
Securing IoT communications: at what cost??

Chiara Bodei and Letterio Galletta

Dipartimento di Informatica, Università di Pisa
{chiara,galletta}@di.unipi.it

Abstract. IoT systems use wireless links for local communication, where
locality depends on the transmission range and include many devices
with low computational and battery power such as sensors. In IoT sys-
tems, security is a crucial requirement, but difficult to obtain, because
standard cryptographic techniques have a cost that is usually unafford-
able. We resort to an extended version of the process calculus LySa,
called IoT-LySa, to model the patterns of communication of IoT de-
vices. Moreover, we assign rates to each transition to infer quantitative
measures on the specified systems. The derived performance evaluation
can be exploited to establish the cost of the possible security counter-
measures.

1 Introduction

Nowadays, “software is eating the world”, i.e. software is pervading our
everyday life and the objects we use such as webTV, coffeemakers, cars,
smartphones, ebook readers, and Smart Cities, on a broader scale [3].

The main distinguishing feature of this scenario, called Internet of
Things (IoT), is that in principle objects are always connected to the
Internet and are equipped with different kinds of sensors, e.g. accelerom-
eters, light sensors, microphone, and so on. These smart devices automat-
ically collect information of various kinds and store them on the cloud or
use them to directly operate on the surrounding environment through
actuators. For instance, our smart alarm clock can drive our heating sys-
tem to find a warm bathroom in the morning, while an alarm sensor in
our place can directly trigger an emergency call to the closest police sta-
tion. As a further example consider a storehouse stocking perishable food
equipped with sensors to determine the internal temperature and other
relevant attributes. The refrigeration system can automatically adapt the
temperature according to the information collected by sensors.

The IoT paradigm introduces new pressing security challenges. Al-
though security should be co-designed with the system and not just added

? Work partly supported by project PRA 2016 64 “Through the fog” funded by the
University of Pisa.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80266763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on as an optional equipment, this is not easy in a setting where the usual
trade-off between highly secure and system usability is more critical than
ever. For instance, sensors are plagued by several security vulnerabilities:
e.g. an attacker can easily intercept sensor communications and manipu-
late and falsify data. Nevertheless, security costs are high for devices with
limited computational and communication capabilities and with limited
battery power, and designers must be selective in choosing security mech-
anisms. Back to the refrigerator system above, to protect against falsi-
fication of data by an attacker, it is possible to resort to cryptography
and to consistency data checks to prevent and detect anomalies. But is it
affordable to secure all the communications? Can we obtain an affordable
solution still having a good level of security by protecting only part of
communications?

To relieve this kind of problems, IoT designers not only need tools to
assess possible risks and to study countermeasures, but also methodolo-
gies to estimate their costs. The cost of security can be computed in terms
of time overhead, energy consumption, bandwidth, and economic, and so
on. All these factors must be carefully evaluated to achieve an acceptable
balance between security, cost and usability of the system.

Usually, formal methods provide designers with tools to support the
development of systems; also, they support them in proving properties,
both qualitative and quantitative. The application of formal method-
ologies to securing IoT systems is still in its infancy. We would like to
contribute by proposing IoT-LySa, an extension of the process calculus
LySa [7] (a close relative of the π-[25] and Spi-calculus [1]) to model
the patterns of communication of IoT devices, and to infer quantitative
measures of the costs the specified systems bear for security mechanisms.

Here, we present preliminary steps, based on [6], towards the devel-
opment of a formal methodology that supports designers in analysing the
cost of security in IoT systems. Our long term goal is to provide a gen-
eral framework with a mechanisable procedure (with a small amount of
manual tuning), where quantitative aspects are symbolically represented
by parameters. The instantiation of parameters is delayed until hardware
architectures and cryptographic algorithms are fixed. By changing only
these parameters designers could compare different implementations of
IoT systems and could choose among different alternatives by selecting
the better tradeoffs among security and costs. Technically, we extend
LySa (Sect. 2) with suitable primitives for describing the activity of sen-
sors and of sensor nodes, and for managing the coordination and com-
munication capabilities of smart objects. The calculus is then given an

enhanced semantics, following [15], where each transition is associated to
a rate in the style of [27]. It suffices to have information about the ac-
tivities performed by the components of a system in isolation, and about
some features of the network architecture. Starting from rates, it is possi-
ble to mechanically derive Markov chains. The actual cost of security can
be carried out using standard techniques and tools [33,30,32]. Note that
here quantitative measures can live together with the usual qualitative se-
mantics, where instead these aspects are usually abstracted away. For the
sake of simplicity, we do not consider actuators and temporal concerns.

The paper is organised as follows. In Sect. 2, we briefly introduce
the process calculus IoT-LySa. In Sect. 3, we present a sample function
that assigns rates to transitions, and we show how to obtain the CTMC
associated with a given system of nodes and how to extract performance
measures from it. Concluding remarks and related work are in Sect. 4.

2 IoT-LySa and its Enhanced Semantics

The original LySa calculus [5,7] is based on the π-[25] and Spi-calculus
[1]. The main differences are: (i) the absence of channels, there is only one
global communication medium to which all processes have access; (ii) the
pattern matching tests associated with received and decrypted values are
incorporated into inputs and into decryptions. Below, we assume that the
reader is familiar with the basics of process calculi. We extend LySa to
model IoT communications by introducing: (i) systems of nodes, consist-
ing of (a representation of the) physical components, i.e. sensors, and of
software control processes for specifying the logic of the node; (ii) prim-
itives for reading from sensors also with cryptographic protection; (iii)
global variables, i.e. whose scope is the whole node, to store data sent
by sensors; (iv) a multi-communication modality among nodes (commu-
nications are subject to various constraints mainly about proximity); (v)
functions to process and aggregate data, in particular the sensor’s ones.

Syntax. As shown below, IoT-LySa systems have a two-level structure
and consist of a fixed number of uniquely labelled nodes N ∈ N that host
control processes P ∈ P, and indexed sensor processes Si ∈ S with i ∈ I`.
Here V denotes the set of values, while X and Z and the local and the
global variables, respectively. Finally, L denotes the set of node labels.

N ::= systems of nodes
0 nil
` : [P ‖ S] single node (` ∈ L)
N1 | N2 parallel composition of nodes

Intuitively, the null inactive system of nodes is denoted by 0 (nil); in
a single node ` : [P || S] the label ` uniquely identifies the node and
represents further characterising information (e.g. its location or other
contextual information if needed). Node components are obtained by the
parallel composition (through the operator |) of control processes P , and
of a fixed number of (less than #(I`)) sensors S. The syntax of control
processes follows.

P ::= control processes
0 nil
〈E1, · · · , Ek〉. P intra-node output
〈〈E1, · · · , Ek〉〉 . L. P multi-output L⊆ L
(E1, · · · , Ej ; xj+1, · · · , xk). P input (with match.)
P1 ‖ P2 parallel composition of processes
P1 + P2 summation
(ν n)P restriction
A(y1, . . . , yn) recursion
decrypt E as
{E1, · · · , Ej ; xj+1, · · · , xk}E0

in P
decryption (with match.)

(i; zi).P clear input from sensor i
({i; zi}K).P crypto input from sensor i

The process 0 represents the inactive process. The process 〈E1, · · · , Ek〉. P
sends the tuple E1, · · · , Ek to another process in the same node and
then continues like P . The process 〈〈E1, · · · , Ek〉〉 . L.P sends the tuple
E1, . . . , Ek to the nodes whose labels are in L and evolves as P . Only nodes
that are “compatible” (according, among other attributes, to a proximity-
based notion) can communicate. The process (E1, · · · , Ej ; xj+1, · · · , xk). P
is willing to receive a tuple E′1, · · · , E′k with the same arity. The input
primitive tests the first j terms of the received message; if they pair-
wise match with the first j terms of the input tuple, then the variables
xj+1, · · · , xk, occurring in the input tuple are bound to the correspond-
ing terms Ej+1, · · · , Ek in the output tuple. The continuation is therefore
P{Ej+1/xj+1, . . . , Ek/xk}, where {−/−} denotes, as usual, the standard
substitution. Otherwise, the received tuple is not accepted. Note that for
simplicity, all the pattern matching values precede all the binding vari-
ables: syntactically, a semi-colon separates the two components (see [9,4]
for a more flexible choice). To better understand this construct, suppose to
have a process P waiting for a message that P knows to include the value
v and a value that P still does not know. The input pattern tuple would
be: (v;x′v). If P receives the matching tuple 〈v, v′〉, the pattern matching

succeeds and the variable x′v is bound to v′. The operator ‖ describes par-
allel composition of processes, while + denotes non-deterministic choice.
The operator (νa) acts as a static declaration for the name a in the pro-
cess P the restriction prefixes. Restriction can be used to create new
values, e.g. keys. An agent is a static definition of a parameterised pro-
cess. Each agent identifier A has a unique defining equation of the form
A(y1, . . . , yn) = P , where y1, . . . , yn are distinct names occurring free in
P . The process decrypt E as E1, · · · , Ej ;xj+1, · · · , xk}E0

in P receives an
encrypted message. Also in this case we use the pattern matching but ad-
ditionally the message E = {E′1, · · · , E′k}E′

0
is decrypted with the key E0.

Hence, whenever Ei = E′i for all i ∈ [0, j], the receiving process behaves
as P{Ej+1/xj+1, . . . , Ek/xk}.

Sensors have the form:

S ::= sensor processes
τ.S internal action
〈i, v〉. S output of the ith sensor
〈{i, v}K〉. S encrypted output of the ith sensor
S1 ‖ S2 parallel composition of sensors
A(y1, . . . , yn) recursion

A sensor can perform an internal action τ or send a (encrypted) value
v, gathered from the environment, to its controlling process and continues
as S. We do not provide an explicit operation to read data from the
environment but it can be easily implemented as an internal action.

Finally, the syntax of term is:

E ::= terms
v value (v ∈ V)
x variable (x ∈ X)
z sensor’s variable (z ∈ Z)
{E1, · · · , Ek}E0 encryption (k ≥ 0)
f(E1, · · · , En) function application (n ≥ 0)

A value represents a piece of data, in particular we use them for keys,
integers and values read from the environment. As said above, we have
two kinds of disjoint variables: x are standard variables, i.e. as used in
π-calculus; sensor variables z belong to a node and are globally accessi-
ble within it. As usual, we require that variables and names are disjoint.
The encryption function {E1, · · · , Ek}E0 returns the result of encrypting
values Ei for i ∈ [1, k] with the key E0. The term f(E1, · · · , En) is the ap-
plication of function f to n arguments; we assume given a set of primitive

aggregation functions, e.g. functions for comparing values or computing
some metrics.

Working Example. Consider the scenario presented in the Introduction
and illustrated in Fig. 1. We want to set a simple IoT system up in order
to keep the temperature under control inside a storehouse with perishable
food (a big quadrangular room). We plan to install four sensors: one for
each corner of the storehouse. We assume that each sensor Si periodically
senses the temperature and sends it with a wireless communication to a
control unit Pc in the same node, which aggregates the read values and
checks if the average temperature is within accepted bounds. If this is
not the case, the control unit sends an alarm throught other nodes and
the Cloud. We assume that an attacker can intercept and manipulate
data sent by sensors. A possible countermeasure is to exploit the fact
that sensors on the same side should sense the same temperature, with
a difference that can be at most a given value ε. The control unit can
indeed easily detect anomalies and discard a piece of data manipulated
by an attacker, by comparing it with values coming from the other sensor
on the same side. But what if the attacker falsifies the data sent by more
than one sensor? A possible solution consists in enabling a part of the
sensors (in our example e.g. S1 and S3) to use cryptography in order
to have at least two reliable data. Nevertheless, before adopting it or
evaluating further solutions we would like to estimate the overhead cost.
Sensors can be modelled in IoT-LySa as follows.

Sm = 〈m, sensej = m()〉. τ.Sm m = 0, 2
Sj = 〈{j, sensej()}Kj 〉. τ.Sj j = 1, 3

The control process Pc of the first node reads from sensors and then ag-
gregates and compares the sensed values, in order to check them and
compute their average. The control process Qc of the second node verifies
the result of the comparison and of the average functions and decides
if sending an alarm or an ok message to the third node, together with
the average value. The control process Rc of the third node represents an
Internet service where the control process waits for the message of the
second node and handles it (through the internal action τ). The specifi-
cations of the control processes follow.

Pc = (0; z0). τ.({1; z1}K1).τ.(2; z2). τ.({3; z3}K3).τ.
〈〈cmp(z0, ..., z3), avg(z0, ..., z3)〉〉 . {`2}.τ.Pc

Qc = (true;xavg).〈〈ok, xavg〉〉 . {`3}.τ.Qc +
(false;xavg).〈〈alarm, xavg〉〉 . {`3}.τ.Qc

Rc = (;wres, wavg).τ.Rc

Fig. 1. The organisation of nodes in our refrigerator system.

The aggregation function cmp on the collected data perform consistency
checks, by comparing data coming from insecure sensors with data coming
from sensor endowed with encrypted communication; if the first data
are out of bounds, the result is true otherwise is false. The function
avg computes the average of its arguments. We suppose that processes
and sensors perform some internal activities (denoted by τ -actions). The
whole Iot-LySa node system, which includes the node N1 (composed by
the control unit and sensors) and the nodes N2 and N3, is specified as
follows.

N = N1 | N2 | N3 N2 = `2 : [Qc ‖ 0]
N1 = `1 : [Pc ‖ (S0‖ S1‖ S2‖ S3)] N3 = `3 : [Rc ‖ 0]

Another solution consists in enabling just one sensor on four to use cryp-
tography. In the new system of nodes N̂ , the only difference is the follow-
ing specification of the control process P̂c of the first node.

P̂c = (0; z0). τ.({1; z1}K1).τ.(2; z2). τ.(3; z3). τ.

〈〈halfcmp(z0, z1), avg(z0, ..., z3)〉〉 . {`2}.τ.P̂c
Note that the required comparison function halfcmp is simpler, since it
uses only two arguments. We expect that this second solution is less
expensive. Our methodology allows us to formally compare the relative
costs of the two solutions.

Enhanced Operational Semantics. Here, we give a reduction semantics
in the style of the one of LySa [7]. It is an enhanced semantics, because
following [14,15], transitions are annotated with labels used to estimate
costs (actually, ours is a simplified version of the one in [14,15]).

The underlying idea is that each transition is enriched with an en-
hanced label θ, which records both the actions related to the transition
and the possible nodes involved. Actually, there is a label for transitions
involving communications and decryptions. More in detail, both point to
point communications and multi-communications records the two actions
(input and output) that lead to the transition, together with the labels of
the corresponding nodes. Decryption actions store the label of the node
performing the operation. Note that in the following definition and in
the semantic rules, we use the abbreviations out, in, dec, for denoting
the communication prefixes, the decryption constructs and, inside them,
the possible function calls f , of the considered transition. The standard
semantics can be obtained by simply removing the transition labels.

Definition 1. (Transition labels) Given `O, `I , `D ∈ L, the set Θ 3 θ of
enhanced labels is defined as follows.

θ ::=
〈` {out}, ` {in}〉 internal secure communication
〈` out, ` in〉 internal communication
〈`O out, `I in〉 intra-nodes communication
{`D dec} decryption of a message

As usual, our semantics consists of the standard structural congruence
≡ on nodes, processes and sensors and of a set of rules defining the transi-
tion relation. Our notion of structural congruence ≡ is standard except for
the following congruence rule for processes that equates a multi-output
with empty set of receivers to the inactive process.

〈〈E1, · · · , Ek〉〉 . ∅.0 :≡ P

As usual, our reduction relation
θ−→⊆ N ×N is defined as the least

relation on closed nodes, processes and sensors that satisfies a set of in-
ference rules. Our rules are quite standard apart from the five rules for
communications shown in Tab. 1 and briefly commented below. We as-
sume the standard denotational interpretation for evaluating terms [[E]].

– the rule (Sens-Com) is used for communications between sensors and
processes. The used variables are assumed to be global. i.e. shared

among the process of the same node. The idea is that sensors con-
tribute to a sort of shared data structure z1, · · · , zn. Therefore the
substitution is performed on all the control processes in the node.
The transition label 〈` out, ` in〉 records the fact that an internal
communication occurred inside the node `;

– similarly, the rule (Crypto-Sens-Com) is used for protected communi-
cations between sensors and processes: the value sensed by the sensor
is encrypted before being sent to the process and is received if success-
fully decrypted. Also in this case the transition label 〈` {out}, ` {in}〉
records information about the internal protected communication;

– the rule (Intra-Com) is used for communications internal to a node.
The communication succeeds, provided that the first j values match
with the evaluations of the first j terms in the input. When these
comparisons are successful each Ei is bound to each xi. The transition
label 〈` out, ` in〉 records the fact that an internal communication
occurred inside the node `;

– the rule (Point2Point-Com) is used for point to point communications
between nodes. The communication succeeds, provided that (i) the la-
bels of the two nodes are compatible according to the compatibility
function Comp; and (ii) the first j values match with the evaluations
of the first j terms in the input. When these comparisons are success-
ful each Ei is bound to each xi. The transition label 〈`1 out, `2 in〉
records the fact that an inter-node communication occurred between
the nodes labelled by `1 and `2;

– the rule (Multi-Com) is used for multi-communications among nodes.
The communication between the node labelled ` and the node `′ suc-
ceeds, provided that (i) `′ belongs to the set L of possible receivers, (ii)
the two nodes are compatible according to the compatibility function
Comp, and (iii) that the first j values match with the evaluations of
the first j terms in the input. When these comparisons are successful,
the first node spawns a new process, running in parallel with the con-
tinuation P , whose task is to offer the output tuple to all its receivers
L, except for `′, which is removed, while in the second node each Ei
is bound to each xi. Outputs terminate when all the receivers in L
have received the message (see the congruence rule). The transition
label 〈`1 out, `2 in〉 records the fact that an inter-node communication
occurred between the nodes `1 and `2 (with `2 ∈ L).

The role of the compatibility function Comp is crucial in modelling real
world constraints on communication. A basic requirement is that inter-
node communications are mainly proximity-based, i.e. that only nodes

(Sensor-Com)

` : [〈i, vi〉. Si‖ S ‖ (i; zi). P | Q]
〈` out,` in〉−→ ` : [Si ‖ S‖ P{vi/zi} |Q{Ei/zi}]

(Crypto-Sensor-Com)

` : [〈{i, vi}K〉. Si‖ S ‖ ({i; zi}K).P | Q]
〈` {out},` {in}〉→ ` : [Si ‖ S‖ P{vi/zi} |Q{Ei/zi}]

(Intra-Com)Vk
i=1 vi = [[Ei]] ∧

Vj
i=1 [[Ei]] = [[E′

i]]

` : [〈E1, · · · , Ek〉. P | (E′
1, · · · , E′

j ; xj+1, · · · , xk). Q‖ S]

〈` out,` in〉→
` : [P | Q{vj+1/xj+1, · · · , vk/xk}‖ S]

(Point2Point-Com)

Comp(`1, `2) ∧ Vk
i=1 vi = [[Ei]] ∧

Vj
i=1 [[Ei]] = [[E′

i]]

`1 : [〈E1, · · · , Ek〉. P11 | P12 ‖ SP] | `2 : [(E′
1, · · · , E′

j ; xj+1, · · · , xk). Q11 | Q12‖ SQ]
〈`1 out,`2 in〉→

`1 : [〈E1, · · · , Ek〉. P11 | P12 ‖ SP] | `2 : [Q11{vj+1/xj+1, · · · , vk/xk} | Q12‖ SQ]

(Multi-Com)

`2 ∈ L ∧ Comp(`1, `2) ∧ Vk
i=1 vi = [[Ei]] ∧

Vj
i=1 [[Ei]] = [[E′

i]]

`1 : [〈〈E1, · · · , Ek〉〉 . L.P11 | P12 ‖ SP] | `2 : [((E′
1, · · · , E′

j ;xj+1, · · · , xk)).Q11 | Q12 ‖ SQ]
〈`1 out,`2 in〉−→

`1 : [〈〈E1, · · · , Ek〉〉 . L \ {`2}.P11 | P12 ‖ SP] || `2 : [Q11{vj+1/xj+1, · · · , vk/xk} | Q12‖ SQ]

Table 1. Operational semantic rules for communication.

that are in the same transmission range can directly exchange messages.
This is easily encoded here by defining a predicate (over node labels)
yielding true only when two nodes are in the same transmission range. Of
course, this function could be enriched in order to consider finer notions of
compatibility expressing various policies, e.g. topics for event notification.

Hereafter, we assume the standard notion of transition system. Intu-
itively, a transition system is a graph, in which systems of nodes form the
nodes and arcs represent the possible transitions between them (in our
cases arcs come with labels). For technical reasons, which will be clear
in the next section, hereafter, we will restrict ourselves to finite state
systems, i.e. whose corresponding transition systems have a finite set of
states. Note that this does not mean that the behaviour of such processes
is finite, because their transition systems may have loops.

Example (cont’d) Consider our simple running example and the single
run of the first system (the one of the second system is similar) where
the four sensors of node `1 send a message to their control process Pc and
Pc checks the collected data and sends the checking result to the node
with label `2. For brevity, we ignore their internal actions τ . We denote
with P ′c (Q′c, R

′
c, resp.) the continuations of Pc (Qc, Rc, resp.) after the

first input prefixes, with vcomp the value cmp(v0, ..., v3), with vavg the
value avg(v0, ..., v3), and with vresi (with i = 0, 1) the value ok (alarm
respectively), depending on which branch of the summation is chosen.

N = `1 : [(0; z0). P ′
c | P ‖ (〈0, sense0()〉. τ.S0‖ S1‖ S2‖ S3)] | N2 | N3

θ0−→
N ′ = `1 : [P ′

c{0/z0} ‖ (τ.S0‖ S1‖ S2‖ S3)] | N2 | N3
θ1−→ θ2−→ θ3−→

N ′′′′ = `1 : [P ′
c{0/z0, 1/z1, 2/z2, 3/z3} ‖

(S0‖ S1‖ S2‖ S3)] | N2 | N3

=
`1 : [〈〈vcomp, vavg〉〉 . {`2}.τ.Pc ‖ (S0‖ S1‖ S2‖ S3)] |
`2 : [(true;xavg).〈〈ok, xavg〉〉 . {`3}.τ.Qc +

(false;xavg).〈〈alarm, xavg〉〉 . {`3}.τ.Qc] | N3
θ4i−→

N ′′′′′
i = `1 : [Pc | P ‖ (S0‖ S1‖ S2‖ S3)] |

`2 : [Q′
c{vavg/xavg}) ‖ 0] |

`3 : [(;wres, wavg).τ.Rc ‖ 0]
=

`1 : [Pc | P ‖ (S0‖ S1‖ S2‖ S3)] |
`2 : [〈〈vresi , vavg〉〉 . {`3}.τ.Qc ‖ 0] |
`3 : [(;wres, wavg).τ.Rc ‖ 0]

θ5i−→
N = `1 : [Pc | P ‖ (S0‖ S1‖ S2‖ S3)] |

`2 : [Qc ‖ 0] |
`3 : [R′

c{vresi/wres, vavg/wavg} ‖ 0]
=

N1 | N2 | N3

The whole sequence of transitions with source N is as follows.

N
θ0−→ N ′

θ1−→ N ′′
θ2−→ N ′′′

θ3−→ N ′′′′
θ4i−→

{
N ′′′′′0

θ50−→ N if i = 0

N ′′′′′1
θ51−→ N if i = 1

where N ′, N ′′, N ′′′, N ′′′′, N ′′′′′ represent the derivatives of N (i.e. the node
systems reached in the computation) and the label θj , which denotes the

label of the jth transition (θji depending on the branch of the summation),
are as follows.

θ0 = θ2 = 〈`1〈j, vj〉, `1(j; zi)〉,
θ1 = θ3 = 〈`1〈{j, vj}Ki〉, `1({j; zj}Ki)〉,
θ4i = 〈`1〈〈cmp(v0, · · · , v3), avg(v0, · · · , v3)〉〉, `2(vbool;xavg)〉
θ5i = 〈`2 〈〈vresi , vavg〉〉, `3(wres, wavg)〉

The evolution of the second system N̂ is similar and its transition labels
θ̂i are as follows.

θ̂0 = θ̂2 = θ̂3 = 〈`1〈j, vj〉, `1(j; zi)〉,
θ̂1 = 〈`1〈{j, vj}Ki〉, `1({j; zj}Ki)〉,
θ̂4i = 〈`1〈〈halfcmp(v0, v1), avg(v0, · · · , v3)〉〉, `2(vbool;xavg)〉
θ̂5i = 〈`2 〈〈vresi , vavg〉〉, `3(wres, wavg)〉

Note that in both cases, the transition systems loop, but they are finite
as required.

3 Stochastic Semantics

We now show how to extract quantitative information from a transition
system by transforming it in a Continuous Time Markov Chains (CTMC)
(see [27] for a more detailed description of this process). First, we intro-
duce functions that associate costs to single transitions, by inspecting
their enhanced labels. This information is sufficient to extract the nec-
essary quantitative information to obtain the Continuous Time Markov
Chains (CTMC). In general, by “cost” we mean any measure that affects
quantitative properties of transitions: here, we intend the time the sys-
tem is likely to remain within a given transition. We specify the cost of
a system in terms of the time overhead due to its primitives. The cost
of (the component of) the transition depends on both the current ac-
tion and on its context of executions, in our case, on the nodes involved.
Intuitively, cost functions define exponential distributions of transitions.
Starting from them it is possible to compute the rates at which a system
evolves and therefore the corresponding CTMC. Finally, to evaluate the
system performance we need to compute the (unique) stationary distri-
bution of the CTMC and the transition rewards.

3.1 Cost Functions

First, we intuitively present the main factors that influence the costs of
actions and those due to their context. For the sake of simplicity, here

we ignore the costs for other primitives, e.g. restriction, constant invoca-
tion, parallel composition, summation, and internal actions (see [27] for
a complete treatment).

– The cost of a communication depends on the costs of the input and
output components. In particular, the cost of an (i) output depends
on the size of the message and on the cost of each term of the mes-
sage sent, in particular on its encryptions; (ii) input depends on the
size of the message and on the cost of checks needed to accept the
message. Actually, the two partners independently perform some low-
level operations locally to their environment, each of which leads to
a delay. Since communication is synchronous and handshaking, the
overall cost corresponds to the cost paid by the slower partner.

– The cost of both encryption and decryption depends on the sizes of
the cleartext and ciphertext, respectively, the complexity of the al-
gorithm that implements it, the cipher mode adopted, and the kind
of the key (short/long, short-term/long-term). The length of the key
is important: usually, the longer the key, the greater the computing
time. In addition, the cost for decryption depends on the cost of the
checks needed to accept the decryption.

To define a cost function, we start by considering the execution of each
action on a dedicated architecture that only has to perform that action,
and we estimate the corresponding duration with a fixed rate r. Then
we model the performance degradation due to the run-time support. To
do that, we introduce a scaling factor for r in correspondence with each
routine called by the implementation of the transition θ under considera-
tion. Here, we just propose a format for these functions, with parameters
to be instantiated on need. Note that these parameters depend on the
node, e.g. in a node where the cryptographic operations are performed
at very high speed (e.g. by a cryptographic accelerator), but with a slow
link (low bandwidth), the time will be low for encryptions and high for
communication; vice versa, in a node offering a high bandwidth, but poor
cryptography resources.

Technically, we interpret costs as parameters of exponential distri-
butions F (t) = 1 − e−rt, with rate r and t as time parameter (general
distributions are also possible see [29]). The rate r associated with the
transition is the parameter that identifies the exponential distribution
of the duration times of the transition, as usual in stochastic process
algebras (e.g. [18,17]). The shape of F (t) is a curve that grows from 0
asymptotically approaching 1 for positive values of its argument t. The

parameter r determines the slope of the curve: the greater r, the faster
F (t) approaches its asymptotic value. The probability of performing an
action with parameter r within time x is F (x) = 1−e−rx, so r determines
the time, ∆t, needed to have a probability near to 1. The exponential dis-
tributions that we use enjoy the memoryless property, i.e. the occurrence
of a new transition does not depend on when the previous transitions
occurred. We also assume that transitions are time homogeneous, i.e. the
corresponding rates do not depend on the time in which the transitions
are fired.

We define in a few steps the function that associates rates with com-
munication and decryption transitions, or, more precisely, with their en-
hanced labels. For simplicity, we assume the sensor cost of sensing from
the environment as non-significant. We first give the auxiliary function
fE : E → IR+ that estimates the effort needed to manipulate terms E ∈ E .

• fE(a) = size(a)
• fE({E1, . . . , Ek}E0) = fenc(fE(E1), ..., fE(E1), kind(E0))

The size of a name a (size(a)) matters. For an encrypted term, we use
the function fenc, which in turn depends on the estimate of the terms to
encrypt and on the kind of the key (represented by kind(E0)), i.e. on its
length and on the corresponding crypto-system. Then we assign costs to
communication and decryption actions.

• $α(〈E1, . . . , Ek〉) = fout(fE(E1), ..., fE(E1), bw)
• $α((E1, . . . , Ej ;xj+1, . . . , xk)) = fin(fE(E1), ..., fE(Ej),match(j), bw)
• $α(decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0) =
fdec(fE(E), kind(E0),match(j))

The functions fout and fin define the costs of the routines that imple-
ment the send and receive primitives. Besides the implementation cost due
to their own algorithms, the functions above depend on the bandwidth
of the communication channel (represented by bw) and the cost of the
exchanged terms, which is computed by the auxiliary function fE . They
in turn depend on the nodes where the communication occurs. Moreover,
the inter-node communication depends on the proximity-relationship be-
tween the nodes, represented here by the function F (`O, `I). Also, the
cost of an input depends on the number of tests or matchings required
(represented by match(j)). Finally, the function fdec represents the cost
of a decryption. It depends on the manipulated terms (fE(E)), on the
kind of key (kind(E0)), on the number of matchings (match(j)), and on
the cryptographic features of the node that performs the decryption.

Finally, the function $: Θ → IR+ associates rates with enhanced labels.

• $(〈`O out, `I in〉) = F (`O, `I) ·min{$α(out, `O), $α(in, `I)}
• $〈` dec〉 = $α(dec, `)

As mentioned above, the two partners independently perform some low-
level operations locally to their nodes, represented by the two node labels
`O and `I . Each label leads to a delay in the rate of the corresponding
action. Thus, the cost of the slower partner corresponds to the minimum
cost of the operations performed by the participants, in isolation. Indeed
the lower the cost, i.e. the rate, the greater the time needed to complete
an action and hence the slower the speed of the transition occurring. The
smaller r, the slower F (t) = 1− e−rt approaches its asymptotic value.

Note that we do not fix the actual cost function: we only propose for
it a set of parameters to reflect some features of an idealised architec-
ture. Although very abstract, this suffices to make our point. A precise
instantiation comes with the refinement steps from specification to im-
plementations as soon as actual parameters become available.

Example (cont’d) We now associate a rate to each transition in the tran-
sition system of the system of nodes N , called N for brevity. To illustrate
our methodology, we make some simplifying assumptions: we assume that
τ transitions have no cost and that the coefficients due to the nodes
amount to 1. We instantiate the cost functions given above, by using
the following parameters each used to compute the rate corresponding
to a particular action (sending, receiving and decryption) or a part of it,
such as an encryption or a pattern matching: (i) e and d for encrypting
and for decrypting; (ii) s and r for sending and for receiving; (iii) m for
pattern matching; and (iv) f for the application of the aggregate func-
tion f , whose cost is proportional to the number of their arguments. The
functions are:

• fE(a) = 1

• fE({E1, . . . , Ek}E0) = e
s
·∑k

i=1 fE(Ei) + 1
• $α(〈E1, . . . , Ek〉) = 1

s·Pi
i=1 fE(Ei)

• $α((E1, . . . , Ej ;xj+1, . . . , xk)) = 1
r·k+m·j

• $α(decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0) = 1
d·k+m·j

• $α(f(E1, · · · , Ek)) = 1
f·k

Intuitively, these parameters represent the time spent performing the cor-
responding action on a single term. They occur in the denominator, there-
fore keeping the rule that the faster the time, the slower the rate. Since

transmission is usually more time-consuming than the corresponding re-
ception, the rate of a communication, will always be that of output.

The rates of the transitions of N and N̂ are cj = $(θj) and ĉj = $(θ̂j),
with j ∈ [0, 5] and i ∈ [0, 1].

c0 = c2 = 1
2s ,

c1 = c3 = 1
2e+s

,

c4i = 1
8f+2s

c5i = 1
s

ĉ0 = ĉ2 = ĉ3 = 1
2s ,

ĉ1 = 1
2e+s

ĉ4i = 1
6f+2s

ĉ5i = 1
s

For instance, the rate c1 of the second transition is: c1 = $(θ1) = 1
2e+s

,

where 1
2e+s

= min{ 1
2e+s

, 1
2d+r+m

}. Note that our costs can be further
refined; we could e.g. use a different rate for transmission when internal
to a node (costs cj and ĉj with j ∈ [0, 3]) and when external (costs cji
and ĉji with j ∈ [3, 4]).

3.2 Stochastic Analysis

Now, we derive a Continuous Time Markov Chain (CTMC) from a tran-
sition system. Afterwards, we can calculate the actual performance mea-
sures, e.g. the throughput or utilisation of a certain resource (see [2,26]
for more details on the theory of stochastic processes).

Markov Chains We use the rates of transitions computed in Subsect. 3.1,
to transform a transition system N into its corresponding CTMC(N).

Actually, the transition rate q(Ni, Nj) at which a system changes from
behaving like process Ni to behaving like Nj is the sum of the single rates
ϑk of all the possible transitions from Ni to Nj . Given a transition system
N , the corresponding CTMC has a state for each node in N , and the arcs
between states are obtained by coalescing all the arcs with the same source
and target in N . Recall that a CTMC can be seen as a directed graph
and that its matrix Q, the generator matrix, (apart from its diagonal)
represents its adjacency matrix. Note that q(Ni, Nj) coincides with the
off-diagonal element qij of the generator matrix Q. Hence, hereafter we
will use indistinguishably CTMC and its corresponding Q to denote a
Markov chain. More formally, the entries of Q are defined as follows.
Given a transition system N , the corresponding CTMC has a state for
each node in N , and the arcs between states are obtained by coalescing
all the arcs with the same source and target in N . Recall that a CTMC
can be seen as a directed graph and that its matrix Q, called generator
matrix, (apart from its diagonal) represents its adjacency matrix. Note

that q(Ni, Nj) coincides with the off-diagonal element qij of the generator
matrix Q. Hence, hereafter we will use indistinguishably CTMC and its
corresponding Q to denote a Markov chain. More formally, the entries of
Q are defined as follows.

qij =





q(Ni, Nj) =
∑

Ni
θk−→Nj

$(θk) if i 6= j

−
n∑

j=0,j 6=i
qij if i = j

Evaluating the Performance Performance measures should be taken over
long periods of time to be significant. These measures are usually obtained
by resorting to stationary probability distributions of CTMCs. The sta-
tionary probability distribution of a CTMC is Π = (X0, . . . , Xn−1) such
that Π solves the matrix equation ΠTQ = 0 and

∑n
i=0Xi = 1. If the

transition system is finite and has a cyclic initial state, then there exists
a unique stationary probability distribution.

Example (cont’d) Consider the transition system corresponding to the
system of nodesN that is, as required above, finite and with a cyclic initial
state. We derive the following generator matrix Q1 of CTMC(N) and
the corresponding stationary distribution is Π1, where C = 4s+ 2e+ 2f,
by solving the system of linear equations ΠT

1 Q1 = 0 and
∑n

i=0Xi = 1,
where Π1 = (X0, · · · , X6). Similarly, we can derive the generator matrix
Q̂′1 and the corresponding stationary distribution Π̂1 for the transition
system corresponding to N̂ , where Ĉ = 9s + 2e + 3f.

Q1 =

266666664

−c0 c0 0 0 0 0 0
0 −c1 c1 0 0 0 0
0 0 −c2 c2 0 0 0
0 0 0 −c3 c3 0 0
0 0 0 0 −(c40 + c41) c40 c41
c50 0 0 0 0 −c50 0
c51 0 0 0 0 0 −c51

377777775

Π1 =
[s
C
,

(2e + s)

2C
,

s

2C
,

(2e + s)

C
,

(4f + s)

2C
,

s

4C
,

s

4C

]

Π̂1 =
[2s
Ĉ
,

(2e + s)

Ĉ
,
2s

Ĉ
,
2s

Ĉ
,

(3f + s)

Ĉ
,

s

2Ĉ
,

s

2Ĉ

]

To define performance measures for a system N , we define a reward
structure associated with N , following [19,18,12]. Usually, a reward struc-
ture is simply a function that associates a reward with any state passed

through in a computation of N . For instance, when calculating the util-
isation of a resource, we assign value 1 to any state in which the use of
the resource is enabled (typically the source of a transition that uses the
resource). All the other states earn the value 0. We use a slightly differ-
ent notion, where rewards are computed from rates of transitions [27].
To measure instead the throughput of a system, i.e. the amount of useful
work accomplished per unit time, a reasonable choice is to use as nonzero
reward a value equal to the rate of the corresponding transition. The re-
ward structure of a system N is a vector of rewards with as many elements
as the number of states of N . By looking at the probability stationary
distribution of and varying the reward structure, we can compute differ-
ent performance measures. The total reward is obtained by summing the
values of the stationary distribution Π multiplied by the corresponding
reward structure ρ.

Definition 2. Given a system N , let Π = (X0, . . . , Xn−1) be its station-
ary distribution and ρ = ρ(0), ..., ρ(n − 1) be its reward structure. The
total reward of N is computed as R(N) =

∑
i ρ(i) ·Xi.

Example (cont’d) To evaluate the relative efficiency of the two systems of
nodes, we compare the throughput of both, i.e. the number of instructions
executed per time unit. The throughput for a given activity is found by
first associating a transition reward equal to the activity rate with each
transition. In our systems each transition is fired only once. Also, the
graph of the corresponding CTMC is cyclic and all the labels represent
different activities. This amounts to saying that the throughput of all the
activities is the same, and we can freely choose one of them to compute
the throughput of N . Thus we associate a transition reward equal to its
rate with the last communication and a null transition reward with all the
others communications. The total reward R(N) of the system amounts
then to 1

2(8s+4e+4f) , while R(N̂) amounts to 1
2(9s+2e+3f) . By comparing

the two throughputs, it is straightforward to obtain that R(N) < R(N̂),
i.e. that, as expected, N̂ perform better. To use this measure, it is neces-
sary to instantiate our parameters under various hypotheses, depending
on several factors, such as the network load, the packet size, and so on.
Furthermore, we need to consider the costs of cryptographic algorithms
and how changing their parameters impact on energy consumption and
on the guaranteed security level (see e.g. [24]).

4 Conclusions

In the IoT setting the risk for devices of being attacked is higher and
higher, and still security is not taken sufficiently into account, since sup-
porting security in an affordable way is quite challenging. We have pre-
sented the first steps towards a framework and formal design methodology
that support designers in specifying an IoT system and in estimating the
cost of security mechanisms starting from its specification. In this way, it
suffices to have information about the activities performed by the com-
ponents of a system in isolation, and about some features of the network
architecture. A key feature of our approach is that quantitative aspects
are symbolically represented by parameters. Actual values are obtained
as soon as the designer provides some additional information about the
hardware architecture and the cryptographic algorithms relative to the
system in hand. By abstractly reasoning about these parameters design-
ers can compare different implementations of the same IoT system, and
choose among different alternatives the one that ensures the best trade-off
between security guarantees and their price.

In practice, we proposed the process algebra IoT-LySa, an extension
of LySa with suitable primitives for describing the activity of sensors
and of sensor nodes, and for describing the possible patterns of commu-
nication among the IoT entities. We have equipped the calculus with an
enhanced semantics, following [15], where each system transition is asso-
ciated to a rate in the style of [27]. Starting from the information about
the rates of system activities, it is possible to mechanically derive Markov
chains through which we can perform cost evaluation by using standard
techniques and tools [33,30,32].

Our approach follows the well-established line of research about per-
formance evaluation through process calculi and probabilistic model check-
ing (see [13,20,21] for a survey). To the best of our knowledge, the applica-
tion of formal methods to IoT systems or to wireless or sensor networks
have not been largely studied and only a limited number of papers in
the literature addressed the problem from a process algebras perspective,
e.g. [22,23,10,31] to cite only a few. In [11] the problem of modelling and
estimating the communication cost in an IoT scenario is tackled through
Stochastic Petri Net. Their approach is similar to ours: they derive a
CTMC from a Petri Net describing the system and proceed with the per-
formance evaluation by using standard tools. Differently from us, they
focus not on the cost of security but only on the one of communication
(they do not use cryptographic primitives). In [16] a performance compar-

ison between the security protocols IPSec and DTLS is presented, in par-
ticular by considering impact on the resources of IoT devices with limited
computational capabilities. They modified protocols implementations to
make them properly run on the devices. An extensive experimental eval-
uation study on these protocols shows that both their implementations
ensure a good level of end-to-end security.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols - The Spi
calculus. Information and Computation, 148(1):1–70, 1999.

2. A. A. Allen. Probability, Statistics and Queueing Theory with Computer Science
Applications. Academic Press, 1978.

3. M. Andreessen. Why Software Is Eating The World. The Wall Street Journal,
August 20, 2011.

4. C. Bodei, L. Brodo, R. Focardi. Static Evidences for Attack Reconstruction. Pro-
gramming Languages with Applications to Biology and Security 2015. LNCS 9465,
pp.162-182, Springer, 2015.

5. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. Proc. of CSFW’03, pages 126–140. IEEE, 2003.

6. C. Bodei, M. Buchholtz, M. Curti, P. Degano, F. Nielson, and H. Riis Nielson, C.
Priami. On Evaluating the Performance of Security Protocols Proc. of PaCT’05,
LNCS 3606, pp. 115, 2005

7. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of security protocos. Journal of Computer Security 13(3): 347-390 (2005)

8. M. Bravetti, M. Bernardo and R. Gorrieri. Towards Performance Evaluation with
General Distributions in Process Algebras. Proc. of CONCUR’98, LNCS 1466,
1998.

9. M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control flow analysis
of security protocols. International Journal of Information Security, 2 (3-4), 2004.

10. V. Castiglioni, R. Lanotte and M. Merro. A Semantic Theory for the Internet of
Things. arXiv:1510.04854v1.

11. L. Chen, L. Shi, W. Tan. Modeling and Performance Evaluation of Internet of
Things based on Petri Nets and Behavior Expression. Research Journal of Applied
Sciences, Engineering and Technology 4(18): 3381-3385, 2012.

12. G. Clark. Formalising the specifications of rewards with PEPA. Proc. of PAPM’96,
pp. 136-160. CLUT, Torino, 1996.

13. A. Clark, S. Gilmore, J. Hillston and M. Tribastone. Stochastic Process Alge-
bras. Formal Methods for the Design of Computer, Communication, and Software
Systems (SFM), 2007.

14. P. Degano and C. Priami. Non Interleaving Semantics for Mobile Processes. The-
oretical Computer Science, 216:237–270, 1999.

15. P. Degano and C. Priami. Enhanced Operational Semantics. ACM Computing
Surveys, 33, 2 (June 2001), 135-176.

16. A. De Rubertis, L. Mainetti,V. Mighali, L. Patrono,I. Sergi, M.L. Stefanizzi, S. Pas-
cali, Performance evaluation of end-to-end security protocols in an Internet of
Things in 21st International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2013.

17. H. Hermanns and U. Herzog and V. Mertsiotakis. Stochastic process algebras
– between LOTOS and Markov Chains. Computer Networks and ISDN systems
30(9-10):901-924, 1998.

18. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

19. R. Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Systems.
Volume II, Wiley, 1971.

20. M. Kwiatkowska, G. Norman and D. Parker. Stochastic Model Checking. For-
mal Methods for the Design of Computer, Communication and Software Systems:
Performance Evaluation (SFM’07), LNCS 4486, 2007

21. M. Kwiatkowska and D. Parker. Advances in Probabilistic Model Checking. Soft-
ware Safety and Security - Tools for Analysis and Verification: 33:126-151, IOS
Press, 2012.

22. I. Lanese and D. Sangiorgi. An operational semantics for a calculus for wireless
systems. Theoretical Computer Science 411(19): 1028-1948 (2010)

23. I. Lanese, L. Bedogni and M.D. Felice Internet of Things: A Process Calculus
Approach. Proc. of the 28th Annual ACM Symposium on Applied Computing
(ACM SAC ’13), 2013

24. J. Lee, K. Kapitanova, S.H. Son: The price of security in wireless sensor networks.
Computer Networks 54(17): 2967-2978 (2010)

25. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II).
Information & Computation, 100(1):1–77, 1992.

26. R. Nelson. Probability, Stochastic Processes and Queeing Theory. Springer, 1995.
27. C. Nottegar, C. Priami and P. Degano. Performance Evaluation of Mobile Pro-

cesses via Abstract Machines. Transactions on Software Engineering, 27(10), 2001.
28. G. Plotkin. A Structural Approach to Operational Semantics. Tech. Rep. Aarhus

University, Denmark, 1981, DAIMI FN-19
29. C. Priami. Language-based Performance Prediction of Distributed and Mobile

Systems Information and Computation 175: 119-145, 2002.
30. A. Reibnam and R. Smith and K. Trivedi. Markov and Markov reward model

transient analysis: an overview of numerical approaches. European Journal of
Operations Research: 40:257-267, 1989.

31. A. Singh, C.R. Ramakrishnan and S.A. Smolka. A process calculus for Mobile Ad
Hoc Networks. Science of Computer Programming 75(6): 440-469 (2010)

32. W. J. Stewart. Introduction to the numerical solutions of Markov chains. Princeton
University Press, 1994.

33. K. S. Trivedi. Probability and Statistics with Reliability, Queeing and Computer
Science Applications. Edgewood Cliffs, NY, 1982.

