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Asymmetric visual input and route
recapitulation in homing pigeons

Antone Martinho III1, Dora Biro1, Tim Guilford1, Anna Gagliardo2

and Alex Kacelnik1

1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
2Department of Biology, University of Pisa, Via Volta 6, Pisa 56126, Italy

Pigeons (Columba livia) display reliable homing behaviour, but their homing

routes from familiar release points are individually idiosyncratic and tightly

recapitulated, suggesting that learning plays a role in route establishment.

In light of the fact that routes are learned, and that both ascending and des-

cending visual pathways share visual inputs from each eye asymmetrically

to the brain hemispheres, we investigated how information from each eye con-

tributes to route establishment, and how information input is shared between

left and right neural systems. Using on-board global positioning system

loggers, we tested 12 pigeons’ route fidelity when switching from learning a

route with one eye to homing with the other, and back, in an A-B-A design.

Two groups of birds, trained first with the left or first with the right eye,

formed new idiosyncratic routes after switching eyes, but those that flew

first with the left eye formed these routes nearer to their original routes. This

confirms that vision plays a major role in homing from familiar sites and

exposes a behavioural consequence of neuroanatomical asymmetry whose

ontogeny is better understood than its functional significance.

provided by Archivio della Ricerca - Univers
1. Introduction
Birds and mammals moving in familiar landscapes acquire, process, store and

use visual information, but while in the mammalian brain bilateral projections

from the optic chiasma and interhemispheric connectivity through the corpus

callosum ensure that visual information is readily available bilaterally, in birds

visual pathways are almost completely decussated at the optic chiasm, and

there is no corpus callosum. These differences make integration of visual input

from the two eyes very different between these two vertebrate classes, and lead

to differences in learning and memory [1]. Pigeons using visual landmarks

to fly homewards from familiar locations [2] provide an opportunity to study

how visual information acquired by each eye is stored and made available to

contralateral visual control of navigation.

How pigeons find their way home has been subject of extensive research and

lively debate for many years [3,4]. Field experiments have shown that pigeons

compute their homeward bearing based on a ‘map’ (information on the bird’s

position relative to the loft, probably derived from olfactory cues when in unfami-

liar territory) [2,3,5] and use a time-sensitive sun compass [6,7] or a magnetic

compass [8] in assuming a homeward bearing and navigating to their loft. As

they acquire experience with an area, pigeons progressively incorporate visual

cues in the form of landmarks to engage in pilotage—or navigation by a series

of visual landmarks—with reliance on compass information decreasing with

experience [9–12]. On-board global positioning system (GPS) loggers have

greatly enriched the study of pigeon homing, revealing that pigeons released

repeatedly from the same site form individually idiosyncratic routes that are

tightly recapitulated on subsequent flights [10,11,13]. Furthermore, their routes

often incorporate long linear landmarks such as roads, railway lines and rivers [9].

The pigeon visual system is lateralized at both neuroanatomical and

functional level, as shown in birds tested in laboratory cognitive tasks [14]. Func-

tional asymmetries have also been found for spatial tasks involving memorization
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Figure 1. Pigeon with eye ring and eye cap, and generalized structure of pigeon tecto-fugal system. (a) Each pigeon was fitted with two eye rings as shown. The
‘hook’ side of Velcro was used for the ring attached to the pigeons’ feathers as its thinner profile ensured forward vision would not be compromised. (b) The eye
caps were constructed of a double layer of flexible etched plastic. The seam in the eye cap was consistently oriented posteriorly to ensure a homogeneous image in
the forward direction. (c) Schematic of the pigeon tecto-fugal visual system, detailing the asymmetry of inputs. Adapted from [23].
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and processing of cues in both laboratory settings and natural

behaviours, such as homing [15]. In particular, the functional

contribution of the left and right side of the brain in homing

behaviour has been the subject of experiments focusing on

the hippocampal formation and olfactory and visual systems

[15,16]. Although both the left and right parts of the hippocam-

pal formation seem to be involved in familiar landmark-based

navigation [17], an intact left hippocampus is needed for olfac-

tory map learning in young pigeons raised confined [18],

probably due to the critical role of the left hippocampus in

sun compass-mediated spatial learning [19] through which

the association of wind-born odours with wind direction is

memorized. In the olfactory system, an asymmetric involve-

ment in favour of the left piriform cortex and of the right

nostril has been highlighted [15].

Within the visual system, pigeons’ optic nerves comple-

tely decussate at the optic chiasm, projecting exclusively to

the tectum contralateral to the input eye [20], meaning that

direct visual inputs to a hemisphere can be eliminated by

capping an eye. The ascending tecto-fugal and thalamo-

fugal visual pathways do allow for indirect visual input to

the contralateral hemisphere [21], but while each tectum pro-

jects to the ipsilateral diencephalic nucleus rotundus roughly

equally, more projections from the right tectum are shared
contralaterally to the left nucleus rotundus and entopallium

than from left to right [1,14,22]. This asymmetry is develop-

mentally related to the orientation of the pigeon embryo,

whereby the right eye is exposed to more light during incu-

bation [14,23]. The importance of this light exposure to

interhemispheric integration has been shown in visual transi-

tive inference tasks performed by monocularly occluded

pigeons [20]. Memory formation and storage may be latera-

lized, with predominance of the left hemisphere [24], and

further asymmetries of projections have been found in both

the ascending and descending visual systems [25]. This fits

into the wider model of the avian visual system as being

lateralized differently for specific tasks and roles [26]. None-

theless, this model is largely derived from chickens, and it is

likely that detailed patterns of lateralization differ between

pigeons, chickens and other birds.

Here, we investigate whether the asymmetries of the visual

memory system are reflected in pigeons’ route fidelity when

switching from monocular homing with an ‘experienced’ to a

‘naive’ eye. We trained 12 pigeons to fly home under reversible,

non-invasive monocular occlusion (figure 1) for 18 flights

before subsequently flying another 18 flights from the same

release point with the opposite eye blocked. This was followed

by five flights with the original eye blocked, and finally by five
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Figure 2. Examples of flight series for two experimental and one control pigeon. Each experimental pigeon flew 46 flights in either a ‘18 left, 18 right, 5 left, 5
binocular’ or ‘18 right, 18 left, 5 right, 5 binocular’ pattern (referring to the eye open, not the eye occluded). Bird IDs and treatment received are indicated in the
bottom right corner of each panel. Left-eyed flights are shown in red (magenta for phase 3, bird B77 only), whereas right-eyed flights are blue (cyan for phase 3,
bird B72 only). Binocular flights are shown in green. The control pigeons flew 18 flights each, all of which were binocular.
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binocular flights, completing a total of 46 flights per bird, in

four phases. Our results reflect a poverty of interhemispheric

exchange of visual homing information and a hemispheric

imbalance of information availability in the pigeon brain.
2. Results
The 12 experimental birds flew in two groups defined by the

sequence of which eye was available (i.e. the eye which was not

occluded) in each phase of experimentation: ‘left–right–left–

binocular’ (hereafter LRLB) and ‘right–left–right–binocular’

(hereafter RLRB). A control group of four birds flew 18

non-occluded flights. Positional fixes recorded at 5 Hz by on-

board GPS loggers allowed us to reconstruct the pigeons’ flights

(see ‘Experimental procedures’) and to compare paths flown. The

set of the first 18 flights for each group is referred to as ‘phase 1’

and the second 18 flights, flown with the other eye, as ‘phase 2’.

The subsequent five flights, flown with the original eye, comprise

‘phase 3’. For clarity, except where otherwise indicated, the

descriptors ‘left eye’ and ‘right eye’ refer to the eye that is open

(not occluded) for the flight being described.

Visual inspection of the trajectories revealed consistent

patterns, as displayed by exemplars in figure 2. For all
experimental birds, the first several flights show properties

distinct from subsequent monocular flights and from all con-

trol flights. In these early monocular flights, the pigeons’

routes deviate from the beeline between the release site

and the loft in the direction of the available eye. As the pigeons

become more experienced with a given eye, the routes migrate

towards the beeline. Furthermore, during early flights, the

pigeons often perform many tight loops around the open

eye—clockwise when the right eye is open and counterclock-

wise when the left eye is open—possibly attempting to

gather information from a 3608 field of view. This is a behav-

iour not previously described, as far we are aware. At no

point in the study was a bird seen to loop around an occluded

eye. Control birds did perform loops, but as both eyes were

open, flights included loops in both directions. We quantified

each bird’s looping rate as loops per kilometre of route

flown, excluding loops made around the release site and

home loft (figure 3). Among experimental birds, looping rate

begins high and subsides through subsequent flights, before

returning to a high rate when the occluded eye is switched,

and subsiding in a similar pattern. We compared the looping

rate across flights within each of the controls, and the first

two phases of each of the LRLB and RLRB birds, using a two-

way repeated measures ANOVA. The 18 flight phases of the
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experimental birds were considered separately, such that the

ANOVA included five groups of 18 repeated measures (flights).

The rate of looping differs significantly across flights (F17,340 ¼

7.162, p , 0.001), indicating that reduced looping rates correlate

with increased experience homing over a given route. There

was no significant interaction between looping rate and

group, indicating that this effect is similar across groups.

Both experimental groups showed an increase in looping rate

following the first eye switch followed by a decline with experi-

ence. The cause for this looping may simply be that it takes time

to adjust to the new circumstances, or, more interestingly, that

using an eye that is naive for the release site, in the absence of

interocular transfer, requires learning of new visual landmarks,

and that looping in the direction of the naive eye reflects this

search for visuo-spatial input. One possible mechanism in

either case may be that under binocular conditions, the view

of each eye ‘pulls’ the animal to the corresponding side, and

being newly deprived of one eye’s counterbalance results in a

loop, until this is corrected by experience.

To test whether information input to the contralateral hemi-

sphere was more effective in one direction than the other, we
assessed how the birds’ trajectories changed across phase

changes. To do this, we used a distance-to-beeline analysis

(figure 4). Each flight was sampled at points representing

GPS positional fixes collected at 5 Hz. This analysis computes

the mean perpendicular distance in metres between the beeline

and each point in a given flight, assigning positive values to

scores left of the beeline and negative values to those to the

right, with respect to the direction of flight. Figure 4a shows

the beeline analysis for each flight. To compare the degree to

which routes changed across phases, we computed the differ-

ence in distance to beeline between each bird’s first flight

after an eye switch and the mean of the 10 flights before the

switch (figure 4b), for both the initial switch from phase 1 to

phase 2 (i.e. switching to a ‘naive’ eye) and the subsequent

switch from phase 2 to phase 3 (i.e. switching back to the eye

that became ‘experienced’ in phase 1). We calculated the

magnitude of the change from pre-switch mean to the first

post-switch flight for each bird and compared the groups via

two-sample t-tests, as shown in figure 4b. The average (+s.e.)

signed magnitude of the changes in distance to the beeline

after the first (naive) switch was 2250.2+67.0 m for the
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LRLB group and 506.9+98.5 m for the RLRB group. In

addition to the obvious sign difference (figure 4b), the absolute

value of the difference between the first and second phase for

the RLRB group was significantly greater than for the LRLB

group ( p ¼ 0.049, two-sample t-test), corresponding with the

move across the beeline seen in the RLRB graph, indicating

that the asymmetric effect of the treatment was true at individ-

ual level and not an artefact of averaging. This implies that the

LRLB group’s route was less affected by the eye switch than

was the case for the RLRB group. It is possible that informa-

tion concerning a general spatial affinity for the landmarks

acquired with the left eye/right hemisphere system (LRLB

group) reached the left hemisphere via an indirect input to a

greater degree than in the opposite direction (RLRB group).
There was no significant difference between groups in the

absolute value of change between the second and third

phases ( p ¼ 0.580).

While the LRLB birds did fly nearer to their phase 1 routes

in phase 2 than was the case for RLRB birds, the beeline analy-

sis does not determine the fidelity of route recapitulation

(similar mean distance to the beeline can result from different

trajectories). For this reason, route fidelity was examined

using a ‘nearest neighbour analysis’ (figure 5a), in which

each flight within a bird’s series was compared to the immedi-

ately preceding flight. The details of this analysis are presented

in the ‘Experimental procedures’ section below. The nearest

neighbour analysis shows how the route differs between

consecutive pairs of flights [27], providing a measure of
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both LRLB and RLRB birds recapitulated over a different route in each phase.
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variability or fidelity of a bird’s recapitulation of its route.

Figure 5a shows the nearest neighbour results for the controls

and the first phases of the two experimental groups. The con-

trols show a rapid progression from early variability to

asymptotic fidelity. These results were compared to the first

phase of both experimental groups via two-way repeated-

measures ANOVAs. All three groups showed a significant

main effect of decrease in nearest neighbour distance with

experience across the 17 pairwise comparisons (F16,176 ¼

1.827, p ¼ 0.031), but no significant difference between the

groups (F32,176 ¼ 0.876, p ¼ 0.662). The phase 2 results of the

experimental groups were compared in the same way, with

both groups again showing a significant decrease across the

18 pairwise comparisons (including the cross-phase compari-

son of the last flight in phase 1 to the first in phase 2;

F17,170 ¼ 7.098, p , 0.001), and a significant difference in near-

est neighbour values between the two groups (F17,170 ¼ 2.167,

p ¼ 0.007). This is consistent with the results of the beeline

analysis, which showed that the RLRB group displayed a

larger shift in spatial location of route across the eye switch.

Both groups were affected by the switch from the first eye to

the second—the high nearest neighbour values imply that

the first flight of phase 2 did not recapitulate the last flight of

phase 1 in either group. This is consistent with the findings

of the beeline analysis, which showed that both groups’

routes changed, albeit to different degrees, across the initial

eye switch. This implies that while both groups achieved con-

sistent recapitulation by the end of each of phases 1 and 2, both

groups also modified their routes after the switch, as nearest

neighbour distances increased at the beginning of phase 2.
The high nearest neighbour values at the beginning of

phase 2 do not exclude the possibility that the birds produced

high variability as a result of the eye switch, but then settled

back to the same recapitulated route as before the switch—

especially the LRLB birds, which were shown in the beeline

analysis to achieve similar scores across phases. However, as

we noted earlier, similarity of beeline score does not imply

route recapitulation, and a visual inspection of the final five

flights for each bird in each of phases 1 and 2 reveals that this

was not the case. Figure 5b shows representative examples of

these flights for each group (equivalent figures for all birds

are supplied in electronic supplementary material, figure S1).

As can be seen, while within phase flights are near to each

other, routes differ across phases. Some birds, especially in

the LRLB group, did fly very near their previous route, but

the shape of their route differed between the two phases.

While the LRLB birds did show slightly higher route fidelity

after the eye switch than the RLRB birds, the complete

information necessary for precise recapitulation, perhaps

including sequence, bearings or other onward guidance

connecting one landmark to another, was not sufficiently

available to either group to allow strict recapitulation.
3. Discussion
Our results indicate that in pigeons input of visual homing

information from each eye is not closely integrated with

input from the other eye, that the level of integration is asym-

metric and that this asymmetry has functional consequences.
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Pigeons’ routes learned solely with one eye are not recapitu-

lated when flying with the other, naive eye, and this failure

to recapitulate occurs regardless of which eye learns first,

though birds that home first monocularly with the left eye fly

significantly nearer to their left-eyed route when subsequently

flying right-eyed than vice versa. This suggests that the various

commissures in the pigeon visual pathway allow insufficient

contralateral input of route information for strict recapitulation

using the naive eye. However, route recapitulation by visual

landmarks requires both visual and non-visual memory, as a

pigeon must both recognize each landmark visually and

remember which direction to take and which landmark

comes next in sequence at each point to follow its established

route tightly. It is thus possible that though this strict sequence

was lost in both groups, the LRLB group’s more general visual

recognition and attraction to the previously learned landmarks

may have endured across phases and may reflect the asymme-

try of the pigeon’s visual pathway, especially in the ascending

tecto-fugal pathway.

Concordant with the asymmetry present in the commis-

sures of the tecto-fugal visual pathway, birds flying with the

right eye after learning initially with the left eye, as seen in

the LRLB group, fly significantly nearer to their original (left

eye), first-learned route than birds flying in the opposite

order. Thus, although neither group using the second eye fol-

lowed the precise set and sequence of visual landmarks

learned with the first eye, the asymmetry of the pigeon visual

system [1,14,23] means that information acquired with the

left eye is more readily available to control visually guided be-

haviour by the other eye than the opposite. Even after repeated

experience, the phase 2 routes of the RLRB group settle farther

from their initial (left-eyed acquired) routes than those of the

LRLB birds, possibly because the weaker projections from the

left optic tectum to the right nucleus rotundus are much

reduced relative to the opposite side [1,14,23], though other

neural asymmetries may contribute to this difference [25].

Thus, though neither eye can access the exact sequence of land-

marks determining the route established with the other eye,

birds flying right-eyed after left fly more closely to the routes

learned with the left eye. The fact that no significant change

in route was found in either group upon returning to the first

eye in the third phase is consistent with previous observations

that pigeons retain learned recapitulated routes over long

periods of time. In both groups, by the beginning of the third

phase, 18 flights had been flown by each eye, thus allowing

whichever eye was used in the third phase to access those

visual memories and home accordingly.

Our beeline analysis results further indicate that the

difference in performance cannot be solely attributed to latera-

lization—the superiority of one eye or hemisphere over the

other for homing performance. If this were the case, we

would expect to find similar performance for a given eye

across both groups in all phases. Instead, we see that homing

performance for a given eye varies depending on the sequence

of training and previous experience. This suggests that our

results derive from the asymmetry of visual inputs to the two

hemispheres, rather than simple superiority of one hemisphere

or eye.

These results confirm the suspected effects of neuro-

anatomical division and asymmetry of visual processing,

and contribute to our understanding of visual lateralization

in homing for pigeons with some homing experience. A pre-

vious study on monocular homing inferred the importance of
the eyes for homing lateralization from different homing

speed and vanishing bearings with each eye, but argued

that since both naive and experienced birds showed vanishing

bearing deflection and lateralization of performance, this was

not an effect of visual memory but potentially of lateral special-

ization for magneto-reception or optic flow [28]. However,

naive and experienced pigeons navigate by different strategies;

namely, naive pigeons rely mostly on site-specific compass

orientation, whereas experienced pigeons transition to pilo-

tage-based orientation within the familiar area [29]. By using

GPS technology that allows investigation of the fidelity of

homing to previously recapitulated routes, we have shown

that the better performance of the LRLB pigeons in phase 2

(when flying with the previously naive right eye) is likely to

be a result of the left hemisphere’s more complete visual

memory of homing routes. The phase 2 results indicate that

pigeons experienced with both eyes separately show right

eye/left hemisphere superiority in homing, a pattern previou-

sly noted in pigeons flying monocularly after simultaneous

binocular experience [30], and in pigeons navigating in an

indoor arena strewn with visual landmarks [31].

Finally, our results reaffirm the importance of vision itself

in the process of pigeon homing. At one time the subject of

debate, the degree of relevance of visual information in

allowing pigeons to reliably home remains in question.

While the formation of, and loyalty to, individually idiosyn-

cratic homing routes have been taken as key support for the

importance of visual information and memory in familiar

area homing [9], these inferences were indirect. The current

study is the first to assess route recapitulation while manipu-

lating visual information input directly during homing, and

demonstrates that monocular homing performance follows

well the pattern established in other purely visual tasks.

Pigeons undertaking a monocular binary discrimination

task after binocular training show better performance with

the right eye than with the left, again probably a consequence

of the right eye’s access to a more complete visual memory

[32]. Our results demonstrate a similar pattern for familiar

area homing, and thus situate this homing within the

pigeon’s visually controlled behaviours.
4. Experimental procedures
(a) Subjects and materials
Sixteen homing pigeons 2 years of age and of both sexes were

used. Pigeons were housed at the Oxford University Field

Station, Wytham, UK, where they had also been bred. Pigeons

were kept at free-feeding weight with unlimited access to

water, grit and mixed grain food, and allowed to fly freely

from the loft daily.

Twelve experimental birds were prepared for attachment of

GPS logging devices by trimming non-flight feathers on their

backs and applying a 4 cm strip of Velcro with fast-drying

glue. All GPS devices were initially attached via the Velcro

method, but in cases in which the strip became loose during

the course of the experiment, the attachment method was

switched to the use of an elasticated harness (for further details,

see ‘Irregularities’ below). Rings of Velcro to facilitate eye cap

attachment were glued around each eye as in figure 1. QStarz

BT-Q1300ST 5 Hz personal GPS loggers were modified for

attachment to pigeons by removing the outer plastic covering.

Eye caps (figure 1) consisted of a 2 cm diameter disc composed

of a double layer of etched plastic to allow for light penetration

http://rspb.royalsocietypublishing.org/
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but prevent shape identification. The remaining four birds

formed a control group and were prepared in the same fashion

for GPS attachment, but were not fitted with eye rings.

All pigeons received basic training of at least three flock

releases and three solo releases from locations roughly aligned

with the four cardinal directions, approximately 2 km from the

loft, alternated to prevent directional bias. All training flights

were flown binocularly.

(b) Releases
Releases investigated homing in birds completely naive to the

release site. All birds’ experimental releases were solo flights and

birds were released 7 min apart to prevent ad hoc flock formation.

The pigeons had no previous homing experience beyond basic

training. A single release point was used, but all analyses compared

changes in route within subject and between flights, rather than

location of route with reference to the landscape. Any bias towards

landmarks from this release site is therefore unlikely to have affected

our results. Furthermore, the use of a single release site minimized

loss of birds.

(i) Experimental groups
The 12 experimental birds were divided into two groups, one of

seven (LRLB group) and one of five (RLRB group). The groups

initially contained eight birds each, but one bird from the LRLB

group and three birds from the RLRB group failed to home

during the first flight (see ‘Losses and Irregularities’ below).

The pigeons were released from a novel location 3.8 km from

the loft. The releases comprised 50 flights in four phases over the

course of three months.

Phase 1 (flights 1–20) consisted of first-eye training and test-

ing. The LRLB group flew with their left eye (right eye covered)

and the RLRB group with the right eye (left eye covered) during

all flights in phase 1. The first 18 of the 20 phase 1 flights com-

pleted by each bird were included in analysis. The final two

flights were reserves, included to accommodate occasions when

a bird missed a flight for one of a number of reasons or a GPS

logger failed (see ‘Irregularities’ below). In cases in which a

bird did not miss two flights within the set of 20, any flights

beyond the 18th (one to two flights) were excluded from

consideration.

Phase 2 (flights 21–40) consisted of second-eye training and

testing, and followed the same pattern as phase 1. In phase 2, the

LRLB group flew with their right eye (left covered) and the RLRB

group with their left eye (right covered). As in phase 1, the

pigeons flew 20 flights, of which 18 were included in analysis,

and two were reserves.

Phase 3 (flights 41–45) consisted of re-testing the first eye. The

LRLB group flew with their left eye and the RLRB group with their

right eye. All pigeons flew five flights in phase 3.

Phase 4 (flights 46–50) consisted of binocular testing. All 12

pigeons flew five flights with both eyes uncovered.

(ii) Control group
The four control birds were released binocularly 18 times from the

same site as the experimental birds, following the same protocols.

The first 13 flights comprised training and the last five flights

(flights 14–18) were used to determine ‘normal high-familiarity

homing’ for comparison with experimental birds. The control

birds did not experience any irregularities.

(c) Data processing
GPS traces of flight paths were converted into comma-separated-

values format by proprietary software included with the GPS

loggers. All subsequent processing and analysis of flight paths

was performed in MATLAB. All flights were trimmed for
speed (retaining all points for which speed was greater than

0.5 m s21 for 30 s before or after) to exclude waiting time

before release and after re-entering the loft. Flights were then

trimmed to exclude points within 200 m of the start and end-

points to exclude time when all flights are constrained to be

very close together. To assist comparisons with other exper-

iments, a table of commonly used pigeon homing metrics

before the advent of GPS location may be found in the electronic

supplementary material.

(i) Nearest neighbour analysis
The nearest neighbour analysis holds one of the two flights com-

pared in reference, and for each point along the reference

measures the distance to the closest point on the compared

flight in any direction (figure 5a, inset). For each pairwise com-

parison, both flights are held in reference and compared to the

other in turn, and the mean of these two series of distances pro-

vides the mean nearest neighbour distance between the two

flights.

(d) Losses and irregularities
(i) Losses
The first flight of the experimental releases was performed with a

slightly modified version of the eye cap that incorporated a layer

of tracing paper to partially occlude light. Four of 16 birds failed

to home during this first flight. As a result of this high failure

rate, the eye caps were restructured to exclude the tracing

paper and include a second layer of etched plastic, preserving

the shape disruption but allowing for still more light penetration.

Following this modification, the remaining 12 birds homed suc-

cessfully. Among the 12 birds that successfully homed during

the first flight, performance was reduced, with long routes very

far from the beeline.

(ii) Irregularities
On some occasions, a bird did not produce data during a given

flight. When this occurred, a reserve flight was used. All such irre-

gularities occurred during phases 1 and 2, and in no case did a bird

require more than two reserve flights. Causes of irregularities

included sudden weather changes, GPS device failure and birds

not yet returned from free flight around the loft. Additionally,

nine birds’ Velcro strips fell off during the course of the exper-

iment. As this was a result of feather moulting beneath the strip,

the strip could not be reattached until the following season, and

so was replaced by a ‘backpack’ consisting of a fabric pouch to

hold the GPS logger, attached to the pigeon by elasticated straps

that go around the wings and across the keel. In seven of these

cases, the bird in question was mounted with the backpack and

excluded from flights for the remainder of the day to allow it to

become accustomed to the backpack. Each of these birds wore

the backpack for the remaining duration of the experiment and

during all remaining flights.
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18. Gagliardo A, Ioalè P, Odetti F, Bingman VP, Siegel JJ,
Vallortigara G. 2001 Hippocampus and homing in
pigeons: left and right hemispheric differences in
navigational map learning. Eur. J. Neurosci. 13,
1617 – 1624. (doi:10.1046/j.0953-816x.2001.01522.x)

19. Gagliardo A, Vallortigara G, Nardi D, Bingman VP.
2005 A lateralized avian hippocampus: preferential
role of the left hippocampal formation in homing
pigeon sun compass-based spatial learning. Eur. J.
Neurosci. 22, 2549 – 2559. (doi:10.1111/j.1460-
9568.2005.04444.x)
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