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Abstract 

Thyroid carcinoma is the most common malignancy of the endocrine system showing increasing incidences 

over the years (1–3), with age-standardized rates (ASR) of about 6/100,000 in the developed countries. 

Particularly elevated ASRs were observed in Lithuania (ASR = 15.5/100,000), Italy (ASR = 13.5/100,000), 

Austria (ASR = 12.4/100,000), and in the United States (ASR = 9.9/100,000; refs. 4, 5). Two main thyroid 

carcinoma histological types can be distinguished: the “medullary” and the “non-medullary” thyroid 

carcinoma, the former (MTC) originating from the para-follicular cells, the latter (NMTC) from the follicular 

cells. NMTC comprises the most frequent subtypes, papillary (PTC) and follicular (FTC) thyroid carcinomas 

(defined overall as “differentiated thyroid carcinomas”, DTC), accounting for 80% and 15% of the cases, 

respectively. Hürthle cells (or oxyphilic cells, 5%) and poorly differentiated carcinomas (1%–6%) are 

considered as not common entities (6, 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Introduction 

The great majority of DTCs behaves as a sporadic form, featured by somatic mutations within RET, RAS, BRAF, 

or NTRK1 genes and affecting the MAPK signaling pathway (8–11). However, approximately 5% of cases, 

mostly PTC, have a family history (12). Inherited genetic variations play an important role in both the familial 

and the sporadic forms, as supported by data from linkage analyses or case–control association studies 

(CCASs). In particular, CCASs, when carried out with an appropriate sample size, constitute the state-of-the-

art for the identification of common genetic variants associated with complex traits (13). In the literature, 

a large number of gene-based studies have been published in which specific a priori hypotheses have been 

examined. Thus, SNPs within genes encoding for proteins involved in the DNA repair, cell-cycle control, 

thyroid physiology, or playing a role in other types of human cancer have been investigated (14). The major 

weakness of these studies is that unknown genes playing a relevant role in the etiology of the disease could 

have been missed. This limitation is solved by genome-wide association studies (GWASs) in which the whole 

genome is analyzed without formulating any a priori hypothesis. GWASs on DTC allowed discovering novel 

variants, including those near FOXE1, DIRC3, NKX2-1 (15–17) and, more recently, those near IMMP2L, 

RARRES1, SNAPC4/CARD9, ARSB, BATF, DHX35, SPATA13, GALNTL4, and FOXA2 (18–20). However, to 

ensure a high quality and to prevent false-positive findings, highly stringent criteria are applied in the 

GWASs with the disadvantage of excluding SNPs truly associated with the risk. In the present work, we 

investigated whether SNPs associated with the susceptibility to DTC in previous CCASs could replicate in an 

independent GWAS carried out by our research group. Moreover, we investigated whether SNPs showing 

a sub-threshold genome-wide statistical significance in our GWAS could improve their association following 

a meta-analysis with previously published data. 

 

Materials and Methods 

Ethics statement 

Study participants were recruited according to the protocols approved by the institutional review boards in 

accordance with the Declaration of Helsinki. All subjects provided written informed consent to participate 

in the study and allowed the use of their biological samples. 

 

Study participants of the GWAS 



The group of cases comprised 701 histologically confirmed DTC patients from central and southern Italy, 

recruited at the Cisanello Hospital in Pisa, an important Italian referral center for thyroid diseases. The 

control group comprised 499 healthy individuals from the Meyer Hospital in Florence without known 

thyroid disease, of which 390 were blood donor volunteers and 109 were healthy individuals recruited 

during a routine health screening. Cases and controls were frequency matched by sex, age, body mass index 

(BMI), and smoking habits. The patient group consisted of 22.3% males and 77.7% females with a median 

age of 46; the control group consisted of 23.2% males and 76.8% females with a median age of 50. The 

median BMI was 24.5 in cases and 24.4 in controls. The proportion of smokers was 37% in cases and 40% 

in controls. All cases and controls were of Caucasian origin. 

 

Genome-wide association study 

Full details of the GWAS, including the genotyping process, quality control and statistical analysis were 

previously described (20). Briefly, samples were genotyped using Illumina HumanOmni1-Quad_v1-0_B 1M 

BeadChips and Illumina HumanOmniExpress-12v1_A 730K BeadChips. Genotype calling was performed 

using Illumina GenomeStudio 2010 (Illumina Inc.). After applying strict quality control criteria, the analysis 

was restricted to the subset of genotyped SNPs common to both Illumina arrays used. Hence, 572 042 SNPs 

were analyzed for association with DTC risk in 690 cases and 497 controls. The adequacy of the case–control 

matching and the possibility of differential genotyping of cases and controls were assessed using Q-Q plots 

of test statistics. The genomic control inflation factor λ was calculated using the standard method by the 

CRAN R package GAP (Genetic Analysis Package; https://cran.r-project.org/web/packages/gap/index.html; 

http://www.inside-r.org/packages/cran/gap/docs/gcontrol2). 

 

The inflation factor λ was 1.0, excluding the possibility of hidden population substructure, relatedness among 

subjects or differential genotype calling. Statistical analysis was conducted using PLINK version 1.06 (21). 

 

Search strategy and selection criteria 

PubMed was searched from database inception until September 2013 to collect case–control studies 

investigating the association between SNPs and DTC. We used the keywords polymorph* AND (papillary OR 

follicular OR non-medullary OR “non medullary”) AND thyroid AND (cancer OR carcinoma) AND 

(susceptibility OR risk OR predisposition) to collect studies carried out on DTC or PTC. The major reasons 

for exclusion of the studies were (i) studies not in English language; (ii) studies without odds ratio (OR) and 



95% confidence interval (95% CI); (iii) case–case studies; (iv) studies on benign thyroid disease. A total of 

100 original articles and five meta-analyses met our criteria and were assessed. The list of citations is 

reported, for brevity, in the Supplementary data. The SNPs reported in these studies were recorded and 

searched in the present GWAS, allowing a direct comparison between the results published in the literature 

with the results from the GWAS. When an SNP was not found in the GWAS, the linkage disequilibrium (LD) 

block around the SNP was checked using the CEU data of the 1000 Genome Project (22), and the results of 

SNPs in high LD (r2 ≥ 0.8) were reported. All the collected data are reported in Supplementary Tables S1 

and S2. 

 

Statistical approaches 

Two statistical approaches were used to reduce the number of false positives and to increase the power of 

the study. With the first approach, we performed a meta-analysis of published data when more than one 

study was carried out on a given SNP. Then, we evaluated whether SNPs previously associated with the risk 

of DTC (positive, at a nominal significance level of Pass < 0.05, either in a single study or in meta-analysis) 

were associated also with the risk of DTC in our GWAS. These SNPs were evaluated by calculating their 

allelic Pass in the GWAS. In order to adjust for multiple comparisons, the false-positive discovery rate 

correction (FDR; ref. 23) was applied to the list of Pass obtained in the GWAS and the associations with q < 

0.05 were considered as statistically significant, i.e., considered as replicating the literature data. 

 

With the second approach, results from SNPs positive in the literature (either in a single study or in the meta-

analysis of the literature) were meta-analyzed with those of GWAS. Moreover, the meta-analyses were 

performed also when, for a given SNP, a suggestive evidence of association (Pass < 0.20, taken arbitrarily) 

was observed both in the literature and in the GWAS. Because the GWAS was performed on Caucasians, 

the meta-analysis first was carried out in Caucasians. When literature data were not available for 

Caucasians, the GWAS was meta-analyzed using literature data for the available population(s). 

 

The pooled ORs were calculated for allelic model (a vs. A) and additive model (Aa vs. AA and aa vs. AA). In 

case only dominant or recessive model was reported in the literature, the same model was applied for the 

GWAS data. 

 



The statistics are based on the absolute counts of variant and common alleles/genotypes among cases and 

controls. The χ2 based Q-test was used to assess heterogeneity across studies (Phet < 0.05) and I2 statistics 

was calculated to quantify the proportion of the total variation across studies due to heterogeneity. In case 

of no significant heterogeneity, OR and 95% CI were assessed using the fixed-effect model (the Mantel–

Haenszel method); otherwise the random-effects model (DerSimonian–Laird method) was used. Meta-

analyses were performed by MIX 1.7 freeware software. Also in this case, adjustment for multiple 

comparisons was performed by applying the FDR correction and q < 0.05 were considered as significant. A 

SNP associated with the risk of DTC in the literature was considered replicated when found with a q < 0.05 

also in the GWAS. Moreover, an SNP was considered positively associated with the risk of DTC when found 

with a q < 0.05 in the meta-analysis. 

 

Results 

One hundred published articles, reporting results for 316 SNPs belonging to 127 genes, met the selection 

criteria (see the reference list in the Supplementary data). Data collected included the reference of the 

literature, the gene name, the dbSNP identification number, the number of cases and controls investigated, 

and the OR with its 95% CI, of the allelic and additive models. In the first type of evaluation, the 

corresponding ORs and 95% CIs were also calculated for these SNPs based on the GWAS. In case only 

dominant or recessive model was reported in the literature, the same model was applied for the GWAS 

data. The results are reported side-by-side in Supplementary Tables S1 and S2, respectively, to allow a direct 

comparison. Among the 316 SNPs, 91 were associated with the risk of DTC in a statistically significant way 

according to the literature (Pass < 0.05). The meta-analysis of the literature data alone was performed on 

46 SNPs and 13 were statistically significant at the 0.05 level (Supplementary Table S3). Fifteen of the 91 

SNPs associated in any study were replicated in the GWAS at the same significance level, and the side-by-

side comparison is shown in Table 1. However, only five SNPs, including CYP1A1 rs1799814, FTO rs1121980, 

and the GWAS identified SNPs on 9q22 (rs965513, rs7048394, and rs894673), were statistically significant 

after the application of FDR correction. Only one SNP (rs965513) showed to be associated in a statistically 

significant way in the meta-analysis of literature data and in the present GWAS (Table 1). In addition to 

these analyses, we adopted another approach. In order to ascertain whether an increase of statistical 

power could allow reaching a statistical significance, we selected SNPs showing a Pass < 0.2 (arbitrarily 

chosen, in any inheritance model) both in the literature and in the GWAS and we performed a meta-

analysis. Moreover, we added the results of the present GWAS to meta-analyses from literature data, when 

these latter showed SNPs significantly associated with the risk of DTC. 

 



 

SNPs within DNA repair genes 

A total of 64 SNPs located within 27 genes involved in DNA repair pathways were investigated so far in the 

context of DTC. Of them, 10 were associated with the disease in the literature with at least one genetic 

model but none was replicated in the present GWAS under the allelic model (Table 1). However, a statistical 

significance was observed for rs25487 within XRCC1 (OR = 0.76, 95% CI, 0.59–0.99 for heterozygotes in the 

additive model). When this result was combined in meta-analysis with seven previous studies carried out 

on Caucasians, an OR of 0.92 (95% CI, 0.85–0.99) was found in the allelic model; however, this result was 

not significant after FDR correction (q = 0.06). Moreover, the meta-analyses revealed an increased risk for 

rs2708906, at 5′ region near HUS1 (OR = 1.34; 95% CI, 1.08–1.64; q = 0.04 for heterozygotes and OR = 1.52; 

95% CI, 1.16–2.00; q = 0.01 for homozygotes; Table 2). 

 

SNPs within cell-cycle regulation and apoptosis genes 

Thirty-three common SNPs in 15 genes involved in the cell-cycle regulation or in apoptosis were collected. A 

total of nine significance associations were published so far, but only rs4658973 (WDR3) was replicated in 

the GWAS (allelic model: OR = 0.83; 95% CI, 0.70–1.00). Meta-analysis on Caucasians again suggested the 

role of this variant in DTC etiology with OR = 0.71 (95% CI, 0.61–0.82, allelic model), remaining significant 

after FDR correction (q = 1.8 × 10−6; Tables 1 and 2). Moreover, when the GWAS association on Caucasians 

was combined with a mixed population from a previous study, a statistical significance was found for 

rs2279744 (MDM2, OR = 1.40, 95% CI, 1.12–1.74; only recessive model was available for meta-analysis; 

Table 3). 

 

SNPs within genes encoding for xenobiotic metabolism enzymes 

Through PubMed search, 67 SNPs within 19 genes encoding for xenobiotic metabolism enzymes (XME) were 

collected. Overall, 19 positive associations were reported in the literature. Interestingly, rs1799814 

(CYP1A1) showed a strong association in GWAS and it remained statistically significant after FDR correction 

(Table 1). In the meta-analysis, a high risk was found associated with the rare allele (OR = 1.86, 95% CI, 

1.50–2.30, q = 4.4 × 10−8). Besides rs1799814, meta-analyses on Caucasians, after multiple testing 

correction, revealed a possible role also for rs1041740 (SOD1, q = 5.5 × 10−3; allelic model), rs12626475 (3′ 

region near SOD1, q = 0.02; allelic model), and rs3924194 (UGT2B7, q = 0.04; for heterozygotes; Table 2). 

 



SNPs within genes involved in thyroid function 

Seven genes playing a key role in thyroid function were assessed in DTC studies by genotyping 21 SNPs. Only 

five SNPs were reported as significantly associated with DTC, and none of them was significant in the GWAS. 

Thus, the meta-analyses did not confirm the role of these variants in DTC etiology (Tables 1 and 2). 

 

SNPs within MAPK pathway genes 

Of 17 SNPs within 8 genes of the MAPK pathway, four predisposing variants were reported. GWAS replicated 

the significant association found for rs12628 (HRAS, OR = 1.23, 95% CI, 1.02–1.48 in the allelic model), but 

a high heterogeneity was found between the study population previously analyzed and the present study 

(Phet < 0.0001). Thus, no significant evidence of association was identified in the meta-analysis using the 

random-effect model (Table 2). 

 

SNPs within immune response and inflammation genes 

Fifteen genes and 33 SNPs involved in immunity or in inflammation pathways were analyzed to identify 

susceptibility variants for DTC and eight significantly associated SNPs were published (Table 1). The present 

GWAS replicated the possible role of rs1126667 (ALOX12, OR = 1.34, 95% CI, 1.02–1.75; heterozygotes) and 

rs2292151 (TICAM1, OR = 1.69, 95% CI, 0.99–2.91; homozygotes; Table 2), as well as for rs1061758 (IL11RA, 

OR = 1.29, 95% CI, 1.02–1.65; allelic model; Table 3). The involvement of these SNPs in increasing the risk 

of DTC was further suggested by the meta-analyses. In particular, an OR = 1.74 (95% CI, 1.28–2.37, q = 8.9 

× 10−4; allelic model) for rs1126667, and OR = 1.24 (95% CI, 1.06–1.45, q = 0.01; allelic model) for rs2292151 

was observed in the meta-analysis with Caucasians studies, and an OR = 1.39 (95% CI, 1.14–1.70, q= 0.01; 

allelic model) for 1061758 was observed in the meta-analysis with an Asian study (Tables 2 and 3). 

 

SNPs within other cancer genes 

Fifty-five SNPs in 28 other genes related to cancer were investigated in relation to DTC risk and 37 SNPs were 

associated according to the literature. Of them, SNPs within ATG16L1 and FTO showed a strong association 

in GWAS under the allelic model and rs1121980 (within FTO) remained associated also after FDR correction 

(Table 1). According to the present meta-analysis of the published results and our GWAS data on 

Caucasians, SNPs rs2241880 (ATG16L1, OR = 0.81, 95% CI, 0.70–0.93, q = 7.6 × 10−3; allelic model), 

rs11642841 (FTO, OR = 0.76, 95% CI, 0.67–0.87, q = 1.2 × 10−4; allelic model), rs1121980 (FTO, OR = 0.75, 



95% CI, 0.66–0.86, q = 5.7 × 10−5; allelic model), rs8050136 (FTO, OR = 0.76, 95% CI, 0.67–0.86, q = 4.8 × 

10−5; allelic model), rs9939609 (FTO, OR = 0.77, 95% CI, 0.67–0.88, q = 3.9 × 10−4; allelic model), rs7202116 

(FTO, OR = 0.76, 95% CI, 0.66–0.87, q = 2.5 × 10−4; allelic model), rs7584828 (HDAC4, OR = 0.68, 95% CI, 

0.54–0.84, q = 4.2 × 10−3; heterozygotes), rs2132572 (5′ region near IGFBP3, OR = 0.77, 95% CI, 0.61–0.96, 

only dominant model was available for meta-analysis), and rs17849071 (PIK3CA, OR = 0.64, 95% CI, 0.46–

0.90, q = 0.04; heterozygotes) were associated with a reduced risk of DTC, whereas SNPs rs17817288 (FTO, 

OR = 1.32, 95% CI, 1.15–1.51, q = 1.6 × 10−4; allelic model) and rs6472462 (5′ region near SULF1, OR = 1.17, 

95% CI, 1.03–1.33, q = 0.03; allelic model) were associated with increased risks (Table 2). When the meta-

analyses were extended to other available populations, four more SNPs showed an evidence of association, 

although not significantly after FDR correction: rs2229765 (IGF1R, OR = 0.77, 95% CI, 0.61–0.98, q = 0.09; 

heterozygotes), rs2230396 (ITGB1, OR = 0.75, 95% CI, 0.58–0.98, q = 0.09; heterozygotes), rs17524488 (5′ 

region near OPN, OR = 0.81, 95% CI, 0.67–0.99, q = 0.09; heterozygotes), and rs699947 (5′ region near 

VEGFA, OR = 1.22, 95% CI, 1.05–1.41, q = 0.05; allelic model; Table 3). 

 

SNPs previously studied in relation to DTC risks from genome-wide association studies or studies focused on 

specific intergenic regions 

Genetic variants on 1p31.3, 2q35, 8p12, 9q22, and 14q13.3 were associated with DTC risk by using genome-

wide approaches. Three LD blocks (defined by rs965513, rs7048394, and rs894673) on chromosome 9q22 

near FOXE1 were associated with DTC risk so far. These SNPs also showed a strong association in the present 

GWAS, where the allelic Pass remained statistically significant also after FDR correction (Table 1). Moreover, 

these associations were strengthened in the meta-analyses on Caucasians in the allelic model, with OR = 

1.85 (95% CI, 1.76–1.95, q < 10−20) for rs965513, OR = 1.51 (95% CI, 1.31–1.73, q = 2.3 × 10−8) for 

rs7048394 and OR = 1.51 (95% CI, 1.33–1.71, q = 8.3 × 10−10) for rs894673. Moreover, the present meta-

analysis points rs334725 (1p13.3, OR = 1.32, 95% CI, 1.10–1.59, q = 5.1 × 10−3), rs966423 (2q35, OR = 1.27, 

95% CI, 1.19–1.35, q = 1.3 × 10−12), rs2439302 (8p12, OR = 1.30, 95% CI, 1.23–1.39, q = 1.2 × 10−15), and 

rs944289 (14q13, OR = 1.25, 95% CI, 1.17–1.33, q = 0.02) as associated with the risk of DTC (Table 2). 

 

Discussion 

Current scientists' knowledge on DTC genetic risk factors is based on a series of association studies on genes 

involved in different cellular mechanisms that could lead to malignant transformation of thyroid cells. 

Typically these studies were performed according to candidate-gene approaches, and rarely the findings 

were replicated using similar samples in terms of ethnicity and thyroid carcinoma histological type. 



Furthermore, to date, only few GWASs were performed, and a small number of genomic loci were 

associated with the risk of the disease by using this approach. 

 

In order to gain further insights into the role of SNPs previously associated with DTC, in the present work we 

carefully analyzed the results of our GWAS and we performed meta-analyses with the previous studies. The 

associations between DTC and well-established GWAS-identified SNPs, including rs965513, rs7048394, and 

rs894673 near FOXE1 (9q22), were replicated using our GWAS data. Furthermore, rs944289 near NKX2-1 

(14q13.3), rs966423 within DIRC3 (2q35), rs334725 within NFIA (1p31.3), and rs2439302 within NRG1 

(8p12) showed an evidence of association in the meta-analysis of the GWAS results and previous published 

data. The role of these loci in DTC etiology was already discussed in previous works and will be not discussed 

here. 

 

Although in the present work most of the SNPs assayed in previously published hypothesis-driven studies 

were not associated with the risk of DTC, it is noteworthy to observe that several of them actually did 

associate. In particular, rs1799814 within CYP1A1 and rs1121980 within FTO were replicated on our GWAS 

data after the application of multiple testing corrections. The meta-analysis–based approach provided an 

evidence of association of several additional variants, including SNPs in the DNA repair gene HUS1 

(rs2708906), cell-cycle regulation gene WDR3 (rs4658973), xenobiotic metabolism genes SOD1 (rs1041740, 

rs12626475) and UGT2B7 (rs3924194), the immune response and inflammation genes ALOX12 (rs1126667), 

TICAM1 (rs2292151), and IL11RA (rs1061758), as well as other cancer genes ATG16L1 (rs2241880), FTO 

(rs17817288, rs11642841, rs9939609), HDAC4 (rs7584828), IGFBP3 (rs2132572), PIK3CA (rs17849071), 

SULF1 (rs6472462), IGF1R (rs2229765), OPN (rs17524488), and VEGFA (rs699947). All these SNPs were 

previously investigated in hypothesis-driven studies, underlying the importance of CCASs also in the era of 

GWAS. In particular, we highlighted the role of rs17849071 and rs17524488, whose association was not 

significant in previous studies but became statistically significant after increasing the sample size with the 

present meta-analysis. Overall, our in-depth analysis showed that some a priori hypotheses formulated in 

previous studies were confirmed and could have realistic bases for shedding some lights in the etiology of 

DTC. Our GWAS had an adequate statistical power to detect small size effects (>85% of power for SNPs with 

MAF>0.05, relative risk of 1.4 and type I error α = 0.05), that is reinforced with the data already published 

through the meta-analysis. However, we cannot exclude that other SNPs could be associated with DTC but 

failed to replicate in the present study. For example, it is worth mentioning that 13 SNPs (Supplementary 

Table S3) were found associated with the risk of DTC in the meta-analysis of literature data alone, although 

all but rs965513 were not significant in the present GWAS. Ideally, all these SNPs should be replicated in a 



large and independent series of cases and controls to further confirm their involvement in DTC 

predisposition (24). In conclusion, our findings provide additional evidence that common genetic variants 

have a role in DTC initiation and/or progression. Further cutting-edge studies, as novel GWASs, next-

generation sequencing analysis, fine-mapping or genome-wide interactions studies, are needed to 

characterize all the predisposing risk factors for DTC. 
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 FTO rs1477196 
Kitahara et al. 
2012 (62) 

3.44 × 10−3 — 0.23 0.7 

 GNB3 
rs5443; 
825C>T 

Sheu et al. 2007 
(63) 

0.03 — 0.51 0.85 



 HDAC4 rs6749348 
Neta et al. 2011 
(25) 

1.37 × 10−4 — 0.29 0.71 

 HDAC4 rs7584828 
Neta et al. 2011 
(25) 

1.36 × 10−3 — 0.1 0.45 

 HER2 
rs1801200; 
Ile655Val 

Rebaï et al. 2009 
(64) 

0.01 — 0.99 0.99 

 IGF1R 
rs2229765; 
Glu1043Glu 

Cho et al. 2012 
(65) 

3.49 × 10−3 — 0.51 0.85 

 IGFBP3 rs2132572 
Xu et al. 2012 
(66) 

3.87 × 10−3 — 0.37 0.74 

 IGFBP3 rs2854744 
Xu et al. 2012 
(66) 

0.04 — 0.99 0.99 

 INSR rs919275 
Kitahara et al. 
2012 (62) 

0.02 — 0.73 0.92 

 ITGA6 
rs11895564; 
Ala380Thr 

Kim et al. 2011 
(67) 

5.00 × 10−3 — 0.16 0.63 

 ITGB2 
rs2070946; 
−149A>G 

Eun et al. 2013 
(68) 

1.27 × 10−3 — 0.63 0.92 

 MDR1 
rs1045642; 
Ile1145Ile 

Ozdemir et al. 
2013 (69) 

5.01 × 10−4 — 0.09 0.43 

 OPN 
rs11730582; 
−443C>T 

Mu et al. 2013 
(70) 

0.03 — 0.69 0.92 

 PTPRJ 
rs4752904; 
Asp872Glu 

Iuliano et al. 
2010 (71) 

5.00 × 10−3 — 0.43 0.82 

 SULF1 rs6472462 
Schonfeldet al. 
2012 (41) 

0.01 — 0.35 0.74 

 VEGFA 
rs699947; 
−2578C>A 

Hsiao et al. 2007 
(72) 

0.01 — 0.06 0.32 

 WWOX 
rs3764340; 
Pro282Ala 

Cancemi et al. 
2011 (73) 

5.40 × 10−3 — 0.36 0.74 

GWAS or intergenic regions 

 1p12-13 rs2145418 
Baida et al. 2008 
(38) 

8.78 × 
10−10 

— 0.77 0.92 

 1p31.3 rs334725 
Gudmundsson et 
al. 2012 (15) 

6.60 × 10−3 — 0.11 0.45 

 2q35 rs966423 
Gudmundsson et 
al. 2012 (15) 

1.30 × 10−9 1.06 × 10−6 0.009 0.09 

 5q24 rs2910164 
Jazdzewski et al. 
2008 (74) 

1.13 × 10−5 0.1 0.6 0.92 

 8p12 rs2439302 
Gudmundsson et 
al. 2012 (15) 

2.00 × 10−9 — 0.19 0.68 

 8q24 rs6983267 
Jones et al. 2012 
(75) 

4.66 × 10−3 0.07 0.82 0.92 

 9q22 rs965513 
Gudmundsson et 
al. 2009 (16) 

1.70 × 
10−27 

<10−20 
2.67 × 
10−10 

2.40 × 
10−8 

 9q22 rs7048394 
Landa et al. 
2009 (76) 

2.40 × 10−4 — 2.41 × 10−6 
7.23 × 
10−5 

 9q22 rs894673 
Landa et al. 
2009 (76) 

2.20 × 10−4 — 1.45 × 10−8 
6.53 × 
10−7 

 14q13 rs944289 
Gudmundsson et 
al. 2009 (16) 

2.00 × 10−9 <10−20 0.01 0.09 

NOTE: Only SNPs associated in a statistically significant way at the 0.05 level or below are reported. The 
best Pass represents the lowest published P value of association for any model tested (i.e., dominant, additive, 
recessive, and allelic). When more than one study was published on the same SNP, a meta-analysis of the literature 
data was performed and the best Passin any model is reported, as well. For each SNP the allelic Pass from the 
present GWAS and its q-value after FDR correction is also reported. q < 0.05 are highlighted in bold. 
*Complete references are shown in the Supplementary data. 

 

 

 

 

  



Table 2.  
           

Meta-analyses of published data on Caucasians with data from present GWAS 

Gene or locus dbSNP ID Reference Published 
OR 
(allelic 
model) 

Allelic 
OR 
(present 
GWAS) 

Meta-
analysis 

Pass q Published 
OR 
(additive 
model) 

OR of 
the 
additive 
model 
(present 
GWAS) 

Meta-
analysis 

Pass q 

DNA repair 

ATM rs664677 Akulevich et 
al. 2009 (77) 

1.08 
(0.87–
1.33) 

1.09 
(0.90–
1.32) 

1.09 
(0.94–
1.25) 

0.25 0.31 1.06 
(0.76–
1.47)a 

1.07 
(0.83–
1.38)a 

1.07 
(0.87–
1.30)a 

0.53 0.57 

                1.20 
(0.75–
1.91)b 

1.23 
(0.78–
1.93)b 

1.22 
(0.88–
1.69)b 

0.24 0.4 

BRCA1 rs16942 Sturgis et al. 
2005 (32) 

0.73 
(0.51–
1.05) 

1.04 
(0.86–
1.25) 

0.92 
(0.81–
1.06) 

0.24 0.3 0.80 
(0.49–
1.29)a 

1.40 
(0.80–
1.34)a 

0.88 
(0.74–
1.06)a 

0.18 0.29 

                0.41 
(0.15–
1.10)b 

1.08 
(0.72–
1.61)b 

0.91 
(0.68–
1.23)b 

0.56 0.63 

    Xu et al. 2012 
(26) 

0.85 
(0.68–
1.06) 

                  

HUS1 rs2708906 Neta et al. 
2011 (25) 

— 1.11 
(0.93–
1.32) 

—     1.55 
(1.11–
2.18)a 

1.21 
(0.91–
1.61)a 

1.34 
(1.08–
1.67)a 

8.8 
× 
10−3 

0.04 

                2.40 
(1.51–
3.82)b 

1.20 
(0.92–
1.57)b 

1.52 
(1.16–
2.00)b 

2.5 
× 
10−3 

0.01 

XRCC1 rs25487 Siraj et al. 
2008 (28) 

0.72 
(0.41–
1.26) 

0.87 
(0.72–
1.05) 

0.92 
(0.85–
0.99) 

0.04 0.06 — 0.76 
(0.59–
0.99)a 

0.91 
(0.82–
1.02)a 

0.11 0.22 

                — 0.87 
(0.58–
1.34)b 

0.85 
(0.71–
1.02)b 

0.07 0.17 

    Ho et al. 2009 
(31) 

0.70 
(0.56–
0.89) 

        0.76 
(0.55–
1.05)a 

        

                0.47 
(0.27–
0.82)b 

        

    Sigurdson et 
al. 2009 (27) 

1.05 
(0.91–
1.21) 

        1.18 
(0.97–
1.44)a 

        

                0.95 
(0.68–
1.32)b 

        

    Akulevich et 
al. 2009 (77) 

0.86 
(0.69–
1.07) 

        0.68 
(0.50–
0.94)a 

        

                0.90 
(0.56–
1.45)b 

        

    García-Qu. et 
al. 2011 (30) 

1.00 
(0.82–
1.22) 

        1.12 
(0.84–
1.50)a 

        

                0.91 
(0.59–
1.40)b 

        

    Fard-Esf. et 
al. 2011 (78) 

0.87 
(0.63–
1.20) 

        0.73 
(0.47–
1.15)a 

        

                0.90 
(0.44–
1.85)b 

        

    Santos et al. 
2012 (79) 

0.96 
(0.69–
1.35) 

        0.90 
(0.55–
1.47)a 

        

                0.98 
(0.46–
2.10)b 

        

XRCC3 rs1799796 García-Qu. et 
al. 2011 (30) 

0.85 
(0.68–
1.06) 

0.86 
(0.70–
1.06) 

0.86 
(0.73–
1.00) 

0.04 0.06 0.92 
(0.69–
1.21)a 

0.80 
(0.62–
1.03)a 

0.85 
(0.71–
1.03)a 

0.46 0.52 

                0.60 
(0.33–
1.11)b 

0.87 
(0.51–
1.48)b 

0.74 
(0.50–
1.11)b 

0.37 0.44 

XRCC7 rs7830743 Siraj et al. 
2008 (28) 

0.99 
(0.65–
1.49) 

1.07 
(0.78–
1.47) 

1.24 
(1.01–
1.54) 

0.04 0.06 0.96 
(0.60–
1.54)a 

1.07 
(0.77–
1.50)a 

1.30 
(1.03–
1.64)a 

0.03 0.09 

                1.11 
(0.27–
4.49)b 

1.12 
(0.27–
4.72)b 

1.13 
(0.49–
2.61)b 

0.78 0.81 



    Rahimi et al. 
2012 (33) 

1.90 
(1.29–
2.79) 

        2.42 
(1.55–
3.81)a 

        

                1.16 
(0.25–
5.29)b 

        

ZNF350 rs2278420 Sigurdson et 
al. 2009 (27) 

0.99 
(0.84–
1.16) 

0.85 
(0.67–
1.09) 

0.95 
(0.83–
1.08) 

0.27 0.31 1.05 
(0.86–
1.28)a 

0.86 
(0.65–
1.13)a 

0.98 
(0.84–
1.15)a 

0.81 0.83 

                0.83 
(0.53–
1.32)b 

0.70 
(0.29–
1.66)b 

0.80 
(0.53–
1.20)b 

0.28 0.41 

Cell-cycle regulation and apoptosis 

WDR3 rs4658973 Baida et al. 
2008 (38) 

0.35 
(0.25–
0.47) 

0.83 
(0.70–
1.00) 

0.71 
(0.61–
0.82) 

5.7 × 
10−6 

1.8 × 
10−6 

0.40 
(0.26–
0.62)a 

0.65 
(0.49–
0.86)a 

0.60 
(0.48–
0.74)a 

3.7 
× 
10−6 

7.8 
× 
10−5 

                0.07 
(0.03–
0.18)b 

0.74 
(0.52–
1.06)b 

0.64 
(0.47–
0.87)b 

4.5 
× 
10−3 

1.7 
× 
10−2 

    Akdi et al. 
2010 (80) 

1.09 
(0.77–
1.55) 

        0.81 
(0.46–
1.41)a 

        

                1.29 
(0.63–
2.64)b 

        

Xenobiotic metabolism 

CYP1A1 rs4646903 Siraj et al. 
2008 (40) 

1.42 
(0.88–
2.30) 

1.28 
(0.95–
1.73) 

—     1.16 
(0.60–
2.24)a 

1.32 
(0.96–
1.80)a 

1.29 
(0.97–
1.71)a 

0.12 0.23 

                2.42 
(0.86–
6.83)b 

1.40 
(0.26–
7.70)b 

2.09 
(0.86–
5.06)b 

0.29 0.41 

CYP1A1 rs1799814 Siraj et al. 
2008 (40) 

1.87 
(1.44–
2.42) 

1.85 
(1.27–
2.70) 

1.86 
(1.50–
2.30) 

1.3 × 
10−8 

4.4 × 
10−8 

1.91 
(1.36–
2.70)a 

1.77 
(1.20–
2.60)a 

1.85 
(1.43–
2.39)a 

2.7 
× 
10−6 

7.8 
× 
10−5 

                3.48 
(1.74–
6.96)b 

5.03 
(062–
41.1)b 

3.61 
(1.87–
6.97)b 

1.3 
× 
10−4 

1.1 
× 
10−3 

CYP26B1 rs12622950 Asc.-Kilfoy et 
al. 2012 (42) 

— 1.10 
(0.88–
1.38) 

—     1.32 
(0.96–
1.83)a 

1.04 
(0.79–
1.36)a 

1.14 
(0.93–
1.41)a 

0.2 0.29 

                1.69 
(0.72–
3.95)b 

1.41 
(0.76–
2.60)b 

1.50 
(0.91–
2.46)b 

0.11 0.24 

CYP26B1 rs7606254 Asc.-Kilfoy et 
al. 2012 (42) 

— 1.14 
(0.89–
1.46) 

—     1.07 
(0.76–
1.53)a 

1.11 
(0.84–
1.46)a 

1.10 
(0.88–
1.36)a 

0.41 0.48 

                2.07 
(0.80–
5.34)b 

1.57 
(0.64–
3.87)b 

1.79 
(0.93–
3.44)b 

0.68 0.73 

CYP26B1 rs707718 Asc.-Kilfoy et 
al. 2012 (42) 

— 0.99 
(0.79–
1.25) 

—     0.80 
(0.57–
1.13)a 

0.90 
(0.69–
1.17)a 

0.86 
(0.70–
1.06)a 

0.16 0.28 

                2.05 
(0.86–
4.91)b 

1.51 
(0.68–
3.35)b 

1.74 
(0.96–
3.31)b 

0.07 0.17 

MTHFR rs1801133 Siraj et al. 
2008 (40) 

1.47 
(0.87–
2.47) 

1.11 
(0.93–
1.33) 

1.18 
(1.00–
1.69) 

0.05 0.08 1.77 
(0.96–
3.29)a 

1.20 
(0.90–
1.60)a 

1.34 
(1.05–
1.73)a 

0.02 0.07 

                0.95 
(0.12–
7.54)b 

1.21 
(0.86–
1.71)b 

1.22 
(0.87–
1.71)b 

0.26 0.4 

    Prasad et al. 
2011 (44) 

2.20 
(1.00–
4.86) 

        2.21 
(0.92–
5.30)a 

        

                2.65 
(0.16–
42.9)b 

        

NAT2 rs1799929 Hernández et 
al. 2008 (45) 

0.70 
(0.51–
0.96) 

0.97 
(0.81–
1.16) 

0.89 
(0.76–
1.05) 

0.16 0.23 0.64 
(0.37–
1.10)a 

0.85 
(0.64–
1.11)a 

0.80 
(0.63–
1.02)a 

0.07 0.17 

                0.51 
(0.27–
0.96)b 

0.99 
(0.69–
1.43)b 

0.83 
(0.60–
1.15)b 

0.26 0.4 

SOD1 rs1041740 Asc.-Kilfoy et 
al. 2012 (42) 

1.42 
(1.14–
1.76) 

1.12 
(0.93–
1.34) 

1.23 
(1.08–
1.42) 

2.7 × 
10−3 

5.5 × 
10−3 

1.48 
(1.09–
2.00)a 

1.20 
(0.92–
1.57)a 

1.32 
(1.08–
1.61)a 

7.1 
× 
10−3 

0.04 

                1.86 
(1.15–
3.02)b 

1.17 
(0.80–
1.71)b 

1.40 
(1.04–
1.88)b 

0.03 0.09 

SOD1 rs12626475 Asc.-Kilfoy et 
al. 2012 (42) 

1.33 
(1.08–
1.64) 

1.10 
(0.92–
1.33) 

1.20 
(1.04–
1.38) 

0.01 0.02 1.33 
(0.98–
1.79)a 

1.18 
(0.91–
1.54)a 

1.24 
(1.02–
1.52)a 

0.03 0.09 



                1.73 
(1.09–
2.73)b 

1.16 
(0.80–
1.69)b 

1.36 
(1.02–
1.82)b 

0.04 0.11 

UGT2B7 rs3924194 Asc.-Kilfoy et 
al. 2012 (42) 

0.66 
(0.49–
0.88) 

0.84 
(0.61–
1.16) 

—     0.74 
(0.53–
1.05)a 

0.82 
(0.59–
1.14)a 

0.73 
(0.57–
0.94)a 

0.01 0.04 

                0.31 
(0.12–
0.85)b 

0.97 
(0.16–
5.82)b 

0.37 
(0.15–
0.91)b 

0.03 0.09 

Thyroid function 

THRB rs826377 Pastor et al. 
2012 (48) 

1.01 
(0.79–
1.29) 

1.00 
(0.81–
1.24) 

1.06 
(0.94–
1.21) 

0.35 0.38 1.08 
(0.81–
1.45)a 

1.13 
(0.87–
1.46)a 

1.11 
(0.91–
1.34)a 

0.3 0.39 

                0.80 
(0.67–
1.73)b 

0.76 
(0.44–
1.32)b 

0.77 
(0.49–
1.21)b 

0.26 0.4 

TPO rs1042589 Cipollini et al. 
2013 (49) 

0.94 
(0.84–
1.05) 

0.89 
(0.74–
1.06) 

0.93 
(0.85–
1.02) 

0.12 0.17 0.98 
(0.81–
1.18)a 

0.76 
(0.56–
1.03)a 

0.92 
(0.79–
1.06)a 

0.24 0.33 

                0.87 
(0.69–
1.10)b 

0.78 
(0.54–
1.11)b 

0.86 
(0.73–
1.03)b 

0.1 0.23 

    Cipollini et al. 
2013 (49) 

0.94 
(0.78–
1.14) 

        0.88 
(0.65–
1.19)a 

        

                0.90 
(0.62–
1.32)b 

        

TRHR rs4129682 Akdi et al. 
2011 (47) 

0.99 
(0.82–
1.19) 

0.88 
(0.74–
1.05) 

0.93 
(0.82–
1.37) 

0.27 0.31 1.15 
(0.83–
1.58)a 

1.09 
(0.83–
1.44)a 

1.12 
(0.90–
1.38)a 

0.31 0.39 

                0.96 
(0.65–
1.41)b 

0.74 
(0.52–
1.04)b 

0.83 
(0.64–
1.07)b 

0.15 0.32 

TRHR rs7823804 Akdi et al. 
2011 (47) 

0.94 
(0.77–
1.14) 

0.94 
(0.77–
1.14) 

0.94 
(0.82–
1.08) 

0.37 0.39 0.91 
(0.69–
1.22)a 

1.03 
(0.80–
1.34)a 

0.97 
(0.80–
1.19)a 

0.8 0.83 

                0.89 
(0.57–
1.41)b 

0.80 
(0.52–
1.22)b 

0.84 
(0.62–
1.15)b 

0.27 0.41 

TSHR rs11845164 Pastor et al. 
2012 (48) 

1.08 
(0.83–
1.41) 

1.21 
(0.91–
1.61) 

1.14 
(0.94–
1.38) 

0.19 0.26 0.96 
(0.71–
1.31)a 

1.37 
(1.00–
1.88)a 

1.14 
(0.92–
1.43)a 

0.24 0.33 

                2.22 
(0.81–
6.07)b 

0.70 
(0.26–
1.89)b 

1.24 
(0.61–
2.51)b 

0.55 0.62 

TSHR rs8019570 Pastor et al. 
2012 (48) 

1.09 
(0.83–
1.42) 

1.21 
(0.91–
1.61) 

1.14 
(0.94–
1.39) 

0.17 0.23 0.99 
(0.73–
1.35)a 

1.37 
(1.00–
1.88)a 

1.16 
(0.93–
1.45)a 

0.19 0.29 

                2.04 
(0.73–5. 
7)b 

0.70 
(0.26–
1.89)b 

1.18 
(0.58–
2.40)b 

0.65 0.72 

HRAS rs12628 Khan et al. 
2013 (50) 

5.82 
(3.80–
8.93) 

1.23 
(1.02–
1.48) 

2.64 
(0.58–
12.1) 

0.21 0.27 6.66 
(3.66–
12.1)a 

1.51 
(1.16–
1.96)a 

3.09 
(0.72–
13.2)a 

0.13 0.24 

                9.86 
(4.08–
23.8)b 

1.31 
(0.89–
1.92)b 

3.45 
(0.48–
24.9)b 

0.22 0.4 

RET rs1799939 Ho et al. 2005 
(52) 

0.79 
(0.50–
1.25) 

1.14 
(0.92–
1.41) 

1.05 
(0.93–
1.19) 

0.43 0.44 0.67 
(0.38–
1.19)a 

1.29 
(0.99–
1.67)a 

1.08 
(0.92–
1.25)a 

0.35 0.43 

                0.97 
(0.32–
3.07)b 

0.93 
(0.51–
1.67)b 

1.04 
(0.72–
1.50)b 

0.84 0.86 

    Sigurdson et 
al. 2009 (27) 

1.04 
(0.88–
1.23) 

        1.02 
(0.84–
1.25)a 

        

                1.15 
(0.69–
1.93)b 

        

Immune response and inflammation 

ALOX12 rs1126667 Prasad et al. 
2012 (53) 

2.06 
(1.45–
2.93) 

0.99 
(0.83–
1.89) 

1.74 
(1.28–
2.37) 

4.0 × 
10−4 

8.9 × 
10−4 

3.01 
(1.88–
4.82)a 

1.34 
(1.02–
1.75)a 

1.63 
(1.29–
2.06)a 

4.3 
× 
10−5 

6.0 
× 
10−4 

                2.75 
(0.49–
15.6)b 

0.85 
(0.59–
1.22)b 

0.89 
(0.63–
1.27)b 

0.53 0.62 

SERPINA5 rs6115 Brenner et al. 
2013 (56) 

1.72 
(1.40–
2.12) 

1.02 
(0.85–
1.24) 

1.32 
(0.79–
2.21) 

0.28 0.31 1.76 
(1.29–
2.41)a 

1.09 
(0.84–
1.41)a 

1.37 
(0.86–
2.19)a 

0.19 0.29 

                2.52 
(1.66–
3.83)b 

0.98 
(0.65–
1.49)b 

1.57 
(0.62–
3.97)b 

0.34 0.43 



SERPINA5 rs6112 Brenner et al. 
2013 (56) 

1.61 
(1.31–
1.99) 

1.02 
(0.85–
1.24) 

1.28 
(0.82–
2.00) 

0.28 0.31 1.76 
(1.30–
2.37)a 

1.09 
(0.84–
1.41)a 

1.38 
(0.86–
2.20)a 

0.18 0.29 

                2.74 
(1.63–
4.62)b 

0.98 
(0.65–
1.49)b 

1.62 
(0.59–
4.43)b 

0.35 0.43 

SERPINA5 rs6108 Brenner et al. 
2013 (56) 

1.48 
(1.20–
1.81) 

1.04 
(0.86–
1.26) 

1.24 
(0.88–
1.75) 

0.22 0.28 1.39 
(1.02–
1.89)a 

1.09 
(0.84–
1.41)a 

1.21 
(0.96–
1.54)a 

0.11 0.22 

                2.41 
(1.53–
3.78)b 

1.02 
(0.67–
1.56)b 

1.56 
(0.67–
3.63)b 

0.3 0.41 

TICAM1 rs2292151 Brenner et al. 
2013 (56) 

1.46 
(1.16–
1.84) 

1.09 
(0.89–
1.34) 

1.24 
(1.06–
1.45) 

7.1 × 
10−3 

0.01 1.43 
(1.06–
1.93)a 

0.91 
(0.70–
1.18)a 

1.10 
(0.91–
1.34)a 

0.32 0.42 

                2.15 
(1.19–
3.88)b 

1.69 
(0.99–
2.91)b 

1.89 
(1.27–
2.82)b 

1.8 
× 
10−3 

0.01 

Other cancer genes 

ATG16L1 rs2241880 Huijbers et al. 
2012 (57) 

0.76 
(0.60–
0.98) 

0.83 
(0.70–
0.99) 

0.81 
(0.70–
0.93) 

3.6 × 
10−3 

7.6 × 
10−3 

0.67 
(0.44–
1.01)a 

0.97 
(0.73–
1.30)a 

0.86 
(0.68–
1.08)a 

0.19 0.29 

                0.57 
(0.35–
0.93)b 

0.67 
(0.47–
0.95)b 

0.63 
(0.48–
0.84)b 

1.7 
× 
10−3 

0.01 

FTO rs17817288 Kitahara et al. 
2012 (62) 

1.37 
(1.12–
1.68) 

1.28 
(1.07–
1.53) 

1.32 
(1.15–
1.51) 

6.4 × 
10−5 

1.6 × 
10−4 

1.46 
(1.01–
2.11)a 

1.31 
(0.99–
1.74)a 

1.36 
(1.09–
1.71)a 

6.8 
× 
10−3 

0.04 

                1.98 
(1.30–
3.02)b 

1.63 
(1.15–
2.30)b 

1.76 
(1.35–
2.30)b 

3.2 
× 
10−5 

6.7 
× 
10−4 

FTO rs11642841 Kitahara et al. 
2012 (62) 

0.74 
(0.60–
0.91) 

0.78 
(0.65–
0.93) 

0.76 
(0.67–
0.87) 

3.8 × 
10−5 

1.2 × 
10−4 

0.64 
(0.47–
0.87)a 

0.88 
(0.67–
1.16)a 

0.76 
(0.62–
0.94)a 

9.7 
× 
10−3 

0.04 

                0.61 
(0.40–
0.94)b 

0.59 
(0.42–
0.84)b 

0.60 
(0.45–
0.79)b 

3.7 
× 
10−4 

2.2 
× 
10−3 

FTO rs1121980 Kitahara et al. 
2012 (62) 

0.76 
(0.62–
0.93) 

0.75 
(0.63–
0.89) 

0.75 
(0.66–
0.86) 

2.0 × 
10−5 

5.7 × 
10−5 

0.70 
(0.51–
0.96)a 

0.84 
(0.63–
1.19)a 

0.76 
(0.60–
0.96)a 

0.02 0.07 

                0.60 
(0.39–
0.92)b 

0.55 
(0.39–
0.78)b 

0.57 
(0.43–
0.75)b 

7.5 
× 
10−5 

7.9 
× 
10−4 

FTO rs8050136 Kitahara et al. 
2012 (62) 

0.77 
(0.62–
0.94) 

0.75 
(0.63–
0.89) 

0.76 
(0.67–
0.86) 

1.6 × 
10−5 

4.8 × 
10−5 

0.73 
(0.54–
1.00)a 

0.84 
(0.63–
1.19)a 

0.78 
(0.62–
0.98)a 

0.03 0.09 

                0.59 
(0.38–
0.93)b 

0.55 
(0.39–
0.78)b 

0.56 
(0.43–
0.74)b 

2.8 
× 
10−5 

6.7 
× 
10−4 

FTO rs9939609 Kitahara et al. 
2012 (62) 

0.77 
(0.62–
0.94) 

0.77 
(0.65–
0.93) 

0.77 
(0.67–
0.88) 

1.7 × 
10−4 

3.9 × 
10−4 

0.74 
(0.54–
1.00)a 

0.88 
(0.67–
1.16)a 

0.81 
(0.66–
1.00)a 

0.05 0.13 

                0.60 
(0.38–
0.93)b 

0.58 
(0.41–
0.83)b 

0.59 
(0.45–
0.78)b 

2.8 
× 
10−4 

1.9 
× 
10−3 

FTO rs7202116 Kitahara et al. 
2012 (62) 

0.77 
(0.63–
0.95) 

0.75 
(0.63–
0.89) 

0.76 
(0.66–
0.87) 

9.8 × 
10−5 

2.5 × 
10−4 

0.74 
(0.55–
1.01)a 

0.84 
(0.63–
1.19)a 

0.78 
(0.62–
0.99)a 

0.04 0.11 

                0.60 
(0.38–
0.93)b 

0.55 
(0.39–
0.78)b 

0.57 
(0.43–
0.75)b 

7.5 
× 
10−5 

7.9 
× 
10−4 

HDAC4 rs6749348 Neta et al. 
2011 (25) 

— 0.85 
(0.62–
1.16) 

—     0.41 
(0.26–
0.65)a 

0.78 
(0.56–
1.08)a 

0.58 
(0.31–
1.08)a 

0.09 0.2 

                0.28 
(0.03–
2.46)b 

1.92 
(0.39–
9.56)b 

0.97 
(0.27–
3.54)b 

0.97 0.97 

HDAC4 rs7584828 Neta et al. 
2011 (25) 

— 0.82 
(0.64–
1.05) 

—     0.55 
(0.38–
0.79)a 

0.76 
(0.58–
1.00)a 

0.68 
(0.54–
0.84)a 

4.0 
× 
10−4 

4.2 
× 
10−3 

                0.33 
(0.08–
1.28)b 

0.96 
(0.41–
2.25)b 

0.71 
(0.35–
1.46)b 

0.35 0.43 

IGFBP3 rs2132572 Xu et al. 2012 
(66)c 

0.60 
(0.40–
0.80) 

0.86 
(0.66–
1.13) 

0.77 
(0.61–
0.96) 

0.02             

PIK3CA rs17849071 Xing et al. 
2012 (81) 

— 0.71 
(0.51–
0.99) 

—     0.52 
(0.23–
1.19)a 

0.67 
(0.47–
0.96))a 

0.64 
(0.46–
0.90)a 

8.8 
× 
10−3 

0.04 

                — 0.79 
(0.21–
2.95)b 

-     



SULF1 rs6472462 Schonfeld et 
al. 2012 (41) 

1.28 
(1.05–
1.56) 

1.09 
(0.91–
1.30) 

1.17 
(1.03–
1.33) 

0.02 0.03 1.40 
(0.97–
2.02)a 

0.92 
(0.69–
1.23)a 

1.08 
(0.86–
1.36)a 

0.5 0.55 

                1.67 
(1.11–
2.50)b 

1.19 
(0.84–
1.68)b 

1.37 
(1.06–
1.78)b 

0.02 0.07 

GWAS or intergenic regions 

1p12–13 rs4659200 Baida et al. 
2008 (38) 

0.84 
(0.61–
1.15) 

0.97 
(0.81–
1.17) 

0.93 
(0.80–
1.10) 

0.41 0.43 0.99 
(0.62–
1.60)a 

1.15 
(0.88–
1.50)a 

1.11 
(0.88–
1.40)a 

0.38 0.46 

                0.66 
(0.35–
1.26)b 

0.85 
(0.58–
1.24)b 

0.80 
(0.58–
1.10)b 

0.17 0.34 

1p12–13 rs7515409 Baida et al. 
2008 (38) 

1.02 
(0.78–
1.34) 

0.94 
(0.79–
1.12) 

0.96 
(0.83–
1.12) 

0.61 0.61 0.84 
(0.54–
1.31)a 

0.80 
(0.60–
1.07)a 

0.81 
(0.64–
1.04)a 

0.09 0.2 

                1.11 
(0.62–
1.97)b 

0.89 
(0.63–
1.26)b 

0.94 
(0.70–
1.27)b 

0.71 0.75 

1p12–13 rs1241 Baida et al. 
2008 (38) 

0.90 
(0.65–
1.25) 

0.92 
(0.76–
1.10) 

0.92 
(0.78–
1.07) 

0.27 0.31 0.69 
(0.44–
1.10)a 

1.09 
(0.84–
1.42)a 

0.98 
(0.77–
1.23)a 

0.83 0.83 

                0.74 
(0.48–
1.16)b 

0.73 
(0.49–
1.08)b 

0.79 
(0.55–
1.13)b 

0.2 0.38 

1p31.3 rs334725 Gudmundsson 
et al. 2012 
(15) 

1.31 
(1.08–
1.60) 

1.39 
(0.91–
2.13) 

1.32 
(1.10–
1.59) 

2.4 × 
10−3 

5.1 × 
10−3 

— 1.33 
(0.86–
2.05)a 

—     

                — 2.74 
(0.30–
24.6)b 

—     

2q35 rs966423 Gudmundsson 
et al. 2012 
(15) 

1.34 
(1.22–
1.47) 

1.26 
(1.06–
1.51) 

1.27 
(1.19–
1.35) 

1.0 × 
10−13 

1.3 × 
10−12 

— 0.98 
(0.74–
1.28)a 

—     

                — 1.74 
(1.21–
2.50)b 

—     

    Liyanarachchi 
et al. 2013 
(82) 

1.30 
(1.12–
1.51) 

        —         

                —         

    Liyanarachchi 
et al. 2013 
(82) 

1.14 
(1.01–
1.29) 

        —         

                —         

5q24 rs2910164 Jazdzewski et 
al. 2008 (74) 

1.14 
(0.96–
1.34) 

0.95 
(0.78–
1.16) 

1.01 
(0.93–
1.09) 

0.89 0.92 1.55 
(1.25–
1.91)a 

0.94 
(0.73–
1.22)a 

1.07 
(0.97–
1.19)a 

0.19 0.29 

                0.50 
(0.28–
0.89)b 

0.91 
(0.56–
1.47)b 

0.88 
(0.73–
1.07)b 

0.19 0.36 

    Jones et al. 
2012 (75) 

1.00 
(0.88–
1.14) 

        1.01 
(0.86–
1.19)a 

        

                0.98 
(0.70–
1.38)b 

        

    Wei et al. 
2013 (83) 

0.95 
(0.82–
1.09) 

        0.88 
(0.71–
1.10)a 

        

                0.93 
(0.70–
1.24)b 

        

8p12 rs2439302 Gudmundsson 
et al. 2012 
(15) 

1.36 
(1.23–
1.50) 

1.12 
(0.94–
1.34) 

1.30 
(1.23–
1.39) 

4.0 × 
10−17 

1.2 × 
10−15 

— 1.10 
(0.83–
1.45)a 

—     

                — 1.28 
(0.90–
1.83)b 

—     

    Liyanarachchi 
et al. 2013 
(82) 

1.46 
(1.26–
1.70) 

        —         

                —         

    Liyanarachchi 
et al. 2013 
(82) 

1.23 
(1.09–
1.38) 

        —         

                —         

8q24 rs6983267 Akdi et al. 
2011 (47) 

0.98 
(0.81–
1.18) 

1.02 
(0.86–
1.22) 

1.06 
(0.99–
1.14) 

0.09 0.13 1.14 
(0.83–
1.57)a 

1.15 
(0.56–
1.54)a 

1.03 
(0.91–
1.17)a 

0.65 0.7 

                0.94 
(0.65–
1.36)b 

1.03 
(0.73–
1.46)b 

1.11 
(0.96–
1.27)b 

0.15 0.32 



    Jones et al. 
2012 (75) 

1.14 
(1.03–
1.27) 

        1.01 
(0.83–
1.23)a 

        

                1.27 
(1.03–
1.57)b 

        

    Wang et al. 
2013 (84) 

1.01 
(0.88–
1.15) 

        0.99 
(0.80–
1.21)a 

        

                1.01 
(0.78–
1.32)b 

        

9q22 rs965513 Gudmundsson 
et al. 2009 
(16) 

1.75 
(1.59–
1.94) 

1.78 
(1.48–
2.14) 

1.85 
(1.76–
1.95) 

<10−20 <10−20 — 1.80 
(1.37–
2.35)a 

—     

                — 3.08 
(2.10–
4.53)b 

—     

    Takahashi et 
al. 2010 (17) 

1.65 
(1.43–
1.91) 

        —         

                —         

    Jones et al. 
2012 (75) 

1.96 
(1.76–
2.18) 

        2.12 
(1.77–
2.55)a 

        

                3.89 
(3.10–
4.86)b 

        

    Tomaz et al. 
2012 (85) 

2.81 
(1.87–
4.22) 

        —         

                —         

    Liyanarachchi 
et al. 2013 
(82) 

2.09 
(1.80–
2.42) 

        —         

                —         

    Liyanarachchi 
et al. 2013 
(82) 

1.81 
(1.59–
2.06) 

        —         

                —         

9q22 rs7048394 Landa et al. 
2009 (76) 

1.46 
(1.19–
1.78) 

1.55 
(1.29–
1.87) 

1.51 
(1.31–
1.73) 

6.3 × 
10−9 

2.3 × 
10−8 

— 1.39 
(1.07–
1.80)a 

—     

                — 2.78 
(1.80–
4.28)b 

—     

9q22 rs894673 Landa et al. 
2009 (76) 

1.39 
(1.17–
1.65) 

1.65 
(1.38–
1.97) 

1.51 
(1.33–
1.71) 

1.3 × 
10−10 

8.3 × 
10−10 

— 1.46 
(1.09–
1.95)a 

—     

                — 2.92 
(2.02–
4.22)b 

—     

9q22 rs3758249 Landa et al. 
2009 (76) 

1.39 
(1.17–
1.66) 

1.65 
(1.38–
1.97) 

1.51 
(1.34–
1.72) 

1.3 × 
10−10 

8.3 × 
10−10 

— 1.46 
(1.09–
1.95)a 

—     

                — 2.92 
(2.02–
4.22)b 

—     

9q22 rs907577 Landa et al. 
2009 (76) 

1.39 
(1.17–
1.65) 

1.65 
(1.38–
1.97) 

1.51 
(1.34–
1.71) 

1.3 × 
10−10 

8.3 × 
10−10 

— 1.46 
(1.09–
1.95)a 

—     

                — 2.92 
(2.02–
4.22)b 

—     

9q22 rs3021526 Landa et al. 
2009 (76) 

1.32 
(1.11–
1.58) 

1.55 
(1.29–
1.87) 

1.46 
(1.29–
1.66) 

4.0 × 
10−9 

1.6 × 
10−8 

— 1.39 
(1.07–
1.80)a 

—     

                — 2.78 
(1.80–
4.28)b 

—     

    Tomaz et al. 
2012 (85) 

1.89 
(1.27–
2.82) 

        —         

                —         

9q22 rs10119760 Landa et al. 
2009 (76) 

1.47 
(1.23–
1.75) 

1.65 
(1.38–
1.97) 

1.56 
(1.34–
1.76) 

1.6 × 
10−10 

9.7 × 
10−10 

— 1.46 
(1.09–
1.95)a 

—     

                — 2.92 
(2.02–
4.22)b 

—     

9q22 rs1867277 Takahashi et 
al. 2010 (17) 

1.48 
(1.27–
1.71) 

1.65 
(1.38–
1.97) 

1.55 
(1.38–
1.73) 

2.9 × 
10−14 

4.9 × 
10−13 

— 1.46 
(1.09–
1.95)a 

—     



                — 2.92 
(2.02–
4.22)b 

—     

    Jones et al. 
2012 (75) 

1.75 
(1.57–
1.94) 

        1.99 
(1.64–
2.41)a 

        

                3.08 
(2.46–
3.84)b 

        

    Tomaz et al. 
2012 (85) 

1.76 
(1.18–
2.62) 

        —         

                —         

9q22 rs7849497 Tomaz et al. 
2012 (85) 

2.45 
(1.60–
3.76) 

1.55 
(1.29–
1.87) 

1.67 
(1.41–
1.98) 

3.2 × 
10−9 

1.4 × 
10−8 

— 1.39 
(1.07–
1.80)a 

—     

                — 2.78 
(1.80–
4.28)b 

—     

9q22 rs1867278 Tomaz et al. 
2012 (85) 

1.76 
(1.18–
2.62) 

1.65 
(1.38–
1.97) 

1.67 
(1.42–
1.96) 

4.4 × 
10−10 

2.2 × 
10−9 

— 1.46 
(1.09–
1.95)a 

—     

                — 2.92 
(2.02–
4.22)b 

—     

9q22 rs1867279 Tomaz et al. 
2012 (85) 

2.52 
(1.64–
3.86) 

1.55 
(1.29–
1.87) 

1.90 
(1.19–
3.04) 

0.01 0.02 — 1.39 
(1.07–
1.80)a 

—     

                — 2.78 
(1.80–
4.28)b 

—     

9q22 rs1867280 Tomaz et al. 
2012 (85) 

1.68 
(1.13–
2.49) 

1.65 
(1.38–
1.97) 

1.65 
(1.41–
1.95) 

1.4 × 
10−9 

6.5 × 
10−9 

— 1.46 
(1.09–
1.95)a 

—     

                — 2.92 
(2.02–
4.22)b 

—     

9q22 rs3021523 Tomaz et al. 
2012 (85) 

2.39 
(1.56–
3.67) 

1.65 
(1.38–
1.97) 

1.74 
(1.48–
2.05) 

2.7 × 
10−11 

2.8 × 
10−10 

— 1.46 
(1.09–
1.95)a 

—     

                — 2.92 
(2.02–
4.22)b 

—     

14q13 rs944289 Gudmundsson 
et al. 2009 
(16) 

1.37 
(1.24–
1.52) 

1.25 
(1.05–
1.49) 

1.25 
(1.17–
1.33) 

0.01 0.02 — 1.13 
(0.81–
1.58)a 

—     

                — 1.48 
(1.04–
2.09)b 

—     

    Takahashi et 
al. 2010 (17) 

1.13 
(0.95–
1.36) 

        —         

                —         

    Jones et al. 
2012 (75) 

1.33 
(1.19–
1.49) 

        1.31 
(1.02–
1.68)a 

        

                1.76 
(1.37–
2.25)b 

        

    Liyanarachchi 
et al. 2013 
(82) 

1.25 
(1.08–
1.46) 

      —           

              —           

    Liyanarachchi 
et al. 2013 
(82) 

1.22 
(1.09–
1.38) 

      —           

              —           

NOTE: Meta-analyses were performed when both sources showed a Pass < 0.2 (arbitrary chosen in any inheritance model) or when a meta-analysis of 
data from the literature alone was statistically significant. Statistically significant results at a nominal level of Pass < 0.05 are highlighted in bold. 

aHeterozygotes; brare homozygotes; conly dominant model available. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



             
Table 3.             
Meta-analyses between the non-Caucasian population(s) from the literature and present GWAS 

Gene or locus dbSNP ID Reference 
Published 
OR (allelic 
model) 

Allelic OR 
(present 
GWAS) 

Meta-
analysis 

Pass q 

Published 
OR 
(additive 
model) 

OR of the 
additive 
model 
(present 
GWAS) 

Meta-
analysis 

Pass q 

Cell-cycle regulation and apoptosis 

MDM2 rs2279744 
Zhang et 
al. 2013 
(36)c 

1.50 
(1.10–
2.00) 

1.27 
(0.91–
1.77) 

1.40 
(1.12–
1.74) 

2.6 × 
10−3 

            

Xenobiotic metabolism 

GPX3 rs3792796 
Lin et al. 
2009 (86) 

1.15 
(0.90–
1.46) 

1.08 
(0.90–
1.29) 

1.10 
(0.96–
1.27) 

0.17 0.2 
1.25 
(0.90–
1.74)a 

1.02 
(0.78–
1.33)a 

1.10 
(0.90–
1.36)a 

0.35 0.5 

                
1.19 
(0.66–
2.16)b 

1.19 
(0.83–
1.72)b 

1.19 
(0.87–
1.63)b 

0.28 0.4 

Immune response and inflammation 

IL11RA rs1061758 
Eun et al. 
2012 (55) 

1.62 
(1.14–
2.28) 

1.29 
(1.02–
1.65) 

1.39 
(1.14–
1.70) 

1.0 × 
10−3 

0 

3.03 
(1.52–
6.06)a 

1.24 
(0.94–
1.64)a 

1.41 
(1.08–
1.82)a 

0.01 0.1 

                

3.16 
(1.42–
7.04)b 

1.87 
(0.89–
3.93)b 

2.38 
(1.38–
4.11)b 

1.8 × 
10−3 

0 

TLR6 rs3775073 
Kim et al. 
2013 (87) 

1.28 
(0.91–
1.81) 

1.14 
(0.94–
1.38) 

1.17 
(0.99–
1.38) 

0.06 0.2 
1.21 
(0.74–
1.99)a 

1.12 
(0.86–
1.44)a 

1.14 
(0.91–
1.42)a 

0.26 0.4 

                
1.67 
(0.80–
3.47)b 

1.34 
(0.87–
2.06)b 

1.42 
(0.98–
2.05)b 

0.06 0.2 

Other cancer genes 

FOSB rs12373539 
Han et al. 
2012 (88) 

0.79 
(0.55–
1.14) 

0.84 
(0.63–
1.12) 

0.82 
(0.65–
1.03) 

0.09 0.2 
0.74 
(0.45–
1.22)a 

0.84 
(0.63–
1.11)a 

0.82 
(0.64–
1.04)a 

0.1 0.2 

                
0.66 
(0.27–
1.62)b 

0.87 
(0.39–
1.91)b 

0.77 
(0.43–
1.39)b 

0.39 0.5 

HER2 rs1801200 
Rebaї et 
al. 2009 
(64) 

1.88 
(1.18–
3.01) 

1.00 
(0.79–
1.28) 

1.15 
(0.92–
1.43) 

0.22 0.2 
1.36 
(0.78–
2.37)a 

0.96 
(0.73–
1.26)a 

1.03 
(0.80–
1.31)a 

0.83 0.8 

                — 
1.32 
(0.53–
3.31)b 

—     

IGF1R rs2229765 
Cho et al. 
2012 (65) 

0.56 
(0.39–
0.80) 

0.94 
(0.79–
1.13) 

0.84 
(0.72–
0.99) 

0.04 0.2 

0.56 
(0.35–
0.90)a 

0.86 
(0.66–
1.13)a 

0.77 
(0.61–
0.98)a 

0.03 0.1 

                

0.28 
(0.11–
0.76)b 

0.94 
(0.64–
1.38)b 

0.80 
(0.56–
1.15)b 

0.23 0.4 

ITGA6 rs11895564 
Kim et al. 
2011 (67) 

2.04 
(1.24–
3.37) 

1.15 
(0.95–
1.39) 

1.46 
(0.84–
2.54) 

0.18 0.2 

1.96 
(1.12–
3.43)a 

1.01 
(0.78–
1.31)a 

1.34 
(0.71–
2.55)a 

0.37 0.5 

                
7.03 
(0.64–
78.5)b 

1.44 
(0.96–
2.18)b 

2.00 
(0.57–
7.05)b 

0.28 0.4 

ITGB1 rs2230396 
Eun et al. 
2013 (68) 

0.90 
(0.63–
1.28) 

0.85 
(0.65–
1.12) 

0.87 
(0.70–
1.08) 

0.2 0.2 
0.67 
(0.39–
1.15)a 

0.78 
(0.58–
1.06)a 

0.75 
(0.58–
0.98)a 

0.04 0.1 

                
0.97 
(0.46–
2.06)b 

1.16 
(0.43–
3.17)b 

1.03 
(0.57–
1.89)b 

0.91 0.9 

OPN rs17524488 
Mu et al. 
2013 (70) 

0.86 
(0.71–
1.05) 

0.95 
(0.78–
1.14) 

0.91 
(0.76–
1.04) 

0.16 0.2 
0.82 
(0.59–
1.15)a 

0.81 
(0.63–
1.04)a 

0.81 
(0.67–
0.99)a 

0.04 0.1 

                
0.74 
(0.48–
1.11)b 

1.08 
(0.70–
1.66)b 

0.88 
(0.66–
1.19)b 

0.41 0.5 

OPN rs11730582 
Mu et al. 
2013 (70) 

2.14 
(1.74–
2.62) 

1.04 
(0.87–
1.24) 

1.49 
(0.73–
3.02) 

0.27 0.3 

2.05 
(1.46–
2.90)a 

0.80 
(0.59–
1.08)a 

1.28 
(0.51–
3.21)a 

0.61 0.7 

                

4.31 
(2.85–
6.52)b 

1.08 
(0.76–
1.54)b 

2.15 
(0.55–
8.34)b 

0.27 0.4 

VEGFA rs699947 
Hsiao et 
al. 2007 
(72) 

1.66 
(1.11–
2.50) 

1.19 
(0.99–
1.42) 

1.22 
(1.05–
1.41) 

8.6 × 
10−3 

0.1 

1.89 
(1.08–
3.32)a 

1.23 
(0.94–
1.63)a 

1.26 
(1.01–
1.57)a 

0.04 0.1 

                
2.30 
(0.87–
6.13)b 

1.38 
(0.97–
1.96)b 

1.42 
(1.04–
1.94)b 

0.03 0.2 

a Heterozygotes; brare homozygotes; conly recessive model available. Statistically significant results at a nominal level of Pass < 0.05 are highlighted in 
bold. 



 

 

 

 

 

 

 

 


