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Abstract—This paper addresses the problem of maximum
likelihood (ML) estimation of slot timing, integer carrier fre-
quency offset and primary sequence index for the downlink of
Long Term Evolution (LTE) systems. The proposed algorithm
is designed to exploit the knowledge of the pilot Zadoff-Chu
sequence embedded in the primary synchronization signal (PSS).
The estimation process is affected by the presence of a large
set of nuisance parameters, which need to be estimated jointly
with the parameters of interest. As a consequence, the exact
ML solution is extremely complex and we have developed a
suboptimal algorithm designed to provide a good balance between
estimation accuracy and complexity. In particular, a key finding
is a reduced-rank representation for the frequency response of
the channel, which is required by the ML estimator but is not
available at receiver prior to having acquired synchronization.
Compared to existing alternatives, the resulting scheme exhibits
improved accuracy in the estimation of all three parameters of
interest.

Index Terms—LTE, synchronization, cell search, primary syn-
chronization signal.

I. INTRODUCTION

When registering on the LTE network, the user equipment
(UE) activates a cell search procedure to acquire symbol
timing, frame timing, carrier frequency offset and cell ID
information.

In particular, the UE needs first to identify the host cell
identity. To perform this task, the UE receiver needs to achieve
frequency and timing synchronization.

Frequency synchronization is necessary to recover and cor-
rect the frequency error due to the local oscillator instability. In
OFDM systems, the frequency error, normalized to subcarrier
distance, is the sum of two terms: a fractional frequency offset
(FFO), which destroys the orthogonality between subcarriers,
and an integer frequency offset (IFO), which causes a circular
shift of the subcarrier positions leading to a complete loss of
the transmitted data.

To achieve full timing synchronization, in a LTE system the
receiver first needs to acquire symbol synchronization, which
establishes the beginning of the OFDM block so that the
cyclic prefix (CP) can be removed and the discrete Fourier
transform (DFT) of the received samples can be computed,
then slot synchronization that establishes the position of a
symbol within a slot and eventually frame synchronization.

Accordingly, the synchronization procedure follows three
separate steps:

1) In the time domain, the receiver performs FFO and
symbol synchronization. By exploiting the presence of the

CP, it has been shown [1] that the FFO can be estimated
and corrected and that a coarse block timing estimate is
available so that the frequency-domain received samples
of each OFDM block can be computed without sustaining
any relevant inter-block interference (IBI) .

2) In the frequency domain IFO is estimated and corrected,
slot synchronization is acquired and partial information
on cell identity based on the index of the pilot sequence
is gathered by exploiting the pilot information contained
in the primary synchronization signal (PSS).

3) In the frequency domain, frame synchronization and full
cell identity is obtained by exploiting the pilot informa-
tion of the secondary synchronization signal (SSS).

This paper deals with synchronization issues relative to the
second step: slot synchronization, IFO estimation and pilot
sequence index estimation. These parameters are usually es-
timated jointly taking advantage of the correlation properties
of the Zadoff-Chu sequences embedded in the PSS. In [2]
is presented a cell search algorithm that estimates the slot
timing and pilot sequence by looking for the maximum of
the correlation of the received signal with tentative values of
the reference pilot signal. The main limit of this approach is
that it suffers from the frequency selectivity of the channel
that tends to destroy the correlation properties of the Zadoff-
Chu pilot sequences. Other works address the problem of the
selectivity of the propagation channel with ad hoc heuristics.
In [3] and [4] the dependence on the frequency selective
channel is removed by assuming that adjacent subcarriers
have approximately the same propagation channel. Based
on this assumption, estimation is performed on the signal
obtained by multiplying one subcarrier with the conjugate
complex of the next. Following the same line of reasoning, the
algorithm in [5] computes the correlation between the received
signal and the reference signal by performing several partial
summation over sets of subcarriers with an approximately
equal channel. In this paper we derive a rigorous maximum
likelihood approach based on a reduced rank representation
of the propagation channel, which is treated as a nuisance
parameter. The results presented in this paper show that the
ML estimator outperforms all the other schemes.

II. SIGNAL MODEL

A. LTE frame structure
We consider the downlink of a FDD LTE system. Data are

transmitted in 10ms radio frames, each radio frame consists
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of ten 1ms sub-frames, and each sub-frame is organized in
two consecutive 0.5ms slots. Every slot is composed by six
or seven OFDM blocks depending on the length of the cyclic
prefix (CP).

As shown in Fig. 1, to enable cell search and synchroniza-
tion, every ten slots (i.e. twice per frame) the PSS and the
SSS are embedded in the transmitted signal. There are 504
physical-layer cell identities, divided into 168 groups of three.
The identity of each group is indicated by one of the 168
possible SSS, while the cell identity within a single group
is given by the index of the PSS. The two sequences, both
generated in the frequency domain, occupy a specific position
in the LTE time-frequency grid. The PSS is transmitted on
the central 73 subcarriers of the last OFDM block of the
first and eleventh slots of each radio frame and the SSS is
transmitted over the same subcarriers in the block immediately
preceding the PSS. The PSS is composed by eleven null
symbols (five null symbols at both sequence’s boundaries and
one null symbol in correspondence to the d.c. subcarrier),
and by 62 pilot symbols belonging to one of three different
Zadhoff-Chu sequences {zcu(n)} = e−jπu(n

2+63n+110)/63,
(n ∈ Ip = {n ∈ Z : |n| ≤ 31 and n 6= 0}), whose index
u ∈ JU = {25, 29, 34} provides the cell identity.

B. OFDM signal

At the receiver, the incoming signal is down-converted
to baseband, sampled with period Ts and converted in the
frequency domain through an N -point DFT operation. Let us
suppose that the PSS signal is present on the qth block and let
Xk(n) (|n| ≤ 36) be an element of the DFT of the kth received
block, k ∈ JQ = {1, . . . , NQ}. If k 6= q, we model Xk(n) as
a zero mean Gaussian variable with power σ2

k = E{|Xk(n)|2},
if k = q then the frequency domain samples of the received
block can be written as

Xq(n) = Hq(n− ν)au(n− ν) + wq(n) (1)

where au(n) = zcu(n) if n ∈ Ip and zero otherwise, wq(n)
is a disturbance terms that accounts for white Gaussian noise
with power σ2

w = E{wq(n)2}, ν is the IFO and Hq(n) is the
channel frequency response that incorporates also the phase
shift ej2πνqNg/N that is accumulated at each block over the
Ng samples of the CP due to the IFO.

Fig. 1. Position of PSS (green) and SSS (red) in the LTE downlink frame.

III. ML ESTIMATION OF q, u AND ν

Since the PPS is transmitted twice per frame, we observe
the NQ consecutive OFDM blocks composing a half frame to
reveal the presence of the PSS. Our goal is the estimation of
the integer frequency offset ν ∈ Jν , the block index q ∈ JQ
and the PSS sequence index u ∈ JU based on the received
frequency domain vector X = {Xk(n); |n| ≤ 36, k ∈ JQ}.
The samples Xk(n) are statistically independent and Gaussian
distributed with zero mean and variance σ2

k if k 6= q and with
mean Hq(n− ν)au(n− ν) and variance σ2

w if k = q. Hence,
in presence of the unknown parameters H̃q̃ = {H̃q̃(n); |n| ≤
36}, σ̃2
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where the vector ϕ̃ = [q̃, ũ, ν̃] collects the unknown estimation
parameters.

The joint ML estimate of the unknown parameters is the
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where we have defined

w
(
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)
= Xq̃(n)− H̃q̃(n− ν̃)aũ(n− ν̃). (4)
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By replacing the values of σ̃2
k and σ̃2

w found in
(5) and (6) and adding and subtracting the term
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Skipping irrelevant additive terms independent of the opti-
mization variables and exploiting the monotonicity of the log
operator, we obtain that the maximum of LLF is found by
maximizing the concentrated LLF Φ(ϕ̃; H̃q̃)

Φ
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Moreover, making a change of the indexing variable (n −
ν → n) into (4), taking into account that the values of the
pilot sequence au are zero in certain specific positions and
dropping immaterial factors in (8), one obtains a new function
Φ1

(
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)
, whose maximization yields the ML estimate of

the unknown parameters

Φ1

(
ϕ̃; H̃q̃

)
=

2Re


31∑

n=−31
n 6=0

H̃∗q̃ (n)Zq̃(n; ũ, ν̃)
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where it is

Zq̃(n; ũ, ν̃) = Xq̃(n+ ν̃)a∗ũ(n) n ∈ Ip (10)

In the following, with a slight abuse of notation, we redefine
the vector of the channel coefficients as Hq = {Hq(n);n ∈
Ip}, i.e., considering only those subcarriers where the PSS is
different from zero. Let us assume that the channel samples are
correlated so that Hq can be expressed as a linear combination
of the terms of the P -dimensional (with P � 62) orthonormal
basis {b1, . . . ,bP } as

Hq = Bξ (11)

where B = [b1, . . . ,bP ] is the 62 × P matrix collecting the
basis vectors and ξ = [ξ1, ξ2, . . . , ξP ]

T is the P -dimensional
vector of the expansion coefficients on the basis B.

Upon defining the vector Xq̃(ν̃) = {Xq̃(n+ ν̃);n ∈ Ip}
and the matrix Aũ = diag {aũ(n);n ∈ Ip}, the concentrated
LLF can be rewritten in a more compact form as
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By differentiating Φ1

(
ϕ̃; ξ̃

)
with respect to ξ̃ and setting the

results to zero, one obtains the ML estimate of ξ

ξ̂ =
(
BHB

)−1
BHAH

ũ Xq̃(ν̃) (13)

By substituting in (12) the value for ξ found in (13), the new
concentrated LLF takes the form

Φ2 (ϕ̃) =
Zq̃(ũ, ν̃)HGZq̃(ũ, ν̃)

36∑
n=−36

|Xq̃(n)|2
(14)

where G = B
(
BHB

)−1
BH and Zq̃(ũ, ν̃) = AH

ũ Xq̃(ν̃) is
the vector stacking the values of Zq̃(n; ũ, ν̃).

To proceed further, we need to find an appropriate expansion
basis B for Hq .

A. A reduced-rank base for Hq

Letting h = [h(0), h(1), . . . , h(L − 1)] be the length L
impulse response of the propagation channel, the channel
frequency response H can be factorized as

H = Fh (15)

where F is a 62× L matrix, whose elements are

[F]n,` = e−j2πn`/N n ∈ Ip; ` = 0, 1, . . . , L− 1 (16)

so that it is G = F
(
FHF

)−1
FH . In many cases it might be

L� 62 and the matrix FHF not invertible. Thus, to avoid this
problem and to pursue in general a low complexity approach,
we aim at finding a rank-reduced expansion employing a base
Fp of dimension P � L for the vector, so that it is Hp = Fpξ
and Hp ≈ H, .

Our objective is to find the vector Hp that, given the
dimension P of the expansion basis, minimises the mean
square error (MSE), i.e.

min
Fp,ξ

E{‖H− Fpξ‖2}

subject to (17)
rank Fp = P

First of all, we observe that, given the matrix Fp, the vector
ξ that minimises the metric ‖H − Fpξ‖2 is the least square
(LS) estimator

ξLS =
(
FHp Fp

)−1
FHp H (18)

so that, consequently, Hp can be written as

Hp = Fp
(
FHp Fp

)−1
FHp H. (19)

Thus, we need to find the matrix Fp that minimises γ (Fp) =
E{‖H − FpξLS‖2}. By replacing (15) in (19), one ob-
tains H − FpξLS =

(
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(
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)−1
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)
Fh, and the

MMSE takes the form
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where Ch = E
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hhH

}
is the channel covariance matrix.



After neglecting a constant term, minimizing (20) is tanta-
mount to maximise the metric γ (Fp)

γ (Fp) = tr
{

Fp
(
FHp Fp

)−1
FHp FChF

H
}

(21)

Let Fp =
[
U

(1)
p ,U

(0)
p

]
ΣpV

H
p be the singular-value de-

composition (SVD) of Fp, where U
(1)
p are the P right eigen-

vectors associated to the positive eigenvalues of Fp and U
(0)
p

are the 62−P right eigenvectors associated to null eigenvalues.
By simple algebraic manipulation, the metric γ (Fp) can be
written as

γ (Fp) = tr
{

U(1)H
p FChF

HU(1)
p

}
. (22)

The metric γ (Fp) depends only on U
(1)
p and the maximisation

of (22) with respect to U
(1)
p is a well-known optimization

problem, whose solution is obtained by choosing the P
eigenvectors associated to the P largest eigenvalues of the
matrix FChF

H as columns of U
(1)
p . Therefore, the optimal

solution of (21) does not depend on U
(0)
p , Σp and Vp and the

last two matrices can be arbitrarily chosen so that Fp = U
(1)
p

and ξ =
(
FHp Fp

)−1
FHp H is a solution of (17).

In most cases, the receiver does not possess any knowledge
on the matrix Ch and a low-complexity off-the-shelf solution
consists in setting Ch = IL with an arbitrary value of L. In
this case, the matrix U

(1)
p is found by simply collecting the

P eigenvectors corresponding to the P largest eigenvalues of
FFH .

Replacing B with Fp in (14) and exploiting the fact that,
by construction, it is FHp Fp = IP yields

Φ2 (ϕ̃) =

∥∥FHp Zq̃(ũ, ν̃)
∥∥2

36∑
n=−36

|Xq̃(n)|2
(23)

and the parameters of interest are estimated by maximizing
Φ2 (ϕ̃)

q̂, û, ν̂ = arg max
q̃,ũ,ν̃

Φ2 (q̃, ũ, ν̃) (24)

IV. REVIEW OF EXISTING CELL SEARCH AND
SYNCHRONISATION SCHEMES FOR LTE

We present here a review of the most common algorithms
employed in recent literature to perform cell search and
synchronisation in LTE systems. To place the various schemes
in an adequate framework and perform a fair comparison,
some algorithms have been slightly modified.

1) Conventional estimator (CE): The work in [2] exploits
the autocorrelation properties of the ZC sequences. The vector
of unknown parameters ϕ is estimated by searching the
maximum of the correlation of the received signal with the
pilot sequence au(n)

q̂, û, ν̂ = arg max
q̃,ũ,ν̃

∣∣∣∣∣ ∑n∈IP Zq̃(n; ũ, ν̃)

∣∣∣∣∣
2

∑
n∈IP

|Xq̃(n+ ν̃)|2
(25)

2) Partially coherent estimator (PCE): The main problem
of the method in (25) is represented by the selectivity of the
propagation channel, which tends to decorrelate the terms in
the sum at the numerator and to destroy the properties of the
ZC sequences. To partially solve this impairment, the authors
in [5] replace the sum in the numerator of (25) with 63/M
partial summations, each adding together the contribution of
M contiguous subcarriers.

q̂, û, ν̂ = arg max
q̃,ũ,ν̃

63/M∑
m=1

∣∣∣∣∣ −31+mM−1∑
n=−31+(m−1)M
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2

∑
n∈IP

|Xq̃(n+ ν̃)|2
(26)

where the optimal value of M depends on the channel coher-
ence bandwidth.

3) Differential estimator (DE): The differential estimator
proposed in [3] attenuates the dependence on the frequency
selectivity of the channel by multiplying adjacent frequency
received samples so that Hq(n)Hq(n − 1)∗ can be approx-
imated as |Hq(n)|2. Hence, the triplet (q, u, ν) is estimated
as

q̂, û, ν̂ = arg max
q̃,ũ,ν̃

<e

{ ∑
n∈IP /{1}

Zq̃(n; ũ, ν̃)Zq̃(n− 1; ũ, ν̃)∗

}
∑
n∈IP

|Xq̃(n+ ν̃)|2

(27)

V. NUMERICAL RESULTS

In this section we compare the performance of the discussed
synchronization algorithms deployed in a LTE system compli-
ant with the 3GPP specifications [6]. The signal bandwidth is
20 MHz, CP length is normal, FFT size is 2048 and sampling
rate is 30.72 megasample/s.

Results are obtained by employing the power delay profile
of the extended typical urban (ETU) channel [7] summarized
in Table I. The gains of the paths are modelled as independent
circularly symmetric Gaussian random variables with zero-
mean (Rayleigh fading).

TABLE I
ETU CHANNEL POWER PROFILE

Excess tap delay (ns) Relative power (dB)
0 −1.0
50 −1.0
120 −1.0
200 0.0
230 0.0
500 0.0
1600 −3.0
2300 −5.0
5000 −7.0

Considered that one PSS is transmitted every 10 slots and
that there are seven (normal CP) OFDM symbols per slot,
it is NQ = 70. Assuming that the stability of commercial
oscillators for mobile applications is in the range of 10



parts per million (ppm) and the highest carrier frequency
is 4 GHz, the largest possible frequency error is around 40
kHz, which approximately corresponds to 2.66 the subcarrier
spacing and, accordingly, the residual IFO takes value in the
set Jν = {0,±1,±2,±3}. Moreover, there are three different
Zadoff-Chu sequences, so that the overall search space for the
synchronization algorithm consists of 60×7×3 search values.

The performance of the joint estimator of the slot timing,
IFO and pilot sequence index is assessed in terms of the error
rate computed for each parameter of interest. For the ML
estimator (MLE) the channel length has been arbitrarily set
to L = 200 samples corresponding to a maximum channel
impulse response duration of approximately 6.5 µs and the
parameter P = 9. For the PCE we have chosen M = 7 as the
value that maximizes its performance.

Fig. 2 shows the slot timing error as function of the SNR.
As it is seen, MLE outperforms all other estimators. The DE
is second best but loses almost two dB in comparison to
MLE. Since the frequency selectivity of the channel is large,
CE performs rather poorly and exhibits a performance floor
already for low SNR values.
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Fig. 2. Timing error rate as function of the SNR.

Fig. 3 shows the results for the error rate of the Zadoff-Chu
sequence index estimation. The trend is similar to that of Fig.
1 with MLE outperforming all other estimation schemes.

Fig. 4 plots the IFO error rate and in this case the gain of
MLE over all other schemes is much more evident than for
the two other parameters of interest.

VI. CONCLUSIONS

This paper has presented a maximum likelihood algorithm
for joint estimation of slot timing, integer carrier frequency
offset and primary sequence index for the downlink of Long
Term Evolution systems. The proposed algorithm exploits the
knowledge of the pilot Zadoff-Chu sequence transmitted in the
primary synchronization signal. The main novelty of the pro-
posed scheme consists in introducing a reduced-rank represen-
tation of the channel frequency response, which strikes a good
balance between estimation performance and implementation
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Fig. 3. Pilot sequence index error rate as function of the SNR.
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Fig. 4. IFO error rate as function of the SNR.

load. Simulation results show that the proposed estimator is
able to clearly outperform all other relevant algorithms present
in the literature.
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