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Abstract The identification of year-round geographical ranges and the quantification of the 

degree of migratory connectivity are fundamental for a successful conservation of migratory 

bird populations. The Stone-curlew Burhinus oedicnemus is a species of conservation concern

in Europe, but its ecology and behaviour are relatively poorly investigated. In particular, its 

migratory behaviour and the location of the wintering ranges of most European populations 

are not known in details because of the lack of specific studies and scarcity of ringing 

recoveries. This study aimed to identify the wintering areas of a Stone-curlew population 

breeding in the Taro River Regional Park (Parma, northern Italy) by integrating the 

information belonging to ringing recoveries (n = 2), geolocators (n = 7), and GPS data loggers

(n = 2). Furthermore, we compared two approaches to infer location of an assumed stationary 

bird using geolocator data. The different sources were quite coherent, indicating that tagged 

Stone-curlews did not leave the Mediterranean basin throughout the year and passed the 

winter in Sardinia or in Tunisia. The recorded wintering sites coincided with areas where 

breeding, possible resident, populations are reported, further emphasising the importance of 

these areas for the conservation of the species throughout the annual cycle. To our knowledge,

our study represents the first thorough analysis aimed at understanding the movements of a 

Mediterranean population of Stone-curlews. Furthermore, it proves the great potential of the 

used tracking devices to provide information about migration and non-breeding sites for 

elusive species, for which mark-recapture/re-sighting techniques revealed profound 

limitations.
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Introduction

The understanding of bird migratory behaviour has been greatly improved in recent years 

thanks to the advances of tracking technologies. Nevertheless, the currently available devices 

differ consistently with respect to the type and quality of collected data and, consequently, for 

the range of research questions they can help to answer (Bridge et al 2011). The largest 

devices, satellite-tags (GPS and PTT), generally provide the most accurate location data but, 

for the moment, are still limited to larger birds (but see Wikelski et al 2007). The accuracy of 

one of the smallest devices, miniaturized light-based geolocation tags (geolocators), is far 

less, but these are the only devices currently suitable for tracking small birds on a continental 

scale (Bridge et al 2013). However, all tags represent an extra load for the tagged animal to 

carry, and the impact of any logger has to be considered (Costantini and Møller 2013). 

Although of lower accuracy, the information collected by geolocators is still useful, especially

for species of conservation concern, since data on their winter distribution and ecology are 

strongly needed for successful conservation management and proper allocation of funds 

(Faaborg et al 2010). In particular, the possibility to tag significant numbers of birds, due to 

the relatively low costs of these devices, allows a proper understanding about how 

populations are geographically connected throughout the annual cycle, which is an important 

step to assess their vulnerability to environmental changes (Marra et al 2011; Fraser et al 

2012; McKinnon et al 2013). The identification of year-round geographical ranges and the 

quantification of the degree of migratory connectivity are indeed fundamental to investigate 

the factors that govern population size of migratory birds (Webster et al 2002; Taylor and 

Norris 2010).

The Eurasian Stone-curlew Burhinus oedicnemus is the only member of Burhinidae in Europe

and it is a species of European conservation concern (SPEC3, BirdLife International 2004). Its

distribution is rather fragmented especially in Italy, where its main breeding areas are located 

in the South and in the major Islands (Sicily and Sardinia) (Brichetti and Fracasso 2004). The 

species is relatively poorly known both considering its ecology and behaviour, especially in 

the Southern part of its distribution range. With the exception of British populations (Green et 

al 1997), wintering ranges and routes are not well understood because of the lack of specific 

studies and the scarcity of ringing recoveries (Cramp and Simmons 1983; Vaughan and 

Vaughan Jennings 2005). According to the scant available information, the species is an intra-
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Palaearctic migrant, but several populations are probably facultative migrant or even resident 

(see Vaughan and Vaughan Jennings 2005 and references therein).

This study aimed at identifying the pattern of movements of a Stone-curlew population 

breeding in Northern Italy by integrating the information belonging to ringing recoveries, 

geolocators and GPS data loggers.

Methods

Study area and bird ringing

Our study was carried out in the Taro River Regional Park (Parma, Italy; 44.74 N, 10.17 E), 

which hosts one of the largest populations of Stone-curlew in continental Italy (Giunchi et al 

2009). In the period 1997-2012 a total of 555 chicks and adult birds were captured and most 

of them ringed with metal and colour rings both during the breeding and non-breeding season 

using different trapping methods (i.e. mist-nets, fall traps, dip nets and by hands).

Geolocators

Between April and July 2010 a total of 20 Stone-curlews (13 males and 7 females genetically 

sexed according to Griffiths et al 1998) were captured on their nests with a fall trap and fitted 

with geolocator tags (Mk18-L, 1.5 g, British Antarctic Survey) attached to Darvic rings placed

on tibia (n = 10) or tarsus (n = 10). Two tagged birds belonged to the same breeding pair both 

in 2010 and in 2011 (see Table 1). In the year following the deployments, 12 individuals (5 

tarsus-tagged and 7 tibia-tagged) were re-sighted and 10 of them were recaptured using fall 

traps or mist-nets and playback. Even though we have not performed a rigorous estimation of 

the re-sighting probability in our study area, a re-sighting rate of 60% was expected according

to non systematic observations collected in previous years. While the legs of all re-trapped 

tarsus-tagged birds were in good conditions, one resighted and two recaptured tibia-tagged 

birds showed superficial wounds on the tarsus near the tibio-tarsal joint, probably due to the 

rubbing caused by the two pins of the devices that were not cut down before deployment. 

Being near the ground, the recovered tarsus-mounted loggers were rather worn, and two of 

them failed prior to the autumn migration. Another tibia-mounted logger gave inconsistent 

data due to a malfunction. Analyses were thus carried out on 7 individuals. We used BASTrak 

Decompressor software (British Antarctic Survey) to download light intensity data and the 

package GeoLight (Lisovski and Hahn 2012) within software R 3.0.1 (R Core Team 2013) to 

estimate daily latitude and longitude. Geolocator Mk18-L measured the intensity of visible 

light every minute on an arbitrary scale between 0 and 64 and recorded the maximum 
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measurement every 5 minutes. Using a light threshold of 3, we manually checked all light 

transitions in order to identify dawn and dusk transitions. We rejected obvious shading events 

as well as data within 3 weeks around equinoxes (Hill 1994, Lisovski et al. 2012). Light data 

were corrected for internal clock drift using linear interpolation. While during the breeding 

season Stone-curlews are active both during the day and the night, during the non-breeding 

season birds are mainly active from sunset to sunrise (Cramp and Simmons 1983; Vaughan 

and Vaughan Jennings 2005). This behaviour, associated also to breeding duties (e.g. 

incubation), determined a lot of shading in our data, which produced a strong reduction of 

available fixes useful for the analysis.

Data were analysed using two different approaches. In the first method (Method1), loggers 

were calibrated using on-bird light data recorded during the 2010 nesting period (in-habitat 

calibration, Lisovski et al 2012), i.e. from the deployment date to 2010/08/15 (CAL period), 

when birds were at their breeding sites. Sun elevations angles (i.e. the angle of the sun above 

the horizon when the light intensity passed the threshold of 3) were individually calculated by 

minimizing the latitudinal distance between the deployment site and the median of latitudes of

derived CAL fixes using the function getElevation from package GeoLight (Table 1). These 

values were used to estimate the locations throughout the year, given the expected short 

distance of migratory movements of Stone-curlews and the reported similarity of habitat types

used during the breeding and non-breeding seasons (Vaughan and Vaughan Jennings 2005). 

We did not try to reconstruct the migratory routes and the location of stopover sites, because 

of the above-mentioned high level of shading causing high levels of uncertainty over short 

time periods, and the very low longitudinal component (see Results). For this reason, we only 

considered locations included in the period 2010/12/01-2011/02/28 (WINT period) when we 

expected that birds were in their wintering sites according to the available data on spring 

arrivals and autumn departures summarized by Vaughan and Vaughan Jennings (2005) or 

collected in our study area (Giunchi et al, unpublished data). During the WINT period we 

assumed that the birds were stationary for analysis purposes. Wintering ranges were 

determined using fixed normal kernel density estimation with reference smoothing parameter 

(href), assuming a bivariate normal distribution (Worton 1995). We calculated kernel densities 

encompassing 50% (KDE50%) of the maximum density using the R-package adehabitatHR 

(Calenge 2006; Figure S1) and we assumed that the most likely location of the wintering site 

for each bird was the centroid of KDE50%. As a reference, we provide the results of the same 

approach applied on the fixes obtained during the nesting period (NEST period), from the 

deployment date to 2010/08/15 and from 2011/04/12 to recapture (Figures S2 and S3A, 
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respectively). 

The second approach of data analysis (Method2) partly follows Porter and Smith (2013). 

These authors emphasized that, while longitude estimations are expected not to be biased in 

one direction provided that shading events equally influence dusk and dawn transitions, the 

same is not true for latitude estimation. In this last case shading leads to a shorter estimate of 

daylight duration, which translates in a systematic displacement of points northwards when 

daylight duration is shorter at more northerly latitudes (after September equinox and before 

March equinox) and southwards when daylight duration is shorter at more southerly latitudes 

(after March equinox and before September equinox). Assuming that geolocator tags cannot 

record more light than direct sunlight with nil cloud and nil shading, it follows that the 

latitude of breeding locations of tagged Stone-curlews should be best approximated by the 

northernmost latitude estimate, while the southernmost location should best approximate the 

latitude of wintering location. These locations should represent the reading from perfectly 

clear and bright sky. Given the above and in order to buffer possible light reading errors of the

tag, we determined the sun elevation by minimising the latitude distance between the 

deployment site and the average of the three northernmost locations recorded during the 

NEST period for each geolocator tag (Table 1). This approach assumes the occurrence of at 

least three perfectly clear unshaded transition pairs (i.e. dawn-dusk or dusk-dawn) during the 

NEST period. As the normality assumption for longitudes distribution was reasonably 

satisfied, the corresponding longitude was calculated as the average of the longitudes of all 

NEST fixes. The resulting locations are reported in Figure S3B. The most likely WINT 

locations were then calculated using the same philosophy: longitudes were estimated as 

averages of longitudes of all WINT fixes available for each bird, while latitudes were 

obtained by considering the average among the three southernmost available WINT latitudes.

GPS

In September 2012 two female Stone-curlews, trapped in a pre-migratory roost-site by means 

of mist-nets, were fitted with GPS data loggers with solar power and radio download (Harrier 

GPS logger, ca. 16 g, Ecotone, Poland). The weight of the GPS corresponded to ca. 3.5% of 

birds body weight. GPS were fitted using the leg-loop harness method (Rappole and Tipton 

1991) with loop length determined according to the allometric function reported by (Naef-

Daenzer 2007). GPS were set to record one fix every 30 minutes. Birds were followed for a 

few weeks before their departure. Both birds appeared in good conditions after the release, 

running and flying without impediments. In spring 2013 the two tagged Stone-curlews were 
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recorded in the study area and we were able to download the wintering data at the beginning 

of April. As the sample size was rather small, we did not attempt to test statistically the side 

effects of the GPS. However, for both birds we were able to document at least one breeding 

attempt and, in one case, we recorded successful hatching by observing one chick about one-

week old. Unfortunately, for unknown reasons (possibly for insufficient sunlight due to cloud 

cover or temporary feather obstruction), both GPS did not record/store locations from the 

period October-December 2012 and thus we have no data regarding the autumn migration. 

Given the scale and the aims of this paper, we do not provide any detailed analyses of the 

winter home ranges and of spring migratory routes.

Results

Ringing recoveries

As reported in Figure 1, only two ringing recoveries belonging to the non-breeding seasons 

are available for the study area. Both birds were ringed as chicks in the Taro Park and were 

found dead during the winter in Sardinia in the following year or in Corsica after three years.

Geolocators

Table 1 summarises the collected data. As anticipated in the Methods, the number of available

fixes was relatively low due to the significant amount of shading caused by the behaviour of 

the studied species. The most likely wintering locations estimated by means of Method1 and 

Method2 are reported in Figure 1. Winter locations calculated according to Method2 were 

relatively less dispersed and, as expected, generally displaced southward with respect to those 

obtained by Method1 (distance between wintering sites: mean±SD = 77.7±56.8 km; bearing 

from Method1 to Method2 wintering site: alpha=180°, r=0.72, n=7). The patterns obtained by 

the two approaches were however quite consistent. Winter locations were clearly distributed 

along a North-South axis which connects the study area to Tunisia, passing through Corsica 

and Sardinia. Two groups of birds could be identified in both analyses: 1) birds wintering 

within the Mediterranean basin (mainly in Sardinia); 2) birds passing the winter in Tunisia 

(two individuals according to both methods). While the paired distances between breeding 

sites were quite small (mean±SD = 4.8±2.9 km, n=21; nearest neighbour distance = 1.3±1.2 

km, n=7), the paired distances between wintering sites were of two order of magnitude higher 

(Method1: paired distance = 438.9±341.9 km, nearest neighbour distance = 113.4±113.1 km; 

Method2: paired distance = 375.8±313.4 km, nearest neighbour distance = 95.0±84.8 km) and

roughly comparable to the scale of migratory movements (average distance between capture 
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and wintering sites: Method1 = 707.7 ± 381.6 km; Method2 = 778.7 ± 335.5 km). Both birds 

belonging to the same breeding pair spent the winter  between Sardinia and Corsica according

to Method1 or both in Sardinia according to Method2. The distances between the estimated 

WINT locations were one order of magnitude higher than those calculated between the 

estimated NEST locations (Method1: NEST distance = 54.1 km, WINT distance = 213.6 km; 

Method2: NEST distance = 26.2 km, WINT distance = 181.5 km).

GPS

As reported in Figure 1, the two GPS-tagged birds spent at least part of the winter in the North

of Tunisia, about 900 km from the ringing area. Interestingly, the two wintering areas were 

relatively near (distance between the centre of mass of winter fixes = 80.0 km) and located not

far from the coast. Since GPS dataset was not complete, we do not know whether the two 

birds migrated together in autumn. In spring they migrated independently, starting their 

migration on different days (March 9th and 19th) and following different routes, even though 

both birds headed toward the Italian peninsula and reached their breeding area flying over the 

mainland (Figure 1). In 2013 the distance between their nests sites was 4.3 km.

Discussion

To our knowledge, this study represents the first thorough analysis aimed at understanding the

movements of a Mediterranean population of Stone-curlew and one of the few ever reported 

for the species. Indeed, up to now the only available data belonged to a handful of relatively 

small ringing recovery datasets (e.g. Spina and Volponi 2008; SEO/BirdLife 2012), which did 

not allow any satisfactory inference about the movement pattern of European populations, 

except for the British one (Green et al 1997).

The different sources of information we combined were quite coherent. Our results show 

good performance of geolocator tags on a short distance migrant species mainly active during 

the night. Most other geolocator shorebird studies have involved long distance movement (e.g

Minton et al 2011; Klaassen et al 2011; Johnson et al 2012; Smith et al 2014). The two kinds 

of analysis of geolocator data produced comparable results. It should be noted, however, that: 

1) data from Method2 were relatively more homogeneous and 2) the pattern of sun elevation 

angles estimated by Method2 (generally higher sun elevation angles for tibia than for tarsus 

loggers) was expected due the higher body shading experienced by tibia loggers (for Method1

no pattern was evident). These considerations suggest that Method2 is a reliable simple 

method to infer latitude of an assumed stationary bird (e.g. during wintering or at stopover 
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site; see also Porter and Smith 2013), while Method1 is more suitable for temporal movement 

information. As some shading variation will invariably be present in a significant dataset, 

Method1 is likely to produce a greater error than Method2 when used to determine the 

unknown static location.

Our results confirmed the expected short-range movements by the Stone-curlew (Cramp and 

Simmons 1983, Vaughan and Vaughan Jennings 2005). No tagged birds reached sub-Saharan 

Africa, contrary to what has been suggested by some Authors (e.g. Brichetti and Fracasso 

2004). As we marked only adults, this particularly short migration range could be explained 

by considering the hypothesis put forward by Green et al (1997) that mostly first year birds 

moved to northern sub-Saharan regions. However, the possible effect of climate change 

should not be neglected, as a lot of studies have documented a recent northern shift of 

wintering ranges of several birds species, especially short-distance migrants, which has led to 

decreased migratory distances and sometimes even to residency (Fiedler et al 2004; Newton 

2008; Doswald et al 2009; Knudsen et al 2011). Unfortunately, this second hypothesis cannot 

be tested, because of the lack of historical data on the migratory behaviour of the species.

It is worth mentioning that all birds captured in the same place (the two paired geolocator-

tagged birds and the two GPS-tagged birds trapped in the same roost site) showed a noticeable

latitudinal separation in winter, which suggests that  the Stone-curlews belonging to the same 

breeding population tend to disperse over a relatively wide area during the non-breeding 

season. As almost all recorded wintering areas of tagged Stone-curlews occurred in regions 

where resident populations are reported/suggested (del Hoyo et al. 1996), it can be speculated 

that the observed distribution of birds during winter could be due to competition with local 

residents, which could force immigrant birds to use less favourable habitats and/or to spread 

over a wide area, as documented for other species (see Newton 2008 for references).

The recorded winter distribution of tagged Stone-curlews has significant management 

implication. Indeed, the majority of birds seem to spend the winter in Sardinia which indicates

that the conservation of the species throughout its full annual cycle is a Mediterranean and, 

especially, an Italian/European issue. In particular, Sardinia, which also hosts the main Italian 

breeding population (Brichetti and Fracasso 2004, Tinarelli et al. 2009), has to be considered 

crucial for the conservation of the species in Italy, both during the breeding and the non-

breeding seasons. It is important to notice that in Method1 even though the centroid of kernel 

densities distribution of most birds was located in Sardinia or near the Sardinian coasts, it is 

actually difficult to decide whether these birds spent the winter in Corsica or Sardinia, given 

the low accuracy of geolocator fixes (see Figure S2). In Sardinia the winter presence of Stone-
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curlews is well known (Brichetti and Fracasso 2004; Tinarelli et al 2009), while very few 

winter records are reported for Corsica (Thibault and Bonaccorsi 1999). For this reason, 

Corsica seems to be less likely a significant wintering area, even though recent investigations 

indicate that the species is rather more widespread than previously thought at least during the 

breeding season (Seguin 2011).

While we do not have any information regarding the autumn migratory routes, in spring GPS-

tagged birds did not fly over Sardinia and Corsica, but headed toward the Italian peninsula. 

However, no tagged birds passed the winter in the Italian peninsula, even though wintering 

populations of the species are reported from Central/Southern Italy and from Sicily (Brichetti 

and Fracasso 2004; Tinarelli et al 2009; Dragonetti et al 2014).

The presented data prove the great potential of tracking devices for understanding the 

movement pattern by the Stone-curlew. This information is extremely important for designing

an effective conservation plan for the species, especially considering the recently revealed 

unexpected gene flow among Mediterranean populations of the species (Mori et al 2014).
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Figure captions

Fig. 1 Maps reporting the distribution of ringing recoveries available for the study area (filled 

triangles), of winter locations (filled dots) and spring migratory routes (black and grey thick 

lines) of the two GPS-tagged birds and of winter locations of geolocator-tagged birds (squares

and diamonds) estimated by means of Method1 (A, centroid of KDE 50%) or Method2 (B, 

latitude = the latitude of the southernmost available WINT fix; longitude = average of all 

available WINT fixes). Open square and diamond indicate the two members of the same 

breeding pair. In Figure 1B horizontal bars indicate the SD of the distribution of WINT 

longitudes, while vertical error bars are equal to the range of the three southernmost WINT 

fixes considered in the analysis (see Methods).

Fig. S1. Maps reporting the filtered WINT fixes (filled dots) of geolocator-tagged birds 

estimated by means of Method1 along with kernel densities encompassing 50% (KDE 50%) 

of the maximum density.

Fig. S2. Maps reporting the filtered NEST fixes (filled dots) of geolocator-tagged birds 

estimated by means of Method1 along with kernel densities encompassing 50% (KDE 50%) 

of the maximum density.

Fig. S3. Distributions of the most likely NEST locations of geolocator-tagged birds estimated 

by means of Method1 (A, centroid of KDE 50%) or Method2 (B, latitude = average and range

of the three northernmost available NEST fixes; longitude = average±SD of all available 

NEST fixes). Open square and diamond indicate the two members of the same breeding pair. 

Deployment and recapture sites of each bird were considered coincident (Nest site in the 

figure) because their distance was always less than 150 m.
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Table 1 Summary of the data collected with geolocators.

Sun elevation angle

Animal
ID

Sex Deployment Mount Tracking
days

Available
fixes

CAL
fixes*

NEST
fixes**

WINT
fixes***

Method1 Method2

IAAX M 2010-06-04 Tarsus 365 181 24 33 76 -4.4° -5.3°

IAFP M 2010-05-01 Tarsus 362 87 16 16 32 -4.3° -5.1°

IBFA† M 2010-04-30 Tarsus 347 138 28 28 58 -5.2° -5.7°

IBFC M 2010-05-29 Tibia 337 128 18 27 28 -3.6° -4.5°

IBFF F 2010-06-04 Tibia 360 148 20 52 80 -4.4° -5.0°

IBFK† F 2010-07-09 Tibia 316 143 21 48 34 -4.2° -4.6°

IBHP F 2010-06-03 Tibia 344 236 55 77 73 -4.5° -5.3°

† Members of the same breeding pair
* Considered period: [deployment, 2010/08/15]
**  Considered period: [deployment, 2010/08/15] and [2011/04/12, recapture]
*** Considered period: [2010/12/01, 2011/02/28]
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Figure 1432
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Figure S1434
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Figure S3438




