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Persisting Meissner state and incommensurate phases of hard-core boson ladders in a flux
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The phase diagram of a half-filled hard-core boson two-leg ladder in a flux is investigated by means of
numerical simulations based on the density matrix renormalization group (DMRG) algorithm and bosonization.
We calculate experimentally accessible observables such as the momentum distribution, as well as rung current,
density wave, and bond-order wave correlation functions, allowing us to identify the Mott Meissner and Mott
vortex states. We follow the transition from commensurate Meissner to incommensurate vortex state at increasing
interchain hopping until the critical value [Piraud et al. Phys. Rev. B 91, 140406 (2015)] above which the Meissner
state is stable at any flux. For flux close to π , and below the critical hopping, we observe the formation of a
second incommensuration in the Mott vortex state that could be detectable in current experiments.
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Superconductors in external magnetic field H < Hc1 ex-
hibit the Meissner-Ochsenfeld effect where surface currents
screen completely the magnetic field in the bulk, resulting in
perfect diamagnetism [1]. Type-I superconductors return to the
normal state for H > Hc1, while in type-II superconductors,
for Hc1 < H < Hc2 a vortex phase is formed, in which the
magnetic field partially penetrates the system along flux
lines surrounded by screening currents. This behavior can be
understood in the framework of spontaneous breaking of a
global U(1) symmetry via the Landau-Ginzburg equation [1].
In a quasi-one-dimensional system, such symmetry breaking is
precluded by the Mermin-Wagner-Hohenberg theorem [2,3].
However, in the case of a bosonic two-leg ladder [4–6], an ana-
log of the Meissner phase was predicted to exist in the ground
state for low flux, while for higher flux a Tomonaga-Luttinger
liquid (TLL) of vortices was expected. The quantum phase
transition between these two states is in the commensurate-
incommensurate (C-IC) universality class [7,8]. Other or-
derings have been predicted, such as chiral superfluid order
at half a flux quantum per plaquette [4,9,10] and a chiral
Mott insulating phase [11–15], which is a Mott regime [16]
possessing chiral currents as well as a spin-density-wave
phase. DMRG studies of ladders with diagonal interchain
hopping are also available [17–22]. While the original proposal
was made in the context of Josephson junction ladders, where
the quantum effects are spoiled by dissipation [23], the advent
of ultracold atomic gases offers another realization of strongly
interacting one-dimensional boson systems [24,25]. Moreover,
it has been shown theoretically [26,27] and experimentally [28]
how artificial gauge field could be created in these systems.
Recently, the transition from Meissner to vortex phases in
noninteracting bosonic ladders of ultracold atoms has been
studied experimentally at fixed flux π/2 per plaquette and
variable interleg hopping [29].

In this Rapid Communication we explore the phase diagram
of hard-core spinless bosons on a two-leg ladder at half-filling
as a function of flux and interchain hopping by means
of numerical simulations using the DMRG algorithm and

bosonization. We find, in agreement with Ref. [30], that
hard-core constraints cause a significant enlargement of the
Meissner phase over the vortex one with respect to the
noninteracting case: above a critical value of the interchain
hopping [30] the system remains in the Mott-Meissner (MM)
state for any flux (see Fig. 1). Below the critical interchain
hopping, both the behavior of the momentum distribution and
of the rung current, show that the transition from a MM to
a Mott-vortex (MV) state falls in the universality class of
the C-IC transition [5]. For fluxes close to π , we observe
another incommensuration, whose origin is discussed within
bosonization.

We consider [5] hard-core spinless bosons on a two-leg
ladder, with a flux per plaquette λ and interchain hopping �:

Hλ = −t
∑

j,σ

(b†j,σ eiλσ bj+1,σ + H.c.)

+�
∑

j

(b†j,↑bj,↓ + H.c.), (1)

with b
†
j,σ (bj,σ ) bosonic creation (annihilation) operator at site

j , σ = ±1/2 the chain index, and teiλσ the hopping amplitude
along the chain σ . This Hamiltonian can be mapped onto
a system of spin-1/2 bosons [31] with spin-orbit coupling
in a transverse magnetic field [32] with each spinor state
corresponding to one leg of the ladder. For half-filling, i.e.,
for one boson per rung, at λ = 0 and � �= 0 the ground state
of (1) is a rung-Mott insulator [33]. For λ > 0, according to the
bosonization treatment [34], two phases with a total density
gap are expected [5,13–15], the MM and the MV state. In the
MM state, for 0 < λ < λc, two currents of opposite sign flow
along the legs [30]; the interchain current

Jr (l) = i�(b†l,↑bl,↓ − b
†
l,↓bl,↑) (2)

has zero expectation value and exponentially decaying corre-
lations, and the screening current, i.e., the difference between
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FIG. 1. (Color online) Left panel: Phase diagram of (1) as a
function of flux per plaquette λ and �/t . The phase boundary between
the Meissner and the vortex phase is shown by the black solid line,
displaying the persistence of the Meissner phase [30] above the
threshold � > �c for all fluxes λ, except λ = π . For comparison the
red-dashed line shows the boundary λ(0)

c (�) for the noninteracting
system. In the shaded area a second incommensuration appears.
In the green area (region II) extra peaks at k = π develop in the
FT of the rung current correlations and they become the dominant
correlations in the blue region (III). The double line (green vs dark
red) at λ = π represents the transition to a localized phase. In the right
panel we show intensity plots of n(k) versus λ and k. In panel (a),
at �/t = 1.75 the system is always in the MM phase; indeed, only
a single maximum at k = 0 is visible for all λ. At λ = π , n(k) = 1
indicating the formation of a fully localized state (dark red solid line).
In panel (b) and (c), for �/t = 1 and 0.25, respectively, the transition
from MM to the MV with two maxima symmetric around k = 0 is
shown.

the currents of the two legs

Js = −it
∑

j,σ

(σeiλσ b
†
j,σ bj+1,σ − σe−iλσ b

†
j+1,σ bj,σ ), (3)

is a smooth function of the applied flux (increasing linearly
at small flux). On increasing the flux λ > λc(�), the system
enters the MV state; there is a sudden drop [30] of the
screening current Js and simultaneously the rung current
correlations decay becomes algebraic [30] with an incom-
mensurate modulation of wave vector q(λ). Close to the
transition point λc(�), the wave vector q(λ) ∼ √

λ2 − λ2
c . In

the noninteracting case, the Hamiltonian equation (1) can be
readily diagonalized [14,16] and λ(0)

c (�) = 2 arctan[�/(4t)].
The occurrence of the MV phase can be seen out also in the
total, as well as in the spin resolved momentum distribution [6]
of the system:

n(k) =
∑

σ

nσ (k) = 1

L

∑

σ

L−1∑

i,j

eik(ri−rj )〈b†i,σ bj,σ 〉. (4)

In the MM phase n(k) has a single maximum at k = 0, whereas
in the MV phase it exhibits a pair of maxima k = ±q(λ)/2
[35]. We have obtained the ground-state phase diagram of (1)
by computing various observables such as the momentum
distribution and the screening current Js together with the

Fourier Transform (FT) C(k) = ∑
l e

−ikl〈Jr (l)Jr (0)〉 of the
rung current correlation function.

While performing simulations with both periodic (PBC)
and open boundary conditions, we found the former to be
more suitable for our system, despite the well-known com-
putationally more demanding convergence properties typical
of PBC [36–38]. As such we run simulations employing PBC
for system sizes ranging from L = 16 to L = 64, keeping up
to m = 1256 states during the renormalization procedure. In
this way the truncation error, i.e., the weight of the discarded
states, is at most of order 10−6, while the maximum error
on the ground-state energy is of order 5 × 10−5 at its most.
We further extrapolate in the limit m → ∞ all the quantities
calculated to characterize the phase diagram.

In Fig. 1, we summarize our findings for the phase diagram
at half-filling. At variance with the noninteracting case where
there is a critical λ(0)

c (�) for all �, in the presence of the
hard-core interaction, for interchain hoppings � > �c, the
commensurate-incommensurate transition disappears [30] and
the MM phase is stable for all fluxes. Another effect of the
hard-core interaction, as we will discuss below, is that in the
vortex phase, at λ = π and λ close to π , a commensurate peak
appears in C(k 
 π ), along with an incommensuration in the
density correlations. At λ = π , and for � > �c a fully rung
localized phase is obtained. Such rung localized ground state
was discussed in the limit � � t in Ref. [30].

We have characterized the nature of the MM and MV phases
by examining C(k), the staggered boson density wave S(k) and
the symmetric bond-order wave Sc

BOW static structure factors
which bring information on the spin-density and bond-order
waves, respectively:

S(k) = 1

L

L−1∑

j,l=0
σσ ′

eik(j−l)sgn(σσ ′)〈nj,σ nlσ ′ 〉, (5)

Sc
BOW(k) = 1

L

L−1∑

j,l=0

eik(j−l)〈δBjδBl〉, (6)

where Bj = ∑
σ b

†
j+1,σ bj,σ + H.c. and δBj = Bj − 〈Bj 〉.

In Fig. 2 we follow the the MM-MV phase transition
at small λ and � (see cut one in Fig. 1). As predicted
from bosonization [32] the vortex phase is signaled by the
appearance in C(k) of two cusplike peaks respectively at
k = q(λ) and k = 2π − q(λ) [see panel (a) of Fig. 2] whose
heights do not scale with the size of the system [see Fig. 1
of Ref. [32]]. In MV phase, the spin resolved momentum
distribution nσ (k) shows a symmetric peak centered at
k = σq(λ), as predicted by bosonization. In this region of
parameter space the correlation length associated with the
Mott gap [33] is comparable with the system size, and the
peak takes a cusplike shape as in a Tomonaga-Luttinger
liquid [31], instead of the typical Lorentzian shape expected for
a Mott insulator. Also S(k) shows the expected low momentum
behavior according to bosonization approach: in the MM phase
S(k) = S(0) + ak2 + o(k2), with S(0) > 0, while in the MV
phase S(k) = K∗

s |k|
π

+ o(k), with K∗
s = 1 (as expected for a

hard-core boson system) a signature of a TLL of vortices.
The transition is also seen in S(k 
 π ). In the MM phase,
S(k 
 π ) shows a Lorentzian-shaped peak, while in the MV
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FIG. 2. (Color online) We show FT of correlation functions as
from DMRG simulation for L = 64 at λ = π/4 for two different
values of the �/t = 0.0625 and 1, respectively, in the vortex (black
solid line) and Meissner phases [dashed (red) line]. Panel (a) shows
the FT of the rung-current correlation function C(k), panel (b) the
spin correlation functions S(k), and panel (c) the charge bond-order
correlation function Sc

BOW. In panel (d) the spin resolved momentum
distribution is shown, with n−σ (k) = nσ (−k).

phase this peak takes a cusplike shape. Density correlation
functions such as S(k) are experimentally accessible using
light scattering techniques [39]. A similar change across the
MM-MV transition is also seen in the correlation function
Sc

BOW(k 
 π ) (see Supplemental Material [32]). This descrip-
tion breaks down when λ is no longer a small quantity as q(λ)
would be comparable to the momentum cutoff.

At λ = π the major changes from the conventional C-IC
transition at small flux are observed. To derive the low energy
Hamiltonian it becomes necessary to choose the gauge with
the vector potential along the rungs of the ladder, so that the
interchain hopping reads

Hhop. = �
∑

j,σ

(−)j b†j,σ bj,−σ . (7)

After applying bosonization, the hopping Hamiltonian can be
rewritten in terms of a free boson φc describing the total density
fluctuations coupled to SU(2)1 Wess-Zumino-Novikov-Witten
currents JR,L describing the chain antisymmetric density
fluctuations by a term ∝� cos

√
2φc(J y

R + J
y

L) (see Ref. [32]
for details). Such a term can be treated in mean-field the-
ory [40–43]. This procedure leads to an effective Hamiltonian
with a gap �c ∼ �2 for the total density excitations, while the
antisymmetric density modes remain gapless and develop an
incommensuration of wave vector p(�) ∝ �2 (see Fig. 2 in
Ref. [32]). The presence of this predicted incommensuration
is visible in the low momentum behavior of C(k) and S(k)
[panels (a) and (b), respectively, in Fig. 3] that become
∝ K∗

s

2π
(|k − p(�)| + |k + p(�)|), i.e., constant for |k| < p(�)

and linear in k for |k| > p(�). In the Sc
BOW(k) we observe

a cusp at the same vectors p(�) [panel (c) of Fig. 3]. As
expected, all these correlation functions also develop a peak
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FIG. 3. (Color online) We show FT of correlation functions as
from DMRG simulations for L = 64 at λ = π at various �/t .
Panel (a) shows the FT of the rung-current correlation function
C(k), panel (b) the spin correlation function S(k), and panel (c)
the charge bond-order correlation function Sc

BOW. In panel (d) the
spin resolved momentum distribution is shown. Dotted (red) curves
are for �/t = 1.75 in the fully localized state, while black solid,
dashed (blue), gray (green) solid, and dot-dashed (magenta) lines are,
respectively, for �/t = 1.5, 1.25, 1, and 0.5.

at k = π/a, where a is the lattice spacing. A sign of the
incommensurability at λ = π should be visible also in the
momentum distribution nσ (k) [see Fig. 3, panel (d)]. In this
case, a calculation based on non-Abelian bosonization and
operator product expansion, would lead to three Lorentzian-
like peaks centered in π/(2a) and π/(2a) ± p(�)/2. However,
these peaks cannot be separated if the correlation length
in real space uc/�c ∼ �−2 is shorter than the wavelength
2π/p(�) ∼ �−2. In the numerical simulations, at L = 64 in
PBC (see Fig. 3) a broad peak is observed for k = π

2a
.

When λ � π (second cut in Fig. 1) we can proceed
analogously to the previous case and choose a gauge such
that

H = −t
∑

j,σ

(b†j,σ ei(λ−π)σ bj+1,σ + H.c.)

+�
∑

j,σ

(−1)j b†j,σ bj,−σ , (8)

and define δλ = (λ − π ), so that the bosonized Hamiltonian
contains the extra term δλ(J z

R − J z
L). For this case, the

Fourier transform of the rung current correlation will present
peaks at k = π

a
and k = π

a
±

√
p(�)2 + (δλ/a)2. When δλ

is increased, these last two peaks become dominant, and we
cross over to the behavior already discussed for weak λ. At
λ < π the C(k) (see Fig. 4) shows, beside the peak at k = π

a
,

two peaks symmetric around k = π
a

; in real space these last
two oscillations exhibit an exponential decay for �/t > 1 and
a power law for �/t � 1 (regions III and II in Fig. 1). The
situation is reversed for the oscillation at k = π

a
. At �/t = 1 all

oscillations, for systems with L = 64 in PBC, exhibit power
law decay. The effect of this incommensuration can also be
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FIG. 4. (Color online) We show FT of correlation functions as
from DMRG simulations for L = 64 at λ = 3π/4 at various �/t .
Panel (a) shows the FT of the rung-current correlation function
C(k), panel (b) the spin correlation function S(k), and panel (c)
the symmetric bond-order correlation function Sc

BOW. In panel (d)
the chain resolved momentum distribution is shown, with n−σ (k) =
nσ (−k). Dotted (red) curves are for �/t = 1.5 in the Meissner phase,
while black solid, dashed (blue), and dot-dashed (magenta) lines are,
respectively, for �/t = 1.25, 1, and 0.625.

followed in the behavior at small k of S(k) that instead of
being a constant value for k <

√
p(�)2 + (δλ/a)2 shows a

linear behavior. In Sc
BOW(k), for �/t � 1 two symmetric peaks

are present at k = ±q(λ). We checked that the phase is a
single component Tomonaga-Luttinger liquid by computing
the von Neumann entropy at �/t = 1.5 for λ = 0.75π and
0.8125π and obtaining the expected logarithmic dependence
with system size [30], ruling out a chiral Mott insulator [13,15]

for λ � π . At general commensurate filling n and flux
λ = 2πn, the incommensuration generating term becomes

−i�ei
√

2φc (J+
R + J−

L ) + H.c., leading to density wave phases
with incommensuration. Let us finish by noting that such
incommensuration is specific of hard-core boson systems.
With less repulsive interactions, the term that gives rise
to the vortex lattice state would be relevant [13,15,44],
while stronger repulsion would make the term stabilizing
the checkerboard density wave relevant. Adding a nearest
neighbor intrachain interaction V to the hard-core repulsion, a
first phase transition at V < 0 will separate the vortex lattice
from the incommensurate state, and a second transition at
V > 0 will separate the incommensurate state from the density
wave state.

In conclusion, we have studied a two-leg hard-core boson
ladder in an artificial gauge field. In contrast to the non-
interacting case, the vortex phase is suppressed when the
interchain hopping exceeds a threshold value, as found in
Ref. [30]. At flux π per plaquette and �/t > 1.6 the ground
state becomes a tensor product of singly occupied rungs, as
was expected [30] in the �/t → ∞ limit. For �/t < 1.6, we
have obtained an incommensurate insulating state similar to
the spin-nematic state of frustrated XXZ spin chains [40–43].
In the case of a system of weakly coupled ladders, a long
range ordered phase could form in which density wave or
rung current would possess a long range commensurate order,
but exponentially damped incommensurate correlations would
still be present. The presented results could be detectable in
current experiments with cold atoms [29] and the evidence
of a persisting Meissner state could be relevant for quantum
computing purposes in defining a stable flux qubit [45,46].
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[16] A. Keleş and M. O. Oktel, Phys. Rev. A 91, 013629 (2015).
[17] J. Zhao, S. Hu, J. Chang, P. Zhang, and X. Wang, Phys. Rev. A

89, 043611 (2014).
[18] J. Zhao, S. Hu, J. Chang, F. Zheng, P. Zhang, and X. Wang,

Phys. Rev. B 90, 085117 (2014).
[19] Z. Xu, W. S. Cole, and S. Zhang, Phys. Rev. A 89, 051604(R)

(2014).
[20] S. Peotta, L. Mazza, E. Vicari, M. Polini, R. Fazio, and D.

Rossini, J. Stat. Mech.: Theor. Exp. (2014) P09005.
[21] M. Piraud, Z. Cai, I. P. McCulloch, and U. Schollwöck, Phys.
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