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Abstract

Interactive, or computer-assisted, theorem proving is the verification of
statements in a formal system, where the proof is developed by a logician
who chooses the appropriate inference steps, in turn executed by an auto-
matic theorem prover. In this paper, interactive theorem proving is used
to verify safety properties of a nonlinear (hybrid) control system.
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1 Introduction

Many technical systems fall in the class of hybrid systems, i.e., nonlinear sys-
tems having both analog and digital components. Such systems are typically
composed of an analog plant, described by linear or nonlinear equations, and
a digital control, intrinsically nonlinear. In industrial practice, hybrid systems
are usually analyzed by simulation. An executable model of the system is built
with graphical block-based languages such as those offered by the Simulink(TM),
Scilab, or ScicosLab environments [45, 11], or textual languages such as Model-
ica [20] or CIF [44], or a combination of the two, and the model is executed to
simulate the system under various conditions.

While simulation is a mainstay of system development and is a necessary
tool for validation, it cannot provide developers with the confidence afforded by
formal verification. Formal verification of nonlinear systems may be difficult,
but automatic or semiautomatic tools can provide valuable support to this task.

Schupp et al. [38] recently published an overview of hybrid systems veri-
fication, with short outlines of tools and techniques for reachability analysis,
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examples of benchmark problems, and current challenges. A survey of works
on formal verification of hybrid systems was published by Alur [1], who identi-
fies some broad areas of research, including symbolic reachability analysis and
deductive verification.

In the area of symbolic reachability analysis, research is focused on algo-
rithms to compute or approximate a system’s reach(ability) set, i.e., the set of
states reachable from any of the admissible initial states, with the goal of verify-
ing whether the set contains unsafe states. For example, Tiwari and Khanna [43]
propose techniques to approximate reach sets for different classes of hybrid au-
tomata, based on qualitative abstraction [42], which in turns relies on model
checking. Model checking is also used by Cimatti et al. [15], who implement a
quantifier-free encoding of hybrid automata with the NuSMV [14] model checker.

Many tools have been developed to support the analysis of hybrid systems,
including UPPAAL [3] for timed automata, HybridSAL [41] based on the SAL [4]
model checker, ARIADNE [5], and HSOLVER [37]. In particular, ARIADNE
has been used for nonlinear hybrid system verification based on an assume-
guarantee method, and HSOLVER has been applied to safety verification with
constraint propagation and abstraction refinement.

In the area of deductive verification, KeYmaera [36] is an interactive theorem-
proving environment based on sequent calculus and tailored to the differential
dynamic logic dL [35]. KeYmaera has been developed specifically for hybrid sys-
tems, unlike other general-purpose theorem provers, such as Coq [34], based on
the calculus of inductive constructions and intuitionistic logic, and Isabelle [28],
based on higher-order logic and functional programming.

In this paper, the PVS (Prototype Verification System) theorem prover is
used to prove basic properties of a typical case study, the level control of a stor-
age tank. This simple example shows that a higher-order theorem-proving tool
can support developers in expressing and verifying a natural line of reasoning
rooted on domain knowledge.

This paper is structured as follows: In Sec. 2, essential information on the
PVS language and deduction system is provided; Sec. 3 introduces the case
study; Sec. 4 describes the formalization of the case study and how the PVS is
used to prove that certain constraints guarantee safe operation of the system;
Sec. 5 discusses the case study and relates it to the general topic of hybrid
system analysis; and Sec. 6 concludes the paper.

2 The Prototype Verification System

The PVS is an interactive theorem prover developed at Computer Science Labo-
ratory, SRI International, by S. Owre, N. Shankar, J. Rushby, and others [31, 30]
and it has been applied to many fields, including formal verification of hardware
and safety-critical systems [40, 12, 13]. Its formal system is based on sequent
calculus [24, 22, 23], together with a typed higher-order language.

A PVS user writes a theory in the PVS language [33], then uses the PVS
theorem proving environment [39] to prove selected formulas of the theory.

2



2.1 The PVS Language

In a PVS theory, one can declare types, constants, variables, and formulas. The
PVS type system is very flexible, providing users with standard mathematical
types (e.g., naturals, integers, and reals) and allowing them to define uninter-
preted types, to build record and tuple types similar to records in programming
languages, and to define function types (e.g., “the set of functions from integers
to reals”). In particular, functions returning Boolean values are called predi-
cates. It is also possible to define subtypes by adding constraints to previously
defined types. One can then declare constants and variables (including func-
tion constants and variables) and write formulas. A formula is a named logical
statement composed of atomic formulas, logical connectives, and quantifiers.

Each formula is identified by a name and qualified by a keyword specifying
if the formula is an axiom or not. The PVS prover takes axioms as proved
statements, whereas it requires the other formulas to be proved. Axioms are
recognized by the AXIOM keyword, the other formulas by such keywords as LEMMA,
THEOREM, or other synonyms. Examples of PVS declarations are found in Sec. 4.

The PVS environment includes a large number of pre-packaged fundamental
theories, called the prelude [32]. An even larger number of theories, covering,
e.g., mathematical analysis, algebra, or probability, is available in additional
libraries, such as the NASA Langley PVS Library [19, 25].

2.2 The PVS Deduction System

As previously mentioned, PVS is based on the sequent calculus. A sequent is
an expression with this structure:

A1, A2, . . . , Am ⊢ B1, B2, . . . , Bn

where the Ai’s are the antecedents and the Bi’s are the consequents. The ‘⊢’
symbol is called a turnstile and may be read as “yields”. Each antecedent or
consequent is a formula built with atomic formulas, connectives, and quantifiers.

A sequent is true if any formula occurs both as an antecedent and as a
consequent, or any antecedent is false, or any consequent is true. Proving a
formula (a goal) consists in expressing it as a sequent without antecedents and
applying inference rules until one of the previous conditions for truth is met.

The PVS prover presents the user with the initial sequent corresponding
to the formula to be proved. The user applies a series of inference steps, in-
voking a prover command at each step. A prover command may result in the
application of a single inference rule of the sequent calculus, or a combination
of several rules, possibly chosen and iterated according to some pre-packaged
strategy. Some of the manipulations made available by the PVS prover include:
(i) Instantiating variables, in particular by introducing fresh Skolem constants;
(ii) decomposing formulas into simpler ones; (iii) introducing lemmas ; and (iv)
applying substitutions. Some commands transform the current goal into two or
more subgoals : For example, the split command transforms a goal of the form
A ⇒ B ⊢ C into two subgoals B ⊢ C and ⊢ A,C.
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Usually, a PVS user directs the proof by making informed choices about the
main steps (such as introducing the appropriate lemmas) and lets the prover deal
with low-level, tedious and error-prone manipulations. The prover, however,
supports also high-level proof strategies, such as induction.

3 Water level control

The problem of controlling the level of a liquid (say, water) in a tank is a well-
known case study in control theory. There are several versions of this problem,
and in this paper the one presented in [10] is considered. The problem is stated
as follows:

A cylindrical storage tank receives water with a maximum vol-
ume flow rate C. Water can be drained out with the same maximum
flow rate C. The incoming flow rate wi(t) may vary in time arbi-
trarily (within the mentioned limit), while the outgoing flow rate wo

is regulated by a valve according to the law wo(t) = Cv(t), where
v ∈ [0, 1] is the valve position, with v = 0 when the valve is fully
closed and v = 1 when fully open. A level control must ensure that
the water level remains between the minimum and maximum levels
L1 and L2, respectively. The control consists in a level sensor and a
valve actuator. The sensor output k(t) is −1, 0, or 1 if the level is
below, equal to, or above the reference level L = (L1 + L2)/2. The
actuator opens or closes the valve according to the law v′(t) = k(t),
where the prime symbol (’) stands for derivation.

In addition to the above description, it is assumed for simplicity that the
outgoing flow does not depend on the water level, and that the outgoing pipe is
always completely filled.

In this case study, the value of the water level as a function of time is the
solution of the differential equation l′(t) = wi(t)−wo(t), where wi(t) is arbitrary,
and wo(t) is nonlinear, as it depends on the sensor output k(t), which can be
defined as:

k(t) =







−1 if l(t) < L
0 if l(t) = L
1 if l(t) > L

This system is physically simple, but hard to analyze with the standard ap-
proaches of linear control theory, so in a practical setting it would most likely be
studied by simulation. In [21], for example, it has been described and simulated
with the Modelica language. The next section will show how a simple reasoning
supported by computer-assisted theorem proving enables developers to prove
a relationship among system parameters (namely, initial level, maximum flow
rate, and level bounds) that ensures correct operation. This relationship is
proved symbolically, therefore it has a general validity.
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4 Safety property verification

The procedure to verify the safety properties of the water level control can be
summarized as follows:

1. As a preliminary step, the worst-case situations possibly leading to viola-
tion of safety requirements are identified, the law of continuous evolution
for the system (or a safe approximation, in more complex cases) in those
situations is defined, and constraints ensuring satisfaction of the safety
requirements are found.

2. A theory is defined in the PVS language, and the safety theorems are
expressed, with the conjunction of the above law and constraints taken as
hypotheses, and the safety requirements taken as theses.

3. Intermediate lemmas are found and proved, recurring to axioms of the
specific theory and of general theories (e.g., math analysis).

4. The theorems are proved from lemmas and axioms.

The safety property to be verified is that the water level remains within the
specified limits at all times, provided that the water intake satisfies the specified
constraint. More precisely, a relationship among the system parameters is found,
which guarantees the safety property.

The above steps are described in the following subsections.

4.1 Step 1: Safety requirements

The problem statement (Sec. 3) specifies the laws governing the system and its
physical constraints. The constraint L1 ≤ l(t) ≤ L2 is the conjunction of two
requirements, one forbidding depletion of the tank, and one forbidding overflow.
In order to find relationships that guarantee satisfaction of the requirements,
the worst-case situations that could lead to depletion or overflow are considered:
(i) No incoming flow, initial level below reference, and fully open valve in case
of depletion; and (ii) maximum incoming flow, initial level above reference, and
fully closed valve in case of overflow. These situations may arise if the initial
level and the valve position are set before activation of the sensor at time ti = 0.

Let us consider situation (i). In this case, the valve will close linearly wrt to
time, the outgoing flow will decrease linearly, and the water level will then vary
quadratically. The requirement that the level does not fall below L1 reduces to
a quadratic inequality, and elementary algebra provides the sought assumption
on the initial level, i.e., Li > L1 +C/2.

4.2 Step 2: Logic modeling

The next step is the definition of a theory modeling the system. First, the
system parameters, declared as constants, the variable representing time, and
the water level function:
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C: posreal % max flowrate

L1: posreal % minimum level

L2: posreal % maximum level

L: posreal = (L1+L2)/2 % reference level

L_i: posreal % initial level

V_i: nnreal % initial valve posn

t: VAR real % time

l(t): real % water level

Types posreal and nnreal are the positive and non-negative real numbers,
respectively.

The sensor and valve specifications follow:

signum(x: real): integer =

COND

x < 0 -> -1,

x = 0 -> 0,

x > 0 -> 1

ENDCOND

k(t): integer % sensor output

= signum(l(t)-L)

v(t): real % valve position

valve_law: AXIOM

deriv(v) = k % derivative of v(t)

where the COND/ENDCOND block is the PVS case selection statement.
Then, the storage tank specifications:

w_in(t): real % input flowrate

w_out(t): real = C*v(t) % output flowrate

level_law: AXIOM

deriv(l) = w_in - w_out % derivative of l(t)

Finally, some axioms (not shown) on the mathematical well-behavedness of
the various functions, and the basic relationships among system parameters:

level_bounds: AXIOM

L1 < L2

init_level: AXIOM

l(0) = L_i

init_valve_posn: AXIOM

v(0) = V_i

The above definitions are the theory against which the safety property must
be verified, under some assumptions on the initial water level. It is then possible
to verify satisfaction of the requirement against tank depletion by interactively
proving the following theorem:
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no_depletion: THEOREM

forall (t: real):

(v = (lambda (x): (-1)*x + 1) % (1)

and w_in = const_fun(0) % (2)

and L_i > L1 + C/2 % (3)

IMPLIES

l(t) >= L1) % (4)

We observe how the lambda notation and function const fun(c) (identically
equal to parameter c) are used to distinguish the definitions of functions v (v)
and wi (w in) from their application to arguments.

In the above theorem, line (1) asserts that the valve position has the form
1 − x, line (2) asserts that the incoming flow is identically zero, line (3) is
the assumption relating the initial level to the lowest tolerated level and the
maximum possible flow, and line (4) is the safety requirement. By similar
reasoning, the following theorem can be formulated for the requirement against
overflow:

no_overflow: THEOREM

forall (t: real):

(v = (lambda (x): x)

and w_in = const_fun(C)

and L_i < L2 - C/2

IMPLIES

l(t) <= L2)

4.3 Step 3: Intermediate lemmas

The proof of Theorem no depletion requires that two main lemmas (plus a
few secondary ones) are preliminarily proved.

Lemma level fun proves that l(t) is a quadratic form:

level_fun: LEMMA

v = (lambda (x): (-1)*x + 1)

and w_in = const_fun(0)

IMPLIES

l(t) = (C/2)*t^2 - C*t + l(0)

The lemma is proved by invoking the level law axiom, plus a few simple
lemmas on integration from the NASA Langley library.

Lemma neg discr proves that the discriminant of l(t) − L1 is negative if
condition (3) of the theorem is satisfied:

neg_discr: LEMMA

L_i > L1 + C/2

IMPLIES

discr(C/2, -C, L_i-L1) < 0
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Also this lemma is proved with lemmas from the NASA Langley library,
and commands from the PVS manip package, which extends the prover with
algebraic manipulation steps [17, 18].

4.4 Step 4: Proving properties

The proof of the theorem can then begin by instantiating the initial sequent
with a Skolem constant (t!1, automatically introduced by the prover) and de-
composing it into antecedent and consequent formulas:

{-1} v = (lambda (x): (-1)*x + 1)

{-2} w_in = const_fun(0)

{-3} L_i > L1 + C/2

|-------

{1} l(t!1) >= L1

Note that, in the PVS user interface, antecedent and consequent formulas
are separated by a dashed line, stacked vertically, and labeled numerically. An-
tecedents have negative labels. The label of a formula may change as formulas
are rearranged in the course of a proof, and curly braces highlight newly intro-
duced or transformed formulas.

Then, lemma level fun is introduced and instantiated (Formula {-1}):

{-1} v = (lambda (x): (-1)*x + 1)

AND w_in = const_fun(0)

IMPLIES

l(t!1) = (C/2)*t!1^2 - C*t!1 + l(0)

[-2] v = (lambda (x): (-1)*x + 1)

[-3] w_in = const_fun(0)

[-4] L_i > L1 + C/2

|-------

[1] l(t!1) >= L1

Splitting the implication in Antecedent {-1}, three subgoals are produced,
the first one being the following:

{-1} l(t!1) = (C/2)*t!1^2 - C*t!1 + l(0)

[-2] v = (lambda (x): (-1)*x+ 1)

[-3] w_in = const_fun(0)

[-4] L_i > L1 + C/2

|-------

[1] l(t!1) >= L1

By substitution and elementary manipulations, it is then possible to express
the theorem’s thesis as a quadratic inequality (Formula {1}):
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[-1] v = (lambda (x): (-1)*x + 1)

[-2] w_in = const_fun(0)

[-3] L_i > L1 + C/2

|-------

{1} (C/2)*t!1^2 - C*t!1 + l(0) - L1 >= 0

This sequent is proved by invoking Lemma neg discr and Axiom init level.
The remaining two subgoals introduced by implication splitting are immediately
recognized as true by the PVS prover:

[-1] v = (lambda (x): (-1)*x + 1)

[-2] w_in = const_fun(0)

[-3] L_i > L1 + C/2

|-------

{1} v = (lambda (x): (-1)*x + 1)

[2] l(t!1) >= L1

and

[-1] v = (lambda (x): (-1)*x + 1)

[-2] w_in = const_fun(0)

[-3] L_i > L1 + C/2

|-------

{1} w_in = const_fun(0)

[2] l(t!1) >= L1

Theorem no overflow is proved along the same lines.
In the two proofs, the developer’s task was to understand the overall struc-

ture of the proof and select the relevant axioms and lemmas. Long and repe-
titious sequences of small inference steps have been dealt with by single com-
mands, relieving the developer of their burden and potential mistakes. Also, it
may be interesting to know that a first attempt was made to prove the safety
property under weaker assumptions, namely, Li ≥ L1 for Theorem no depletion

and Li ≤ L2 for Theorem no overflow, but failed proofs led to reconsidering
the assumed behavior of the system and finding the right assumptions, which
take the maximum flow rate C into account.

5 Discussion

This proof-of-concept example has been treated with a heuristic (not to say
näıve) approach. In particular, no use has been made of the well-established
theory of hybrid systems.

The first step in the above section represents the safety analysis part of the
development process, carried out independently of the later verification phase
and its tools. The safety properties have been defined only on the two states
identified as worst-case situations, instead of expressing them, as is usually done,
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as global constraints on the whole set of reachable states. Clearly, this has been
made possible by the simplicity of the physical system. In more realistic cases, it
would be difficult to find such a set of “extreme” states, whose safety guarantees
safety in all other states. In fact, the algorithmic methods used for hybrid system
verification are based on the automatic generation of the state space (or of safe
approximations), thus relieving developers of the need to figure out the most
relevant states for safety analysis.

This simple example, however, shows that a higher-order theorem-proving
tool can support developers in expressing and verifying a natural line of reason-
ing rooted on domain knowledge. In more complex, but still tractable problems,
this kind of reasoning could lead to a better insight of the physical problem,
which might not be gained through the use of automatic tools, more machine-
intensive and less human-intensive.

The hybrid-systems theory becomes indispensable when system complexity
makes the heuristic approach impracticable. In this case, both a description of
the system as a hybrid automaton and its safety properties can be formalized
in higher-order logic in a simple and uniform way. For example, Masci et al. [8]
have modeled an implantable pacemaker as a system of timed automata. The
automata are defined by their locations, the guards and invariants, and the clock
variables. All these are expressed in PVS with uniform patterns: locations are
represented by values of an enumerated type, states are represented as records
whose members return the current location and the current values of clock vari-
ables, and so on (in PVS, record members are just another syntax for functions).
This method of representing timed automata in logic can be extended to hybrid
automata, and it can be mechanized to various extent, depending on the type
of automaton. A system model in a graphical block language, or a textual one,
could be translated into a logic model. PVSio-web [29] is an example of a tool
that produces a logical model of state machines (not yet hybrid automata) from
a graphical language [26] derived from Stateflow(TM).

While generation of logic models from other languages can be almost com-
pletely automatized in a straightforward way, using such models is a more com-
plex issue.

The two main hurdles for the application of interactive theorem proving are
learning the language and learning proof strategies. Formal logic is rarely in-
cluded in engineering syllabi, and the PVS language is quite complex. However,
much of its complexity is due to its wide-ranging applicability and to the rich-
ness (or complexity) of its syntax, which is very precise and often offers a few
variant forms to express a given meaning. In the authors’ experience, the main
difficulty was in learning the subtleties of the rigorous higher-order type system.
It may be argued, however, that a systems developer does not have to learn the
whole language and all its possible usages. If a standard formalization of hy-
brid systems is adopted, someone using interactive theorem proving for safety
analysis could learn just the concepts and notations needed to understand and
use that formalization.

The harder issue of proving theorems can be tackled in a similar way. To
most engineers, applying theorems is much easier than proving them, but math-
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ematicians know that there are standard patterns of demonstration for many
classes of theorems. Similarly, standard proof patterns can be found for classes
of hybrid systems and for classes of properties to be verified.

Actually, one of the main goals in the authors’ work is finding useful patterns
both for system modeling and for system verification, and packaging the latter
in the form of proof strategies that can be programmed into the PVS prover [2]
and invoked with simple commands.

Another issue related to proof strategies concerns the different proof styles
needed for the discrete and the continuous parts of hybrid systems. Most re-
ported applications of the PVS concern digital systems, but applications to
continuous systems have also been made, for example in air traffic control [27].
Proofs in the area of digital systems typically rely on library theories for Boolean
and integer algebra and on induction, whereas in the area of continuous systems,
proofs rely on library theories for mathematical analysis. The NASA Langley
library offers a large collection of theories on analysis, but at the time of writing
no collection of theories specifically devoted to differential equations was avail-
able. This means that differential problems must be solved applying the basic
theorems on integration and differentiation provided by the library, which may
require some creativity. When analytical solutions cannot be found, approxi-
mation methods can be formalized using other library theories, such as those
on interval arithmetic [16].

Interactive theorem proving can be seen as a complement to the better estab-
lished techniques based on algorithmic construction of abstractions or approx-
imations of a system, in particular of its reachability set. Its main advantage
is generality, in terms both of results and of applicability. Results are general
since they are usually expressed in terms of symbolic quantities. For example,
in the case discussed in this paper, the safety requirement against depletion was
found to hold for any triple of free parameters Li,L1,C satisfying Li > L1+C/2.
Applicability is general because the laws of logical deduction are intrinsically
general. As explained above, it is highly desirable to have pre-packaged theo-
ries and proof strategies available, specialized for particular classes of problems,
but when a problem does not fit into anyone of those classes, it is always pos-
sible to (try to) devise new ways to solve it, at the price of a harder effort,
whereas more automatic techniques are often capable of dealing only with some
particular types of system.

Another feature of theorem-proving environments, and of the PVS in par-
ticular, is modularity. Separate theories can be defined for different subsystems
or for different aspects of a (sub)system, and each theory can be referred to
by other theories. So, the overall model of a system can be decomposed in (or
built from) a number of theories for each subsystem, plus a co-ordinating theory
for the overall system. Or, a separate theory can be defined to solve one hard
differential equation, or to simplify a set of constraints. Specific theorems can
be proved in each subtheory, and then be used as lemmas to prove the main
verification goals. It is also likely that such intermediate lemmas can be reused
for different systems.

A more technical feature is that in the deductive approach it is possible to
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prove properties of a system’s state space, but the state space does not have to
be generated, or approximated, or abstracted, as is the case for the tools based
on reachability analysis, which generally are limited in their applicability by the
problem of state-space explosion.

The issue remains of the intrinsic difficulties of learning language and tech-
niques for interactive theorem proving, as discussed earlier. It should be borne
in mind, however, that almost every verification tool has its own special lan-
guage and requires some experience to be used proficiently, and also that many
tools lack the generality of theorem proving.

6 Conclusions

Formal verification has long been advocated as an important tool in the devel-
opment of control systems, and recommended by safety standards. However, its
adoption as a standard industrial practice is lagging behind model-based simu-
lation, due in part to the perceived complexity of its tools and methodologies.
This paper shows how a state-of-the-art theorem proving environment can be an
effective tool, providing control systems developers with the ability to prove in
a rigorous but natural way some general properties that simulation can validate
only for specific cases.

This work is part of an effort aimed at the application of formal methods to
modeling and verification of safety- or mission-critical systems, including control
logics [7, 6], electromedical devices [8], and integrated clinical environments [9].
Further work will focus on investigating methodologies and proof techniques
tailored to diverse application domains, still in the area of safety-critical systems.
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