found evidence for

multiple near-critical conditions. Indeed, the measured SM parameters roughly correspond

to the minimum values of Higgs quartic coupling λ(MPl) and of the top Yukawa coupling

yt(MPl) (at fixed gauge couplings) that allow for the existence of a sufficiently long-lived

EW vacuum. Moreover, at fixed top Yukawa coupling, the maximum possible values of

the gauge couplings g(MPl) are preferred. Incidentally, we have also obtained an upper

bound on the Higgs mass parameter m from the requirement of vacuum stability, although

this bound is too weak to be useful in practice.

We explored possible interpretations of this multiple near-criticality. Provided it is not

just a fortuitous coincidence, an explanation of near-criticality almost necessarily requires

the existence of an underlying statistical system. This drives us towards the multiverse

as the most convincing framework in which one can address the issue. Near-criticality

can emerge in the multiverse from an appropriate probabilistic pressure in the space of

coupling constants, together with the anthropic requirement that selects universes in which

the life-friendly EW vacuum is sufficiently long-lived. The principle of ‘living dangerously’

populates universes close to the boundary of a hospitable phase, just as it is conjectured

to happen in the case of the cosmological constant.

In this context, one may wonder whether the LHC measurement of the Higgs mass

corresponds to a point in parameter space that is sufficiently close to the instability bound-

ary to be justified by the principle of ‘living dangerously’. Unfortunately, the answer to

this question depends on the unknown probability distribution of the SM couplings that

scan. In the case of the cosmological constant, we have a clear understanding of why larger

values of ΛCC should be preferred within the universe: small values of ΛCC require delicate

accidental cancellations among the various parameters of the theory. On the other hand,

here we are dealing with dimensionless couplings and it is less clear why there should

be any probabilistic preference and, especially, in which direction should the multiverse

pressure act. It is plausible that renormalisable couplings, such as λ, have a less steep

probability distribution than the cosmological constant and therefore are likely to show a

less pronounced proximity to the critical boundary in a given individual universe, but of

course it is impossible to make definitive statements at this stage.
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It is interesting that near-criticality could find an explanation in the multiverse,

without any reference to anthropic reasoning. In nature there exist statistical systems in

which criticality is an attractor point of their dynamical evolution. If such a phenomenon

took place in the multiverse, then the majority of universes would populate regions

close to phase transitions. Such a (non-anthropic) explanation of near-criticality of the

Higgs mass could also provide a link to the naturalness problem, since the smallness of

the mass parameter m in the Higgs potential is near-critical with respect to the EW

symmetry-breaking phase transition. It is indeed a remarkable experimental fact that

both λ and m (the two parameters of the Higgs potential) happen to lie very close to

boundaries between different phases of the SM. So, according to this interpretation, our

universe would not be a rare occurrence in the multiverse where SM parameters are

selected in such a way that the cosmological evolution of the EW vacuum is favourable

to life. On the contrary, near-criticality of the Higgs parameters would be a fairly generic

property of the multiverse and our universe would be unexceptional.

In spite of the absence of any signal of new physics, the LHC has already provided

valuable information for theoretical speculations about physics at very short distances. In

that respect, the most important result has been the near-criticality of the Higgs mass —

the subject of this paper.
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A Weak scale thresholds at one loop

We summarise here the one-loop corrections θ(1) to the various SM parameters

θ = {λ,m, yt, g2, gY } = θ(0) + θ(1) + θ(2) + · · · . (A.1)

We perform one-loop computations in a generic ξ gauge, confirming that θ(1) is gauge-

independent, as it should. Our expressions for θ(1) are equivalent to the well known expres-

sions in the literature. We write θ(1) in terms of finite parts of the the Passarino-Veltman

functions

A0(M)=M2

(
1−ln

M2

µ̄2

)
, B0(p;M1,M2)=−

∫ 1

0
ln
xM2

1 +(1−x)M2
2−x(1−x)p2

µ̄2
dx .

(A.2)
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The dependence of θ(1) on the renormalisation scale µ̄ reproduces the well known one-loop

RGE equations for θ. Below we report the expressions valid in the limit Mb = Mτ = 0; the

negligible effect of light fermions masses is included in our full code.

A.1 The quartic Higgs coupling

The one-loop result is obtained from eq. (2.13):

λ(1)(µ̄) =
1

(4π)2V 4
Re

[
3M2

t (M2
h − 4M2

t )B0(Mh;Mt,Mt) + 3M2
hA0(Mt) +

+
1

4

(
M4
h−4M2

hM
2
Z+12M4

Z

)
B0(Mh;MZ ,MZ)+

M2
h(7M2

W−4M2
Z)

2(M2
Z−M2

W )
A0(MZ) +

+
1

2
(M4

h−4M2
hM

2
W +12M4

W )B0(Mh;MW ,MW )−
3M2

hM
2
W

2(M2
h−M2

W )
A0(Mh) + (A.3)

+
M2
h

2

(
−11 +

3M2
h

M2
h −M2

W

−
3M2

W

M2
Z −M2

W

)
A0(MW ) +

+
9

4
M4
hB0(Mh;Mh,Mh)+

1

4
(M4

h+M2
h(M2

Z+2M2
W−6M2

t )−8(M4
Z+2M4

W ))

]
.

Each one of the terms in eq. (2.13) is gauge dependent, e.g. the one-loop correction to

muon decay is

∆r
(1)
0

∣∣∣
fin

=
1

(4πV )2

[
3M2

t −M2
W −

M2
Z

2
− M2

h

2
+

3M2
WA0(Mh)

M2
h −M2

W

+
6M2

W − 3M2
Z

M2
W −M2

Z

A0(MZ) + (A.4)

−6A0(Mt)+

(
9− 3M2

h

M2
h −M2

W

− 3M2
W

M2
W −M2

Z

)
A0(MW ) + 2A0(

√
ξMW ) +A0(

√
ξMZ)

]
and the gauge dependence cancels out in the sum λ(1)(µ̄).

A.2 The Higgs mass term

The correction is obtained from eq. (2.15):

δ(1)m2(µ̄) =
1

(4π)2V 2
Re

[
6M2

t (M2
h − 4M2

t )B0(Mh;Mt,Mt) + 24M2
t A0(Mt) +

+(M4
h − 4M2

hM
2
W + 12M4

W )B0(Mh;MW ,MW )− 2(M2
h + 6M2

W )A0(MW ) +

+
1

2

(
M4
h − 4M2

hM
2
Z + 12M4

Z

)
B0(Mh;MZ ,MZ)− (M2

h + 6M2
Z)A0(MZ) +

+
9

2
M4
hB0(Mh;Mh,Mh)− 3M2

hA0(Mh)

]
. (A.5)

A.3 The top Yukawa coupling

The gauge-invariant one-loop correction to the top Yukawa coupling is obtained from

eq. (2.19)

y
(1)
t (µ̄) =

Mt√
2V 3(4π)2

Re

[
−

(
M2
h − 4M2

t

)
B0 (Mt;Mh,Mt) +

+
M2
t

(
80M2

WM
2
Z − 64M4

W − 7M4
Z

)
+ 40M2

WM
4
Z − 32M4

WM
2
Z − 17M6

Z

9M2
tM

2
Z

B0 (Mt;Mt,MZ) +
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+

(
M2
tM

2
W +M4

t − 2M4
W

)
M2
t

B0 (Mt; 0,MW ) + (A.6)

+

(
3M2

h

M2
h −M2

W

+
2M2

W

M2
t

+
3M2

W

M2
W −M2

Z

− 10

)
A0 (MW ) +

(
3M2

W

M2
W −M2

h

+ 1

)
A0 (Mh) +

+

(
36M2

tM
2
Z − 56M2

WM
2
Z + 64M4

W − 17M4
Z

)
9M2

tM
2
Z

A0 (Mt) +

+

(
3M2

W

M2
Z −M2

W

+
32M4

W − 40M2
WM

2
Z + 17M4

Z

9M2
tM

2
Z

− 3

)
A0 (MZ) +

+
M2
h

2
− 3M2

t − 9M2
W +

7M2
Z

18
+

64M2
W

9M2
Z

]
+

Mt√
2V (4π)2

g2
3

(
−8A0 (Mt)

M2
t

− 8

3

)
.

A.4 The weak gauge couplings

The one-loop correction to the SU(2)L gauge coupling is obtained from eq. (2.21):

g
(1)
2 (µ̄) =

2MW

(4π)2V 3
Re

[(
M4
h

6M2
W

− 2M2
h

3
+ 2M2

W

)
B0 (MW ,Mh,MW ) +

+

(
− M4

t

M2
W

−M2
t + 2M2

W

)
B0 (MW , 0,Mt) +

+
1

6

(
−48M4

W

M2
Z

+
M4
Z

M2
W

− 68M2
W + 16M2

Z

)
B0 (MW ,MW ,MZ) + (A.7)

+
1

6

(
M2
h

(
9

M2
h −M2

W

+
1

M2
W

)
+
M2
Z

M2
W

+M2
W

(
9

M2
W −M2

Z

+
48

M2
Z

)
− 27

)
A0 (MW ) +

+

(
2−

M2
h

(
M2
h + 8M2

W

)
6M2

W (M2
h −M2

W )

)
A0 (Mh) +

(
M2
t

M2
W

+ 1

)
A0 (Mt) +

+
1

6

(
24M2

W

M2
Z

− M2
Z

M2
W

+
9M2

W

M2
Z −M2

W

− 17

)
A0 (MZ) +

+
1

36

(
−3M2

h + 18M2
t +

288M4
W

M2
Z

− 374M2
W − 3M2

Z

)]
.

The one-loop correction to the U(1)Y gauge coupling is obtained from eq. (2.23):

g
(1)
Y (µ̄) =

2
√
M2
Z −M2

W

(4π)2V 3
Re

[(
88

9
− 124M2

W

9M2
Z

+
M2
h + 34M2

W

6(M2
Z −M2

W )

)
A0 (MZ) +

+
M2
h − 4M2

W

2(M2
h −M2

W )
A0 (Mh) +

(
−7

9
− M2

t

M2
Z −M2

W

+
64M2

W

9M2
Z

)
A0 (Mt) +

+
M4
h + 2M2

W (M2
W − 15M2

Z) + 3M2
H(2M2

W + 7M2
Z)

6 (M2
h −M2

W ) (M2
W −M2

Z)
A0 (MW ) +

−M
4
t +M2

WM
2
t − 2M4

W

M2
W −M2

Z

B0 (MW , 0,Mt)−
M4
h − 4M2

ZM
2
h + 12M4

Z

6(M2
W −M2

Z)
B0 (MZ ,Mh,MZ) +

+
M4
h − 4M2

WM
2
h + 12M4

W

6(M2
W −M2

Z)
B0 (MW ,Mh,MW ) + (A.8)

+
M6
Z − 48M6

W − 68M2
ZM

4
W + 16M4

ZM
2
W

6M2
Z (M2

W −M2
Z)

B0 (MW ,MW ,MZ) +

+
1

9

(
−23M2

W + 7M2
t + 17M2

Z −
64M2

tM
2
W

M2
Z

− 9M2
W (M2

t −M2
W )

M2
Z −M2

W

)
B0 (MZ ,Mt,Mt) +
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+
M6
Z − 48M6

W − 68M2
ZM

4
W + 16M4

ZM
2
W

6M2
Z (M2

Z −M2
W )

B0 (MZ ,MW ,MW ) +

+
1

36

(
576M4

W

M2
Z

− 242M2
W − 3M2

h + 257M2
Z +

36M2
W

M2
Z −M2

W

+M2
t

(
82− 256M2

W

M2
Z

))]
.

B SM RGE equations up to three loops

We list here the known results for the renormalisation group equations up to 3 loop order for

the sizeable SM couplings, g1, g2, g3, yt and λ in the ms scheme. We write numerically those

3-loop coefficients that involve the ζ3 constant. Stopping for simplicity at two loops, we also

write RGE equations for the smaller bottom and tau Yukawa coupling and their contribu-

tions to the RGE of the large couplings. Our numerical code includes full RGE at 3 loops.

B.1 Gauge couplings

RGE for the hypercharge gauge coupling in GUT normalisation (g2
1 = 5g2

Y /3):
dg2

1

d ln µ̄2
=

g4
1

(4π)2

[
41

10

]
+

g4
1

(4π)4

[
44g2

3

5
+

27g2
2

10
+

199g2
1

50
− 17y2

t

10
− y2

b

2
− 3y2

τ

2

]
+

+
g4

1

(4π)6

[
y2
t

(
189y2

t

16
− 29g2

3

5
− 471g2
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1
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)
+ λ

(
−36λ

5
+

9g2
2

5
+

27g2
1
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)
+

+
297g4

3

5
+

789g4
2
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− 388613g4

1

24000
− 3g2

3g
2
2

5
− 137g2

3g
2
1

75
+

123g2
2g

2
1

160

]
. (B.1)

RGE for the SU(2)L gauge coupling:
dg2

2

d ln µ̄2
=

g4
2

(4π)2

[
− 19

6

]
+

g4
2

(4π)4

[
12g2

3 +
35g2

2

6
+

9g2
1

10
− 3y2

t

2
− 3y2

b

2
− y2

τ

2

]
+

+
g4

2

(4π)6

[
y2
t

(
147y2

t

16
− 7g2

3 −
729g2

2

32
− 593g2

1

160

)
+ λ

(
−3λ+

3g2
2

2
+

3g2
1

10

)
+

+81g4
3 +

324953g4
2

1728
− 5597g4

1

1600
+ 39g2

3g
2
2 −

g2
3g

2
1

5
+

873g2
2g

2
1

160

]
. (B.2)

RGE for the strong gauge coupling, including also pure QCD terms at 4 loops:
dg2

3

d ln µ̄2
=

g4
3

(4π)2

[
− 7

]
+

g4
3

(4π)4

[
− 26g2

3 +
9g2

2

2
+

11g2
1

10
− 2y2

t − 2y2
b

]
+

+
g4

3

(4π)6

[
y2
t

(
15y2

t − 40g2
3 −

93g2
2

8
− 101g2

1

40

)
+ (B.3)

+
65g4

3

2
+

109g4
2

8
− 523g4

1

120
+ 21g2

3g
2
2 +

77g2
3g

2
1

15
− 3g2

2g
2
1

40

]
+

g10
3

(4π)8

[
− 2472.28

]
.

B.2 Higgs quartic coupling

RGE for the Higgs quartic coupling:
dλ

d ln µ̄2
=

1

(4π)2

[
λ

(
12λ+ 6y2

t + 6y2
b + 2y2

τ −
9g2

2

2
− 9g2

1

10

)
− 3y4

t − 3y4
b − y4

τ +
9g4

2

16
+

27g4
1

400
+

9g2
2g

2
1

40

]
+

+
1

(4π)4

[
λ2

(
−156λ− 72y2

t − 72y2
b − 24y2

τ + 54g2
2 +

54g2
1

5

)
+ λy2

t

(
−3y2

t

2
− 21y2

b + 40g2
3+

+
45g2

2

4
+

17g2
1

4

)
+ λy2

b

(
−3y2

b

2
+ 40g2

3 +
45g2

2

4
+

5g2
1

4

)
+ λy2

τ

(
−y

2
τ

2
+

15g2
2

4
+

15g2
1

4

)
+
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2
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1
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+

117g2
2g

2
1

40

)
+ y4

t

(
15y2

t − 3y2
b − 16g2

3 −
4g2

1

5

)
+

+y2
t

(
−9g4

2

8
− 171g4

1

200
+

63g2
2g

2
1

20

)
+ y4

b

(
−3y2

t + 15y2
b − 16g2

3 +
2g2

1

5

)
+

+y2
b

(
−9g4

2

8
+

9g4
1

40
+

27g2
2g

2
1

20

)
+ y4

τ

(
5y2
τ −

6g2
1

5

)
+ y2

τ

(
−3g4

2

8
− 9g4

1

8
+

33g2
2g

2
1

20

)
+

+
305g6

2

32
− 3411g6

1

4000
− 289g4

2g
2
1

160
− 1677g2

2g
4
1

800

]
+

+
1

(4π)6

[
λ3 (6011.35λ+ 873y2

t − 387.452g2
2 − 77.490g2

1

)
+ λ2y2

t

(
1768.26y2

t + 160.77g2
3+

−359.539g2
2 − 63.869g2

1

)
+ λ2 (−790.28g4

2 − 185.532g4
1 − 316.64g2

2g
2
1

)
+ λy4

t

(
−223.382y2

t+

−662.866g2
3 − 5.470g2

2 − 21.015g2
1

)
+ λy2

t

(
356.968g4

3 − 319.664g4
2 − 74.8599g4

1 + 15.1443g2
3g

2
2+

+17.454g2
3g

2
1 + 5.615g2

2g
2
1

)
+ λg4

2

(
−57.144g2

3 + 865.483g2
2 + 79.638g2

1

)
+ λg4

1

(
−8.381g2

3+

+61.753g2
2 + 28.168g2

1

)
+ y6

t

(
−243.149y2

t + 250.494g2
3 + 74.138g2

2 + 33.930g2
1

)
+

+y4
t

(
−50.201g4

3 + 15.884g4
2 + 15.948g4

1 + 13.349g2
3g

2
2 + 17.570g2

3g
2
1 − 70.356g2

2g
2
1

)
+

+y2
t g

2
3

(
16.464g4

2 + 1.016g4
1 + 11.386g2

2g
2
1

)
+ y2

t g
4
2

(
62.500g2

2 + 13.041g2
1

)
+

+y2
t g

4
1

(
10.627g2

2 + 11.117g2
1

)
+ g2

3

(
7.536g6

2 + 0.663g6
1 + 1.507g4

2g
2
1 + 1.105g2

2g
4
1

)
+

−114.091g8
2 − 1.508g8

1 − 37.889g6
2g

2
1 + 6.500g4

2g
4
1 − 1.543g2

2g
6
1

]
. (B.4)

B.3 Higgs mass term

RGE for the Higgs mass term:
dm2

d ln µ̄2
=

m2

(4π)2

[
6λ+ 3y2

t + 3y2
b + y2

τ −
9g2

2

4
− 9g2

1

20

]
+

+
m2

(4π)4

[
λ

(
−30λ− 36y2

t − 36y2
b − 12y2

τ + 36g2
2 +

36g2
1

5

)
+

+y2
t

(
−27y2

t

4
− 21y2

b

2
+ 20g2

3 +
45g2

2

8
+

17g2
1

8

)
+ y2

b

(
−27y2

b

4
+ 20g2

3 +
45g2

2

8
+

5g2
1

8

)
+

+y2
τ

(
−9y2

τ

4
+

15g2
2

8
+

15g2
1

8

)
− 145

32
g4

2 +
1671

800
g4

1 +
9g2

2g
2
1

16

]
+

+
m2

(4π)6

[
λ2

(
1026λ+

297y2
t

2
− 192.822g2

2 − 38.564g2
1

)
+ λy2

t

(
347.394y2

t + 80.385g2
3+

−318.591g2
2 − 59.699g2

1

)
+ λ

(
−64.5145g4

2 − 65.8056g4
1 − 37.8231g2

2g
2
1

)
+ y4

t

(
154.405y2

t+

−209.24g2
3 − 3.82928g2

2 − 7.50769g2
1

)
+ y2

t

(
178.484g4

3 − 102.627g4
2 − 27.721g4

1+

+7.572g2
3g

2
2 + 8.727g2

3g
2
1 + 11.470g2

2g
2
1

)
+ g4

2

(
−28.572g2

3 + 301.724g2
2 + 9.931g2

1

)
+

+g4
1

(
−4.191g2

3 + 9.778g2
2 + 8.378g2

1

) ]
. (B.5)

B.4 Yukawa couplings

RGE for the top Yukawa coupling:
dy2
t

d ln µ̄2
=

y2
t

(4π)2

[
9y2
t

2
+

3y2
b

2
+ y2

τ − 8g2
3 −

9g2
2

4
− 17g2

1

20

]
+

+
y2
t

(4π)4

[
y2
t

(
−12y2

t −
11y2

b

4
− 9y2

τ
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− 12λ+ 36g2

3 +
225g2

2

16
+

393g2
1

80

)
+
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+
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τ
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−9y2

τ
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+

15

8
g2

2 +
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8
g2

1

)
+

+6λ2 − 108g4
3 −

23g4
2

4
+

1187g4
1

600
+ 9g2

3g
2
2 +

19

15
g2

3g
2
1 −

9

20
g2

2g
2
1

]
+

+
y2
t

(4π)6

[
y4
t

(
58.6028y2

t + 198λ− 157g2
3 −

1593g2
2

16
− 2437g2

1

80

)
+ λy2

t

(
15λ

4
+ 16g2

3+

−135g2
2

2
− 127g2

1
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)
+ y2

t

(
363.764g4

3 + 16.990g4
2 − 24.422g4

1 + 48.370g2
3g
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2 + 18.074g2

3g
2
1+

+34.829g2
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)
+ λ2

(
−36λ+ 45g2

2 + 9g2
1

)
+ λ

(
−171g4

2
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− 1089g4

1

400
+

117g2
2g

2
1

40

)
+

−619.35g6
3 + 169.829g6

2 + 16.099g6
1 + 73.654g4

3g
2
2 − 15.096g4

3g
2
1 − 21.072g2
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2 +

−22.319g2
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321

20
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2g

2
1 − 4.743g4
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2
1 − 4.442g2
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4
1

]
. (B.6)

RGE for the bottom Yukawa coupling (up to two loops):

dy2
b

d ln µ̄2
=

y2
b

(4π)2

[
3y2
t

2
+

9y2
b

2
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τ − 8g2
3 −

9g2
2

4
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1
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]
+

+
y2
b

(4π)4

[
y2
t

(
−y

2
t

4
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b

4
+

5y2
τ

4
+ 4g2

3 +
99g2

2

16
+

91g2
1

80

)
+

+y2
b

(
−12y2

b −
9y2
τ

4
− 12λ+ 36g2

3 +
225g2

2
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+
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1

80

)
+ y2

τ

(
−9y2

τ
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+
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8
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2 +
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8
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+

+6λ2 − 108g4
3 −

23g4
2

4
− 127g4

1

600
+ 9g2

3g
2
2 +

31

15
g2

3g
2
1 −

27

20
g2

2g
2
1

]
. (B.7)

RGE for the tau Yukawa coupling (up to two loops):

dy2
τ

d ln µ̄2
=

y2
τ

(4π)2

[
3y2
t + 3y2

b +
5y2
τ

2
− 9g2

2

4
− 9g2

1

4

]
+

y2
τ

(4π)4

[
+ 6λ2 − 23g4

2

4
+
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1

200
+

27

20
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2
1 +
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t

(
−27y2

t

4
+

3y2
b

2
− 27y2

τ

4
+ 20g2

3 +
45g2

2

8
+

17g2
1
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)
+ (B.8)

+y2
b

(
−27y2

b

4
− 27y2

τ

4
+ 20g2

3 +
45g2

2

8
+

5g2
1

8

)
+ y2

τ

(
−3y2

τ − 12λ+
165

16
g2

2 +
537

80
g2

1

)]
.

C Effective potential at two loops

The effective potential including one-loop and two-loop corrections in Landau gauge for

h� v is given by eq. (4.3), where [8, 23]

λeff(h) = e4Γ(h)

[
λ(µ̄ = h) + λ

(1)
eff (µ̄ = h) + λ

(2)
eff (µ̄ = h)

]
. (C.1)

All running couplings are evaluated at µ̄ = h. Here, Γ(h) ≡
∫ h
Mt
γ(µ̄)d ln µ̄, with γ the

Higgs field anomalous dimension,

γ =
1

(4π)2

[
9

4
g2

2 +
9

20
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1 − 3y2
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τ

]
+

+
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−
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τ
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)
+
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. (C.2)

The one-loop correction is

λ
(1)
eff =

1

(4π)2

[
3g4

2

8

(
ln
g2

2

4
− 5

6
+ 2Γ

)
+

3

16
(g2

2 + g2
Y )2

(
ln
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2 + g2
Y
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− 5
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)
+

−3y4
t

(
ln
y2
t

2
− 3

2
+ 2Γ
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+ 3λ2(4 lnλ− 6 + 3 ln 3 + 8Γ)

]
. (C.3)

The two-loop correction is

λ
(2)
eff =

1

(4π)4

[
8g2

3y
4
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3r2
t − 8rt + 9

)
+
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(
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. (C.4)

Here we have given λ
(2)
eff in the approximation λ = 0, which is well justified around the insta-

bility region. The full expression of λ
(2)
eff can be found in ref. [8]. Moreover, we have defined

ξ(z) ≡
√
z2 − 4z

[
2 ln2

(
z −
√
z2 − 4z

2z

)
− ln2 z − 4Li2

(
z −
√
z2 − 4z

2z

)
+
π2

3

]
, (C.5)

where Li2 is the dilogarithm function, and

rW = ln
g2

2

4
+ 2Γ , rZ = ln

g2
2 + g2

Y

4
+ 2Γ , rt = ln

y2
t

2
+ 2Γ , (C.6)

rtW = (rt − rW )

[
ln

(
y2
t

2
− g2

2

4

)
+ 2Γ

]
. (C.7)
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