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Abstract Many chemical and non-chemical strategies have been applied to control weeds in 

agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside 

vegetation is still poor. A two-year field experiment was performed along a road located near Livorno 

(Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical 

mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate 

(the producer's recommended rates were used for the selective control of broad-leaved weeds). Our 

results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic 

activities which have a strong negative effect on several phytosociological, pedochemical and 

biological parameters. Compared with conventional mechanical mowing, chemical treatment induced 

(i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction 

in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, 

no significance differences were detected in terms of (i) biological quality of soil (the abundance and 

diversity of arthropod communities did not change), and (ii) plant elemental content (bulk 

concentrations of analysed trace elements had a good fit within ranges of occurrence in the “reference 

plant”). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is 

dependent upon the season/time of application. In conclusion, the rational and sustainable use of 

chemical herbicides may be a useful tool for the management of roadside vegetation. 
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Dramatic ecological events take place near alongside roads (Forman and Alexander 1998). Road 

networks interrupt horizontal ecological flows, fragment habitats, alter landscape spatial patterns. 

Faunal casualties (not only vertebrates) are very common, and traffic noise is a disturbing element. In 

addition, road traffic impacts on air quality and is one of the main anthropogenic emission sectors for 

nitrogen oxide (NOx), carbon monoxide (CO) and non-methane hydrocarbons (NMHCs). In the 

atmosphere, these compounds act as ozone precursors, by forming radicals that eventually contribute to 

ozone (e.g. Nali et al. 2001) and secondary organic aerosol (such as volatile organic compounds, 

VOCs, e.g. Pellegrini et al. 2012) formation. 

A series of substances emitted by vehicles have been qualified as toxic. The US EPA highlights 21 toxic 

chemical species that can mainly be assigned to road traffic, including several heavy metals (e.g. Pb, 

Cd, Cr, Sb, Cu, Zn, Ni). Roads with heavy traffic have shown elevated concentrations of such elements 

at distances of up to 1000 m (Zechmeister et al. 2005). The metals introduced into the environment by 

traffic derive from many sources: tyre wear off; break lining; wear of vehicular components such as the 

car body, clutch or motor parts; and exhaust fumes. Pollutants released by motor vehicles may also 

originate from the residues from incomplete fuel combustion, oil leaking from engines and hydraulic 

systems, and fuel additives (Thorpe and Harrison 2008). Moreover, road abrasion, pavement leaching, 

road maintenance (e.g. de-icing ) are also significant sources of pollution (Werkenthin et al. 2014). 

Brake dust has been recognized as a significant carrier of Cu and Sb in the composition of aerosol 

(Sternbeck et al. 2002). In fact, Cu is used in brakes to control heat transport, and Sb to enhance 

stability. Ba is used as BaSO4 to increase the density of brake pads (Sternbeck et al. 2002). Zn is 

significantly prevalent in tyres, as ZnO is added as an activator and a preservative during the 

vulcanizing process and approximately 1.8% of the tyre weight is Zn (Pierson and Brachaczek 1974).  

The corrosion of galvanised safety barriers and signs may be another source of Zn (Helmreich et al. 

2010). The road surface itself is an important source of pollutants, since the components of asphalt, i.e. 

stone material and bituminous binders release several contaminants (Mangani et al. 2005). In addition, 

the main active components of present-day car catalysts consist of the noble metals Pt, Pd and Rh, 

which are being diffused into the environment to an as-yet unknown extent (Palacios et al. 2000). 

Metals cannot be decomposed by micro-organisms and have a long-term toxicity for biota and a 

massive negative impact on the environment due to their potential for bioaccumulation. In addition to 

the above mentioned chronic sources of pollution, temporary (e.g. road works), seasonal (de-icing, 

salting) and accidental (hazardous chemicals) sources may play an impact on the roadside environment. 
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Adjacent to a road there is often a land strip, usually dominated by herbaceous vegetation. Plants on 

this strip tend to grow rapidly with ample light and with moisture from road drainage. Thus, periodical 

management of this vegetation is time (and money) consuming. There are two major strategies to 

manage roadside vegetation: mechanical mowing and herbicide application. Both have pros and cons, 

such as: 

ü Effectiveness: mechanical cutting stimulates the continuous production of new biomass. “The more 

you cut a plant, the more it reacts and produces new leaves and stems”, thus several cuts need to 

be performed in a year.  

ü The management of plant residues: this is a difficult task, however the long-term presence of 

residues may be a problem for regular water drainage. 

ü Risks for operators, due to vibration, noise, chemical pollution, projectiles (stones) during mowing, 

and chemical pollution during herbicide distribution. 

ü Ecological impact with mowing, especially on animal biodiversity; risks of environmental 

pollution with chemical treatments. 

Other key issues concern logistics (roadworks involve traffic restrictions and financial costs). Clear 

management strategies are required to reduce the number of maintenance services: a final goal in terms 

of best management practices should be the attainment of a permanent, low profile, phytocenosis 

dominated by particular evergreen creeping species, so to reduce the running costs.  

Glyphosate (N-[phosphonomethyl]glycine) is a broad-spectrum herbicide, used non-selectively in 

agriculture to control weeds and herbaceous plants (Duke and Powles 2008). Since 1970, it has become 

one of the most widely used herbicides worldwide (Van Stempvoort et al. 2014). Though its major uses 

are in agriculture and silviculture (along roadways, railways and utility corridors), it has recently been 

used to control weeds in urban and residential areas (streets, sidewalks, paved areas, gardens) in many 

European countries (Botta et al. 2009). It works by inhibiting the enzyme 3-enol-pyruvylshikimate-5-

phosphate synthase (EPSP synthase), located in the chloroplast, thus interfering in the biosynthesis of 

aromatic amino acids used in the synthesis of proteins. This enzyme forms part of the metabolic 

pathway of the shikimic acid. This process only occurs in plants, bacteria and fungi, and does not exist 

in animals. As a consequence acute toxicity in animals is regarded as very low (Giesy et al. 2000), 

although there is some contradictory evidence about glyphosate toxicity (e.g. Zhou et al. 2012; Cuhra et 

al. 2013). 

The majority of investigations into glyphosate use in urban areas have focused on the quantification 

and characterization of herbicide loss, especially of aminomethylphosphonic acid [an important 
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metabolite produced during microbial degradation of glyphosate (e.g. Borggaard and Gimsing 2008)], 

in surface water and groundwater (Tang et al. 2015). Few field studies have investigated the sustainable 

use of this herbicide on roadsides. 

The aims of this two-year field study were to evaluate the impact of two common management 

strategies of roadside vegetation (i.e. mechanical mowing and chemical treatment with the chemical 

herbicide glyphosate) on several biological soil and vegetational parameters and on the ability of plants 

to intercept the metal pollution arising from road traffic. 

 

Material and methods 

 

Field investigations 

 

The trial was conducted at a section (Lat. 43°33’47” N – Long. 10°21’38” E, 11 m a.s.l.) of the 

Livorno-Cisternino dual carriageway road, Via delle Sorgenti, located near Livorno (Tuscany, Central 

Italy). The average bidirectional traffic volume is around 10,000 vehicles day-1. The speed limit is 70 

km h-1. The road is slightly bendy and the main land use surrounding the sampling sites is grassland 

and forest areas. Mean annual daily maximum temperature is 19.0 °C (range 10.8 °C, January - 27.7 

°C, July); mean annual daily minimum temperature is 12.1 °C (range 4.8 °C - 20.0 °C); the average 

annual precipitation is approximately 760 mm, spread over about 85 rainy days. 

Eight plots/strips [each test plot was 75 m2 (1.5 m width, 50 m length)] were selected: four of which 

were treated according to the usual method adopted by the local authorities (e.g. periodical mechanical 

mowing); the remaining four were treated with a commercial formula (Rodeo Gold, Monsanto Europe 

– Antwerp, Belgium) containing 41% of glyphosate in water. In order to control broad-leaved weeds 

and to maintain acceptable annual grass weed levels, the recommended field concentration of Rodeo 

Gold (5.3 L of active ingredient ha-1) was used. The dosage was 40 mL formulate diluted in 1.5 L of 

water for each plot. No coformulant or additive was added. Soil texture proved to be homogeneous 

amongst the plots: the vertical profile of the loamy sand was between 0-10 cm and the sandy loam 

profile was between 10-30 cm. The chrono program of phytosociological, pedochemical and biological 

sampling/analyses was: 20 January, 2011 (T0); 16/18 May, 2011 (T1), 22 February, 2012 (T2), 3-5 July, 

2012 (T3) and 7 November, 2012 (T4). At T0 and T4, plant sampling was carried out for the elemental 

analysis. After the environmental characterization of soils and vegetation communities, the 
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mowing/chemical treatments were carried out. The chrono program of treatments was: 20 January, 

2011; 16/18 May, 2011; 1 August, 2011; 22 February, 2012; 3-5 July, 2012 and 7 November, 2012. 

 

Samplings and analyses 

 

Soil 

 

At each sampling time, using a manual soil probe (5 cm diameter), triplicate soil cores were taken at 

each of two depths (0-10 and 10-30 cm) from random positions across each plot for the determination 

of (i) soil pH (Mc Lean 1982), (ii) electrical conductivity (EC) by a conductivity meter (Wilcox 1947), 

(iii) organic matter (Nelson and Sommers 1982), (iv) assimilable P (Olsen and Sommers 1982), (v) 

total N (Brement and Mulvaney 1982). 

 

Arthropod community evaluation 

 

Three 50-cm deep dugouts were randomly digged in each plot. The arthropod extraction was performed 

separately for each of the soil cores. The samples were carefully placed on a 1.5 mm mesh net above 

Berlese-Tullgren funnels for seven days; the extracted material was preserved in 95% ethanol+1% 

glycerol. This method, widely used in ecological studies of soil arthropods (Macfadyen 1961), allows 

for the extraction of mites (Acari), springtails (Collembola), and arthropods with a dimension <1.5 mm 

that are present in the soil samples. Arthropods were counted, identified and classified on a taxonomic 

level not lower than order. The biological quality index of soil based on microarthropods (QBS-ar) 

(Parisi et al. 2005) was computed. This is not dependent on species identification, but considers 

arthropods grouped with a more general ordering. The Acari/Collembola ratio was also computed, 

which is a further biological index of environmental quality, as mites are considered much more 

susceptible to chemical stress than springtails (Paoletti et al. 1991; Huguier et al. 2015). 

 

Plant biodiversity indices 

 

The differences in biodiversity were recorded using the Braun-Blanquet phytosociological system, 

which is a rapid, visual assessment technique (Braun-Blanquet 1964). This method requires only 

minutes at each sampling site, yet it is robust and highly repeatable, thereby minimizing among-
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observer differences. At each plot, 15 to 27 random throwings of a 25x35 cm rectangle made out of 

steel wire were used to select the monitoring sites, each of which were then examined. All the plant 

species in the rectangle were listed, and a score based on the cover of the species in that area was 

assigned: score 5: cover 80-100%; 4: 60-80%; 3: 40-60%; 2: 20-40%; 1: 1-20%; +: <1%, but several 

individuals are present; r: <1%, very few individuals are present. Cover, as defined for this purpose, is 

the fraction of the total rectangle area that is obscured by a particular species when viewed directly 

from above. The frequency of each species was determined according to the following scores: score V: 

frequency 80-100%; IV: 60-80%; III: 40-60%; II: 20-40%; I: 1-20%.  

The following ecological indices were then computed according to the biodiversity calculator 

(http://www.alyoung.com/labs/biodiversity_calculator.html): 

(a) Shannon: a diversity logarithmic index (H’) that accounts for both abundance and evenness of the 

species present. It is explained by the formula: H’ = -∑ (Pi * ln Pi), where: H’ = the Shannon 

diversity index; Pi = fraction of the entire population made up of species i (proportion of a species 

i relative to total number of species present). Here, a high value of H’ is representative of a diverse 

and equally distributed community, and lower values represent a less diverse community. A value 

of 0 represents a community with just one species. 

(b) Simpson: the dominance index (D), a simple mathematical measure that characterizes species 

diversity in a community (Simpson, 1949). It equals D = Σ (n/N)2, where: n = the total number of 

organisms of a particular species; N = the total number of organisms of all species. The value of D 

ranges between 0 and 1, where 1 represents infinite diversity and 0 no diversity. 

(c) Equipartition: this indicator (E) describes to what extent a community approaches the ideal case of 

the equipartition of individuals amongst the species, E = H’/Hmax, where: H’ = Shannon index; 

Hmax = Shannon index computed for a theoretical biocenosis, where all taxa present exactly the 

same number of individuals. This value is the maximum when all the species are present with the 

same abundance, and is minimum when only one species is abundant and the others are rare. 

 

Plant height 

 

Grass height was measured by a home-made herbometer on randomly selected subplots. 

 

Plant elemental analysis 
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Total concentrations of Al, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Li, Mg, Mn, Na, Ni, Pb, Sb, V and Zn in 

washed and unwashed plant samples were determined (Pellegrini et al. 2014). Three composite samples 

representing above-ground parts were randomly taken from each plot; half were treated as collected 

(‘unwashed’), the other half were washed with distilled water (‘washed’). The samples were oven-dried 

at 80 °C for 24 h and ground into a powder. About 10 g of powder were mineralized with a 6:1 (v:v) 

mixture of ultrapure concentrated HNO3 and H2O2 at 280 °C and a pressure of 0.55 MPa in a 

microwave digestion system (Milestone Ethos 900). Element concentrations, expressed on a dry weight 

basis, were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP–MS, Perkin Elmer–

Sciex Elan 6100). Analytical quality was checked with the Certified Reference Material GBW07603. 

All analyses were carried out in triplicate. Accuracy was within 7% for all elements. 

 

Statistical treatment of data  

 

All data referred to pairs of values were processed by means of Student’s t-test. To get an indication of 

the relative contribution of crustal contamination to the bulk element distribution in and on the plant 

material, enrichment factors (EF) were calculated for each element, taking Al as a reference element. 

The average crustal composition reported by Taylor and McLennan (1985) was used. The 

dimensionless EF for any element X relative to crustal material is defined by EF=(X/Al)leaf/(X/Al)crust, 

where: (X/Al)leaf is the concentration ratio of X to Al in the plant sample; (X/Al)crust is the average 

concentration ratio of X to Al in the crust. The elemental composition of unwashed leaves was 

subjected to Varimax rotated factor analysis (FA), which is a multivariate statistical treatment 

frequently used in atmospheric pollution research to obtain information on pollution sources (Lorenzini 

et al. 2006). NCSS 2004 SAS software was used. 

 

Results and discussion 

 

Soil chemistry 

As reported in Table 1, soils were moderately alkaline and mean pH values of vertical profiles were 

similar between mowed and chemically treated plots. At the beginning of the trial, mean EC values of 

vertical profiles were similar between both plots that were to be mowed and those subjected to 

chemical treatments. This parameter was not affected by treatments at the end of the experiment (Table 

1). At the beginning of the experiment, organic matter percentages of vertical profiles were very similar 
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between both plots. The deeper profile was consistently lower in organic matter than the superficial 

profile, regardless of treatment or period of sampling. Organic matter content significantly decreased at 

the end of the test, irrespectively of the treatment. 

According to Baboo et al. (2013), this result suggests that (i) transformations of nutrients, and (ii) 

alterations in the soil performance can occur as a consequence of mechanical mowing and/or herbicide 

application. The upper layers of the plots treated with the chemical were also significantly richer in 

organic matter than the counterparts subjected to mechanical mowing. Similar results were documented 

by Sebiomo et al. (2011). 

At the beginning of the experiment, P and N contents of vertical profiles were very similar amongst the 

plots. The deeper profile was lower in nutrient concentrations than the superficial profile, regardless of 

treatment or period of sampling. Regarding N, nitrogen oxides emitted by vehicle exhausts and 

absorbed by roadside soil were likely to be the cause of these effects (Spencer and Port 1988). At the 

end of the experiment, no statistically significant difference was observed amongst plots treated with 

the chemical herbicide or mowed, which was the case for both vertical profiles investigated. 

 

Arthropod community evaluation 

 

A total of 11 microarthropod taxa were recorded (data not shown) and used to estimate the biological 

quality index of the soil (QBS-ar), which was regularly assessed during the five sampling periods. As 

this index may vary from 0 to a maximum of 349 (Parisi et al. 2005), our data present extremely low 

values (Table 2). No significant differences were also observed throughout the entire period of the 

experiment, irrespectively of the kind of treatment. 

The variability in soil biota abundance and diversity is influenced by many factors that are only 

partially understood, such as (i) soil properties, (ii) landscape characteristics, (iii) management 

practices, (iv) interaction with aboveground biodiversity, and (v) seasonality. In agreement with Aspetti 

et al. (2010), the yearly fluctuation in QBS-ar values was smaller than the monthly variation caused by 

seasonal climate effects. Multiple samplings within short distances or time periods (40-86 days) 

reproduced similar QBS-ar values. For each sampling time, none of the differences between treatments 

proved to be statistically significant in terms of QBS-ar values. This suggests that (i) no alterations in 

soil microarthropod biodiversity occurred as a consequence of treatments, and (ii) the selected/used 

concentration of Rodeo Gold had no effect on the scarce biological quality of the soils. In agreement 

with Blasi et al. (2013) and Galli et al. (2014), Acari and Collembola were present in all the plots and 
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their ratio was very low (even below 1). No significant differences were detected between the two 

kinds of treatment (data not shown), which is a further confirmation of previous findings. Studies 

investigating the effect of Rodeo Gold on biological quality of soil are scanty and, generally, are carried 

out in experimental agricultural fields (Cherni et al. 2015).  

 

Plant biodiversity indices 

 

As reported in Table 3, selected plant biodiversity indices showed that no significant difference was 

observed between plots, regardless of treatment. Low values of the Shannon index (about 1) were 

observed throughout the entire period of the experiment, suggesting that the abundance and the 

evenness of the species were very scanty. In agreement with Wu et al. (2015), this is representative of a 

less diverse and not equally distributed community. An estimation of the Simpson index also revealed a 

dominancy of few species (Giliba et al. 2011), suggesting that a marked anthropogenic pressure 

(regardless of treatment) affected the species diversity in this community. In relation to the 

Equipartition index, low values observed at the beginning and at the end of the treatment showed that 

this community came nowhere near the ideal equipartition of individuals amongst species. In fact, the 

general situation of plots was that only a single species was abundant and others were rare. Similar 

conclusions were reported by Dewar and Porté (2008). At the end of the experiment, E values showed a 

slight increase in comparison with T0 (regardless of the treatment). Most of these observations are in 

accordance with field studies on roadside vegetation outside Italy (Cillieris and Bredenkamp 2000). 

Table 4 describes the phytosociological profiles of eight plots at T0, T2 and T4. During and at the end of 

the experiment (in winter), the chemical treatment had a differential efficacy on individual broad-

leaved weeds. The tested formulation of glyphosate completely controlled Daucus carota, Fumaria and 

Potentilla repens throughout the experiment. By contrast, Rodeo Gold produced the highest controlling 

rates against Anagallis, Bellis, Plantago, Silene, Sonchus and Trifolium at T2. At T4, frequencies of 

genus Capsella, Equisetum, Euphorbia, Geranium, Senecium and Veronica were reduced in comparison 

with T2, suggesting that the efficiency of selected/used dosage of the formula varied among treatment 

times. Similar findings were reported by El-Kholy et al. (2013), who demonstrated that the efficacy of 

chemical treatment against broad-leaved weeds is dependent upon the (i) weed species and (ii) 

season/time of application. 

Mowing produced the lowest controlling rates against Equisetum, Rubus, Senecium, Trifolium at T4, 

suggesting that this treatment may create a new competitive environment. In addition, frequencies of 
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genus/species Euphorbia, Galium, Potentilla repens, Rumex and Trifolium increased in comparison 

with T0, confirming that the abundance of some weeds may significantly change as a consequence of 

mowing (in agreement with Busey 2003). 

 

Plant height 

Fig. 1 shows how grass heights were constantly higher in plots subjected to mechanical mowing 

compared to those treated with the chemical herbicide. Mowing can be considered as a mechanical 

stress that differentially affects weed communities. For certain weeds, cutting removes part of the 

photosynthesizing tissues and, consequently, leads to the exhaustion of carbohydrate reserves during 

regrowth (Fry and Huang 2004). In other cases, especially for some perennial weeds that replenish root 

carbohydrate stores very rapidly (Foster 1989, Donald 1990), cutting can be advantageous by (i) 

removing old/dead tissues, (ii) branching or tillering after release from apical dominance, (iii) 

increasing new shoots and relative growth rates (Strauss and Agrawal 1999). In agreement with Abu-

Dieyeh and Watson (2005), our results suggest that mechanical mowing may disturb the competitive 

relationship between interacting species, thus encouraging the growth and development of certain 

species. 

 

Plant elemental analysis 

 

At the beginning of the experiment (Table 5), bulk concentrations of Ba, Co, Cr, Fe, Mn, Ni, Pb, Sb and 

V in/on samples (regardless of washing) were much higher than the “reference plant” and very near 

toxicological standards (Markert 1992). This is probably because several sources of pollution play a 

pivotal role in our study area. This result is further confirmation of previous findings regarding trace 

metal contamination in roadside vegetation and/or soil (Zechmeister et al. 2005; Aslam et al. 2013; 

Modrzewska and Wyszkowski 2014). Regardless of the treatment and washing (unwashed vs washed 

material), concentrations of all 17 selected elements (except Mg) showed a significant decrease at the 

end of the experiment. The abundant rain that characterized the last days of October and the first days 

of November 2012 could have removed the (i) surface airborne dust, (ii) adsorbed material and (iii) any 

soil particles deposited on the samples. Our plant data sampled at end of the experiment have a good fit 

within ranges in higher plants proposed by Markert (1992). Only Ba and Sb had mean values slightly 

higher than those reported for the “reference plant”. 
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For an indication of the relative contribution of crustal contamination to the mass of element 

distribution in plant tissues, EFs were calculated for nine elements (Ba, Co, Cr, Fe, Mn, Ni, Pb, Sb and 

V) in unwashed samples which at the beginning of the experiment, showed very high bulk 

concentrations (compared to the “reference plant”). The most enriched element was Ni, with EFs 

values up to 102 (Table 6), which indicates a heavy contribution of non-crustal sources (Duce et al. 

1975). Ba, Co, Cr, Fe, Pb, Sb and V were considered as enriched with EFs in the range 10-100. EFs 

down to 10 (observed for Mn) may be considered as samples that were not significantly enriched, due 

to differences in the chemical composition of local soil and the reference crustal composition. The 

same analyses were performed at the end of the experiment, taking into account the kind of treatments. 

No statistically significant difference was observed amongst the EF values obtained with the initial and 

the final samplings, regardless of treatment. 

FA with Varimax rotation was applied to the dataset of total concentrations, with 10 elements included 

in the analysis. At the beginning of the experiment (Table 7, above), just two interpretable factors 

explained almost the entire total variance. The first factor, characterized by significant loadings for Ba, 

Co, Cr, Ni, Pb, Sb, and V, can be easily identified as a predominant vehicular traffic contribution and 

accounts for 61.2% and 59.7% of total variance (for mowing and chemical treatment, respectively). 

The second factor is loaded with Al, Fe and Mn, which could be related to the natural origin. Key 

loading elements in the “vehicular traffic” factor are Ba, Pb, Sb and Zn, which have long been 

indicated as traffic-related elements (TREs) and suitable indicators for motor vehicle related emissions 

(Fujiwara et al. 2011). 

It is interesting how Pb still represents significant pollution in the study area, although since 2002, Italy 

has completely phased out petrol that contains lead tetraethyl, by switching to alternative lead-free 

antiknock additives. 

Ba has many applications in the automotive industry and is currently regarded as the best inorganic 

tracer of vehicular traffic (see e.g. Sternbeck et al. 2002). Sb is ubiquitously present in the environment 

as a result of natural processes and human activities. In recent years, Sb has been associated with traffic 

and identified as a TRE (Paoli et al. 2012): several parts of vehicles contain Sb alloys and other Sb 

compounds. In relation to its toxic properties and its dispersion in the environment, Sb has been the 

focus of many pollution studies (e.g. Guéguen et al. 2012). A key loading element in “crustal (soil) 

contamination” factor is Al, considering its (i) limited metabolic significance in plants and (ii) wide 

distribution in the Earth’s crust (Taylor and McLennan 1985). 
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The same analyses were performed at the end of the experiment (Table 7, below), taking into account 

the kind of treatments. In plots subjected to mechanical mowing, two factors explained 98.3% of the 

total variance. The first factor can be easily linked to vehicular traffic, characterized by high loadings 

for Ba, Cr, Ni, Pb, Sb and V. The second factor is loaded with Al, Fe and Mn, and could be related to 

crustal (soil) contamination. In terms of data related to plots subjected to the chemical herbicide, very 

similar data were obtained.  

 

Conclusions 

A vital element roadside maintenance is vegetation care. Strips of natural vegetation have a number of 

functions and act as buffers between traffic and the rest of the landscape, absorbing noise, dust and 

water from road surfaces. However, roadside vegetation management is critical, expensive and time-

consuming. Maintaining roadsides for safety and aesthetics is an important issue at all levels of 

government. Desirable vegetation is a fundamental element of roadside maintenance and landscape 

promotion.  

The two-year long field experiment described here highlights how the rational and sustainable use of a 

chemical herbicide based on glyphosate could be a useful approach to the management of wild and 

volunteer roadside vegetation. Compared with conventional mechanical mowing, this approach of 

precision farming could ensure the constant presence of low-height and stable grass covering, without 

any negative disturbance in terms of the chemical and biological features of the soil. Also significant is 

the financial perspective, as chemical treatment is far cheaper than mechanical mowing.  
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Caption of figure 

Fig. 1 Average grass heights during the experiment. Mean values ±standard deviations are shown. For each 

sampling date, asterisks indicate the significance of the means between treatments (*** P≤0.001, ** 

P≤0.01, * P≤0.05, Student’s-test). Arrows show treatments (black arrows: chemical herbicide; white arrow: 

mechanical mowing). A: January 10 - May 15, 2011; B: May 16, 2011 – February 20, 2012; C: February 20 

- July 5, 2012; D: July 6 - November 7, 2012 
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Table 1 From the top to the bottom: pH, electrical conductivity, average content of organic matter, assimilable 

P and total N in the plots to be mowed or subjected to treatment with the chemical herbicide at T0 (20 January 

2011) and in plots mowed or treated with the chemical at T4 (7 November 2012) in the 0-10 cm and 10-30 cm 

vertical profiles. Mean values ± standard deviations are shown. In each column and row asterisks mark 

statistically significant differences (***: P≤0.001; **: P≤0.01; ns: P>0.05, Student’s-test) 

 

 

  

  T0 T4 

  Treatment 

P 

Treatment 

P  Depth (cm) Mowing Chemical Mowing Chemical 

pH 

0-10 7.8±0.15  7.9±0.05 ns 7.8±0.09  7.9±0.05 ns 

10-30 8.1±0.19 8.2±0.14 ns 8.1±0.12 8.1±0.13 ns 

P ns ns  ns ns  

Electrical conductivity  

(μS cm-1) 

0-10 96±25.5  95±13.7 ns 96±2.9  95±1.3 ns 

10-30 79±5.9 78±6.6 ns 77±4.6 79±10.6 ns 

P ns ns  ns ns  

Organic matter 

(% in weight) 

0-10 7.7±2.32  8.8±3.15 ns 4.9±1.12 5.8±2.49 ** 

10-30 4.1±1.74 3.6±0.86 ** 2.4±1.02 2.5±1.73 ns 

P ** ***  *** ***  

Assimilable P 

(mg kg-1) 

0-10 7.2±1.14  6.6±0.52 ns 6.9±1.08 7.2±4.63 ns 

10-30 3.5±0.59 4.0±0.40 * 2.5±0.14 2.7±0.69 ns 

P *** **  ** ***  

Total N (g kg-1) 

0-10 2.5±0.51  2.8±0.69 ns 2.5±0.51 2.5±1.71 ns 

10-30 1.1±0.24 1.0±0.35 ns 0.9±0.14 0.9±0.15 ns 

P *** ***  ** ***  



Table 2 Mean values (±standard deviation) of QBS-ar values at T0 (20 January 2011), T1 (16-18 May 2011), T2 

(31 January 2012), T3 (3 July 2012) and T4 (7 November 2012) for plots mowed or treated with the chemical 

herbicide. For each sampling time, none of the differences between treatments proved to be significant (P>0.05, 

Student’s t-test) 

Treatment T0 T1 T2 T3 T4 

Mowed 35±15.6 33±19.0 57±15.2 60±4.1 20±17.8 

Chemical  38±31.2 51±8.3 34±25.0 34±24.5 19±9.2 

 

  



Table 3 Mean values (±standard deviation) of the biodiversity indices determined in the plots subjected to 

mechanical mowing or chemical treatment with the herbicide. Observations were performed at T0 (20 January 

2011), T1 (16-18 May 2011), T2 (31 January 2012), T3 (3 July 2012) and T4 (7 November 2012). For each 

sampling, none of the differences between treatments proved to be significant (P>0.05, Student’s t-test) 

 

Shannon 

Treatment T0 T1 T2 T3 T4 
Mowed 0.78±0.153 1.49±0.336 0.82±0.568 1.19±0.438 1.23±0.347 

Chemical 0.66±0.298 1.30±0.527 1.06±0.639 0.74±0.290 1.13±0.150 

Simpson 

Treatment T0 T1 T2 T3 T4 
Mowed 0.57±0.125 0.32±0.149 0.56±0.304 0.41±0.175 0.43±0.072 

Chemical 0.66±0.167 0.35±0.189 0.48±0.279 0.59±0.189 0.36±0.081 

Equipartition 

Treatment T0 T1 T2 T3 T4 
Mowed 0.34±0.091 0.80±0.181 0.55±0.436 0.72±0.263 0.71±0.198 

Chemical 0.32±0.135 0.69±0.284 0.71±0.426 0.45±0.173 0.65±0.085 
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Table 6 Crustal enrichment factors for various elements in unwashed plants tissues sampled from plots to be 

mowed or subjected to treatments with the chemical herbicide at T0 (20 January 2011) and which were mowed 

or subjected to chemical treatments, at T4 (7 November 2012). None of the differences between treatments 

proved to be significant (P>0.05, Student’s t-test). For each treatment, the temporal (T4 vs T0) increase/decrease 

ratio of enrichment factors in unwashed samples is reported 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mowing 
∆ (%)/P 

Chemical 
∆ (%)/P 

 T0 T4 T0 T4 

Ba 20±4.1 25±7.2 +25 (ns) 15±3.6 18±0.6 +20 (ns) 

Co 17±6.5 17±2.1 0 (ns) 23±4.8 20±5.1 -13 (ns) 

Cr 64±18.6 76±9.3 +19 (ns) 95±14.7 95±37.7 0 (ns) 

Fe 10±4.9 7±1.8 -30 (ns) 11±2.8 7±2.6 -36 (ns) 

Mn 6±1.2 8±2.5 +33 (ns) 5±1.2 9±3.1 +80 (ns) 

Ni 127±56.2 123±34.9 -3 (ns) 136±25.7 143±29.7 +5 (ns) 

Pb 100±42.9 96±35.4 -4 (ns) 81±14.9 85±45.2 +5 (ns) 

Sb 69±6.7 53±12.7 -23 (ns) 55±7.9 50±13.2 -9 (ns) 

V 14±6.5 15±2.1 +7 (ns) 15±3.8 14±3.7 -7 (ns) 
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