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We discuss how hadronic total cross sections at high energy depend on the details of QCD, namely on 
the number of colours Nc and the quark masses. We find that while a “Froissart”-type behaviour σtot ∼
B log2 s is rather general, relying only on the presence of higher-spin stable particles in the spectrum, the 
value of B depends quite strongly on the quark masses. Moreover, we argue that B is of order O(N0

c )

at large Nc , and we discuss a bound for B which does not become singular in the N f = 2 chiral limit, 
unlike the Froissart–Łukaszuk–Martin bound.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The behaviour of hadronic total cross sections at high energy 
is one of the oldest puzzles of strong interactions. Experimen-
tal results, up to the largest energies available at hadronic col-
liders [1–4], show a steady rise of total cross sections for 

√
s �

5 GeV [5], where s is the total center-of-mass energy squared. The 
theoretical challenge is to explain the observed behaviour start-
ing from the first principles of QCD, which is believed to be the 
fundamental theory describing strong interactions. So far, most of 
the efforts have been focused on phenomenological approaches, 
aimed at finding the appropriate parameterisation of experimen-
tal data, usually taking inspiration from the Regge–Gribov theory. 
To date, the majority of the parameterisations agree on the leading 
energy dependence being of the “Froissart”-type σtot ∼ Bexp log2 s
with universal Bexp [5–11], although alternative behaviours are 
also considered [12,13]. A universal log2 s rise, first proposed by 
Heisenberg [14], has been supported by several theoretical argu-
ments [15–21], and recently also by numerical results in lattice 
QCD [22].

A correct prediction (from first principles) of the high-energy 
behaviour of total cross sections would nontrivially confirm the 
validity of QCD as the fundamental description of strong inter-
actions, in a largely untested energy–momentum regime. In fact, 
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the main difficulty in attacking this problem in the framework of 
QCD is its nonperturbative nature, as it is part of the more gen-
eral problem of soft high-energy scattering, characterised by small 
transferred momentum squared t (|t| � 1 GeV2) and large s. To 
avoid the shortcomings of perturbation theory in the presence of 
the soft scale t , a nonperturbative approach to these processes 
has been developed [23–30], which relates the relevant scattering 
amplitudes to the correlation functions of certain nonlocal oper-
ators, the so-called Wilson loops, in the fundamental theory. To 
our knowledge, this approach is so far the closest to a systematic 
derivation from first principles.

In a recent paper [31] we have argued, within the above-
mentioned nonperturbative approach [23–30] in Euclidean space 
[32,33], that hadron–hadron total cross sections at high energy be-
have like

σtot ∼ B(1 − κ) log2 s ≤ 2B log2 s . (1)

The prefactor B is determined from the stable asymptotic hadronic 
spectrum, considering strong interactions in isolation, by maximis-
ing the following ratio,

B = max
a, j(a)>1

B(a) , B(a) =
(

j(a)−1
M(a)

)2
, (2)

where a runs over the particle species, and j(a) and M(a) are the 
spin and mass of particle a, respectively. Only higher-spin parti-
cles ( j(a) > 1) have to be considered: if they were absent, then σtot
would be at most a constant at high energy, and B = 0. The pa-
rameter κ is bounded by unitarity to be |κ | ≤ 1, but is otherwise 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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undetermined at this stage. In Ref. [31] we remarked that the 
most natural value yielding the universality observed in experi-
ments is κ = 0, corresponding to a black-disk-like behaviour at 
high energy. However, we do not have a purely theoretical argu-
ment to show that this is actually the case. Furthermore, the phe-
nomenological analyses in the literature give different estimates 
of the “blackness” of the scatterers in the high-energy limit, see, 
e.g., Refs. [8,10,11,34,35]. In Ref. [31] we also gave a numerical 
estimate of B using experimental data for (QCD-)stable mesons, 
baryons and nuclear states. The “dominant” particle, i.e., the one 
which maximises B(a) , turns out to be the � baryon, and yields 
BQCD � 0.56 GeV−2, which compares well to the experimental 
value Bexp � 0.69–0.73 GeV−2 [5]. Interestingly enough, our value 
for 2BQCD is about two orders of magnitude smaller than the anal-
ogous prefactor BFLM = π

M2
π

appearing in the Froissart–Łukaszuk–

Martin bound [36–38], and only about 50–60% larger than the 
experimental value, resulting in a much more restrictive “Froissart-
like” bound (which is satisfied by Bexp).

It is part of the standard lore that hadronic total cross sections 
should be mostly governed by the “gluonic sector” of the theory, 
and this leads to expect that they could be described fairly accu-
rately using the quenched approximation of QCD, i.e., pure SU (3)

gauge theory. In this case, and in the framework of the nonper-
turbative approach discussed above, the relevant spectrum for the 
computation of the prefactor B would be the stable, higher-spin 
part of the glueball spectrum. However, using data from Ref. [39], 
the resulting value of B turns out to be 2–3.5 times the one ob-
tained using the physical, unquenched spectrum, suggesting the 
presence of unexpectedly large unquenching effects [31].

The high sensitivity of B to the presence or not of dynamical 
quarks raises an interesting question: how much does the actual 
value of B depend on the details of QCD? More precisely, how 
much does it depend on the values of its parameters, i.e., the num-
ber of colours Nc and the quark masses? Since only the stable 
spectrum enters the maximisation (2), the crucial point is to un-
derstand how the stability of hadrons changes as the parameters 
are varied, and how this affects the overall scale of total cross sec-
tions. This is precisely the purpose of this paper. In Section 2 we 
discuss the large-Nc limit. In Section 3 we discuss the chiral limit. 
In Section 4 we discuss the regime of large quark masses, making 
contact with the quenched approximation. Finally, in Section 5 we 
draw our conclusions.

2. Large Nc

We begin by discussing the behaviour of high-energy total cross 
sections in the ’t Hooft large-Nc limit [40–42]. The first point we 
want to clarify is precisely how this limit has to be taken. Eq. (1)
describes the asymptotic high-energy behaviour of σtot , i.e., σtot for 
center-of-mass energies much larger than any other mass/energy 
scale in the problem. Formally, Eq. (1) has to be written as

lim
s→∞

σtot

log2 s
= B(1 − κ) ≤ 2B . (3)

The quantity B is well defined for every finite Nc , as the num-
ber of stable states is finite, and so it is sensible to consider its 
large-Nc limit.1 It is therefore clear that we take first the large-s
limit, and then the large-Nc limit (differently, for example, from 
what is done in Refs. [43–45]). Taking, instead, first the large-Nc

limit, and then the large-s limit, the leading contribution to σtot

1 Although exactly at Nc = ∞ there is an infinite tower of stable mesons with 
unbounded spin, so that maxa B(a) may not exist there, this does not affect our 
limiting procedure.
comes from “Pomeron exchange” (understood here as the exchange 
of gluons between the colliding mesons), and is of order O(1/N2

c ), 
according to the usual counting rules.2 In Ref. [45] the two limits 
s → ∞ and Nc → ∞ are taken together, as the particles’ momenta 
are scaled proportionally to 

√
Nc as Nc is increased. The resulting 

total cross section is proportional to log2 Nc . In our approach we 
do not have to scale the momenta, since they are formally taken 
to infinity before taking the large-Nc limit; all that matters is the 
large-Nc behaviour of the spectrum.

The large-Nc behaviour of meson and baryon masses is well 
known [40–42]: meson masses are of order O(N0

c ), while baryon 
masses are of order O(Nc). Roughly speaking, this is due to the 
fact that while mesons are always qq̄ states, independently of Nc , 
baryons are made of Nc quarks. Concerning higher-spin states, no 
higher-spin QCD-stable meson is known in the “real world”, i.e., for 
Nc = 3, and unless this is a subtle consequence of O(1/Nc) correc-
tions to the meson masses at Nc = ∞, there is no reason to expect 
the situation to change when Nc is large (but finite). On the other 
hand, a QCD-stable higher-spin baryon exists for Nc = 3, namely 
the � baryon ( j(�) = 3

2 ). In the baryon sector, large-Nc QCD pos-
sesses an effective light quark spin–flavour contracted symmetry 
SU (2N f ) for N f degenerate light quark flavours [46,47]. Real-
world QCD is close to have an exact N f = 2 isospin symmetry, 
so for the physically most interesting case, at large Nc the con-
tracted symmetry is SU (4). Here we work with 2 +1 light flavours 
(up/down + strange), neglecting isospin breaking effects. Further-
more, the large-Nc limit is taken keeping Nc odd, so that baryons 
are fermions as in the real, Nc = 3 case.

Dashen, Jenkins and Manohar argued in Refs. [46,47] that in 
terms of this emergent, large-Nc symmetry, baryons can be classi-
fied in multiplets corresponding to the irreducible representations 
of the contracted spin–flavour symmetry. These representations are 
labelled by the isospin i, the spin j, and a further quantum num-
ber k, related to the number Ns of strange quarks as Ns = 2k. 
The allowed values of k for given i, j are obtained via the usual 
composition rule for angular momenta, so that |i − j| ≤ k ≤ i + j. 
Large-Nc consistency conditions, obtained by imposing unitarity in 
pion–baryon and kaon–baryon scattering processes, constrain the 
form of the baryon masses as follows [46,47],

M = Ncm0 + m1k + 1

Nc

[
m2i(i + 1) + m3 j( j + 1) + m4k2

]

+O(1/N2
c )

≡ M1(i, j,k) +O(1/N2
c ) , (4)

with mass parameters mi = mi(Nc) which possess a 1/Nc expan-
sion. This formula is valid for j = O(N0

c ), i.e., fixed spin as Nc

becomes large.
The mass formula (4) is the starting point for the study of the 

large-Nc behaviour of the prefactor B defined in Eq. (2). Low-lying 
higher-spin states have masses differing from the lightest baryon 
mass by terms of order O( j( j + 1)/Nc), so for j = O(N0

c ) they 
will become stable at large enough Nc , since meson masses are 
O(N0

c ) and so the available phase space for decays shrinks to zero. 
The corresponding B(a) is of order B(a) = O(1/N2

c ), which leads to 
σtot behaving as expected according to the naive large-Nc counting 
rules. However, it is also possible that states with even higher spin 

2 The leading contributions to meson–meson elastic scattering amplitudes are ac-
tually expected to be of order O(1/Nc), and correspond to the tree-level amplitudes 
of the large-Nc mesonic effective Lagrangian [42]. However, being real, forward tree-
level amplitudes do not give a contribution of order O(1/Nc) to σtot via the optical 
theorem. A nonzero contribution of order O(1/N2

c ) to σtot is obtained, instead, from 
the imaginary part of the one-loop meson–meson elastic scattering amplitudes. (We 
thank the referee for clarifying this point.)



M. Giordano, E. Meggiolaro / Physics Letters B 744 (2015) 263–267 265
Table 1
Results for the mass parameters mi and for δm′ from the fit of the (isospin 
averaged) masses of the octet and decuplet baryons with the mass formula 
M(a) = M1(i(a), j(a), k(a)), Eq. (4) (first column), and with the formula M(a) =
M1(i(a), j(a), k(a)) + m̃(a) , with constrained m̃(a) (third column). Statistical errors on 
the simple fit (second column) and uncertainties due to higher-order terms (fourth 
column) are also reported. Masses are in MeV.

M1 εstat M1 + m̃ εNc

m0 287.73 0.27 287.4 0.3
m1 429.3 2.7 432 3
m2 101.8 2.5 97 5
m3 198.2 1.9 202 4
m4 −109.6 5.4 −125 15
δm′ −67 10 −55 12

are stable at large Nc , which could change the large-Nc behaviour 
of B . To see this, recall that a state with a given value of k is 
possible only if k ≤ i + j. Furthermore, if 2k = Ns out of Nc quarks 
are strange quarks, one has i ≤ Nc/2 −k, and so also j ≥ 2k − Nc/2, 
which is effective if Ns ≥ (Nc + 1)/2 (as j ≥ 1/2). Consider now 
the � baryon, defined for arbitrary Nc as the baryon made of Nc

strange quarks, therefore having j(�) = k(�) = Nc/2 and i(�) = 0. 
In a hypothetical decay of � into a baryon with Ns ≥ (Nc + 1)/2
strange quarks and spin j, one has from the bound above

� j ≡ Nc

2
− j ≤ Nc − Ns ≡ 2�k ; (5)

in a hypothetical decay to a state with Ns < (Nc + 1)/2, since 
2�k > (Nc − 1)/2 and � j < (Nc − 1)/2, the bound (5) still holds. 
As a consequence, a decay to a baryon with a decrease of � j in 
spin has to come with at least a decrease of � j in (the absolute 
value of) strangeness, which requires the emission of � j kaons.3

It is therefore possible that the mass balance between initial and 
final states remains negative, as it is for Nc = 3, therefore making 
the � stable also at large Nc .

To make this statement quantitative one should know the exact 
mass formula, rather than its approximation (4), which in princi-
ple is valid only for j = O(N0

c ). However, numerical studies on the 
lattice [48] (up to Nc = 7) find good agreement with the mass for-
mula (4) also for states with j = O(Nc). This indicates that higher-
order terms in Eq. (4) give small contributions even for j =O(Nc), 
so that they can be neglected (in a first approximation), and Eq. (4)
can be used to give a sensible quantitative estimate of the stability 
of the � baryon at large Nc .

Working in the isospin limit, one can estimate the mass pa-
rameters mi at Nc = 3 by fitting the (isospin averaged) masses 
of the physical octet and decuplet baryons with the mass for-
mula (4). The error on the masses is taken as the sum (in quadra-
ture) of the experimental error and of an extra uncertainty, ac-
counting for isospin breaking and electromagnetic effects. This 
uncertainty is estimated as the standard deviation of the masses 
in an isomultiplet, and set to 1 MeV for isosinglets (raising this 
to 2–3 MeV yields similar results). The fit of the baryon masses 
with Eq. (4) yields effective parameters, which include contribu-
tions from higher-order terms neglected in Eq. (4). To estimate 
the corresponding uncertainty εNc , we have repeated the fit in-
cluding an extra term m̃(a) in the mass of each baryon, i.e., using 
the expression M(a) = M1(i(a), j(a), k(a)) + m̃(a) to fit the mass of 
baryon a. The parameters m̃(a) were constrained to be “small” by 
means of the usual constrained-fit techniques [49]. In particular, 
we took these extra parameters to be normally distributed around 

3 We keep assuming that no higher-spin meson becomes stable for Nc < ∞. 
Notice that decays into more baryons/antibaryons are forbidden at large Nc by a 
negative mass difference of order O(Nc) between initial and final states.
zero with standard deviation σ = 10 MeV. This choice is motivated 
by the fact that they are of order O(1/N2

c ), and that the simple 
fit indicates that mi are of order O(100 MeV). The results are re-
ported in Table 1. Variations of the resulting parameters between 
the two fits give an estimate of εNc , and are at most of 15%.

All the parameters but m4 are positive at Nc = 3; if their sign 
remains the same at large Nc (which is supported by lattice re-
sults [48]), it is easy to obtain a bound on the mass balance �M1, 
plugging Eq. (5) into Eq. (4),

�M1 ≡ m1�k + 1

Nc

[
−m2i(i + 1) + m3� j

(
Nc

2
+ j + 1

)

+ m4�k

(
Nc

2
+ k

)]

≤
[

m1 + 2m3

(
1 + 1

Nc

)]
�k →

Nc→∞ [m1 + 2m3] |Nc=∞�k .

(6)

Within our approximations, stability of the � baryon at large 
Nc is ensured if (�M1 − 2�k · MK )|Nc=∞ < 0 for all possible 
channels. Using the bound (6), this is certainly the case if δm ≡
(m1 + 2m3 − 2MK )|Nc=∞ < 0. The numerical results of Ref. [48] in-
dicate that |mi | decreases as Nc is increased, so using mi(Nc = 3)

instead of mi(Nc = ∞) should make the bound even more con-
servative. On the other hand, O(1/Nc) corrections to the meson 
masses have not been measured in lattice simulations of the full 
theory. Numerical results for the quenched theory [50] suggest that 
the variation of meson masses between Nc = 3 and Nc = ∞ is of 
the order of 10%. A reasonable upper bound on δm is therefore 
δm ≤ m1(3) + 2m3(3) − 2MK (3) · 0.9 ≡ δm′ . Our final result is

δm′ = −67 ± 10stat ± 12Nc MeV . (7)

We remind the reader that this bound is rather loose, since it does 
not include the negative contribution of m4, and it overestimates 
m1 and m3. Moreover, δm′ remains negative up to a reduction of 
around 15% of MK .

Our conclusion is that stability of the � baryon at large-Nc

is at least plausible. If it is indeed so, since the corresponding 
B(�) is of order B(�) = O(N0

c ), then one would necessarily have 
B = O(N0

c ). This is in contrast with the expected O(1/N2
c ) from 

the naive large-Nc counting rules, but not in contradiction, as that 
expectation holds in the limit Nc → ∞ at large but fixed s.

3. Chiral limit

We now turn to the chiral limit. More precisely, we consider 
the N f = 2 chiral limit, with only the up and down quark masses 
set to zero. In this case the spectrum of the theory contains three 
massless pseudoscalar Goldstone bosons (the pions) due to the 
spontaneous breaking of SU (2) chiral symmetry. Note that mass-
less particles of spin 0 leave Eqs. (1) and (2) unchanged [31].

Generally speaking, the chiral limit can only turn stable states 
into unstable states, and not vice versa, due to the possibility of 
decaying through the emission of massless pions. This possibility 
however does not concern the � baryon. Whether or not the �
remains stable depends on how much its mass, and the masses 
of the other strange baryons and of the kaon, change as the chi-
ral limit is approached. It is likely that the difference between the 
physical masses of these particles and the corresponding masses in 
the chiral limit is of the order of the current light-quark masses, 
i.e., a few MeV. On the other hand, M� − M X − MK �Ns is neg-
ative and of magnitude O(0.1–1 GeV) for all baryons X in the 
octet and in the decuplet, i.e., at least two orders of magnitude 
larger than the expected effect of the chiral limit on the kaon and 
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strange baryons masses. The effect of this limit on the masses of 
nuclei is again expected to be a few MeV, so we expect that the 
� remains the dominant particle. An interesting consequence of 
this result is that our “Froissart-like” bound, Eqs. (1) and (3), is not 
singular in the N f = 2 chiral limit. The Froissart–Łukaszuk–Martin 
bound, on the other hand, is singular in this limit since the prefac-
tor BFLM = π

M2
π

diverges for massless pions.4 Concerning the double 
chiral/large-Nc limit, it is likely that the prefactor B comes out to 
be of order O(N0

c ). Indeed, the estimate given in Section 2 is likely 
to remain valid due to the small effect of having massless up and 
down quarks on the masses of non-Goldstone particles.5

4. Large quark masses

Let us finally discuss the limit of large quark masses. For quark 
masses larger than some critical value, purely gluonic states (glue-
balls) will become stable, and will enter the set over which B(a)

has to be maximised. Eventually, as the quark masses are further 
increased, at most only a finite number of higher-spin mesons and 
baryons will remain stable against decays, which can now take 
place through the emission of glueballs, since these have finite 
masses in the limit mq → ∞. Of course, the values of B(a) cor-
responding to mesons and baryons keep decreasing as the quark 
masses increase. The bottom line is that for large enough quark 
masses, the relevant part of the spectrum over which one has 
to maximise B(a) will consist only of stable higher-spin glueballs. 
Eventually, as mq → ∞, one will end up with the quenched the-
ory, where B has been shown to be at least larger than B Q �
1.09 GeV−2 [31].

It is interesting to remark that, according to our results, in 
the problem at hand the full and the quenched theory are not 
equivalent in the large-Nc limit. This is essentially due to the fact 
that while baryon masses grow like Nc , the stability of glueballs 
is not improved as Nc grows, since they can always decay into 
light mesons (at least for physical quark masses), whose masses 
are essentially unaffected by the large-Nc limit. Therefore, glue-
balls do not enter the game, while baryons still play an important 
role even though they become heavier and heavier. It is however 
worth noticing that both the quenched and the unquenched the-
ory are expected to have B = O(N0

c ) at large Nc . Indeed, we have 
argued above that the full theory is likely to show this behaviour 
due to the stability of the Nc-quark � baryon. In the quenched 
theory, glueball masses are O(N0

c ), and a few higher-spin stable 
states exist at Nc = ∞ according to lattice results [51], and so 
B Q =O(N0

c ).

5. Conclusions

In this paper we have discussed how hadronic total cross sec-
tions at high energy depend on the details of QCD, namely on 
the number of colours and the quark masses. The starting point 
is the relation between the overall scale of total cross sections and 
the hadronic spectrum found in Ref. [31], in the framework of the 
nonperturbative approach to soft high-energy scattering [23–30] in 
Euclidean space [32,33].

4 The non-optimality of BFLM had been already pointed out in Ref. [44].
5 The N f = 3 chiral limit (with also the strange quark mass set to zero) is more 

problematic: in this case also kaons become massless, and the � baryon is no 
longer stable. The role of dominant particle will presumably be taken by some sta-
ble, higher-spin nuclear state, but we cannot make any definite statement. In the 
double chiral/large-Nc limit, as the masses of nuclei are likely to be of order O(Nc), 
one would still have B = O(N0

c ) if there were stable nuclei with spin O(Nc) (but 
not larger), but again we cannot make any definite statement.
Our results indicate that while a “Froissart”-type behaviour 
σtot ∼ B log2 s is rather general, relying only on the presence of 
higher-spin stable particles in the spectrum, the value of B can de-
pend quite strongly on the details of the theory, and particularly on 
the quark masses. (For example, it is likely to be discontinuous as 
the N f = 3 chiral limit or the limit mq → ∞ are approached.) On 
the other hand, we expect that B behaves smoothly as the large-Nc

or the N f = 2 chiral limits are approached. There are three results 
that we want to highlight in particular.

• In the large-Nc limit, B is likely to be of order O(N0
c ), due to 

the stability of the � baryon, in contrast with the expectation 
based on the naive counting rules.

• The more restrictive “Froissart-like” bound of Eqs. (1) and (3)
is not singular in the N f = 2 chiral limit, again due to the 
stability of the � baryon.

• In the large-Nc limit, the full and the quenched theory are not 
equivalent for what concerns total cross sections.
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