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Abstract

The hysteresis of the open-circuit voltage as a function of the state-of-charge

in a 20 Ah lithium-iron-phosphate battery is investigated starting from pulsed-

current experiments at a fixed temperature and ageing state, in order to de-

rive a model that may reproduce well the battery behaviour. The hysteretic

behaviour is modelled with the classical Preisach model used in magnetic mate-

rials. The paper shows that the Preisach model can successfully be applied to

the lithium-ion battery hysteresis. First, the model is discretised by using the

Everett function and identified by means of experiments, in which first-order

reversal branches are measured. Then, the model is simulated and compared

to some experimental data collected with different current profiles and to a

one-state variable model previously used in the literature. The results show

that the hysteresis is well reproduced with rms errors around 2 %. The advan-

tages of the Preisach-based method, when compared to other models, are the

formal and repeatable identification procedure and the limited computational

resources needed for the model simulation that makes it appropriate for the

online implementation on low-complexity hardware platforms.
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1. Introduction

The effective storage of electric energy is becoming a challenge that may

open the way to a sustainable use of the energy and to the reduction of the

greenhouse gas emissions. The energy storage system is a fundamental block in

many applications, from smart microgrids to electrified transportation systems,

such as plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs).

The battery technologies used in these applications are growing fast to increase

power and energy densities, battery lifetime and reduce costs, also extending the

driving range of EVs [1]. The battery is usually equipped with a Battery Man-

agement System (BMS), that performs many functions: protection, monitoring,

thermal and electric management, online fuel gauging and so forth.

At present, the superior performance of the lithium-ion (Li-ion) technology

makes it the most attractive among the batteries, even if some safety issues, such

as the fire susceptibility, and management issues are of concern. A battery with

lithium iron phosphate LiFePO4 (briefly LFP) cathode [2] offers an excellent

thermal stability, that means battery reliability and safety and a high number

of cycles. It does not contains rare materials, with a positive impact on battery

cost [3]. Although its power and energy density are not the best-achievable in

the framework of Li-ion battery technology, its intrinsic safety, reliability and

cost makes LFP technology one of the most promising solution for storage [4, 5].

LFP batteries are characterised by an almost constant Open-Circuit Voltage

(OCV) when the stored charge is in the interval between 20 % and 80 % of

its maximum value. In addition, the function mapping OCV as a function

of the State-of-Charge (SoC), i.e., the ratio between the charge stored in the

battery and its maximum value, is not single-valued, but exhibits a pronounced

hysteresis [6]. This phenomenon has a strong impact in BMS online fuel gauging.

Indeed, the battery voltage, being hysteretic, cannot be used easily for Coulomb
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counting compensation, as often done for other Li-ion chemistries.

This phenomenon needs an accurate and computationally effective model,

particularly suitable for online estimation in a BMS, where the computational

resources are often limited by cost. To this end, this paper proposes the use

of the classical Preisach model of hysteresis, often used for magnetic hystere-

sis, with a discretisation based on the so-called Everett function [7]. The paper

achieves two important goals. First, the numerical implementation of the model

proposed is computationally affordable for online SoC estimation in BMS. Ad-

ditionally, the paper introduces an easily executable experimental battery char-

acterisation procedure that allows the identification of the model. The model is

validated with experiments representing various SoC “histories” of a 20 Ah fresh

LFP cell, tested with static and dynamic current profiles at a fixed temperature

in one of our laboratories.

The paper is organised as follows. Section 2 introduces the nature of hystere-

sis in batteries and the related modelling attempts, motivating the particular

Preisach approach proposed in this paper. Section 3 reports on experiments

and test results, obtained in our laboratories, showing hysteresis in an LFP cell.

Section 4 summarises the classical Preisach model, its application to batteries

and its identification. Section 5 deals with the model validation, by comparing

model simulations and experimental results. The limits of application of the

model (ageing, temperature, current-rate and current dynamics) are discussed

in Section 6 and, finally, some conclusions are drawn in Section 7.

2. Battery hysteresis: state-of-the-art and modelling

From a macroscopic point of view, OCV hysteresis in an LFP cell at given

ageing state is characterised by the following properties. (i) It is a static phe-

nomenon, as it remains after the battery current is switched off, even for a time

exceeding the typical time constants of mass transport inside the electrodes. (ii)

It is considered to be rate-independent, which means that it depends on the SoC

history but not on the speed (battery current rate) with which SoC is changed.
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The rate-independence is matched with good approximation at least for low

current rates, as shown in [8]. (iii) It exhibits sub-hysteresis loops included into

a major one. Such properties match the ones exhibited by Nickel-Metal-Hydride

(NiMH) batteries [9], deeply studied in the literature, where the open circuit

potential of the nickel electrode shows a significant hysteresis [10–12].

An example of hysteretic behaviour experimentally measured on a 20 Ah

LFP cell at 298 K is given in Figure 1, where the full charge/discharge curves

show a pronounced hysteresis (major loop).

0 0.2 0.4 0.6 0.8 1
2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

State of Charge (SoC) 

C
el

l o
pe

n 
ci

rc
ui

t v
ol

ta
ge

 (
O

C
V

)

 

 

discharge

charge

major loop H1

Figure 1: Open-Circuit Voltage vs State-of-Charge characteristic (hysteresis major loop) mea-

sured on a LFP 20 Ah cell at 298 K. The relaxation time for the OCV measurement is 1 h.

Hysteresis in lithium-ion (Li-ion) batteries can be ascribed to thermody-

namic entropic effects, mechanical stresses, and microscopic distortions within

the active electrode materials during lithium insertion or extraction [13]. Ev-

idence of hysteretic OCV behaviour has been reported for various anode and

cathode materials. For instance, pronounced hysteresis effects have been ob-

served in high temperature lithium insertion in hydrogen-containing carbons

as a cathode material [14], as well as in innovative anode materials, such as

NiO-graphene hybrid [15] and silicon oxycarbide (SiCO) [16]. The two-phase

transition process leading to macroscopic OCV hysteresis, and the OCV recov-
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ery effects lasting for several minutes/hours after a current load is interrupted,

are described for LFP batteries in [13], [17]. From a microscopic point of view, a

thermodynamic consistent many-particle description of the electrode, based on

the theory of many particle systems (ensembles of interconnected storage par-

ticles), is proposed in [18–20]. Such a model exhibits non-monotone behaviour

leading to transitions between two coexisting phases and then to hysteresis.

Besides its physical origins, hysteresis is a phenomenon that must be consid-

ered in a large variety of battery applications, such as fast charging [21] and SoC

estimation [22]. The availability of a reliable hysteresis model improves the ac-

curacy of the algorithms for SoC estimation. The model should be simple for an

easy implementation in embedded systems for advanced battery management.

Therefore, large efforts have been directed to battery hysteresis modelling. As

far as NiMH batteries are concerned, models first-principles equations [23], or

the Nernst equation, including the entropy of reaction influence and an empiri-

cal expression to capture the salient features associated with voltage hysteresis

[10, 24] are adopted. A multilayer model for nickel active materials with signif-

icant deviations from Nernst model is proposed in [25], a circuit approach with

an RC “hysteretic” branch, based on an improved Takacs model [26], is used in

[27, 28], where additional polynomial functions are employed to fit experimental

data.

One of the models most used at the macroscopic/circuit level for Li-ion

batteries is the One State Hysteresis (OSH) model [29], based on an approach

adopted for magnetic materials [30]. The basic idea is that the major loop acts

as a forcing term for a relaxation equation containing the signum operator. The

model is simple and easy to apply. A circuit interpretation of this model is

given in [31]. Similar signum-based models have been used in [32, 33] for online

lead-acid state estimation. A simpler approach is adopted in [34], where the

LFP battery hysteresis is modelled including two SoC-dependent OCV sources,

one for the charging and one for discharging current, selected through two ideal

diodes. Some other models have been proposed in the literature. The model

in [35] is aimed at improving transient response with a hysteretic exponential
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term. Dynamic models to represent OCV as an output of a state-space model

are proposed in [36, 37]. Finally, the Jiles-Atherton model, identified by a neural

network, describes the battery hysteretic characteristic in [38].

Hysteresis is a phenomenon deeply studied in magnetics and the paradigm of

magnetic hysteresis modelling is the Preisach model. It was originally proposed

by Preisach [39] in 1935 and later formalised in a general way [7, 40, 41] to take

into account the similarity of hysteretic behaviours in different fields. Therefore,

the application of the classical Preisach model to describe LFP battery hystere-

sis appears quite natural. An example of the use of the Preisach model to NiMH

battery is reported in [42], where OCV is chosen as independent variable. This

choice is not appropriate for LFP batteries, as they show a very flat SoC-OCV

characteristic. The not natural discretisation of the Preisach operator that leads

to a cumbersome identification based on a long training is another drawback

of [42]. A very preliminary attempt to model lithium-ion batteries hysteresis

with the Preisach approach is reported in [43], where the density function of

the Preisach operator is assumed to be an a priori known function. However,

this assumption is not general, very restrictive, and is combined with a non

trivial neural network-based parameters identification procedure. Ref. [43] re-

ports the application of the method only to the description of major loops and

no validation is provided in the case of an arbitrary evolution of the battery

SoC. Therefore, further work is necessary to obtain an effective and validated

implementation of the Preisach model for hysteresis in LFP batteries. Our first

attempt is described in [44], where a way to avoid any a priori choice of the

Preisach density function was proposed.

In this paper, we apply the classical Preisach model for the static modelling

of a fresh LFP cell SoC-OCV characteristic at fixed temperature, overcoming

the intrinsic limitations and drawbacks highlighted in [42, 43] and extending the

preliminary results obtained in [44]. The particular features of this approach are

that SoC, rather than OCV, is assumed as independent variable of the model

and that the Preisach operator is discretised by means of the so-called Everett

function [7]. Two important goals are achieved: (i) a well-defined, easily exe-
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cutable and repeatable experimental procedure to identify the Everett function,

and thus the Preisach operator, avoiding any heuristic approach to parame-

ter/operator identification or any training is proposed; (ii) a computationally

affordable model, suitable for online SoC estimation in BMS, where the avail-

able computational resources are limited by cost constraints is obtained. The

model is validated with experiments representing various SoC “histories” of a

20 Ah fresh LFP cell, tested with static and dynamic current profiles at a fixed

temperature in one of our laboratories.

3. Experimental evidence of hysteresis on a LFP cell

A brand-new 20 Ah cell from GWL/Power is the LFP battery used for the

experiments. Details of the cell are given in Table 1. The fresh cell was first

conditioned at room temperature by ten full charge/discharge cycles after the

delivery from the manufacturer. A Keithley SourceMeter Unit 2420 provides

the battery supply/load, as well as accurate voltage and current measurements.

All the tests are performed in a Binder MK35 thermal chamber that keeps the

temperature at 298 K. Therefore, the hysteresis analysis presented below is made

without considering possible effects due to ageing and temperature variations.

3.1. Pulsed current test

We follow the procedure described in [31] to obtain the relationship between

OCV and SoC. After the 10 cycle initialisation, a Pulsed Current Test (PCT)

is performed. The battery is subjected to a sequence of constant-current (CC)

pulse steps with duration ton = 30 min, separated by zero-current rest steps

(trest = 1 h). The usual relaxation of the terminal voltage is observed during

the pauses. The CC pulse steps are either charge or discharge steps with a

current value of 2 A, i.e. one tenth of the battery rated capacity expressed in

ampere-hours. In fact, each pulse determines a 5 % variation of the SoC.

When the voltage reaches the upper/lower cutoff value, a constant-voltage

(CV) phase begins to continue injecting/extracting energy until the current
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Table 1: Details of the cell used.

manufacturer GWL/Power

cell name LFP High Power Cell

negative electrode C

positive electrode LiFeMnPO4

electrolyte LiPF6

nominal capacity 20 Ah

nominal voltage 3.2 V

maximum continuous discharge current 60 A

cell operating temperature 253–323 K

charge cutoff voltage 3.65 V

discharge cutoff voltage 2.85 V

falls below a fixed threshold. Here, the threshold is 10 % of the CC-mode

current. These conditions, based on both voltage and current measurements,

define the SoC boundary states: full-charge (SoC = 100 %) and full-discharge

states (SoC = 0 %), as well as their corresponding OCV values, OCV(100 %) and

OCV(0 %). Since a few tens of millivolts spreading of these values is observed in

different experiments, we define as OCV extrema their average values OCV
(av)
0%

and OCV
(av)
100%, respectively.

Given the SoC variation due to each CC pulse, the corresponding OCV value

is defined as the cell terminal voltage reached at the end of each trest [17]. An

example of a current pulse in a PCT and the following extraction of the OCV

value is shown in Figure 2. The SoC value is determined by integrating the

current samples with a trapezoidal integration rule, and normalising the charge

to a reference capacity. Reset points for integration are the full-charge and

full-discharge states, so that the actual capacity measured after the complete

charge-discharge loop is used as the reference capacity value. Figure 3 shows

the flow chart of the procedure used to extract the SoC–OCV curve from the

PCT data.
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Figure 2: Example of a sequence of current pulses in a PCT and extraction of the OCV value

at the end of the relaxation steps.
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Figure 3: Flow chart describing the extraction procedure of the SoC–OCV characteristic

starting from raw PCT data. Note that the set of values sampled at the end of the rest steps

t∗ are represented in braces {·}.

3.2. Experimental results and evidence of hysteresis

Five PCTs are carried out according to the aforementioned procedure. They

are summarised in Table 2. The major hysteresis loop (H1) has already been

shown in Figure 1. The charge and discharge curves are both rather flat, as

expected, with two particularly flat zones around SoC = 50 % and SoC = 75 %.

The OCV varies less than 0.2 V, a value as small as 6 % of the 3.2 V nominal

voltage, if we span the SoC from 10 % to 90 %.
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Table 2: Description of the PCTs on a LFP 20 Ah cell. “Init.” stands for “Initialisation

phase”.

label description SoC trajectory (%)

H1 major loop Init., 100-0-100

H2 history no. 2 Init., 100-25-75-25-100

H3 history no. 3 Init., 100-40-60-40-100

H4 history no. 4 Init., 100-0-75-25-75-0-100

H5 FOR branches Init., 100-0-90-0-. . . -10-0-100

Three SoC histories are run to investigate the battery behaviour inside the

major loop, as described in Table 2 (H2-4). Figure 4 shows the related experi-

mental results: the cell undergoes minor discharge/charge loops. SoC histories

H2 and H3 do not reach the complete discharge, while H4 does it twice. The

hysteresis is very similar to that found in magnetic materials, except for the

shape and the orientation of the loops. The experiment H5 consists of loops of

decreasing amplitude, all of which start from the full-discharge state. This ex-

periment runs through the so-called First Order Reversal (FOR) branches. This

experiment is the key for an easy and successful identification of the Preisach

hysteresis model, as it will be shown in the following sections.

4. Preisach modelling of hysteresis for an LFP cell

4.1. The Preisach model

A brief summary of the Preisach model for hysteresis and its application to

the LFP battery is given in this section. See [7] for a complete discussion on

Preisach model implementation.

The Preisach hysteresis operator is defined as the superposition of ideal relay

responses (depicted in Figure 5) by the following integral:

y(t) =

∫
α≥β

µ(α, β) γ̂αβ{x(t)} dαdβ, (1)

where x is the independent variable, y is the dependent one, γ̂αβ{·} is the ideal

relay operator shown in Figure 5 and µ is the density function of the relays
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Figure 4: Experimental results related to the pulsed current tests H2-4, described in Table 2.

(also called Preisach function). The relay has two states: “up” (γ̂αβ = +1) and

“down” (γ̂αβ = −1) and two switching thresholds: α is the switch-up threshold,

and β is the switch-down threshold. Each elemental relay is associated to the
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point (α, β). The integral (1) is calculated in the α−β plane for all the possible

switching threshold couples (α, β), with α ≥ β. Being the thresholds bounded

by the minimum and maximum values of x(t) (xmin and xmax), the integration

domain is further restricted to the triangular domain T called Preisach triangle

(see Figure 6), yielding to:

y(t) =

∫
T

µ(α, β) γ̂αβ{x(t)} dαdβ. (2)

#

+1 

"1 

$ 

x 

y 

Figure 5: Ideal relay γ̂αβ .

xmin xmax

α

β

(α=β)

xmin

xmax

Figure 6: Preisach triangle.

The Preisach operator is characterised by two important properties, named

wiping-out and congruency [7]. The wiping-out property characterises the mem-

ory of the physical system and states that the output of the Preisach operator

is determined, at any time instant t, by a particular subset of input extrema oc-

curred before the time t. The congruency states that all the minor loops of the

y variable corresponding to a back-and-forth variation of the input x between

the same extrema are congruent, i.e., exactly overlap if vertically shifted. It is

often found that many physical systems showing hysteresis, including LFP bat-

teries, fulfill the wiping-out property. Instead, the congruency property is only
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approximately satisfied, leading to possible mismatch between the responses of

the model and the physical system.

Each time-history of the input-output variables can graphically be repre-

sented in the α − β plane by a line L(t) composed of segments parallel to the

α and β axes [7], as shown in Figure 7. Each segment corresponds to a rising

or falling part of the time history, between two extrema. L(t) divides T into

two subdomains SA(t) and SB(t), where A stands for “Above L(t)” and B for

“Below L(t)”. The relays are in the same state (γA or γB , respectively, with

γB = +1 and γA = −1) in each subdomain. L(t) evolves with time, but the last

point is always located on the α = β edge of T . From a practical point of view,

L(t) can be coded as an array L storing the local input extrema that determine

the vertices of L(t).

Figure 7 shows with an example how L(t) is constructed from the time-

domain evolution of the input x represented in Figure 7(a). The x(t) extrema

determine the vertices of L(t), as highlighted by the horizontal dotted lines.

Figure 8 shows that other input histories may lead to the same L(t), as they are

all characterised by the same extrema. Figure 8(c) shows a particular case where

two local extrema (those not marked) are wiped-out by the successive ones. As

a consequence, the previous behaviour of the function can fully be represented

by the remaining extrema, that can thus be considered as the model memory

state. The rules for the memory update based on the wiping-out property are

extensively illustrated in [7].

The integral in (2) can be rewritten as

y(t) = 2

∫
SB(t)

µdαdβ −
∫
T

µdαdβ, (3)

in which its dependence on the memory state (the boundary of SB) is made

explicit. Equation (3) is the foundation for the practical calculation of the

Preisach integral defined in (1). As the second integral in (3) is constant with

time and is evaluated only once, the effective computation of the first integral

in (3) leads to the computation of the output y(t).

In summary, three steps characterises the model application:
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i) the Preisach density µ (or a suitable auxiliary function) must be identified

from experimental data.

ii) the boundary line L(t) has to be found at each time step by recursively

applying the wiping-out property, thus updating the memory state of the

system.

iii) the output y(t) is found by computing the integral of µ in the domain

SB(t).

Keeping track of the input sequence allows the application of the wiping-out

property by which only the significant extrema are stored in the system mem-

ory with low computational burden. Instead, the identification of the Preisach

operator and the output calculation may be very tough issues to be solved. We

use the so-called Everett function, identified with First-Order Reversal (FOR)

branches data, to end up with a computationally efficient modeling procedure.

4.2. First-order reversal branches and Everett function

The procedure to extract the First-Order Reversal (FOR) branches is de-

scribed below. A FOR branch Fα is associated to the threshold α. The input

x rises up to α from the “reset” state (every relay is in the “down” state, i.e.,

SA = T and x = xmin). The output value in the α point is called yα (inversion

point). Then, x is brought back to xmin. The branch Fα is drawn by taking

the output value yαβ for any value x = β. The branch ends for x = xmin, when

SA = T .

The Everett function is defined in [7] as:

E(α, β) = yα − yαβ
2

, (4)

which is half of the output variation along the FOR branch starting in α. The

Everett function is related to the Preisach function by the following integral:

E(α, β) =
∫
Tαβ

µ(α′, β′) dα′dβ′, (5)
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where the integration domain Tαβ is the triangle highlighted in Figure 9(a). We

note that the integral on the triangle Tαβ is a function of its upper-left corner

and that E(α, β) = 0 if α = β (Tαβ degenerates in a single point).

xmin xmax

(ακ,β

(α1,β0)
α

β

xmin xmax

α

β

(a) (b)

xmin

xmax

Figure 9: Geometrical interpretation of Preisach model. (a) Everett function E(α, β) triangu-

lar integration domain. (b) Each SB is composed by trapezoidal strips Pk of T .

The introduction of the Everett integral allows an easy computation of

the first integral in (3). First of all, the integration domain SB is decom-

posed in k trapezoidal vertical strips Pk, so that SB =
∪

k Pk, as depicted

in Figure 9(b). Then, each trapezius is expressed as combination of two tri-

angles Pk =
∪

k

(
Tαkβk−1

\ Tαkβk

)
. Remembering that the integral on a generic

triangle Tαβ is given by (5), the Preisach integral (3) becomes:

y(t) = 2
∑
k

[E(αk, βk−1)− E(αk, βk)]− E0, (6)

where E0 = E(xmax, xmin) =
∫
T
µdαdβ. Two outstanding results comes from

this procedure. First, the output is computed as a simple linear combination of

the E values in the memory state points represented by the L(t) vertices. Second,

it is not necessary to identify the Preisach density µ, as the identification of E

in the domain T is sufficient to apply the model. The identification of E is easy

and is defined by a reliable and repeatable procedure based on the FOR branch

experimental data.

4.3. Application of the Preisach model to LFP batteries

Our aim is now to apply the Preisach model to an LFP cell. We assume

the SoC as the independent variable, so that x = SoC and y = OCV in the
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model, the opposite choice with respect to [42], as it seems to us more easy to

control SoC rather than OCV. Thus, the Everett function has dimensions of

volt. Choosing SoC as independent variable makes the hysteresis loop orien-

tation in LFP batteries clockwise (CW). Instead, the hysteresis loops modeled

by the Preisach theory coming from magnetic materials are counter-clockwise

(CCW). Although not intuitive, it is possible to keep the formalism introduced

above, and thus to model also a CW hysteretic response, as the superposition of

CCW-oriented ideal relay contributions. The key point is to assume the density

function µ appearing in the Preisach integral as the sum of a negative regular

term (to account for the CW orientation of the loops), and an impulsive term lo-

cated on the diagonal edge of T , which acts as a reversible term in the hysteretic

output [45, 46]. With this assumption, the theory applies to CW hysteresis also,

and the results described by (6) is valid, i.e. the computation of the hysteretic

variable is possible from the knowledge of the Everett function.

4.4. Preisach model identification in LFP batteries

As stated above, the application of the Preisach hysteresis model to LFP

batteries is made easy by the identification of the Everett function (which com-

pletely specify the model) along some FOR branches. The experimental PCT

cell characterisation H5 already described in Table 2 is carried out for ten FOR

branches. The number of FOR branches explored comes from the trade-off be-

tween branch resolution and experiment duration. The experimental points are

located in T along ten horizontal lines, one per FOR branch (see Figure 10).

The i-th line is located at α = αi, where αi is the SoC value of the starting

point of the i-th FOR branch. The abscissa βij of the j-th point of the i-th

branch is the actual SoC value in that FOR branch point. The experimental

data set is approximately equally spaced, both along β (∆β = 5 % in SoC) and

along α (∆α = 10 % in SoC). The PCT results are shown in Figure 11. It is

worth noting that the branches are very close to each other, but they do not

overlap.

The experiment H5 allows the computation of the value Eij of the Everett
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Figure 11: OCV-SoC characteristics along ten FOR branches of a 20 Ah LFP cell.
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function, according to (4), in all the experimental points (αi, βij) in Figure 10.

As the mesh of T is rather coarse due to the limited number of measured

branches, the Everett function has been reconstructed on a more fine and regular

mesh according to the approach described in [47, 48]. First, a one-dimensional

(1D) interpolation of each FOR branch is performed, as shown in Figure 12,

obtaining the solid lines from the experimental points. Then, another 1D inter-

polation in the orthogonal direction gives E along α for each fixed β.

Based on this finer two-dimensional discrete set, the Everett function values

for any given point of T can be calculated using a 2D interpolation, e.g. a piece-

wise linear function, or a piecewise constant function with less computational

burden. A 2D representation of the Everett function values E that identifies the

Preisach model for our LFP battery is given in Figure 13.

5. Results

The model, identified by means of the experiment H5, is applied to the four

SoC histories H1-4 in Table 2. The look-up table storing the Everett function

values is based on a rectangular mesh (∆α = ∆β = 1 %), and piecewise con-

stant functions are used for the interpolation. The reconstruction algorithm is

schematically reported in the flow diagram of Figure 14.

The results of the simulations will be compared to the experimental data

and to another model found in the literature, the OSH model introduced in

Section Section 5 and briefly recalled below.

5.1. One-State Hysteresis model and identification

In the OSH model, originally proposed by [29] and applied to LFP batteries

in [31], the OCV is described by means of two auxiliary functions extracted

by the hysteresis major loop. The first function OCVav(SoC) is the average

of the charge and discharge OCV major loop branches. The second function

E(SoC) is half of the hysteresis interval in each SoC point, i.e. the value to

be added/subtracted to the OCVav to obtain the major loop charge/discharge
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Initialize state L

k = 1

State update 1 :
include SoC(k) in L

SoC(k)

k = k + 1

State update 2 :
wipe-out unnec-
essary min-max
couples from L

Computation of
E in L points
(interpolation)

Everett
LUT

Computation of
the output ac-
cording to (6)

OCV(k)

k = N?

End

no

yes

Figure 14: Procedure for the computation of the output according to Preisach model. Here,

L is the hysteresis state, i.e. a vector that collects local maxima and minima of the input

SoC that have not been wiped-out by upcoming extrema. N is the number of SoC and OCV

samples.

branches, respectively. These functions are plotted in Figure 15 for our LFP

cell.

According to the OSHmodel, the overall OCV is expressed by OCV = OCVav+

vH, where vH is the irreversible hysteretic term obtained by solving the following

signum-based relaxation equation:

dvH
dSoC

= −sign(dSoC)γvH + γE(SoC). (7)

The relaxation equation is forced by E, so that the major loop acts as an
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Figure 15: OSH model auxiliary functions. (a) Average OCV: OCVav(SoC) (solid line) be-

tween charge and discharge branches (dashed). (b) Maximum hysteresis E. These functions

are extracted from the major loop obtained from the set of data H5.

attractor for the OCV. Here, γ−1 is an adimensional constant (a “state-of-charge

constant”) working as the typical time constant of a time relaxation equation.

For a fair comparison, the OSH model is identified by the same set of exper-

iments than the Preisach model, i.e. the H5 experimental data set. First of all

the major loop branches are extracted and interpolated on a finer grid. Then,

the functions OCVav(SoC) and E(SoC) are derived. Finally, we find the optimal

value of γ that minimises the least-square error in the considered experiment

H5. We obtain γopt = 53.6. It is worth noting that this value differs from the

one reported in [31], showing a high sensitivity on the identification data set.

5.2. Model validation and discussion

Figures 16–19 collect the data coming from the simulations of both the

models (Preisach, OSH) and the comparison with the experimental data. The

relative error is computed with respect to a normalisation voltage ∆OCV de-

fined as the difference between the maximum and minimum OCV values, i.e.,

∆OCV ≃ 0.489V. The rms and peak errors are reported in a compact form in

Table 3.

22



Table 3: Relative errors expressed as percentage of ∆OCV.

Preisach OSH Preisach OSH Preisach OSH

loop (rms) (rms) (peak) (peak) (peak*) (peak*)

H1 2.52 % 2.59 % 12.1 % 13.99 % 1.75 % 1.72 %

H2 1.13 % 1.23 % 2.79 % 1.70 % 2.79 % 1.70 %

H3 0.57 % 0.95 % 1.18 % 1.03 % 1.18 % 1.03 %

H4 2.39 % 2.66 % 13.44 % 15.44 % 2.33 % 3.16 %

(*) computed in the interval 10 % ≤ SoC ≤ 90 %.

The major loop H1 is characterised by an excellent agreement between sim-

ulated and experimental data except around the full-discharge state. The rms

error is approximately equal to 2 % and the peak error is around 12 %. The

error values are similar for both the models. The rather large peak error is con-

fined in a small region around the full-discharge point and is mainly due to the

difference between the actual OCV(0 %) in this experiment and the OCV
(av)
0%

used in the identification procedure. Apart from this peak, the error is below

2 % in the SoC range between 10 % and 90 % (see last columns of Table 3),

showing a good modelling of the major loop.
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Figure 16: Model prediction compared with experimental results: loop H1.
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Figure 17: Model prediction compared with experimental results: loop H2.
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Figure 18: Model prediction compared with experimental results: loop H3.
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Figure 19: Model prediction compared with experimental results: loop H4.

Histories H2-H3, describing minor loops bounded in 25 %÷75 % and 40 %÷

60 % SoC ranges, exhibit similar or even better performance. The rms error

is around 1 %, while the peak error is below 3 %, as the full-discharge point

is avoided. SoC history H4, in which the cell is completely discharged twice,

is instead affected by a peak error comparable to that found in simulating H1.

Finding a large peak error is reasonable, as the full-discharge region that is

modelled with less accuracy is involved two times in this experiment. Similar

numerical errors are achieved by OSH model in these three cases, even if a slight

improvement of Preisach model with respect to OSH model is observed in terms

of rms errors in all the cases analysed. In conclusion both the models reproduce

the hysteretic cell behaviour rather accurately.

Besides the small improvements in the modeling accuracy, the Preisach ap-

proach stands for the valuable advantage of being based on a well-defined and

repeatable cell characterisation procedure, that allows the identification of the

hysteresis operator avoiding any heuristic approach, such as the one used in [31].

Both models have been identified here by the FOR branches data set that

explores the entire hysteresis space in the OCV–SoC characteristic. On the

one hand the OSH model appears to be very simple. On the other hand, the
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identification of the γ parameter is highly sensitive to the used data set. This

leads to a potential degradation of the OSH model capability of reproducing the

hysteresis characteristics. Instead, Preisach model appears to be more robust

from this point of view.

Referring again to the experimental results, it is worth noting that the errors

are larger along the charge branches in all the cases considered, while discharge

branches are modelled very accurately. We also notice that the model identi-

fication procedure was based on discharge-mode FOR branches (descending),

so that the approximation is better along these branches rather than along the

charge branches. The combined use of charge-mode (ascending) and discharge-

mode (descending) FOR branches during the operator identification could be a

straightforward way to improve the model accuracy. This improvement is an

additional advantage of the Preisach approach with respect to the OSH model.

To sum up, we can state that the hysteretic behaviour of the LFP cell is very

well predicted by the Preisach model in all the experimental cases examined.

Apart from the full-discharge region, the rms error values are very small, even

lower than those found with the OSH model.

6. Validity limit of the model and discussion

As a matter of fact, the fidelity of the reconstruction of the Preisach model

is proved for the case of a fresh cell working at fixed temperature. Moreover,

the OCV is measured with PCTs with constant current values. Indeed, ageing,

temperature and dynamic current profiles are not considered in this paper for

the model validation. All these factors should be taken into account in order

to use the proposed model in real cases, such as in an electric vehicle BMS for

online SoC estimation. Let us discuss these points.

First of all, we would like to check whether the model can reproduce the

OCV that follows the application of a dynamic current profile instead of a

constant pulse. From a theoretical point of view, the model computes the OCV

in response to a given SoC variations, no matter how that variation is obtained.
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So, the question is whether there is a dependence of the experimental hysteresis

on the current profile. To investigate this, we stimulated the cell with dynamic

current pulses, as shown in Figure 20. This pulse replaces the CC pulse used

so far and it is equivalent to it, in the sense that the charge exchanged in each

pulse is the same. The trest between pulses is still kept at 1 h. Figure 20 shows

that, after an initial difference due to the last istantaneous current value, the

relaxation voltages overlap and the measured OCV is the same. The responses to

the same arbitrary SoC history realised with both the static and dynamic current

profiles are reported in Figure 21. The results show that the static and dynamic

responses overlap within 1 % of ∆OCV, as it is shown in Figure 21. These values

are comparable to the accuracy of the voltage measurement (1.5 mV).
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Figure 20: Example of PCTs with static (black lines) and dynamic (blue lines) excitation.

The dc input current of the PCT is replaced with a dynamic profile. The voltage relaxations,

apart from the very initial instants, tend to overlap.

The second issue to be discussed is the effect of the temperature Tb that is

not considered in this paper. Should the temperature have a significant effect

on the hysteresis, the Preisach model implementation proposed here could ad-

dress it by using a multidimensional LUT to reconstruct the OCV. In this case,

the Everett table could be parametrised with respect to Tb, a solution often

adopted in BMS for many other temperature–dependent battery parameters. A
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higher characterisation effort, i.e. the model identification with FOR branches

at different temperatures, would solve the problem.

Finally, ageing might have significant impact on the size and shape of the

hysteresis major and minor loops, even if the conclusive evidence of it is not

reported in the literature yet. On the one hand, the idea of an Everett function

LUT parameterised for ageing is appealing; on the other hand, ageing cannot

be directly measured as it happens to temperature. In principle, if we take into

account that the ageing dynamic is much longer than the typical mission time

of a battery, a possible evolution of the model could be the periodical update of

the Everett LUT based on the estimation of the current state-of-health of the

battery. Further characterisation experiments on the hysteresis variation with

ageing are however needed to address the issue.

7. Conclusions

The application of the Preisach model originally used in the magnetic mate-

rial hysteresis characterisation to lithium-iron-phosphate (LFP) batteries, which
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show experimental evidence of a hysteretic behaviour between state-of-charge

(SoC) and open-circuit voltage (OCV), is described in this paper. The main

novelty of the paper is that the classical Preisach model for hysteresis applied

to a LFP battery is identified by means of the Everett function, experimentally

obtained from first-order reversal branch measurements. The hysteretic battery

behaviours under various SoC histories are simulated by the identified Preisach

model and compared to the experimental data obtained at constant tempera-

ture from a new LFP cell. It is found that the model accurately describes the

measured hysteresis in the OCV of the LFP cell with rms errors of a few percent.

A comparison is carried out with another hysteresis modeling approach in

LFP batteries, the one-state hysteresis model. Even if the reproduction errors

are similar between the two approaches, the proposed technique exhibits two

main advantages with respect to the other. First, the model is identified accord-

ing to a well-defined experimental procedure to be performed on the battery,

by which the Everett function values are extracted. This avoids any heuris-

tic identification of the model parameters and reduces the model sensitivity

to the identification procedure. Then, an easy and computationally affordable

two-dimensional interpolation method for the Everett function, only sampled

in a limited number of points, is applied. This means that the computation of

the hysteresis voltage requires only linear combinations of the Everett function

values calculated in particular inversion points of the battery SoC trajectory.

This feature is very attractive for online applications where the battery SoC

estimation is carried out in real time. A low model computational power is re-

quired in those cases, to make the estimation algorithm feasible and affordable

on low-cost hardware platforms. Finally, the limits of application of the model

are discussed, showing that the model correctly reproduces the hysteretic OCV

even when the current pulses that excite the battery are not constant and are

changed to a dynamic profile. The model is validated with fixed temperature

experiments, but it is shown that temperature effects might be considered by

adding one dimension to the LUT that stores the Everett function values, at

the expense of a more extensive characterization procedure where the model
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identification is repeated at different temperatures.
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9 (2010) 448–453.

[21] S.-J. Huang, B.-G. Huang, F.-S. Pai, IEEE Transactions on Power Electronics 28 (2013)

1555–1562.

[22] J. L. nad Joaquin Klee Barillas, C. Guenther, M. A. Danzer, Journal of Power Sources

230 (2013) 244 – 250.

[23] Y. Pan, V. Srinivasan, C. Wang, Journal of power sources 112 (2002) 298–306.

[24] M. W. Verbrugge, E. D. T. Jr, S. D. Sarbacker, B. J. Koch, Quasi-adaptive method for

determining a battery’s state of charge, 2002. US Patent 6,359,419.

[25] Y. Ota, Y. Hashimoto, Electrical Engineering in Japan 175 (2011) 1–7.

[26] J. Takacs, The International Journal for Computation and Mathematics in Electrical and

Electronic Engineering (COMPEL) 20 (2001) 1002–1015.

[27] F. Xuyun, S. Zechang, in: Vehicle Power and Propulsion Conference, 2008. VPPC ’08.

IEEE, pp. 1–5.

[28] N. A. Windarko, J. Choi, in: Telecommunications Energy Conference, 2009. INTELEC

2009. 31st International, pp. 1–6.

[29] G. L. Plett, Journal of power sources 134 (2004) 262–276.

[30] D. Jiles, D. Atherton, Journal of magnetism and magnetic materials 61 (1986) 48–60.

[31] F. Baronti, W. Zamboni, N. Femia, R. Roncella, R. Saletti, in: IECON 2013 - 39th

Annual Conference on IEEE Industrial Electronics Society, Vienna, pp. 6726–6731.

[32] S. Qiu, Z. Chen, M. Masrur, Y. Murphey, in: Industrial Electronics and Applications

(ICIEA), 2011 6th IEEE Conference on, IEEE, pp. 184–189.

[33] A. Vasebi, M. Partovibakhsh, S. M. T. Bathaee, Journal of Power Sources 174 (2007)

30–40.

[34] J. Kim, G.-S. Seo, C. Chun, B.-H. Cho, S. Lee, in: Electric Vehicle Conference (IEVC),

2012 IEEE International, pp. 1–5.

31



[35] A. Hussein, N. Kutkut, I. Batarseh, in: Applied Power Electronics Conference and Ex-

position (APEC), 2011 Twenty-Sixth Annual IEEE, IEEE, pp. 1790–1794.

[36] H. Zhang, M.-Y. Chow, in: IECON 2010-36th Annual Conference on IEEE Industrial

Electronics Society, IEEE, pp. 1844–1849.

[37] H. R. Eichi, M.-Y. Chow, in: Energy Conversion Congress and Exposition (ECCE), 2012

IEEE, IEEE, pp. 4479–4486.

[38] M. Trapanese, V. Franzitta, A. Viola, in: Applied Power Electronics Conference and

Exposition (APEC), 2013 Twenty-Eighth Annual IEEE, pp. 2773–2775.

[39] F. Preisach, Zeitschrift für physik 94 (1935) 277–302.

[40] M. Krasnoselskii, A. Pokrovskii, Systems with hysteresis, Springer Verlag, 1989.

[41] P. Krejci, Hysteresis, convexity and dissipation in hyperbolic equations, Gakkotosho,

Tokyo, 1996.

[42] X. Tang, X. Zhang, B. Koch, D. Frisch, in: Prognostics and Health Management, 2008.

PHM 2008. International Conference on, IEEE, pp. 1–12.

[43] V. Franzitta, A. Viola, M. Trapanese, Advanced Materials Research 622 (2013) 1099–

1103.

[44] F. Baronti, N. Femia, R. Saletti, C. Visone, W. Zamboni, IEEE Transactions on Mag-

netics 50 (2014) 7300704.

[45] I. D. Mayergoyz, P. Andrei, J Appl Phys 91 (2002) 7645–7647.

[46] C. Visone, W. Zamboni, IEEE Transaction on Magnetics 51 (2015) doi

10.1109/TMAG.2015.2434419.

[47] D. Davino, C. Natale, S. Pirozzi, C. Visone, Journal of Magnetism and Magnetic Mate-

rials 290-291 (2005) 1351 – 1354.

[48] D. Davino, A. Giustiniani, C. Visone, IEEE Transactions on Magnetics 44 (2008) 862 –

865.

32


