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Mauro Tucci, Emanuele Crisostoniember, IEEE, Giuseppe Giunta, and Marco Raugi

Abstract—In this paper we present a novel method for daily
short-term load forecasting, belonging to the class of similar
shape algorithms. In the proposed method, a number of pa-
rameters are optimally tuned via a multi-objective strategy that
minimises the error and the variance of the error, with the
objective of providing a final forecast that is at the same time
accurate and reliable. We extensively compare our algorithm
with other state-of-the-art methods. In particular, we apply our
approach upon publicly available data and show that the same
algorithm accurately forecasts the load of countries characteried
by different size, different weather conditions, and generally
different electrical load profiles, in an unsupervised manner.

Index Terms—Short-term load forecasting, multi-objective op-
timisation, similar shape algorithms.

The following symbols are used throughout the paper. In

NOMENCLATURE

particular we use bold letters to indicate vectors and oexdti

In addition to the following symbols, we shall further use L, (i)
notation V(%) to refer to vectorV after removing its mean

value.
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Load profile of the most recen¥ days;

Load profile of the most recent day;

An available historical load profile aV con-
secutive days;

The j'th historical “best profile” similar to
Sn;

The last day of thej’th “best profile”, also
denoted as thg’th “best day”;

The historical value of the load in the day
after B(1, j);

Distance betweeBE\?)j and Hg\?);

Similarity betweent\??j and HS\?);
Reconstruction olL; using the “best days”;
24-hour ahead prediction;

Number of the last available days. This pa-
rameter is obtained through an optimisation
procedure;

Number of best days to be considered. This
parameter is obtained through an optimisation
procedure;

Width factor of the Gaussian similarity Ker-
nel. This parameter is obtained through an
optimisation procedure;
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Near Length of a calendar sequence. This param-
eter is obtained through an optimisation pro-
cedure;

Diagonal matrix of weightdw, wa, ..., wx}
used to recombine the best days. This pa-
rameter is obtained through an optimisation
procedure;

Standard deviation in the equation of the
Gaussian similarity kernel;

Multiplicative scaling factor;

Optimal multiplicative scaling factor;

9] Set of parameters used for a forecast;

Q

«
at

Npred Number of days used to make a comparison
with another method;
Lirue(i)  i'the element of a time-series of true hourly

load values used in the validation/comparison
analysis;

Prediction of thei’th element of the hourly
time-seriesLy,.,. with set of parameterp
used in the validation/comparison analysis;
Similar Profiles Load Forecast (proposed al-
gorithm);

P

SPLF

I. INTRODUCTION

LECTRICAL load forecasting is an established yet still

very active research topic due to a number of reasons: (i)
the increasing penetration level of power generation frem r
newable sources has increased the amount of non-dispichab
energy that is injected in the power grid. An accurate foseca
of the energy demand would thus allow energy providers
to plan in advance an optimal scheduling of conventional
power plants (e.g., thermoelectric plants) to support powe
generation to meet the energy demand; (ii) the recent oggoin
deregulation of the electricity market has increased tha-co
petitiveness among energy retails. An accurate prediatfon
the energy demand would empower energy stakeholders with
an important information to operate in the energy markéts; (
finally, a better knowledge of the expected load would allow
the power grid to operate in a more efficient way that not only
would decrease operating costs, but also decrease the amoun
of polluting emissions in the air. For instance, load fostda
required to identify the expected load peaks during the alay,
possibly recommend the use of peak shaving initiatives such
as Demand Response or Load Shifting. Obviously, reducing
the peak of the load reduces the requirement of maintaining
some power plants switched on to operate just for a few
minutes during the day, with high costs and high emissions
throughout the day. Note that increasing the efficiency ef th
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current power grid is one key step towards the realizatioa ofmentioned [10], which also uses wavelet neural networks;
truly smarter grid. In this paper, we are interested in shornd [13], which adopts a functional time-series methodplog

term load forecast, where the load of the whole day after

is predicted once the load of the current day is known. All the previous methods appear to have at least one of
massive amount of research has already addressed such atleadollowing three limitations:

forecasting problem, and a short overview of the currentsta
of the art is given in the next section.

A. Sate of the art and paper contribution .

The annual number of scientific papers on load forecasting
has increased from around one hundred in 1995 to mores
than a thousand in recent yearéccordingly, it is hard to
make a thorough state of the art, and here we only mention
some of the papers that are mostly related to our methodology

Load forecasting in the 90s was mainly tackled using

« they might only work for a subset of days (i.e., load

forecast is performed only for a given class of days, e.g.,
working days);

simulation results are given for a small window of time
(e.g., a couple of months);

experiments are conducted on a single set of data, which
might make the reader wonder whether the proposed
methodology depends on the specific data-set, or can be
actually adopted to predict the load in other countries as
well.

neural network algorithms and linear regression methofls [¥qjiowing the previous discussion, the contributions dif th

One of the main challenges in adopting such methods reli
in the fact that regular working days, holidays and special
holidays (i.e., holidays that fall on otherwise regular king
days) are characterised by completely different load @®fil
and as such, should be treated in a different way. Accorgingl
the basic algorithms have been recently modified to take into
account such non-linear properties of the load, as destribe
in a recent survey paper on load forecasting methods [2].
Generally speaking, the overall forecast is thus performed
in two steps: in the first step, the day to be predicted is
categorized according to its belonging to a week-day, or
a holiday, or a pre-holiday, or other; then, the next day is
predicted using an algorithm specialized on that category.
Such approaches give rise to some hybrid methods where
two algorithms are mixed together to perform the two steps
(e.g., a Self-Organizing Map is used for the first step, and
Support Vector Machines (SVMs) for the second one), see
for instance [3], [4]. SVMs have been recently used by many
other researchers as well, see for instance [5], [6] and [7].

In some cases, some algorithms have even been developed

for a single category of days, see for instance [8], [9] that ®
are dedicated to predict holidays and working days only,
respectively.

As an alternative, other authors have developed algorithms
that are sometimes denoted as “similar day-based” or “amil
shape”. In this case, the methods search in an available
database for historical days that are characterised bylasimi
weather conditions and/or similar weekday index to that of
the day to be predicted. Then the prediction is computed by
appropriately combining several similar days loads [1QiclS
algorithms are particularly attractive because the betang

to a given cluster of data is intrinsically contained in the
search for similar days (i.e., days similar to a holiday are
usually automatically holidays). Many papers have been
written exploiting this kind of methods; see for instancé][1
where recurrent neural networks have been used to improve
the similar days prediction; [12], where the focus in on very
short-term load forecasts (one-to-six-hour-ahead); tteady

Lhttp:/Awww.scopus.com

S&per are:

We also propose a forecast algorithm within the class of
similar shape algorithms. Differently from other papers,
our algorithm automatically finds the similar profiles in
the available data-base, and automatically works for all
days of a year (i.e., working days, special holidays, ...).
Our algorithm takes advantage of a number of param-
eters, whose optimal values are found according to a
multi-objective optimisation problem that both aims to
minimise the prediction error, and also the variance of the
error. The rationale for this is to obtain an algorithm that
is accurate (i.e., small error) and reliable (i.e., coesigy
small error) at the same time. Multi-objective algorithms
are more rare to find in the load forecasting literature,
see for instance [14], for an example for very-short-term
forecasting (where the prediction horizon ranges from 5
to 30 minutes). In the context of load forecasting, it is
also rare to find similarly automatic, totally unsupervised
forecasting algorithms;

Our forecasting algorithm outperforms, or performs sim-
ilarly, other forecasting algorithms that use some further
information (e.g., meteorological data). Also, our algo-
rithms perform very well in completely different data-
sets, automatically tuning the optimisation parameters.
More specifically, we test our algorithms on the Italian
electrical load data, and compare our forecasts with those
performed by the two main Italian forecast providers.
Then we compare the ltalian results with those obtained
with other European countries that present different
characteristics in terms of size, industrial load, weather
conditions and electrical energy usages, and show that our
algorithm, without any change, provides similar results
in such different data-sets as well. Such a comparison
on different data-sets is usually missing in the literature
and very few examples can be found (see for instance
[15] where a meta-learning system was developed and
cross-validated on different countries). Finally, we also
compare the load forecasts of our algorithm with those
obtained within the global energy forecasting competition
in 2012. More details on the employed data-set are given
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in the next paragraph. in [22]. In this case the load time series pertains hourly$oa
in kW (and temperature data) for a US utility with 20 zones
at both the zonal (20 series) and system (sum of the 20 zonal

level series) levels. Different zones have different eleity

The proposed algorithm has been extensively validated gghq;mption behaviors and range from a few hundredif
tested on publicly available data, and performance resués to about 60M W in zone 9, relative to an industrial customer
illustrated in detail in Section IV. In particular, we penfo load

three sets of tests.

B. Comparison and Performance

This paper is organized as follows: Section Il describes

At a national level we first test the algorithm in the y,o o erall algorithm; Section Il illustrates how the posed

Italian natio_nal case, both on the da_ta rega_rding the dapa@h o104 is tuned according to a multi-objective procedure;
market available in the GMEwebsite (which corresponds gection 1v jllustrates the results that we have obtainechén t

to the expected/actual load consumption as computed fr@ffian case, in the other European countries, and in the US

market exchanged volumes of electrical energy), and 9fjiy case. Finally, conclusions of our paper are prodide
the data provided by Terna, which is the main transmission |ast section.

system operator (TSO) in ltaly (and thus, corresponds to
the expected/actual load consumption as computed from II. ALGORITHM DESCRIPTION

ower flows in the power grid). We compare our accurac . L
P P grid) b y In the following, we assume that a historical database of

results with the forecasts provided by GME, with thos . S . .
provided by Terny and with those provided by a simpleﬁqe hourly load time-series is available. Then, given tredlo

) . S - time-series up to the hour 24 of one day, our objective is to
regression algorithm, similar in the spirit to the one pregm . )
ing[16]. We sﬁall show that our algori?[hm outperformps GMEpredlct the 24 hourly load values of the next day, using all th

and the regression algorithm, and provides results that gl%sés\(?:llage (Ij ataF.) T?Ie ovLe raI(:I ?:Igorlthrr:, 'Fha&wnl beco.ieéj f
similar to those by Terna. This is a good result, since Tern 2 (Similar Profiles Load Forecast) in the remainder o

forecasts further use some exogenous signals (e.g., weal gep;?elg ged?;:)?\% n dtc::crﬂt?(\a,\:j grr:an:{o(rj:%gz?' in Fig. 1.
forecasts, and the information related to special eveiits, | ng P W ! ! -
the broadcast on TV of the football world cup, or any other

event that might have an impact on the electrical load). ., Considar last avaliable load profile
At a European level we then apply our algorithm to \//\/\\

the electrical load of three other European countrie [

namely, Germany, France and Belgium. Such countries h¢ 2. Normalise the load profile
been selected because they are representative of diffel We remove the mean value of the load
latitudes with respect to Italy, and of different electtit@ad prcfile

characteristics. Namely, Germany is characterised by & hi _l_ -
industrial load that is pretty much constant throughout tt S ROmAURE sty Feores

year; France is characterised by a high winter load, due Database We compare the profile with a database

the fact that electrical energy is often used for heating als w o iffligs e lon pron(y
. . . . . according to the distance shown in

(as an alternative to gas); Belgium is characterised bynigavi Equation (1)

a size quite different from that of the other countries. Dai

for the electrical load in European countries is availabdenf

ENTSO-F data, where ENTSO-E is the European Networ

4. Select the M “best profiles”
The M “best profiles” have the highest
similarity scores & match some calendar

of Transmission Systems Operators for Electricity. In thi sserise cafilitiohs

case, we compare the performance of our algorithm in tl 18 30322304 |

different countries and show that the accuracy of the resu - 5. Determine the scale factor a

is similar in the different countries. In our opinion, thectfa We compute the weighted sum of the

that our algorithm has been tested on publicly availabla,da "best days” and find the optimal scale
. . . factor a” to fit the last available load

and that it performs well in all the selected countries, are t profile

important merits of this paper, and we believe that our tesu ]

can be used as a benchmark for other researchers that v 6. Compute the forecast

to compare their own algorithms in a fair and rigorous manng The final forecast is computed by

combining the next days of the “best
days”, and scaling them by the same o

Small aggregations of electrical loadre finally compare the
load forecasts of our algorithm with those obtained withi

the global energy forecasting competition in 2012, desctib
9 9y 9 P Fig. 1. Flow chart describing the steps of the SPLF algorithm.

2https://www.mercatoelettrico.org/en/Default.aspx . .
3http:/vww. Terna.it/Default.aspx?tabid=101 1) We consider the most recent availalbile days of the

“https://www.entsoe.eu/data/data- portal/consumptiageB/default.aspx hourly load curve, and we denote it by, . Similarly, Ly
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2)

3)

4)

5)

is the load curve of the last available day (e.g., today).
The value ofN is a parameter of the algorithm, and its
computation is explained in Section IIl.

We consider the zero-mean load curné(? obtained
from Ly after removing the mean value. We shall
considerLS\?) as our “sample” load curve and we shall
compare it with all the zero-mean load curves of the
historical data-set. We denote By a generic profile

of N days taken from the historical database, and by 6
HE\?) its corresponding demeaned profile.

We determine the most similar profiles according to the
weighted distance

e o R ) et
where |-|| is the Euclidean vector norm, anW e

R24Nx24N is a positive definite diagonal weight matrix,

where B, ; is the last day of thej’th best profile,

and thus, we shall refer to it as thgth “best day”

in the remainder of this paper. We then determine
the optimal scaling factorn* that minimises the error
distance between the true load and the reconstructed one
as:

“4)

o = argmin HaL1 — L1.H
«

) Accordingly, the final forecadt* is obtained by apply-

ing the same correction facter* to the weighted sum
of the days after of the best days, i.e.,

L*

M
a-L=a"-) s;B™(j), ©)
j=1

where B*1(j) is the 24—component vector of the day
after B(1, ).

W = diag {wy,wa,...,wun},w, > 0. The weigh*

matrix is introduced to gain the flexibility to assi _ T T TTTTTTTTTT1
a different importance to different hours, and this ~ Z3sH — LT
accomplished by optimising the parameters > 0. g i . My
The distance (1) can be interpreted as a measu ST : , booan
dissimilarity between the last available (demeaned) T8 bopiaan s
profile LE\?) and one historical (demeaned) load prc '%23‘-‘ R FRH M R VJ‘ 0o %
H'?. Then we use thalays after the most simila i BEER 4 Bl l | l BN l l" | "“’

historical load profiles as a natural set of candi
forecasts for the load of tomorrow to be predicted.
However, even if some past load proflég\?) is very
close toLg\?), the day aftengg) might not be a goo
candidate to predict the load of interest, e.g., the load
of tomorrow. This happens if the calendar conditions in
the past do not match the current calendar Conditioﬁ‘:
Thus, we limit our attention only to the historical load The weekly periodicity of the load series (i.e., five con-

profiles that satisfy some calendar conditions, as will fgecutive week days with a high load, a Saturday with an
discussed in greater detail in Section II.C. In particulatitermediate load and a Sunday with a low load) is broken
we select thél/ profiles that, among all those that satisfipy the occurrence of special holidays during weekdays. An
the calendar conditions, have the smallest distance ggcurrence of this is shown in Fig. 2, which shows the Italian
from LS\?)_ We denote each of such best profiles (agaitfad in the Easter period in 2014. Due to the fact that alsal Apr

of N days) 35353)', wherej = 1, ..., M. We now con- 25th and May 1st are national holidays, the typical patteesd

7 not appear anymore. As can be seen from the figure, it is of

i _ (0) (0)
;igotrré?ndlféagcﬁié titc))it\zvle)e?rﬁév g (?c?r?eI;N O’n((;?:]p;fssupr)gramount importance to distinguish whether the load fsec
ording q . ' rresponading involves a weekday or a holiday, since the load changes in a
of similarity s; by using the Gaussian similarity kernel

dramatic way. The importance of treating working days and
holidays in a different way has been one of the main drivers
@ of the recently proposed nonlinear forecasting algoritfaas
The kernel width value in Equation (2) is defined agn alternative to traditional linear algorithms. To taks tinto
proportional to the smallest distande, i.e., ¢ = X - accountin our prediction, we divide the days of the week into
min {d;}, where\ is a positive constant to be optimisedthree classes as follows:

The choice of the Gaussian kernel as a function of the) Working Days: days from Monday to Friday, excluding
parameter\ permits a large flexibility in the definition special holidays. _ .
of the measures of similarity that will be used as weights 2) Saturdays: all Saturdays excluding holidays.
to provide the load forecast. 3) Hoalidays: all Sundays and special holidays (Easter Mon-
In order to provide a final forecast, we first use the  day, Christmas, New Year's Day, etc.).
chosen best days to reconstruct the load of the laBae choice to cluster the daily load into the three previous
available 24 hours (i.e., the load of today). Accordinglyglasses follows simple intuitive analysis of the load (Msual

o inspection), and has been justified in many papers in the

Li=) By, 3)
j=1

SRS R I I I R PPN R
o o A

Fig. 2. Load with broken weekly periodicity, due to the ogemce of special
d holidays. The load during festive days is shown with a sadhé.|

Calendar conditions

d2

55 = ef%,j =1,..,M.

literature, see for instance [17], [18], and [19] for the Gpk
case of European countries. Then, as anticipated in Section
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Forecast for May 1%, 2014
34 T T T T T T T T T T T T T T T T T T T T T T T T

-©-Best day 2013/Apr/25-Thu, weight: 0.28
-¥-Best day 2014/Apr/25-Fri, weight: 0.26
32 ] —+Best day 2013/May/01-Wed, weight: 0.21
-J¥-Best day 2008/Apr/25-Fri, weight: 0.05
30 |-=-Best day 2012/Apr/25-Wed, weight: 0.04
| Best day 2010/May/01-Sat, weight: 0.04
281, -O-Best day 2011/Jun/02-Thu, weight: 0.03
?L -A-Best day 2012/Jun/02-Sat, weight: 0.02

?<l|-¢-Best day 2008/May/01-Thu, weight: 0.02

Load [GW]
N
[}

% ||-B>-Best day 2009/Apr/25-Sat, weight: 0.004

N
B

N -#=Best day 2010/Jun/02-Wed, weight: 0.001
-#-Best day 2009/May/01-Fri, weight: 0.001
2 Best day 2007/Apr/25-Wed, weight: 0.001
-©-Best day 2012/Nov/01-Thu, weight: 0.0003

20 --Best day 2005/Jun/02-Thu, weight: 0.0003

p===Forecast for day 2014/May/01-Thu

=== Real Load for day 2014/May/01-Thu

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of the day

18 1 1 1

Fig. 3. Set of the best days and the final forecast for May 1 2@%4can be seen on the right, the algorithm autonomously atwhetically identifies
similar days (in terms of holidays and in terms of seasonalisyin@mbers of the set of best days.

I1.B (step 4), we only retain thé/ best days that also share the performance index, we use the Mean Absolute Percentage
same sequence of calendar days. In particular, we requite t&rror, MAPE) which can be defined as a function pfas:

the calendar should coincide fd¥.,; consecutive days (from . _ .
the last available day), wher®.,; is another parameter whose MAPE(p) 100 L7 ea(i) — Lirue(d)
optimal value is obtained after an optimisation procedwge a 24Npred Lirue(?)
described in the next Section Ill. As an example of this, the ) . )
prediction of the load for May 1st, 2014 is shown in Fig. 3VMAPE is the most used parameters in the load forecasting
As can be seen, all the best days belong to similar calen@gplication field. SincéMAPE only accounts for thg accuracy
patterns in the previous years. The figure shows the ﬁ,%frposes,.here we further use the performance index relativ
forecastL*, the pool of the load curves (the days after thi® the Variance of the Absolute Percentage ErVARE), to

best days) used for the weighted combination in (5) with tferther take into account the reliability of the forecast:
corresponding weights;, and also the actual load. VAPE(p) =

24Npred

(6)

i=1

1
2ANprea—1

24N, L2 () —Lipue (i) 2
52N (100 breal® L)) MAPE(p)) .
[1l. PARAMETERS OPTIMISATION AND PERFORMANCE ) : )
MEASURES In order to determine the optimal set of solutions of the para
etersp, a multi-objective optimisation is performed by means

The parameters of the SPLF algorithm to be optimised af@: an evolutionary multi-objective optimisation algorith
considering the objective functions 6 and 7 above. In partic

1) N number of the last available days used to look f%ar, in this work we consider a variant of NSGA-II (Non-
similar patterns in the past, dominated Sorting Genetic Algorithm), which is a contrdlle
2) M: r?umber of the best days_; o elitist genetic algorithm [20]. The NSGA-II approach is wig
3) A: width factor of the Gaussian similarity kernel; considered as a very efficient and good performing elitist
4) W = diag{w, ws, ...,wy}: diagonal windowing ma- o, ;i ohiective evolutionary algorithm. This is due, argon
trix that defines the weighted distance in Equation 1; others, to its reduced complexity thanks to the introdurctio
5) Near: the length of the calendar sequence. of a fast non-dominated sorting approach, and to the use of a
For simplicity we have assumed that the diagonal elememi®wded comparison operator for diversity preservatiorthis
of matrix W vary in a linear way so that onlw; andwy  work we use the crowded comparison operator and calculate
need to be determined. Therefore, six parameters have totle distances in the objective function space (phenotyve).
optimised, and we shall denote the vector of parameters wsed a population size of 120 individuals, 6 variables and a
peRS:p=[N, M,/\,wl,wN,Ncal]T. We use SPLF to Pareto fraction value of 0.35 (the solver will try to limiteth
predict a numbem,,..q of days in the past for which historicalnumber of individuals in the current population that are on
data are available. Then, we denote bj , € R?*Nerea  the Pareto front t85% of the population size). The algorithm
the column vector that contains all the performed 24 houstops when the maximum number of generations is reached,
predictions obtained by using a vector of paramejgrand and we set this value to 1200. It is worth to note that the
by Ly, € R?*Norea the column vector that contains the trueptimisation step is in general quite time consuming (few
load values during the corresponding period\gf..q days. As hours), while in contrast the prediction step performed by

()
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SPLF is very fast (milliseconds to predict a whole year)n which the Italian load data is provided, and also for the
Accordingly, the SPLF can be also used for very short-termational aggregated data. For the sake of clarity, in Taple |
forecasting (e.g., 15-minutes ahead), provided that thienep we only compare the different algorithms in termshdAPE.
parameters are recomputed at a slower time scale. The reasote that the results reported in Table | for SPLF and EMP
why we implement a multi-objective optimisation is that wéiave to be interpreted as “training results” in the year 2012
search for load forecasts that are both accurate (i.e.,| snald as validation results for year 2013. In fact, load dateewe

MAPE) and reliable (i.e., smaNAPE). used to compute the optimal parameters of SPLF (and of
EMP) in year 2012. On the other hand, results for year 2013
IV. NUMERICAL RESULTS rely on parameters computed the year before, and accoydingl

In this section we show the performance of the spLEN be interpreted as true validation results.
algorithm. In the first part, we test the algorithm on theistal
load consumption data estimated from the electrical marlé? can b('.} sleen fromb TﬁbLe I’GIaELF gu]:cperflf)rms EMP
and that estimated from electrical transmission data. \&e al" eversypfllzng etarefa, ot GM0|£ ¢ atn orr]. herna alta.
compare our forecast method with other available forecas'tA‘J,SC.)l’ ble f outﬁer %r'\r;]; bsit orecasts (whic a;i ,?h?’o
In the second part, we test the algorithm on a set of Europeacl\f"ﬁ"a € from the website) in every area. IS
countries of different latitudes, different size and diéet regard, reglo_nal GME foreqasts appear to make large errors,
characteristics in terms of the electrical load. As a ge|ne|y’c§(h'lfj the nstlonal_fordecfast: much morclal. aclci:rt:rater.] 'I_'tht_a san:e
trend of all the performed numerical simulations the choi ten Cf]m eGI\r;I?Elce d _cl)_r erna ES vr\]/e_ ' fa ough 1t 1S nlod
of a yearly value ofV,.q is adequate to determine optimise nown how and Terna make their forecasts, it cou

parameters giving good performances of the SPLF on differ that they are more interested, and consequently accurate
years at a national level, and less accurate at a zone level. Still,

both at a zone and at a national level, SPLF consistently
. ] improves GME forecasts as it is shown in Fig. 6, where the
A. Case study 1: Italian electrical load daily averageMAPE errors of the two forecasting algorithms

1) Pareto fronts of the multi-objective algorithm : We are compared. Table | also allows us to compare SPLF with
first consider the electrical load data-set provided by GMHEegrna forecasts. In this case, it appears that SPLF forecast
for which historical data are available from 2005. We havare more accurate at a regional level, while Terna forecasts
found the optimal values of the parameters by predicting tlage (slightly) more accurate at a national aggregate level.
days of the year 2012, taking into account both MAPE
and theVAPE indices, as illustrated in Section IV. Fig. 4Since SPLF’s parameters had been optimised to minimise the
shows the Pareto front determined by the NSGA-II algorithmJAPE, it remains an open question whether performance are
representing 42 points that are equally optimal for year220Iweak with respect to other indices. For this purpose, Table
The optimal values of year 2012 have then been used to predicgives the results of the comparison with GME and Terna
the year 2013 (cross markers in Fig. 5), and are close ftr what regards other indices as well. In Table I, RMSE
the Pareto front of that year (i.e., the optimal solutiontthd the Root Mean Square Error, MAE is the Mean Absolute
we would have obtained if year 2013 was used to find th&ror, MAP is the Maximum Absolute Percentage error, MA
optimal parameters of the SPLF algorithm, shown with squaise the Maximum Absolute error and MMAP is the Mean of
markers). As already mentioned, the algorithm is quite sbbudaily Maximum Absolute Percentage error (see [14] and [8]
because the values of the parameters that are optimal for examples of uses of such indices and their exact definition).
year remain close to optimality for the following year as wel Table Il seems to suggest that the algorithm that outpegorm
This is particularly true if compared with a random set dahe others according to one parameter, usually outperforms
parameters (chosen via Monte Carlo sampling from a unifortine others according to the other parameters as well. IreTabl
distribution), as the same Fig. 5 that shows with diamond SPLF MAPE refers to the case when SPLF's optimal
markers the best solutions obtained via Monte Carlo samplirparameters are chosen as those that minili8®E in year
This shows that an optimal choice of the parameters is requir2012 (so, this corresponds to a single-objective optinasat
to get accurate results. of SPLF), SPLF VAPE refers to the case when SPLF’s

2) Comparison with other algorithms: In this paragraph, optimal parameters are chosen as those that miniviéE
we compare SPLF with the forecasts developed by GMH, year 2012 (so, this corresponds again to a single-obgecti
Terna and those of a simple regression algorithm (denotegtimisation of SPLF), and finall{gPLF INT corresponds to
by EMP), inspired by the work of [16]. In the regressiora choice of parameters which is intermediate in the Pareto
algorithm, the load of the next day is provided as a weightdbnt of Fig. 4 (so this corresponds to a truly multi-objeeti
combination of the load of the day before and the load afptimisation of SPLF). So another result of Table Il is that i
one week before (i.e., in the same day of the week of tli®more convenient to train SPLF in a multi-objective faghio
day to be predicted). The weighting factors are optimallsather than in a single-objective fashion. As for many other
computed using the available data of past load profiles gusimethods reported in the literature, SPLF does not predect th
the MAPE index) and the algorithm is further enhanced byexpected) uncertainties of daily forecasts. This would be
using calendar rules similar to those illustrated in Secti@n interesting aspect, and we are currently investigatirg t
[I.A. Performance results are shown for each of the six areamchanism to provide an expected percentage of accuracy in
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TABLE |
COMPARISON OFSPLFWITH EMP, GMEAND TERNA FORECASTS BEST RESULTS ARE SHOWN IN BOLD
2012 GME Data 2013 GME Data 2012 Terna Data 2013 Terna Data
SPLF [ EMP | GME | SPLF | EMP | GME | SPLF | EMP | Terna | SPLF | EMP | Terna
North 2.14 3.64 5.49 1.88 3.63 4.23 2.23 4.42 2.35 2.34 4.48 2.50
Centre North 2.27 3.09 5.59 2.95 3.47 | 1344 | 3.67 4.78 4.04 3.99 552 4.75
Centre South 1.86 2.46 4.86 2.17 2.68 6.70 2.90 3.87 3.48 3.05 3.75 3.83
South 2.90 3.51 8.90 2.82 3.24 8.35 4.20 5.36 59 4.75 5.97 6.13
Sicily 2.34 2.74 6.00 2.62 2.70 6.65 3.23 4.15 3.9 2.65 3.33 3.64
Sardinia 2.58 3.63 | 16.00 | 3.39 3.73 | 20.26 | 2.85 3.52 3.54 4.01 4.68 3.87
Italy 1.63 2.80 3.14 1.50 2.80 3.11 1.80 3.60 1.71 1.77 3.53 1.69

the day ahead forecast. At present, we can only observe that

we have an average MMAP of around 3.75 in a period &ince SPLF and Terna provide very close forecasts in
4 years 2011-2014 for the GME and TERNA data set. Thigar 2013, next paragraph is dedicated to analyse whether
result shows a good performance on a statistically relevamich a difference is statistically relevant. In any case, as
data set, and we may conclude that the forecast is usuglgviously remarked, we still believe that it is already &adjo

reliable, although the reliability of a single forecast istn result that SPLF forecasts are comparable to those of Terna,
fully quantified in advance. since Terna uses some further information (e.g., weather
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TABLE I
COMPARISON IN2013DATA WITH GME AND TERNA WITH RESPECT TO OTHER INDICES AS WELL
GME Data Terna Data
SPLF MAPE | SPLF VAPE | SPLF INT GME SPLF MAPE | SPLF VAPE | SPLF INT Terna
RMSE 639.13 644.59 638.88 1321.75 814.26 806.71 805.53 755.54
MAE 484.96 489.75 482.39 1019.23 582.16 589.55 578.52 554.88
MAP 17.08 16.15 14.94 17.07 18.12 15.97 15.95 15.02
MA 3268.85 3242.45 3197.31 5620.11 4830.91 4709.95 4713.78 4416
MMAP 3.46 3.57 3.46 6.4 4.11 4.07 4.07 4.09
forecasts, knowledge of special events, ...) to elabotae t TABLE IV
forecasts WhICh |S not used In the SPLF case PERFORMANCE IN WEEK DAYS USING AN OPTIMAL SOLUTION FORTERNA
’ ' 2012.
—Daily o orecast Italy SPLF | Terna | Test || SPLF | Terna | Test
10}- -Daily MAPE of GME forecast | 1 Mon 517 155 1 203 1.05 0
f Tue 1.40 1.36 0 1.77 1.58 0
w8 ; Wed 173 | 181 | 0 156 | 150 | O
‘E‘ Thu 1.91 1.34 0 1.61 1.35 1
> 6 Fri 159 | 147 | 0 1.70 | 1.66 | 0
3 4 E:‘ Sat 1.85 2.20 1 1.70 1.76 0
ol Sun 1.72 2.16 1 1.80 1.88 0
ol Sp. Hol. 2.76 2.23 0 2.35 2.39 0
. g
01 50 100 150 200 250 300 350

Day of the year the basis of this test, SPLF is confirmed to provide forecasts

Fig. 6. Comparison of the average daMAPE of SPLF and GME forecasts that are statistically equivalent to those of Terna also for

in year 2013. the national aggregated data. Also, it is possible to naaé th
both approaches have a slightly worse performance duriag th

special holidays (which on average correspond to 12 diftere
3) Jatistical relevance: In the comparison, we usedays in Italy in one year). This confirms that such days are

the set of parameters from the Pareto front in yed€ most critical to predict.
2012 with minimum MAF;E, which corresponds tgp
[2,12,1.35,0.201,1.277,5]" . Note that such a solution is ) . . .
optimal for the Terna database (i.e., another data-set ha _.ﬁ‘Case SUdy 2 Comp_arlson of the SPLF algorithm in
different optimal solution). Then we use the signed ran erent European countries

Wilcoxon test [21] to verify the statistical relevance ofeth One of the main benefits of the SPLF algorithm is that it
MAPE differences between the two forecasts, in differeman be directly applied to other countries as well. The only
months of the year, and in different days of the year idifference is that, obviously, the calendar rules have to be
Tables Ill and IV. A test result value of “0” denotes thatipdated to take into account the specific national holidégs o
given country. In this paper, we consider four different &ur
pean countries, namely, Italy, France, Germany and Belgium
for which national aggregated data are publicly provided by

TABLE Il
MONTHLY COMPARISON BETWEENSPLFAND TERNA.

Terna 5012 MAPE 5013 MAPE ENTSO-E (see Fig. 7). There are some relevant differences
ltaly || SPLF [ Terna | Test [[ SPLF [ Terna | Test among the electrical load in the four selected countriesafor
Jan 226 | 221 | © 156 | 150 | O .

number of r ns:
Feb 153 | 146 | 0 138 | 128 | O umber o ea59 S _ _ . _
Mar 137 | 151 0 175 | 1.58 0 o The countries belong to different latitudes, which gives
,\A/lpf i-ég 1-22 8 i% igg 8 rise to some different patterns. For instance, the weather

ay . . . . . . . .

Jun >3 T 183 T 0 161 203 1 is very hot in summer in Italy,. and the electrical Iogd
Jul 196 | 2.13 0 146 | 1.60 0 is quite large due to air conditioning. Most commercial
Aug 220 | 1.63 1 245 | 2.25 0 activities, offices, and some industries close for two
g‘éf igg 1-2‘7‘ (1) i-gg i-jg 8 weeks around August 15, when usually there are the hot
Nov 156 T 133 T 0 165 168 T 0 dgy;, and there is a dramatic_ decrease of the Io_ad. A
Dec 216 | 1.71 0 250 | 1.73 1 similar pattern, though less evident, can be seen in the
Year 1.80 1.71 0 1.77 1.69 0 French case as well;

o The electrical load in France is particularly large in wnte
days. This is due to the fact that electrical energy is
also used for heating, as an alternative to gas which is
the conventional fuel in (most of) the other European
countries;

the MAPE differences are not statistically significant (i.e., the
two methods are practically equivalent), while a value of “1
means that th&#1APE difference is statistically significant (the
method with lowetMAPE does outperform the other one). On
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Fig. 7. Electrical load in 2013 in Belgium, Germany, France H#aly. Data are taken from the ENTSO-E database.

TABLE VI
MAPE RESULTS FORENTSO-EDATA IN 2013.

o The electrical load is practically constant throughout the
year in Germany. This is mainly due to the fact that
a significant component of the load is given by the

( ! ner ENTSO-E SPLF MAPE
industrial load that is in a large part not affected by Load Belgium | Germany | France | Italy
seasonal patterns: Jan 1.76 2.15 1.80 | 1.37
Obviously, due to the smaller size, the electrical load in Feb 161 1.60 215 | 123
. ously, ’ . Mar 2.09 1.89 239 | 1.64
Belgium is smaller than that of the other countries. Apr 2.02 2.23 248 | 194
The SPLF algorithm was applied to the four countries. The op- May 1.88 2.08 227 | 1.33
timal parameters computed by the multi-objective optitiisea Jun 17 198 103 | 1.66
imal p puted by ) P Jul 176 1.32 095 | 1.74
procedure are reported in Table V. Interestingly, theresaree Aug 1.93 1.41 131 | 2.94
relevant differences among the optimal parameters ofrdifite Sep 1.55 1.39 106 | 167
countries. Despite such differences, it is worthy to nott th gg\t/ i'gg i';g i'g’g ;i(li
the performance of the algorithms in the different European Dec 549 567 190 | 2.61
countries (the averagdAPE in year 2013) is similar, as shown Year 1.93 1.90 173 | 182
in Tables VI and VII. Furthermore, the average accuracy
TABLE VI

TABLE V

MAPE RESULTS FORENTSO-EDATA IN 2013.
ALGORITHM PARAMETERS

: ENTSO-E SPLF MAPE
ENTSO-E || Optimal Parameters for ENTSO-E 2012 Load Belgium | Germany | France | Taly
Load NIM LA | wi | we | Nea Mon 2.24 2.05 187 | 2.37
Belgium 2 | 10 | 1.28 | 0.27 | 1.45 3 Tue 187 154 163 1.80
Germany 1] 16| 152| 0.19 | 1.97 3 Wed 101 161 146 147
France 1 8 197 | 0.25| 1.17 2 Thu 165 172 156 179
Italy 1 [ 11 [ 116 0.79 | 1.49 3 = 182 191 184 T 175
_ _ o _ Sat 1.77 2.08 176 | 1.77
of the obtained results is also similar to that reported m th Sun 2.00 2.01 1.88 | 1.94
literature by other methods on different sets of data, whem a Sp. Hol. 3.28 3.28 217 | 3.20

temperature data were considered, see for instance [18]. Th

evidences the robustness and the effectiveness of the- multi

objective optimisation approach. Also, special holidag/main for the real parameters, angdl for the natural parameters. It
the most difficult to predict, as already remarked by othés interesting to notice that although optimal parametessew
authors in the literature, as shown in Table VII. The accgradifferent from country to country, still forecasting retsuin

of the prediction is shown in Fig. 8 for the critical periodall countries are mostly sensitive to the values\oand N,;.
mentioned in Fig. 2. Fig. 9 provides a sensitivity analysige In fact, as shown in Fig. 9, optimal results appear in small
choice of parameters. For this purpose, we randomly peturtclouds of points that are separated by the values of such two
the optimal parameters given in Table V in a rangetd®% important parameters.
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C. Case study 3: Application to the load time series described removed eight non-consecutive weeks of load data. The final
in[22] task was to predict the hourly value of the load in the missing

8 weeks in the past (backcast) and in the week immediately

The I.a.st case study refers t(.) the global energy forecasugﬁer the available series. Note that temperature values we
competition that took place in 2012, whose final resulgg

have been recently published in [22]. In such a competitio, ven for the 8 weeks in the past, and not in the week in the

- . Uture. The load predictions were then compared accordin
the participants were required to backcast and forec?} P b 9

hourly loads (in kW) for a US utility for 20 different zones 8'a Weighted Root Mean Square Error (WRMSE), whose

corresponding to different types of load (e.g., end_usdeﬂmtlon is provided in [22], together with more details

bout how the final score was computed.
loads, industrial loads), and in the sum of all the zones. T%e P

organisers of the competition provided a databasg of 1P order to make a fair comparison with the other algorithms
years of hourly load and temperature data, from which they
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participating to the same competition, in this paper we u$ead data of some different European countries. Thanksdi su
our SPLF algorithm only to predict the week in the future foa second feature, the proposed forecasting method appears t
which temperature data were not available and thus, unldms robust with respect to different load data charactesisti
predicted, could not be used by the other algorithms eithas further emphasised in the last test-case relative to d sma
Note that the comparison is not truly fair for a number ofiggregated load. Furthermore, the average accuM&yIE)
reasons: (i) SPLF was designed to perform on a time-serigfsthe obtained results is comparable to that obtained bgroth
corresponding to an aggregate load. This is not the case fioethods that also include temperature data.

the last case study. As a consequence, the load curves do

not always exhibit the typical calendar profiles that have ACKNOWLEDGMENT
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