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Abstract—There is a growing interest in the development of
(nearly) zero-energy buildings (ZEBs), i.e., buildings that deliver
(nearly) the same amount of energy to the supply grid as it is
drawn from it on a yearly basis. This paper investigates the ability
of such ZEBs to performing in a truly self-sustainable fashion, i.e.,
minimising the frequency of energy exchange with the outer grid,
through appropriate charging/discharging actions of a storage
system. A realistic simulation environment called ENERGYTEST is
developed on purpose to simulate the electrical load consumption
in an aggregate of houses, in order to perform the sustainability
assessment.

Index Terms—zero energy building (ZEB), electrical loads, PV,
energy storage, building energy use, energy model, simulation.

I. I NTRODUCTION

The increasing penetration level of energy produced from
renewable sources has been one of the main drivers in the
recent design of so-called demand side management (DSM)
techniques. The fluctuating and non-programmable nature of
renewable energy makes it simpler and more desirable for the
smart grid to shift the electric domestic loads, when possible,
to the periods of power generation. While the effects of DSM
actions might not be relevant at the level of a single house, as
not so many loads can be shifted in time without causing in-
convenience to the people in the house, the advantages become
more considerable at an aggregated level. In this perspective,
many authors in the related literature have proposed aggregated
strategies to implement peak-shaving actions [1] and [2], to
coordinate energy generation and consumption [3], to aggregate
prosumers (i.e., people that consume energy and at the same
time generate power via small PhotoVoltaic (PV) or wind
plants) [4].

The energy management of individual buildings, or clusters
of buildings, is becoming a particularly attractive topic of
interest, in view of recent regulations, see for instance the
directives 2002/91/EC and 2010/31/EU from the European
Union1, which aim at improving the energy performance of
buildings within the Union. In particular, such directivesrequire
all member states to guarantee by the end of 2020 that all
new buildings are nearly zero-energy buildings (and 2018 for
new buildings occupied and owned by public authorities). The
notation of (nearly) zero-energy buildings (ZEBs) refers to the
ability of the buildings to deliver (nearly) the same amountof
energy to the supply grid as it is drawn from it on a yearly basis.

1http://ec.europa.eu/energy/efficiency/buildings/buildings en.htm.

Recent results related to the optimal management of ZEBs,
either at a home or at a neighbourhood level can be found
in [5] and [6].

One drawback of the philosophy underlying ZEB manage-
ment is that not always the grid will be able to accommodate the
(small) energy produced by ZEBs due to a variety of reasons
usually related to grid management and stability (e.g., thegrid
network is already working near the power constraints, or it
could be too expensive or too complicated from a control
perspective to handle small flows of powers in the Building-
to-Grid direction). For such reasons,it is highly desirable from
the grid perspective that the ZEBs should be able to work
in an isolated manner as much as possible, and reduce the
energy exchange with the grid, especially in the direction from
the building to the grid. In this view, the objective of this
paper is to simulate the energy management of an aggregate
of houses (e.g., a building or an entire neighbourhood), and
to show how much self-sustainable it is in practice. We make
the assessment of sustainability as a function of the energy
produced by the aggregate of houses (e.g., as a function of the
size of available PV panels on the roofs), and of the capacity
of a battery that can be used to store locally produced energy,
when this exceeds the local energy demand. Then, the stored
energy is given back to the building when needed without
requiring the same energy from the grid. Obviously, the more
energy is produced by the building, and the larger is the capacity
of the battery to store energy, the more sustainable is the
building. Overall, the contribution of this paper is two-fold:
i) the assessment of actual self-sustainability of an aggregate
of houses as a function of self-generated energy and battery
capacity, and (ii) the implementation of a realistic simulator,
called ENERGYTEST, to evaluate the stochastic fluctuations of
domestic electrical loads in a whole year. Note that throughout
the paper, for the sake of simplicity, we limit our discussion to
the management of the only electrical energy.

This paper is organised as follows. Section II illustrates in
greater detail our simulation tool, including the description of
the neighbourhood scenario, the modelling of the electrical
loads, the PV model, the battery model and the software
architecture. Section III summarises and discusses the results
obtained after a whole year simulation of the described sce-
nario. Finally, Section IV concludes the paper and outlines
current line of research of the authors.
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II. BUILDING ENERGY SIMULATION TOOL

In this section we describe all the models that have been
used by our building energy simulation tool ENERGYTEST to
simulate the electrical energy generation and consumptionin an
aggregate of buildings. Also, we briefly describe the software
architecture of the simulation environment.

A. Smart Building Model

Figure 1 schematically exemplifies our building energy sim-
ulation tool. An individualhousing unitis the basic element
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Fig. 1. Smart building model.

of the smart building model: it includes both the electrical
loads and the house occupants who interact with the domestic
appliances. A housing unit may use self-generated energy (e.g.,
from PV panels), energy bought from the outer power grid, or
both. In addition, we assume that a smart meter is deployed at
each housing unit to monitor the energy consumption and to
transmit this information to other parties. Note that a housing
unit can range from a single flat in a building to a single-
family detached house. Thus, the same model can be applied
to an apartment building, a complex of several buildings, upto
a whole neighbourhood.

We assume that an individual housing unit can also own
an energy storage system. In turn, this provides some extra
flexibility to the house energy management system, that we
will denote as home agentfrom now on, to improve the
sustainability of the housing unit. For instance, the home agent
may decide under which conditions and criteria the energy
produced by the PV panel should be used to recharge the
energy storage or to satisfy the energy demands of the electric
appliances in the housing unit. Note that the PVs can be
associated with a single flat in a building or to the entire
building. In the second case, we will have anaggregate agent
that is responsible for sharing the available energy between
the housing units that are part of the same aggregate. Also a
hybrid solution is available if some renewable energy resources
(RESs) are owned by single houses (e.g., PV panels), and some
other RESs are shared among all the houses/buildings in the
neighbourhood, e.g., a wind plant. Finally, we assume that all
housing units are also connected to a low voltage power grid.

B. Electrical Loads

A housing unit usually contains a large variety of electrical
loads. For simplicity, we group household electrical loadsinto
two broad categories:background loadsand interactive loads.
The first class of electrical loads is typically driven by automatic
controllers (e.g., thermostats or timers) and house occupants set
target objectives (e.g., a desired temperature) but they are not
concerned with the power demand patterns of the appliance
(i.e., when it is on or how much power is consumed). Typical
examples of background loads are heaters and air conditioners.
The second class of electric loads are directly controlled by
house occupants who manually turn them on and off. Inter-
active loads include a diverse collection of appliances, such
as cooking equipments (e.g., microwaves, kettles, cookers),
washing machines, home entertainment devices (e.g., TVs)
and lighting. In the following, we describe the physical and
stochastic models that we have used to simulate the power
consumption of some of the most common (and energy-hungry)
household appliances: air conditioners (ar), heat pumps (hp),
fridge (fr), freezer (fz), water heater (wt), dishwasher (dw),
washing machine (wm), cooking (co) and lighting (lt).

1) Background Loads:We focus on background loads that
are controlled by a thermostat because the energy consumption
can be easily expressed though a mathematical equation that
relates theinternal temperatureof the appliance at timet,
say θ(t), with the physical characteristics of the environment
(ambient temperature), appliance attributes (thermal insulation,
efficiency), house occupants’ activities, appliance status (on
or off state), users’ preferences and demanded comfort lev-
els [7]–[9]. More formally, letθo be the thermostat set-point,
while θmax and θmin are the upper and lower temperature
limits for the set-pointθo. Typically, θmax = θo+ θb/2, and
θmin=θo−θb/2, whereθb is known as the thermostat deadband.
Thus, a thermostatically controlled appliance should maintain
its internal temperature within the range specified by the user
to meet his expectations (e.g., a comfortable room temperature,
frozen food, hot water). This goal can be expressed through the
following set of mathematical equations:

s(tn)=















−1 if θmin ≤ θ(tn) ≤ θmax {ac,fr,fz} ,

1 if θmin ≤ θ(tn) ≤ θmax {wh, hp} ,

0 otherwise.

(1a)

θ(tn+1) = βθ(tn) + (1−β)

[

Ta + η
s(tn)P

A

]

+Φ(tn) , (1b)

wheres(tn) is the status (on or off) of the appliance at time-
step tn, γ is the time-step duration (i.e.,γ = tn+1 − tn),
A is the thermal conductivity (units of Wh/◦C), mc is the
thermal mass (◦C/W), β is the appliance’s energy efficiency:
β = exp (−γA/mc) [7], Ta is the ambient temperature,P
is the constant power consumed by the appliance to cool
down/heat up its thermal mass (units of W), andΦ(tn) is a
noise process used to introduce stochastic thermal fluctuations
due to house occupants’ behaviours. We now further explain
function Φ(tn) for the single household appliances modelled
in ENERGYTEST, while in Section III-A we list the specific
values of the model parameters for each appliance. For the sake



of simplicity we assume that the processΦ(tn) depends only on
thehouse occupancy level, i.e., the number of house occupants
at timetn. The occupancy model that we have implemented in
ENERGYTEST is a stochastic model that defines the schedule
of indoor/outdoors activities based on the role of each home
occupant (e.g., worker or non-worker). Then, individual activity
patterns are aggregated into a home-level activity profile.This
approach has the advantage to easily accommodate for different
sizes and types of households. A detailed description of the
procedure to calculate the house occupancy level and all input
data can be found in [2].

a) Air conditioner/heat pump:The number of house oc-
cupants affects the indoor air temperature [9], as well as the
number of air changes per room [10]. Without loss of generality,
we model all these phenomena by assuming that each occupant
causes a random increase (decrease in case of heat pumps) of
the ambient temperature by 0.5◦C for every hour he/she spends
in the house.

b) Refrigerator/Freezer:Intuitively the internal tempera-
ture of a refrigerator and freezer is affected by the openingof
the appliances [11]. For simplicity we assume that an opening
event causes an increase ofθ(t) by 0.5◦C, and that each
occupant generates on average one opening every two hours.

c) Electrical water heater:The energy consumption of
water heaters varies with the usage profiles of hot water, which
depend in turn on the habits of home occupants. For the sake
of simplicity we only consider large water draw events, which
cause the temperature of the water in the tank to decrease
down toθmin [12]. Then, we assume that each home occupant
randomly generates one large water draw event per day.

2) Interactive Loads:The energy demand profile of interac-
tive loads may depend in a complex and unpredictable manner
on the household habits and the house occupancy. Hence, it
might be difficult to provide physical models of the energy
demands of interactive loads based on the stochastic occurrence
of a diverse set of miscellaneous events. For these reasons the
energy consumption of interactive loads is commonly modelled
through stochastic models that characterise the average load
curves. Such stochastic models are typically derived from his-
torical data on energy consumption of different appliances[9]
and from survey data describing what people do and when [13],
[14]. Specifically, in ENERGYTEST we have considered two
classes of interactive electrical loads. One group is denoted as
cycle-based loadsbecause it is characterised by well-defined
operation cycles (i.e., dishwashers and washing machines).
A second group is denoted asvariable loadsbecause their
operations are not constrained by a cycle (i.e., cooking and
lighting).

In the case of cycle-based loads we assume that there is
a single operation cycle per day with a given probability
τi, i ∈ wm,dw. Then, let us assume that each day can be
partitioned intom time periods of equal duration (e.g., for
hourly load curves the time period is one hour andm= 24).
The following tuple of random variables is utilised to model
the energy consumption of an operation cycle:

(T on

i , Eon

i , Don

i ), i ∈ {wm,dw} , (2)

whereT on

i
is the index of the time period when the appliance

is used,Eon

i
is the energy (Wh) consumed during the entire

operation cycle, andDon
i

is the duration (in time steps) of
the operation cycle. For simplicity we assume that the power
consumption is constant during the entire cycle. For instance,
the tuple (9AM , 800Wh, 2h) indicates that the appliance is
turned on at 9AM, the operation cycle consumes 800Wh and
the cycle duration is two hours, which correspond to a power
consumption of 400W. Clearly,T on

i
, Eon

i
andDon

i
are random

variables that follow arbitrary distributions. We rely on the
results shown in [14] to empirically derive those distributions
in the case of washing machines and dishwashers, as better
explained in Section III-A.

In the case of variable loads we adopt a slightly different
stochastic model for the energy consumption. Specifically,we
associate with each time-periodk of a day the following tuple
of variables

(Rk

i
, P k

i
), i ∈ {co,lt} , (3)

whereRk
i

is the probability that the appliancei is used in the
time periodk, andP k

i
is the average power (W) consumed by

the appliance in the time periodk. The rationale behind this
modelling approach is that it facilitates the characterisation of
appliances that are typically used many times during the day.
Again, we rely on the results shown in [14] to empirically derive
the distributions ofRk

i
andP k

i
. Note that such distributions vary

over the months of the year (e.g., lights are used differently
in summer and winter seasons), and we includedseasonality
effectsin our model accordingly.

C. Solar Photovoltaics (PV) Panels

The power generated from the PV panels can be computed as

P (tn) = a ·G(tn) + b ·G(tn) · Ta(tn) + c ·G(k)2, (4)

where at a given time steptn, Ta(tn) is the outdoor temperature
(◦C), G(tn) is the irradiance (inW/m2), and a, b and c are
constructive parameters that take into account the technology,
the shape and the size of the PV panels. Specifically, we have
useda = 22.92, b = −0.1140 and c = −0.0030, and we have
scaled the power output as a function of the desired size of the
PV panels. More details of the model underlying equation (4)
can be found, for instance, in reference [15]. To obtain realistic
values of the output power of the PV panel we have used
temperature and irradiance data collected by a meteorological
station in the town of Pisa (Italy). over a period of one year.

D. Energy Storage

We consider here a simple model for the battery. We assume
that the battery is either charged or discharged with a constant
power within every time step (1 second in our simulations).
Accordingly, its state of charge (SOC) varies as specified by
the following equations

SOC(tn) = SOC(tn−1) + Pb ·∆T/Cb

subject to

{

Pb ≤ Pb ≤ Pb

SOCmin ≤ SOC(tn) ≤ SOCmax

, (5)

wherePb is the power delivered (positive) or taken (negative)
from the battery in an interval of time∆T , Cb is the capacity



of the battery and the SOC is expressed as a fraction of the
overall capacity. The two constraints in (5) refer to the fact
that the charge/discharge power is limited, and that the SOC
can not exceedSOCmax (e.g., the capacity), and can not be
smaller than a minimum level of energySOCmin to avoid
endangering the lifetime of the battery. In our simulations, we
fixed the maximum discharge power to 150 kW, the maximum
charge power equal to 50 kW and studied the same scenario for
different capacities of the battery. Also, we assumed that there
were some charge-discharge losses equal to5%. The model and
the data are consistent with, for instance, [16].

E. Software Design

ENERGYTEST is a discrete event simulator that is built using
C++ and perl. The core of the simulator is written in C++
by taking advantage of the Adevs library2. This C++ library
supports the construction of discrete event models using the
Parallel DEVS formalism, which is designed to facilitate the
description of discrete event systems through simple state
transition tables [17]. Specifically, an atomic DEVS model is
defined by specifying:i) the set of input events,ii) the set
of output events,iii) the set of sequential states,iv) the time
advance function, which determines the lifespan of a state,v)
the external transition function, which defines how an input
event changes a state of the system,vi) the internal transition
function, which defines how a state of the system changes when
the elapsed time reaches to the lifetime; andvii) the output
function, which defines how a state of the system generates
an output event when the elapsed time reaches to the lifetime
of the state. Then, we have developed DEVS-based objects
for modelling the behaviour of the following entities: Home
Occupant, Housing Unit, Appliance, PV, Battery, Agent, Meter,
Power Grid, as well as the interactions between them. Finally,
the perl scripting language is used to set the simulation scenario.

III. E VALUATION

We have used our simulator ENERGYTEST to assess the impact
of energy storage and PV installed capacity on the self-
sustainability of a building. To this end we have simulated a
building composed of ten housing units which are served by a
centralised PV panel and an energy storage (see Figure 1). The
building agent operates as follows:

• if the energy supplied by the PV panel is greater than the
energy demand from household appliances, then the energy
surplus is used to charge the battery;

• if the battery is fully charged the energy in excess is passed
to the grid or, if not possible, is “discarded”. In practice,
the discarded energy could be employed in a useful manner
(e.g., to heat the water in a boiling unit), but such features
have not been modelled here;

• if the energy demand from household appliances is greater
than the energy supplied by the PV panel, the energy storage
is first used to compensate for the supply-demand mismatch
and if not enough, the residual energy is drawn from the grid.

Then we try to address the following issues:i) What should
be the “optimal” capacity of the PV panel and of the energy

2http://web.ornl.gov/∼1qn/adevs/

TABLE I
PARAMETER SETTINGS FOR BACKGROUND LOADS.

air cond/heat pump refrigerator freezer water heater

θo 22-23◦C/19-20◦C 5◦C -24◦C (55±3)◦C
θb 1◦C 4◦C 4◦C 3◦C
A (62.5±12.5)Wh/◦C 3.21Wh/◦C 1.06Wh/◦C 13.6Wh/◦

mc 1◦C/kW (20±4)◦C/W (13.65±2)◦C/W (4.28±1)◦C/W
η 2.5 3 1.95 2
γ 1 sec 1 sec 1 sec 1 sec
P 1.5KW 120W 150W 300W

storage system to provide a zero-energy building? ii) How much
energy produced by the PV panel has to be fed back to the grid
or discarded? andiii) How do these behaviours change when
the thermostat set points are modified?

In the following tests each housing unit has two air condi-
tioners/heat pumps. The maximum number of house occupants
in each household is randomly selected in the range[2, 4]. The
house occupancy patterns are generated as described in [2].The
complete list of parameter values for the energy consumption
model of each appliances is provided in the following section.
The statistical significance of the results is obtained through
ten independent replications of each test. Note that a test
corresponds to the simulation of the energy consumption in
the whole building for a period ofone year.

A. Input Data

In order to simulate the building energy performance, it is
important to select appropriate model parameters which are
close to those in the real world. There are several studies that
have determined physical-based load models of thermostatically
controlled appliances though appliance performance tests[9].
Similarly, a number of investigations of the thermal properties
of buildings are available in the literature [?]. In this study the
parameter settings for background loads in Equation (1b) are
taken from [8], [9], [18], [19]. Furthermore, we have made the
assumption that each air conditioner (heat pump) is used for
cooling (heating) an area of 25m2, while a capacity of 50 litres
is considered for the water heaters. For the sake of clarity,all
input data for the background loads are listed in Table I. The
parameters relative to the interactive loads have been extracted
from [14], a comprehensive survey of electrical power demand
and energy consumption in 251 households in England over
the period May 2010 to July 2011. Specifically, Figure 2(a)
and Figure 2(b) show the hourly usage pattern and distribution
of per-cycle energy consumption of dishwashers and washing
machines. The cycle durationDon for a dishwasher andDon

for a washing machine are modelled as follows:

Don
dw
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30m if Eon
dw

∈[100:600]

1h if Eon
dw

∈[700:1000]

1.5h if Eon
dw

∈[1100:1300]

2.0h if Eon
dw

∈[1400:1700]

2.5h if Eon
dw

∈[1800:2100]

3h if Eon
dw

∈[2200:2300]

, Don
wm=







































































30m if Eon
wm∈[100:200]

40m if Eon
wm∈[300:400]

1h if Eon
wm∈[500:800]

1.5h if Eon
wm∈[900:1300]

.

(6)
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Fig. 2. Input data for interactive loads

Figure 2(c) shows the hourly average power consumption for
cooking and lighting, which are two non-cycled loads. For the
sake of realism, a seasonal factor is applied to power con-
sumption of lighting. More specifically, power consumptions
are increased in the winter season by a factor 1.7, while in
the summer season are decreased by a factor 0.5. Please note
that the load curves of lighting and cooking implicitly accounts
for the fact that the use of such appliances is more frequent in
specific periods of the day. Therefore, we can assume thatRk

i
in

Equation (3) is only needed to introduce a noise process in the
load curve. Finally, we used real outdoor temperature, humidity
and solar irradiance levels for our simulations, corresponding to
1-year data collected from meteorological datasets of the town
of Pisa (Italy).

B. Results

Figure 3 shows the fraction of the total energy demand of
the building that is supplied by the PV, the energy storage
system and the power grid respectively, for different values of
installed PV capacities and battery capacities. The 2 diagrams
in Figure 3 correspond to different temperature set points for
air conditioners and heat pumps. The interesting aspect arising
from our simulations, is that the ZEB is not truly self-sufficient
in the sense that even assuming that the PV can provide a
power equal to 90 kW, only about 40% of the consumed
energy is actually supplied by the PV cells. The situation
improves rapidly by introducing a local energy storage that
can compensate for the mismatches between renewable energy
production and energy demands. Specifically, an electricity
storage with capacity of 30kWh reduces the amount of energy
supplied by the grid over one year from 60% to 40%. This
reduction increase of a further 15% if a larger storage system
with capacity up to 240kWh is installed. Interestingly, it can be
seen by comparing the results in Figure 3(b) and Figure 3(a)
that if home occupants are willing to accept a small discomfort
by varying the temperature set points of air conditioners and
heat pumps by one degree (from 20◦C to 19◦C in the winter
and from 22◦C to 23◦C in the summer), the building self-
sustainability improves only by a small fraction. To gathera
more detailed insight of the system dynamics, Figure 4 shows
the energy produced by the PV panel while Figure 5 shows the
energy load and the profiles of the battery SOC over a period
of 5 days in the first week of June for the same parameter
settings used in Figure 3(a). First of all, Figure 4 shows that
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Fig. 3. Fraction of energy demands that are supplied by the PVpanel, the
energy storage and the power grid

the power generated by the PV panel is a bell-shaped curve with
random distortions due to solar irradiance variabilities caused
by atmospheric conditions. This is an expected result, as the
solar power density over a period of one day is also a bell-
shaped curve. Figure 5(a) depicts the energy load profile of the
entire building (in kW consumed per minute). The comparison
of the mismatch between the power demand and the solar power
supply is very useful to explain the state of charge of the battery.
Indeed, Figure 5(b) shows that the battery is typically fully
charged during the morning, when the PV panel produces an
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From top to the bottom, it is shown the energy load profile, thebattery state-
of-charge, the energy supplied by the PV panel and the energysupplied by the
storage to the building

energy surplus with respect to the overall energy demand of
the building. Then, the battery gets discharged in the evening
(see Figure 5(d)) when the energy produced by the PV panel is
smaller than the required load. During the day, when the storage
is already fully charged, the PV panel must feed back its energy
surplus to the power grid. Thus, we can conclude that the zero-
energy conditions do correspond to self-sustainability only if a
significant investment in storage capacity is undertaken.

IV. CONCLUSIONS

The definition of ZEBs usually involves the balancing of the
generated and consumed energy in a building. However, if the
power is generated and consumed at different times of the
day, this might imply that the buildings are far from being
truly self-sustainable, as they continuously have to buy and
sell energy from the outer grid. This feature is not simply
handled by current power grids, especially as the number of
buildings participating to the energy exchange programme is
increasing. In this paper, we developed a realistic electrical load
simulator to quantify the mismatch between the generated and
consumed electrical energy, to emphasise the importance ofa
storage system, a battery in our example, to support the power
generated by a PV panel. In particular, the self-sustainability
of the same building with a PV plant of 90 kW, increases from
40% to 80% if it is equipped with a 240kWh battery (i.e., the
electrical energy that must be bought from the grid is reduced
from 60% to 20% , respectively). Current work of the authors

is focusing on equipping the home agents with smart demand-
side management functionalities (e.g., to shift the usage of
washing machines/dishwashing), and to quantify their effect in
improving the self-sustainability of the buildings.
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