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Abstract—Rechargeable batteries, particularly Lithium-ion
ones, are emerging as a solution for energy storage in DC micro-
grids. This paper reviews the issues faced in the characterization
of the Open Circuit Voltage (OCV) of a Lithium-ion battery,
starting from the problem of OCV measurement and ending with
the modeling of OCV hysteresis. An accurate OCV modeling
is necessary for a reliable estimation of the internal battery
states, such as State-of-Charge and State-of-Health. These state
variables are useful for a better control and a more efficient
utilization of the energy storage system in the microgrid. We
also compare with experiments two models that account for the
hysteresis in Lithium-Iron-Phosphate batteries.

I. INTRODUCTION

DC microgrids are emerging as a possible successful sce-

nario in the energy field, in which the balance between the

generation of energy via renewable sources and the energy

consumption is efficiently achieved. Often, energy is produced

and consumed in DC electrical form. Thus, it makes sense

to think of a network of generation/distribution/utilization

where energy never leaves its DC electrical form, avoiding the

necessity of back and forth conversions to the AC electrical

form and the related power losses. On the one side, generation

of energy occurs in many cases via renewable sources, such

as photovoltaic panels, which produce DC electrical energy.

This energy is presently converted to the AC form to be

inserted in the distribution grid. On the other hand, many loads

that use energy are DC loads that are supplied by rectifying

and converting to the appropriate level the AC voltage of the

distribution grid. This is particularly true for office and home

appliances (e.g. computers, laptops, tablets, phones, printers,

TVs, microwave ovens and lighting) that consume electricity

in DC form [1].

DC microgrids are thus assuming more importance in

local scenarios, in “islands” in which local generation and

consumption of energy occurs, even when the island is

disconnected from the general distribution grid, making the

island autonomous, at least in principle. In this cases, always

leaving the energy in its DC electrical form leads to higher

efficiency. Unfortunately, the rate of energy generation from,

say, photovoltaic panels is strongly dependent on the weather

and illumination conditions, so that the energy generation rate

is unreliable in time and intensity, as it also happens for the

loads that follow an average daily general behavior. These

considerations weaken the microgrid concept described above

and the possible advantages that can be achieved. The solution

that matches the unreliable and mostly unpredictable energy

generation and consumption rates is the availability of Energy

Storage Systems (ESSs) [2] inside the “island” that accumulate

the excess energy in some time intervals and give it back

to the loads when the energy production is insufficient. An

efficient energy storage system is thus the key to exploit the

DC microgrid potential.

If a DC microgrid is thought as a local entity that en-

compasses a very limited geographical area (i.e. even one

or a few buildings), the most appropriate energy storage

system technology is the electrochemical storage, realized

by rechargeable batteries, particularly those based on the

lithium-ion chemistry. These batteries are now leaving the

low-power applications (mainly portable electronics), in which

they firstly have been introduced, and penetrating the market

of middle-power applications, such as electrical vehicles and

even stationary energy storage systems. The enormous benefit

of lithium-ion batteries with respect to the old lead-acid ones

is the better energy and power densities in both volume

and weight and the larger number of charge/discharge cycles

sustainable. Lithium-ion energy storage systems for residential

applications are thus foreseen to be feasible and affordable in

the very near future [3]–[5].

II. LITHIUM-ION BATTERY ENERGY STORAGE SYSTEM

An energy storage system based on lithium-ion batteries

may be much more efficient than its lead-acid counterpart, as

the lithium-ion battery cell is more performing. Besides the

already mentioned features (specific and volumetric density,

useful cycles) lithium-ion cells also stand for the high charge

and discharge current rates they can sustain. In many cases

we find cells capable of being discharged at a current value of

1-10 C, being C the nominal cell charge capacity expressed

in amperehour [6].

Unfortunately, lithium-ion cells also suffer from some issues

that have to be solved before their successful utilization.

First of all, safety is a fundamental issue, as overvoltage,

undervoltage or overtemperature may cause damages to the

cells and even fires. Therefore, lithium-ion batteries must

be accurately monitored and controlled to avoid their use

outside the proper operating range. A lithium-ion battery is

always accompanied by an electronic system called Battery

management System (BMS) which is in charge of monitoring

and safely managing the battery [7]. Second, an accurate
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Figure 1. Electrical equivalent model of a lithium-ion cell, based on the
Randle’s model for the interfacial electrochemical reactions. OCV accounts
for the cell’s electromotive force.

model of the physical behavior of the lithium-ion cell may

be fundamental for a better exploitation of its performance.

Accurately knowing the inner status of a cell allows the

knowledge of many parameters useful for the application: as

an example the knowledge of the State-of-Charge (SoC) allows

one to know the cell’s residual charge and thus the expected

operating time of the application. Knowing the State-of-Health

(SoH) allows one to have reasonable estimation of the ageing

of the battery, of its loss of performance and an expectation

of its residual useful life. Therefore, an accurate model of the

battery is mandatory for controlling and exploiting ESSs at

best [8]–[10].

III. LITHIUM-ION CELL MODELS

The most popular models of a lithium-ion cell are circuit

models in which an electrical equivalent circuit tries to emulate

the real voltage and current behavior of a battery cell. These

models are simpler than electrochemical models and are thus

rather easily implementable on the hardware platforms that

control the ESS. One of the most popular model is based on the

Randle’s model for the interfacial electrochemical reactions

and consists of a voltage power source that accounts for the

Open-Circuit-Voltage (OCV) of the cell, followed by a series

resistance and a series of one or more parallel resistance-

capacitance groups that accounts for the dynamic effects that

show up in the battery voltage behavior [11], [12], as its

shown in Fig. 1. The OCV power source provides the cell’s

electromotive force that varies with the SoC according to a law

specific to each particular variant of the lithium-ion chemistry.

The OCV-SoC relationship is often considered invariant if

normalized to the actual battery capacity [13]. The other model

parameters can be extracted by experimental tests (e.g. Pulsed

Current Tests, [14]), with which each circuit element value

is calculated by fitting the measured voltage response in time

with combinations of exponential terms.

Another method to derive the parameters of the cell model

is the Electrochemical Impedance Spectroscopy (EIS), an

experimental procedure with which the inner impedance of the

cell is measured as a function of the frequency. Analysis of

the EIS data leads to the circuit parameter values [15]. In any

case, the equivalent circuit component parameters are found

to be dependent on the battery operating conditions, such as

temperature, SoC, ageing, etc..
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Figure 2. Measured voltage of an NMC cell showing the large relaxation
times occurring after current interruption during a pulsed current test.

A. OCV modeling

A stated above, the OCV-SoC relationship is fundamental to

describe the static behavior of the lithium-ion cell. Very often

this relationship is inverted to estimate the cell SoC by the

measurement of the OCV. The technique may be successful if

the cell is in a really static condition (i.e. all the transients are

expired) and the curve is not too flat, so that it can be inverted

with small errors. An accurate measurement and modeling of

the OCV-SoC curve is thus important for the construction of

the overall battery model.

1) OCV measurement: The experimental measurement of

the OCV is unfortunately a not trivial task, as the cell must

reach the steady state before the voltage measurement value

is collected. Fig. 2 shows the voltage response as a function

of time of a lithium-ion cell with Nickel-Manganese-Cobalt

(NMC) cathode. The time-domain response when the load

is disconnected and the current drops to zero shows a very

long transient that lasts for minutes and even hours. As the

battery must be steady for the accurate measurement of the

OCV, modeling a battery cell with an accurate OCV-SoC

characteristic is a very long task, because each point of the

characteristic calculated at a given SoC requires a long time to

extract the corresponding OCV value. Usually, the suggested

rest time is between 1 and 3 h for each point [16]. This

measurement procedure is called PCT, just because the load

current is pulsed at a fixed value for a given amount of time

[17]. Each current pulse extracts a fixed amount of charge

from the battery and thus a fixed SoC variation is determined

by each pulse. The voltage value at the end of the rest time

is considered to be the OCV value corresponding to that

particular SoC value. The long experimental procedure, a few

pulses of which are shown in Fig. 2, finally ends up with a

curve like that reported in Fig. 3, which shows the OCV-SoC

relationship of an NMC cell at three different temperatures.

The curve is non linear, monotonic and can be inverted with

acceptable errors.
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Figure 3. Open circuit voltage of an NMC measured at three different
temperatures.

2) OCV model implementation: The availability of an ac-

curate model of the battery allows a better control of it, as

the battery response (e.g. the battery SoC) can be predicted

with higher reliability. The BMSs accompanying a lithium-

ion battery, particularly the most advanced ones, usually

implement some sort of modeling of the battery, trading off the

model simplicity to the model accuracy. A very accurate and

complex model of the cell requires computational resources

that may be not available in some applications where the on-

line real-time computation of the model is required. A very

popular way of implementation of the OCV-SoC curve is by

means of Look-up-Tables (LUTs), in which the function values

are stored and read when the model is simulated. The other

equivalent circuit parameters are also stored in LUTs, that may

also include the temperature dependency of the parameters.

The availability of rather large memory resources at low cost

makes this approach cost effective. Another way to model

the OCV-SoC curve is to approximate it with a mathematical

function or superposition of functions. In that case, being the

mathematical functions known, the SoC values are calculated

on the fly over the hardware platform. A review of some of

the possible functions used to model the OCV curves can be

found in [13].

B. Hysteresis in OCV

The problem of the lithium battery modeling is further

complicated by the experimental observation of hysteretic phe-

nomena in some particular variants of the lithium chemistry,

such as lithium-iron-phospate (LFP) batteries, where the OCV-

SoC characteristic shows a very pronounced hysteresis [17]–

[19]. Here, the OCV-SoC curves are different when measured

during the discharge or the charge phases. Fig. 4 shows the

OCV measured on a 20 A h LFP cell, when the cell is first

fully discharged (bottom curve) and then fully recharged (top

curve), spanning the SoC full range and describing the so-

called major hysteresis loop. If the SoC is spanned in narrower

ranges, the OCV describes minor loops always enclosed in

the major one. Therefore, the flatness of the characteristic

and the presence of hysteresis, combined together, make

0 0.2 0.4 0.6 0.8 1
2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

state of charge SoC

op
en

 c
irc

ui
t v

ol
ta

ge
 O

C
V

 (V
)

OCV
up

OCV
lw

OCV
av

Figure 4. Open circuit voltage of an LFP cell showing a pronounced hysteresis
between the discharge and charge curves [20].

practically impossible the extraction of the SoC from an OCV

measurement.

In conclusion, a lithium ion cell model is necessary for a

better exploitation of the battery, calling for a useful, reliable

and accurate OCV model. This model requires to address

issues of complex measurement procedures and hysteresis

compensation.

IV. OCV HYSTERESIS CHARACTERIZATION AND

MODELING

A comprehensive OCV characterization of batteries showing

hysteresis requires the measurement of several branches within

the major loop in order to reconstruct any OCV evolution

corresponding to the full history of the SoC. This result in a

very time consuming procedure for a complete characterization

of the OCV hysteresis behavior by means of the PCTs. A

possible way to make the PCTs less cumbersome is to explore

the dependence of the OCV value on the relaxation times, to

possibly shorten the overall duration of the characterization

procedure [21]. Ref. [22] investigates the variation of the

OCV-SoC characteristics in an LFP cell as a function of the

relaxation time. Fig. 5 shows the major hysteresis loop of an

LFP loaded with a 1 C current, calculated by taking the OCV

points during relaxation at different times ranging from 1 min

to 3 h. It is evident how the gap between the discharging

and the charging curves becomes narrower with time due to

relaxation and tends to a limit value that defines the final

hysteresis loop. It is important to note that 10 min is a time

sufficient to extract a rather precise value of the final OCV, so

that the PCT procedure may significantly be shortened. Thus,

after having found a shorter way to extract the hysteretic OCV

characteristic, we have to find a model for the hysteresis. Let

us remind that the hysteresis major loop is the bound in which

all the minor loops are confined.

To take into account hysteresis, the voltage source OCV

shown in Fig. 1 can be considered as the sum of an average

OCV (see the middle curve OCVav in Fig. 4 that represents
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Figure 5. Major hysteresis loop in an LFP cell measured at different times
ranging from 1 min to 3 h during relaxation. 10 min is a time sufficient to
figure out the OCV final value [22].

the average OCV value) and a hysteresis generator vH , the

value of which accounts for all the hysteresis effects.

A. One State Hysteresis (OSH) model

One simple way to account for hysteresis is to model the

phenomenon with one state system and consider the generic

OCV evolution affected by a sort of relaxation in SoC, so that

the OCV tends to reach the upper or lower bounds (the major

loop curves in charge or discharge) after a “SoC constant”

γ analogous to the time constant found in the one state time

relaxation phenomena [23]. Therefore, the hysteresis generator

vH is easily calculated with a first order relaxation equation,

provided that γ is known. The model is very simple but

needs an experimental procedure to identify γ, which may

be very sensitive to the identification experiment. Ref. [17]

has shown the application of the OSH model to 20 A h LFP

batteries, finding a very good fitting with rather small errors.

The weak aspect of the approach is the dependence of γ on

the experiment with which it is identified.

B. Preisach model with Everett function

As hysteresis is a phenomenon deeply studied in magnetism,

another model that has been applied to hysteresis in lithium

batteries is the Preisach model, very popular for magnetic

material modeling. The basic idea stands in considering hys-

teresis as composed by the superposition of elemental relays,

the thresholds of which are distributed according to a specific

distribution. Without going into much detail, it has been shown

in [20] that the Preisach model can be identified with an

experimental procedure that consists in the realization of First-

Order-Reversal (FOR) branches, i.e. the experimental explo-

ration of the OCV-SoC characteristics with discharge-charge

loops that progressively decrease their amplitude from the full

100% SoC scale down to 0. In this case the identification

experiment is well defined, but the problem is finding the right

Preisach distribution to be used to fit the hysteretic behavior.

The key is completing the identification procedure by using

the Everett function E(α, β), defined as

E(α, β) = OCVα −OCVαβ

2

where OCVα and OCVαβ are the OCV values measured along

the FOR branches identified by the parameters α and β, the

two SoC values that define the extrema of each FOR branch, as

detailed in [24]. In this case, it has been shown that a generic

OCV point can be calculated as a linear combination of the

Everett function values in appropriate point of inversion. The

identified Everett function can be stored in a LUT. Hysteresis

is thus modeled with a low complexity algorithm, provided

that the Everett function of the lithium cell under investigation

is properly identified.

C. Model comparison

The above described models seems to be capable of properly

modeling the hysteresis in OCV of an LFP cell. Let us report

and discuss some experimental results with which the models

are validated and compared to each other [24]. an LFP cell

of 20 A h capacity has been subjected to several PCTs in

a thermal chamber with a constant temperature of 298 K.

The OCV points are obtained with a sequence of current

steps that determine a 5% SoC variation each. OSH model is

identified by extracting the parameter γ as a fitting parameter

that minimizes the rms error between the experimental and

the simulated data. The best found value is γ = 17.45, but

the value is found to be very sensitive to the fitted data, as

expected. Instead, Preisach model is identified from the FOR

branches described above, that span from 100% SoC to 0%,

increasing each time the branch depth with a 10% step. The

Everett function values obtained in that coarse grid are then

interpolated on a finer grid to obtain a better resolution. The

OSH and Preisach models are then applied to fit the results

that comes from three experiments. The first experiment is the

major hysteresis loop and the OCV measured according to the

above described procedure are compared to the OCV values

calculated as output of the simulated models. The comparison

is reported in Fig. 6.

The second experiment exerts the battery in a rather large

minor loop traveling to the following sequence of SoC points:

100-25-75-25-100. The comparison is shown in Fig. 7.

Finally, a third experiment where the SoC points travel to

the 100-40-60-40-100 sequence is carried out. The comparison

between the model outputs and the experimental data is

reported in Fig. 8.

All the experiments show the outstanding result that both the

models account for hysteresis in the OCV of an LFP battery

with a very good approximation. The errors are very limited

in all the cases considered, as the rms error is always below

1.5%. The minor loop experiments show that the models fit

almost perfectly during the discharge branch of the OCV-SoC

characteristic, whereas are less accurate during the recharge

phases. However, the minor loop evolutions are reproduced

very well by both the models. As far as a comparison between
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the models is concerned, no one of them outperforms the

other, as the error performance is rather similar. However,

it is important to note that the OSH outstanding results

are obtained after an optimization process that allowed us

to find the best fitting value of the parameter γ. Instead,

the Preisach model has been identified with a procedure

well defined and independent of any fitting procedure. This

procedure allows the construction of the Everett function for

the battery cell that is employed as is in any possible modeling

experiment. Therefore, the latter model seems to us by far the

most appropriate for the implementation of circuit models of

lithium battery that may take into account also the hysteresis

effect. Being the computation complexity rather low, i.e. only

linear combinations of LUT-stored Everett function values

are required, the Preisach model also seems appropriate for

implementation on embedded platforms for the real-time on-

the-fly estimation of a lithium battery behavior, as it will be

required in ESSs for DC microgrid applications.

V. CONCLUSIONS

DC microgrid are emerging as an efficient way for distribut-

ing energy with a local grain. The fundamental component of

a DC microgrid that allows the match between the generation

and utilization rates of the energy is the energy storage system.

ESSs based on high performance lithium-ion batteries need

control algorithm aware of the battery behavior, which can be

reproduced by an appropriate battery model. The model needs

to be simple, computable with low complexity hardware, and

must reproduce at best the terminal battery voltage. A circuit

model with an electromotive force generator and a resistor-

capacitor network is the most popular approach. The OCV

generator depends on the battery SoC, so that its response

needs to be experimentally characterized. Moreover, LFP

batteries show hysteresis in their behavior. We have shown

that the static OCV-SoC curve of a lithium-ion battery can be

measured with pulsed current tests with acceptable character-

ization time and that the hysteresis can be modeled by adding

a specific term in the OCV generator. Two models for the

hysteresis characterization have been investigated and it has

been shown that the Preisach model for magnetic hysteresis

can successfully be applied to LFP batteries, provided that

the Everett function identification approach is adopted. In

this case, the Everett function is constructed by means of a

well defined and standardized experimental procedure on the

battery. Experiments show that both the models investigated

reproduce major and minor hysteresis loops with very small

errors. The Preisach model seems to be the most suited for

hysteresis modeling for its superior features of independence

on the data on which the model identification is carried out.
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