Elsevier Editorial System(tm) for Food Control Manuscript Draft

Manuscript Number: FOODCONT-D-14-00722R2

Title: DNA and Mini-DNA Barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market.

Article Type: Research Article

Keywords: DNA Barcoding, Mini-DNA Barcoding, Sparidae, COI gene, mislabeling, seafood identification.

Corresponding Author: Dr. Andrea Armani,

Corresponding Author's Institution:

First Author: Andrea Armani, Dr.

Order of Authors: Andrea Armani, Dr.; Lisa Guardone, Dr.; Lorenzo Castigliego; Priscilla D'Amico; Antonino Messina, Dr.; Renato Malandra; Daniela Gianfaldoni, Prof.; Alessandra Guidi, Prof.

Abstract: The morphological similarity among Sparidae species, which are characterized by a different market price, represents a serious problem for their trade and for stock management, since it encourages fraud for substitution. The most accredited morphological method for their identification is based on the dental-plate, but this approach is not simple and cannot be used for prepared products. When molecular methods are used the DNA degradation induced by cooking is the main drawback. In this work, we collected 314 reference tissues belonging to 75 Sparidae species and we produced a dataset of full (FDB) and mini-barcode (MDB) reference sequences starting from DNA extracted from fresh and ethanol-preserved tissues using universal primes. Moreover, some fresh samples were cooked. The FDB was successfully amplified in 91% (fresh), 50% (cooked) and 81% (ethanolpreserved) samples, while the amplification rates of the MDB were considerably higher in case of cooked (100%) and ethanol-preserved (94%) samples. The same primers were used for the amplification of the DNA obtained from 58 market samples (MS). All the DNA barcodes were compared with BOLD and GenBank using IDs and BLAST analysis. FDB was able to provide unambiguous specieslevel identifications for 53 (78%) and 44 (64.7%) reference samples analyzed on BOLD and GenBank, respectively. Mini-DNA barcode (MDB) showed a lower discriminating power with 32 (45.7%) and 29 (41.4%) sequences unambiguously matched to a species on BOLD and GenBank. However, the MDB allowed to identify all the reference sequences as belonging to the Sparidae family. FDB and MDB showed a similar performance in analyzing the MS, allowing to highlight 21 (38%) mislabeled MS. Our study, while confirming the FDB as a reliable tool for fish authentication, proposes the MDB as a promising tool to recover molecular information in case of cooked products.

Dear Editor,

We would like to submit the following manuscript (19 pages) for possible publication:

"DNA and Mini-DNA Barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market"

Among the globally marketed fish, the species belonging to the family Sparidae are excellent foodfishes of high economic value. This family includes about 115 species divided in 33 genera and nowadays 85 species of Sparidae are commercialized worldwide.

The morphological similarity among Sparidae species, which are characterized by a different market price, represents a serious problem for their trade and for stock management. The specialized dentition is the most used criterion for their identification but, the marked similarities, which represent a problem even in the presence of whole specimens, make it almost impossible to distinguish the prepared or processed products during the inspection.

The DNA-based techniques are a useful tool to overcome the problems related to morphological identification and DNA barcoding has been successfully used to enforce traceability regulations in the seafood chain. Despite excellent performances when applied to fresh products, DNA barcoding has shown some weaknesses in case of processed products. For this reason, and considering that targeting a shorter region would increase the likelihood of successful amplification from degraded DNA, in this study, together with the full-barcode, the ability of a mini-DNA barcode was also assessed to produce a correct identification of Sparidae species.

In this work, we collected 314 reference tissues belonging to 75 Sparidae species and we produced a dataset of full and mini-barcode reference sequences using universal primes. The same primers were used for the amplification of the DNA obtained from 58 market samples (MS). All the DNA barcodes were compared with BOLD and GenBank using IDs and BLAST analysis. Full-DNA barcode was able to provide unambiguous species-level identifications for an higher percentage of samples than the mini-barcode on both databases. However, the mini-barcode allowed to identify all the reference sequences as belonging to the Sparidae family. Both barcodes showed a similar performance in analyzing the MS highlighting 21 mislabeled MS.

Our study, while confirming the full-DNA barcoding as a reliable tool for fish authentication, shows that the mini-barcode is a valid approach to recover molecular information from processed samples, allowing to assess the authenticity of imported products preventing commercial fraud, but also to enforce fishery control.

Best regards,

Andrea Armani

Dear Editor,

we revised the manuscript as suggested by the Reviewer and here below you can find our answers, comments and rebuttals. To facilitate the revision process all the manuscript revised sections have been written in green font.

Best Regards

Reviewers' comments:

The manuscript presents important and interesting results about the use of molecular markers in the identification of fishes trade as a monitoring tool. It also presents the development of a dataset of reference sequences to species of the Sapridae family. I saw these two subjects as the main objectives of the paper.

Although the modifications made in the text according to suggestions of previous reviewer, the text still confuse with the presentation of many information. I suggest that the text should be presented with two main sections. One: the data of the development of dataset of reference sequences presented as the traditional barcode papers and succinctly and; Two: the tests of market samples that could include the section of amplification problems in different types of preservation methods. This second section must receive greater attention and emphasis as it is the main objective of the article. At this time, this matter is diluted in the text.

The addition of section 3.4.3 (Mislabeled products: what and why?) was very interesting because it calls attention to main objective of paper.

Other specific comments:

Introduction

- Please add a reference of the information about the increase in the number of marketed species;

The sentence has been changed and a reference has been added (line 56-58)

Regarding Italy, we did not report any reference because this statement comes from the comparison of many Ministerial Decrees that have been issued from 2002 to 2010 by the Ministry of Agriculture Food and Forestry Policies. Considering that we made this analysis personally, we think this sentence could be considered as an authors' note (line 59).

- Lines 109-116 - The market samples were compared with dataset of reference samples after their deposit in Bold and Genbank databases or only with the sequences previously found in theses databases? It was not clear.

The market samples were compared to Bold and Genbank databases enriched by the reference sequences produced in this study, since they have been released immediately after submission. The sentence has been modified (line 111-114).

Material and Methods

- section 2.2 - What is the purpose to cooking some samples to the analysis? I believe that it was made to test the extraction method of DNA and the DNA integrity of processed samples, but it is not clear in the text. Link it with market samples that could be obtained in several forms.

A new sentence has been added in the section to better explain the purpose (line 128-129)

- lines 150-162 - the amplification protocol could be summarized for all sample type.

In our opinion the PCR protocol cannot be summarized. We have maintained the original organization of the text but we clarified the reason of the separation between fresh and other kind of samples (line 161).

- section 2.9 - What is the aim in use phylogenetic analysis? Link it with the sample identification and explain the differences in the success rate in the correct species and sequences identification of ID-BOLD, Blast and phylogenetic analysis.

We prefer to limit the Material and Methods section to a synthetic description of the analytical approach and methodologies. A short explanation was provided in Results and Discussions section (line 320-321).

Results and discussion

Overall the text presents many interesting information, but that making the text difficult to read. I suggest, if possible a reduction of the text in this section, highlighting only the main results.

Maybe some secondary finds could be presented as a supplementary material or even be removed. For example the analysis of identification problem in BOLD and Genbank are so long and diverts the reader's attention from the main purpose of the manuscript, the test of market samples.

I suggest highlight in this point only the possible causes of the misidentification and put the explanation for each case as a supplementary material.

- Section 3.1 - I suggest that the section will not splitted in subsections. It possible presenting and discussing these results of amplification in a single and more flow text.

- the results about % of amplification to different samples (lines 213-215 and 237-238) could be transfer to section 3.3 where these results are discussed. Here you could concentrate in the results and discussion about the rate of success of the sequences in discriminate the species.

The section 3.1 has been revised as suggested and the results about % of amplification of different samples have been moved to section 3.3. However, we prefer to keep two subsections (section 3.1.1 and 3.1.2) because, in our opinion, this can make easier the manuscript understanding.

Section 3.2 - the subsections 3.2.1, 3.2.2 and 3.2.3 could be reduced a only one subsection such as was made with MDB analysis (subsection 3.2.5). Beside this the text is very long and confused. I suggest the reduction of the entirely text highlighting only main results making a text more concise and clear to readers.

Subsections 3.2.2 and 3.2.3 have been incorporated in section 3.2.1. Secondary findings and specific explanations regarding identification issues found during the comparison to BOLD and

Genbank have been removed from the text and reported in the Table 6SM (new Table). The section has been shortened and focused on DNA barcoding results according to the suggestion.

Section 3.4 - It is not clear if to checking the MS sequences the authors used the dataset produced by them or only the sequences previously deposited in the BOLD and GenBank databases.

A sentence has been added at the beginning of the section (line 417).

- Similarities among Sparidae species complicate morphological identification
- DNA barcoding has proven to be a useful tool for seafood products inspection
- Full and mini-DNA barcodes have been compared for the identification of Sparidae
- Full-barcode shows higher discriminatory ability but a lower amplification rate
- Analysis of marketed samples confirmed widespread mislabeling in the seafood chain

1	DNA and Mini-DNA Barcoding for the identification of Porgies species (family Sparidae)
2	of commercial interest on the international market.
3	
4	Andrea Armani*, Lisa Guardone, Lorenzo Castigliego, Priscilla D'Amico, Antonino Messina,
5	Renato Malandra°, Daniela Gianfaldoni, Alessandra Guidi.
6	
7	FishLab, Department of Veterinary Sciences, University of Pisa, Via dellePiagge 2, 56124, Pisa
8	(Italy).
9	°Wholesale fish market of Milan, ASL of Milan, Viale Molise, 20, 20137 Milan (Italy).
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	*corresponding author:
22	Postal address: FishLab, Department of Veterinary Sciences, University of Pisa, Via delle Piagge
23	2, 56124, Pisa (Italy)
24	Tel: +390502210207
25	Fax: +390502210213
26	Email: <u>aarmani@vet.unipi.it</u>

27 Abstract

28 The morphological similarity among Sparidae species, which are characterized by a different market price, represents a serious problem for their trade and for stock management, since it 29 encourages fraud for substitution. The most accredited morphological method for their 30 identification is based on the dental-plate, but this approach is not simple and cannot be used for 31 prepared products. When molecular methods are used the DNA degradation induced by cooking is 32 the main drawback. In this work, we collected 314 reference tissues belonging to 75 Sparidae 33 species and we produced a dataset of full (FDB) and mini-barcode (MDB) reference sequences 34 starting from DNA extracted from fresh and ethanol-preserved tissues using universal primes. 35 36 Moreover, some fresh samples were cooked. The FDB was successfully amplified in 91% (fresh), 50% (cooked) and 81% (ethanol-preserved) samples, while the amplification rates of the MDB were 37 considerably higher in case of cooked (100%) and ethanol-preserved (94%) samples. The same 38 39 primers were used for the amplification of the DNA obtained from 58 market samples (MS). All the DNA barcodes were compared with BOLD and GenBank using IDs and BLAST analysis. FDB was 40 41 able to provide unambiguous species-level identifications for 53 (78%) and 44 (64.7%) reference samples analyzed on BOLD and GenBank, respectively. Mini-DNA barcode (MDB) showed a 42 lower discriminating power with 32 (45.7%) and 29 (41.4%) sequences unambiguously matched to 43 a species on BOLD and GenBank. However, the MDB allowed to identify all the reference 44 sequences as belonging to the Sparidae family. FDB and MDB showed a similar performance in 45 analyzing the MS, allowing to highlight 21 (38%) mislabeled MS. Our study, while confirming the 46 FDB as a reliable tool for fish authentication, proposes the MDB as a promising tool to recover 47 molecular information in case of cooked products. 48

49

Keywords: DNA Barcoding, Mini-DNA Barcoding, Sparidae, *COI* gene, mislabeling, seafood
identification.

52

53 **1. Introduction**

Trade globalization is one of the main challenges for the identification of fishery products. In fact, due to the depletion of the stocks of the most requested fish on the market, alternative and underutilized species are now exploited. As a consequence, a huge variety of species is nowadays commercialized over the world. For instance, 1700 different species of seafood are now available in the U.S. (FDA, 2014). In Italy, the number of official denominations for seafood species has increased from about two hundreds to more than nine hundreds in about ten years (authors' note).

The international authorities, due to an increased attention on nutritional, ecological and safety concerns related to seafood, have issued a traceability legislation in the fishery sector. The European Union has adopted a very stringent approach: seafood must be labeled with the commercial and the scientific name, the production method, the catch area (EU Reg. No. 104/2001 and 404/201) and, from the 1st January 2015, the category of fishing gear (EU Reg. No. 1379/2013).

65 A global seafood traceability network requires the harmonization of regulatory and commercial practices across the whole fishing sector. However, some developing Countries still have 66 67 difficulties to conform to the rules of the international trade chain (Environmental Justice Foundation 2012; Armani, D'Amico, Castigliego, Sheng & Gianfaldoni, 2012a; Cawthorn, 68 Steinman & Witthuhn, 2012; Clarke, 2009). Moreover, considering that a single commercial name 69 70 can be used at the international level for different species, unscrupulous traders could take profit from this confusion by selling illegal products. Recent surveys showed that frauds are becoming 71 widespread and seafood mislabelling has reached alarming levels (Armani, Tinacci, Giusti, 72 73 Castigliego & Gianfaldoni, 2013; Carvalho, Neto, Brasil & Oliveira, 2011; Wong & Hanner, 2008). Among the globally marketed fish, the species belonging to the family Sparidae (Porgies) are 74 excellent food-fishes of high economic value (Antonucci, Costa, Aguzzi & Cataudella, 2009). 75

This family includes about 115 species divided in 33 genera (Nelson, 2006) although, according to Fishbase, the species are 133 and the genera 35 (http://www.fishbase.org/Nomenclature/FamilySearchList.php?). On the basis of the official lists consulted (Table 1SM), 85 species of Sparidae are commercialized worldwide with different tradedesignations, and other unexploited species could attract the interest of the market in the future.

Porgies are very similar to each other and their morphological identification can only be performed by skilled operators. The specialized dentition, on the basis of which the Sparidae family has been grouped in six subfamilies, is the most used criterion for their identification (Smith & Smith 1986; Akazaki, 1962). These marked similarities, which represent a problem even in the presence of whole specimens, make it almost impossible to distinguish the prepared or processed products during the inspection.

The DNA-based techniques are a useful tool to overcome the problems related to the 87 morphological identification (Armani, Castigliego & Guidi, 2012c) and the DNA barcoding, based 88 on the analysis of the first part of the cytochrome c-oxidase I (COI) gene sequence, is the most 89 promising approach (Hebert, Ratnasingham, & de Waard, 2003). In fact, this DNA region usually 90 91 shows a greater interspecific than intraspecific variation (Hajiababei, Singer, Hebert & Hickey, 2007; Hebert et al., 2003) allowing discrimination among species. Consequently, many researchers 92 93 have investigated the use of DNA barcoding to enforce traceability regulations and to fight illegal 94 fishing and frauds (Handy, Deeds, Ivanova, Hebert & Hanner, 2011; Ward, Hanner, & Hebert, 2009; Yancy, Zemlak, Mason, Washington & Tenge, 2008). Even though this method has been 95 96 successfully used for the identification of fresh seafood products (Di Pinto, Di Pinto, Terio, Bozzo 97 & Bonerba, 2013; Cawthorn et al., 2012; Barbuto, Galimberti, Ferri, Labra & Malandra, 2010; Wong & Hanner, 2008), it has shown some weaknesses in the case of processed products, due to the 98 99 DNA fragmentation induced by heating (Cawthorn et al. 2012; Wong & Hanner, 2008). At the 100 same time, the DNA degradation induced by prolonged storage in ethanol, which can occur in museum reference samples (Hajibabaei, de Waard, Ivanova, Ratnasingham & Dooh, 2005), could 101 102 affect the amplification of the full COI barcode region, limiting the construction of sequence datasets, necessary for seafood "molecular inspection". These considerations and the possibility that 103 fish substitutions could occur not only at the market level but also during catering activities, has 104

prompted us to assess, together with the full-DNA barcode (FDB) fragment, also the capability of a
 mini-DNA barcode (MDB) in identifying the Sparidae species of commercial interest for the
 international market.

In this work, we collected 75 species of Sparidae, from fresh and ethanol-preserved reference 108 tissues, and we produced a dataset of full-length COI barcode reference sequences by using 109 universal primers. Then, by aligning these sequences and those retrieved from databases, we 110 developed a new reverse primer to amplify a mini-DNA COI barcoding region of ~ 190bp. The 111 FDB and MDB obtained from the reference samples were compared to BOLD and GenBank 112 databases and immediately released. The barcodes obtained from the 58 market samples were then 113 114 compared to both databases enriched with the sequences produced in this study. Lastly, a phylogenetic analysis using the Neighbor-Joining (NJ) method was performed. The information on 115 the label of the market samples were evaluated in the light of the molecular results. 116

117 **2. Materials and Methods**

118 *2.1 Sample collection: reference and market samples*

119 Eighty whole fresh fish were collected and morphologically identified by the Official 120 veterinarian of the wholesale market of Milan. Two hundred thirty four ethanol-preserved reference tissues were kindly provided by Research Institutes. Overall, we collected 75 species, distributed 121 122 across 26 genera, out of the 133 included in the Sparidae family (Table 2SM), and 72 out of the 85 species of commercial interest included in the consulted official lists (Table 1SM). The mean 123 number of the collected specimens per species was 4.2 (range 1-11). Fifty-eight market samples 124 125 (MS) were collected from retail markets, large-scale distribution and restaurants (Table 3SM). Each fish/tissue was labeled with an internal code and stored at -20°C. 126

127 *2.2 Preparation of processed samples*

Due to the fact that fish substitutions may occur not only at the market level but also during catering activities, where seafood could undergo different cooking treatments, 34 whole fresh fish were used for the preparation of processed samples according to standard recipes. Part of them was baked as whole in an oven, preheated at 180°C, for a variable time (25-40 min) depending on the
size. The rest were filleted and cooked in a frying pan for 10-15 min.

133 Fresh muscle tissue samples were collected before and after cooking and used for DNA134 extraction.

135 2.3 DNA extraction and evaluation of DNA fragmentation by gel electrophoresis

The ethanol-preserved reference samples were re-hydrated in 100 mM TRIS-base (pH 7.8) for 30 min at Room Temperature (RT) on a thermoshaker. Total DNA extraction was performed starting from at least 20 mg of tissue as described by Armani, Castigliego, Tinacci, Gandini & Gianfaldoni, (2012b). DNA from fresh and cooked samples was extracted as described by Armani, Tinacci, Xiong, Titarenko & Guidi (2014). The DNA quality and quantity was determined with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, US).

One thousand nanograms of total DNA were electrophoresed on 1% agarose gel GellyPhorLE
(Euroclone, Wetherby, UK), stained with GelRed[™] Nucleid Acid Gel Stain (Biotium, Hayward,
CA, USA) and visualized via UV transillumination. DNA fragment size was estimated by
comparison with the marker SharpMass[™]50-DNA ladder (Euroclone, Wetherby, UK).

146 2.4 Amplification and sequencing of the full-COI barcode (FDB)

Several universal primers for the FDB region (Table 4SM) were aligned with the *COI* complete
sequences of the Sparidae species available in GenBank. Those proposed by Handy *et al.* (2011)
were selected. The reverse primer (SPACOIREV) was slightly modified and tailed as proposed by
Steffens, Sutter, & Roemer (1993) (Table 4SM).

A 655bp fragment of the *COI* gene was firstly amplified from the DNA extracted from fresh reference specimens with the following PCR protocol: 20 μl reaction volume containing 2 μl of a 10x buffer (5Prime, Gaithersburg, USA), 100 μM of each dNTP (Euroclone, Pavia, Italy), 300 nM of forward primers, 400 nM of reverse primer, 25 ng/μL of BSA (New England BIOLABS® Inc. Ipswich, MA, USA), 1.25 U PerfectTaq DNA Polymerase (5Prime, USA), 100 ng of DNA and DNase free water (5Prime, USA) with the following cycling program: denaturation at 94 °C for 3

min; 45 cycles at 94°C for 30s, 53°C for 30s, 72°C for 35s; final extension at 72°C for 10 min. Five 157 µL of PCR products were checked by electrophoresis on a 1.8% agarose gel and the presence of 158 expected amplicons was assessed by a comparison with the standard marker SharpMass[™]50-DNA 159 ladder. Amplicons were purified and sequenced by High-Throughput Genomics Center 160 (Washington, USA). Once validated on fresh samples, the same PCR protocol was used for the 161 amplification of cooked, ethanol-preserved and market DNA samples. The ethanol-preserved and 162 163 the market DNA samples that gave the expected amplicon were sequenced.

164

2.5 Full-DNA barcode (FDB) sequence analysis and comparison with databases

The obtained sequences were analyzed using Clustal W in MEGA version 6 (Tamura, Stecher, 165 166 Peterson, Filipski, & Kumar, 2013). Fine adjustments were manually made after visual inspection. Before the upload on the database, all the sequences were used to run a BLAST analysis on 167 GenBank and analyzed using the Identification System (IDs) on BOLD (Species Level Barcode 168 169 Records) (Ratnasingham & Hebert, 2007) to assess the concordance between the morphological and the molecular analysis (Ratnasingham & Hebert, 2013). A top match with a sequence similarity of 170 171 at least 98% was used to designate potential species identification (Barbuto et al., 2010). Then, all 172 the reference sequences were deposited on BOLD and GenBank (Table 5SM). Moreover, the sequences deposited on BOLD were used to produce a Barcode Index Number discordance report 173 174 (BINdr). The mean genetic distances were calculated within species, genus and family using the Kimura 2-parameter model (Kimura, 1980) using the Distance Summary tool on BOLD. 175

The 55 COI sequences from MS, not originating from expert-identified specimens, were not 176 177 submitted to the databases and were only used to assess the discriminatory ability of the barcoding region (Table 3SM). 178

2.6 Reverse primer design for the amplification of a mini barcoding region of the COI gene 179

Five hundred and sixty two reference sequences belonging to 73 Sparidae species available on 180 GenBank and BOLD were downloaded and aligned with those produced in this study using Clustal 181 W in MEGA. Once a potential region was found spanning from the 140th and the 190th bp, all the 182

sequences were examined for the presence of polymorphisms. The projected reverse primer 183 184 (REVshort1) (Table 4SM) was tailed (Steffens et al., 1993).

2.7 Amplification and sequencing of the mini-barcode (MDB) 185

The DNA of the reference samples was used to test the performance of the primer pair 186 FISHCOILBC_ts/REVshort1 for the amplification of a ~190bp DNA region (139bp without 187 primers). The PCR was made in 20 µl reaction volume, containing 2 µl of a 10x buffer (5Prime, 188 USA), 100 µM of each dNTP, 300 nM of primers, 25 ng/µL of BSA, 1.25 U PerfectTag DNA 189 Polymerase, 100 ng of DNA and DNase free water. The cycling program was the following: 190 denaturation at 94 °C for 3 min; 45 cycles at 94°C for 25s, 51°C for 30s, 72°C for 10s; final 191 extension at 72°C for 5 min. This protocol was also applied to samples for which the amplification 192 of the 655bp COI barcoding region failed. All the PCR products were sequenced as reported in 193 section 2.4. 194

195

2.8 Mini-DNA barcode (MDB) sequence analysis and comparison with databases

The obtained MDB were checked as reported in section 2.5 and those obtained from the 196 reference samples were deposited in the European Bioinformatics Institute (EBI) (Table 5SM) due 197 198 to the fact that BOLD and GenBank do not allow the submission of sequences shorter than 200bp. All the sequences were compared to the databases as reported in section 2.5. The mean genetic 199 200 distances were calculated using the Kimura 2-p model in MEGA.

The sequences obtained from the MS were only used to assess labeling non conformities. 201

2.9 Phylogenetic analysis. 202

203 Two datasets were used to produce NJ dendrograms in MEGA computing the distance using the Kimura 2-parameter model with 2000 bootstrap re-samplings (Saitou & Nei, 1987). 204

In case of the FDB 460 reference sequences of 546bp (219 from this study and 241 from 205 databases) and 52 sequences from MS were used while for the MDB 478 reference sequences of 206 138bp (254 from this study and 224 from databases) and 55 sequences from MS were used. 207

3. Results and Discussion 208

8

209 3.1 Development of a COI Barcode dataset for Sparidae

3.1.1 Full DNA barcode (FDB): Sequencing yielded 225 COI FDB with an average length of
650bp (520-655), without stop codons, insertions or deletions. We obtained at least one FDB for 68
species (91%), with an average of 3.3 (range 1-8) per species.

The sequences belonging to the species *Acanthopagrus palmaris*, *A. sivicolus*, *Calamus arctifrons*, *C. proridens*, *Dentex angolensis*, *D. canariensis*, *D. gibbosus*, *D. maroccanus*, *Diplodus noct*, and *Pagrus africanus* were obtained in this study for the first time.

As expected, the congeneric divergence was found to be higher than the conspecific divergence, with mean pairwise genetic distances of 0.43%, 9.16%, and 16.18% for conspecific, congeneric and confamilial, respectively. These values were very similar to those obtained by Keskin & Atar, (2013) and Ward *et al.*, (2009).

3.1.2 Mini DNA barcode (MDB): When the FDB region was not obtained, a MDB region of ~
190bp was amplified using the primer REVshort1. Thirty-four MDB with an average length of
135bp (60-139bp) were produced and registered and we obtained molecular data also for *D. cervinus* and *P. africanus*. No insertions, deletions or stop codons were found within the sequences,
indicating that nuclear DNA sequences (NUMTs), described by Zhang & Hewitt (1996), were not
amplified.

226 *3.2 Testing the full (FDB) and mini-barcodes (MDB)*

3.2.1 Full DNA barcodes (FDB) sequence analysis and comparison with databases. The BOLD 227 System includes a tool for the characterization of unknown specimens, the Identification System 228 229 (IDs) resource, that delivers a species identification if the query sequence shows a divergence less than 1% to a reference sequence. When less than 1% divergence is found with two or more taxa all 230 possible species assignments are shown (Ratnasingham & Hebert, 2007). On the other hand, the 231 BIN module assigns new COI sequences longer than 500bp to an existing or a new BIN, clustering 232 them into OTUs independently from their previous taxonomic assignment. This analysis allows to 233 confirm the concordance between barcode sequence clusters and species designations. 234

The IDs results and the BINdr are summarized in Table 5SM and 2, respectively. A maximum 235 236 species identity in the range of 98–100% was obtained for 220 sequences (98%). For C. arctifrons, D. canariensis and D. gibbosus, the absence of reference sequences in the database resulted in "no 237 match". The identification approach based on IDs results was coherent with the morphological 238 approach for 39 species out of 68 (57.4%), according to an identity value \geq 98%. Usually, when a 239 sequence matches with more than one species, the highest value is obtained for the species inferred 240 from the morphological identification (Table 5SM). A previous work suggested that a threshold 241 value of 2% was effective in distinguish different species (Hebert et al., 2003). In this work this 242 threshold did not allow to identify the remaining 29 species (42.6%). However, among these "non-243 244 identifiable" species, 9 (13.2%) were not identified due to the lack of reference sequences (Table 5SM). 245

We found that inconsistencies, such as indecision among species, were confirmed in most of the cases by the BINdr (Table 2). Among the 259 sequences that obtained a BIN, 37 were discordant at the genus level and 56 at the species level.

Considering the high number of "ambiguous" results we further investigate the issueshighlighted by the IDs analysis and the BINdr, with the aim to interpret and possibly solve them.

In most of the cases, only a few sequences were responsible for the discordance at the genus level. These findings could be due to the fact that the barcodes are not filtered as they enter BOLD, even when show deep sequence divergence from existing records (Ratnasingham & Hebert, 2007) For this reason, when two or more species of the same genus cluster together, misidentification among them could have occurred (Costa et al., 2012). All these discrepancies are reported in Table 5SM, Table 2 and explained in Table 6SM.

Regarding the discrepancies at the species level, different issues were found (Table 2 and Table 6SM). Among these, to be highlighted are the many misidentifications among the species belonging to the genus *Acanthopagrus* that are very similar from both a genetic and a morphological point of view (Hsu, Guillén Madrid, Burridge, Cheng & Gwo, 2011).

10

Moreover, the occurrence of hybrid-like specimens among the *Acanthopagrus* species makes the study of this group even more difficult (Hsu *et al.*, 2011). In fact, by using a mitochondrial gene, only the matrilineal lineage is examined (Carvalho *et al.*, 2011; Costa, Landi, Martins, Costa & Costa, 2012). In this case, supplemental analyses on nuclear genes would be advisable. These considerations could explain the failure, in this work, to distinguish between *A. pacificus* and *A. berda and* among *A. schlegelii*, *A. schlegelii schlegelii*, and *A. sivicolus*,

Finally, DNA Barcode was not able to distinguish among *Pagrus* and *Diplodus* species due to their close phylogenetic relationship at the sub-species level (Table 2 and Table 6SM).

However, the DNA barcoding approach was always capable to distinguish the genus *Diplodus*from the others belonging to the family Sparidae.

On the basis of this elaboration process, 53 additional sequences (belonging to 14 species) were considered resolvable and therefore the IDs could discriminate 53 species out of 68 (78%), strongly increasing the ability of the FDB in discriminating among Porgies species. Summarizing, the system was not able to identify 15 species due to the lack of reference sequences (n=9) or due to close phylogenetic relationship among species (n=6) (Table 1).

When analyzing the sequences in GenBank, a maximum species identity in the range of 98– 100% were obtained for 208 sequences (92.4%), belonging to 37 species out of 68 (54.4%).

The non-identification of the remaining 31 species was related to the absence of reference sequences or to the presence of problematic sequences (Table 5SM). In particular, identity values lower than 98% were obtained for *A. pacificus*, *C. arctifrons*, *C. leucosteus*, *C. proridens*, *D. canariensis*, *D. gibbosus*, *D. spariformis*, *V. acromegalus*, *O. melanura* and *A. spinifer* (Table 5SM).

As for BOLD, when a sequence matched with more than one species, the highest identity value was attained for the species inferred from the morphological identification (Table 5SM).

In the case of *D. puntazzo* and *P. aeneum*, the ambiguous identification was due to sequences of

286 *D. labrax* and *P. sordida* (Moronidae and Lutjanidae family), while in the case of *D. holbrookii*, *D.*

vulgaris, E. cardinalis, P. bellottii, P. auratus, P. major, P. pagrus, and S. cantharus the
identification problems were the same observed on BOLD (Table 2, Table 5SM, Table 6SM).
However, for all of them, with the exception of *E. cardinalis*, the system was able to correctly
identify the sequences at the genus level.

Summarizing, the BLAST analysis could clearly discriminate 44 species out of 68 (65%), increasing the ability of the FDB in discriminating among Porgies species (Table 1), while it was not able to identify 24 species (35.3%), due to absence of reference sequences (n=17) or due to close phylogenetic relationships (n=7).

We observed that the discriminatory ability of the FDB was strictly related to the availability of correctly identified reference sequences. In fact, after the correction of the ambiguous results, BOLD was able to identify 53 species (78%) while GenBank only 44 (64%). The higher resolution of BOLD compared to GenBank agrees with the results obtained by Wong *et al.* (2008) and Cawthorn *et al.* (2012), who analyzed different groups of fish. In our study, this could be due to the fact that on BOLD only 9 reference sequences were missing, while on GenBank the lacking sequences were almost twice.

302 Our results are similar to those obtained by Barbuto et al. 2010, who, using the DNA barcoding approach for the identification of *Palombo*, recognized at the species level 34 out of 45 (75.6%) 303 samples. In fact, in the case of *Mustelus* spp., the high genetic correlations and morphological 304 similarities made their recognition by the IDs system difficult, as in the case of the species 305 belonging to the genus Acanthopagrus and Diplodus. On the contrary, in other studies the FDB 306 307 allowed to unequivocally identify a higher percentage of samples (Cawthorn et al., 2012; Keskin & Atar, 2013). On the basis of this data, it seems that the DNA barcoding approach is more precise 308 when applied to species belonging to different genus and families. 309

Interesting to note that on BOLD the number of problematic sequences that could lead to misinterpretation and need thorough analysis were higher (n= 73) than on GenBank (n=59). A systematic revision (elaboration process) of the "raw data" obtained by the IDs system should be performed to resolve "ambiguity" produced by unreliable sequences. Therefore, considering that published sequences are susceptible to occasional inaccuracies, a more stringent process of confirmation and validation is desirable. In fact, many cases of ambiguous results due to species misidentification, wrong labeling or mistakes during sequences submission have been reported (Barbuto *et al.*, 2010; Carvalho *et al.*, 2010). These types of mistakes that are readily detected when specimens from different orders or families cluster together, must be carefully considered and analyzed when species belonging to the same genus are involved.

320 *3.2.2 Phylogenetic analysis of the full-barcode (FDB).* A phylogenetic analysis was performed in 321 order to solve most of the issues highlighted with the DNA barcoding analysis. In particular, the 322 most part of the species and subspecies formed discrete clusters (Fig. 1SM), with bootstrap values > 323 70%, showing the presence of unique and diagnostic polymorphism. However, a few species still 324 could not be distinguished, such as: *D. maroccanus* from *D. angolensis*, *P. auratus* from *P. major*, 325 *A. sivicolus* from *A. schlegelliii*, *D. cervinus* from *D. cervinus hottentotus*, *S. chrysops* from *S.* 326 *caprinus*.

327 *3.2.3 139bp mini DNA barcodes (MDB) sequence analysis and comparison with databases.* 328 Hajibabaei *et al.*, (2005) have tested "*in silico*" the possibility to use MDB of 218bp and 109bp for 329 the identification of fishes, observing that they generally provided sequence variability comparable 330 to that of FDB at both intraspecific and intrageneric levels.

Meusnier, Singer, Landry, Hickey & Hebert, (2008) found that, even though the FDB performed slightly better (97% species resolution), 250bp MDB gave only slightly lower rates (95%), while with 100bp MDB resolution decreased to 90%.

The MDB sequences were compared with BOLD and GenBank databases. The BINdr could not be performed due to the limit of the system in processing sequences shorter than 500bp.

Only 251 MDB were used on BOLD because sequences shorter than 80bp cannot be processed

by the IDs. All the analyzed sequences retrieved a max identity value from 98 to 100% allowing to

unequivocally identify 28 species (40%). Of the remaining species, 10 (14.3%) were not identified

due to the absence of reference sequences, and 32 (45.7%) where not identifiable or showed ambiguous results. After an interpretation process, the number of correctly identified species rose to 32 (45.7%) (Table 1). Furthermore, the MDB allowed identifying at the genus level 50% of the remaining not identifiable 28 species.

Two hundred fifty five sequences were analyzed by BLAST analysis on GenBank and a max 343 identity value ranging from 98 to 100% was obtained for 243 sequences (95.2%). Sequences from 344 C. arctifrons, D. macrophthalmus, D. spariformis, O. melanura, R. haffara, and V. acromegalus 345 gave lower identity values (95-97%). MDB allowed to unequivocally identify 26 species (37.1%). 346 For the remaining species, 18 (25.7%) were not identified due to the absence of reference sequences 347 348 and 26 (37.1%) showed ambiguous results or were not identifiable to the species level. Once these issues had been resolved the number of correctly identified species rose to 29 (41.4%). However, 349 the 139 mini-barcode allowed to identify at the genus level 13 (56%) of the unidentifiable 23 350 351 species (Table 1).

The analysis of the MDB highlighted a similar discriminatory power on both databases, with a comparable number of species correctly identified (32 and 29, respectively) (Table 1). Even though the discriminatory power was lower than the FDB the MDB allowed to identify 60% and 65% of the species correctly identified analyzing the FDB on BOLD and GenBank, respectively. The higher discriminatory power associated to GenBank could be explained considering that, in this database, also shorter sequences are used by the identification engine.

Finally, the MDB allowed to unambiguously identify all the reference sequences as belonging to the Sparidae family. This is a further advantage when Porgies species are replaced with species belonging to different group of fish.

361 *3.2.4 Phylogenetic analysis of the mini-barcode (MDB).* The NJ phylogenetic analysis obtained 362 with the MDB (Fig. 2SM), despite the average lower bootstrap values at species and subspecies 363 level, were able to correctly cluster most of the reference sequences with the exception of: D. 364 maroccanus, D. angolensis, D. canariensis, P. auratus, P. major, E. cardinalis, P. edita, S. 365 emarginatum, S. cantharus, C. nodosus, C. calamus, D. sargus, D. noct, D. holbrookii, D.
366 argenteus, A. sivicolus, A. schlegelliii, D. cervinus, D. cervinus hottentotus, S. chrysops and S.
367 caprinus.

368 3.3 Factors affecting PCR amplification when using full (FDB) and mini barcodes (MDB)

The DNA electrophoresis clearly showed that the cooked samples had a more degraded DNA with respect to the fresh ones (data not shown). The DNA degradation was extremely variable among the samples and in some cases, the degradation patterns revealed a scarce presence of fragments longer than 300bp. In particular, the level of degradation was higher in fish of smaller dimensions. No marked differences were observed between cooking processes. In case of ethanol preserved specimens the degradation patterns were variable, with a smear in the range of 100 to 1000bp, not always comparable between samples belonging to the same batch (Institution).

Since the different origin and preservation of tissue samples may affect the primers amplification
performances, we calculated the specificity and the rate of successful amplifications on the number
of the species collected rather than on the totality of the samples analyzed.

379 The primers selected in this study had a specificity of 100% for the target region corresponding 380 to the FDB. Overall, the rate of successful amplifications was 95% and rose to 100% for fresh samples. The overall DNA amplificability was 85%. The DNA of the fresh specimens was 381 successfully amplified in 91% of the cases. The rate drastically decreased to 50% after cooking. 382 Considering that other DNA samples of the same species were amplified with the same primers, the 383 amplification failure of the DNA extracted from fresh samples cannot be explained with an 384 improper primers annealing, but it might be more likely caused by DNA degradation. In fact, in 385 some cases, the DNA obtained from fresh tissues after 5 days of storing at 4°C can be fully 386 degraded (Rodriguez-Ezpeleta, Mendibil, Álvarez & Cotano, 2013). 387

The reduced amplificability of the DNA extracted from the cooked products agrees with the observed degradation patterns. Thermal treatments, ingredients and storage conditions are among the most important factors that can induce DNA degradation (Armani et al., 2013; Armani, Castigliego, Tinacci, Gianfaldoni & Guidi, 2012d; Rodriguez-Ezpeleta et al., 2013). In fact, even though the cooking procedure used in this study was not comparable to that caused by canning processes, the amplificability was strongly affected. Similar problems were reported by Wong & Hanner, (2008) and Cawthorn et al., (2012), who were not able to produce the full-barcode from smoked, pickled and canned products, confirming that DNA degradation is the main obstacle to the application of the "classical DNA barcoding" approach.

The DNA amplificability of ethanol-preserved tissue was 81%. This lower rate could be due to 397 the preservation of samples in formalin or in ethanol for a long time. Many evidences suggest that 398 formaldehyde induces DNA degradation (Diaz-Cano & Brady, 1997), whereas alcoholic reagents 399 yield superior results in terms of DNA amplificability (Srinivasan, Sedmak & Jewell, 2002). 400 Therefore it is generally difficult to recover the full-barcode from museum specimens (Hajibabaei et 401 al., 2005). Nevertheless, even short-term conservation can affect DNA integrity. Rodriguez-402 403 Ezpeleta et al., (2013) found that fish muscle stored in ethanol for 120 days showed a lower DNA integrity than those stored for only 30 days. In accordance, we found that samples that were soaked 404 405 in ethanol just before the shipping showed a higher rate of DNA amplificability than those 406 preserved for a longer time.

In the light of the aforesaid issues, it would be advisable to collect many samples per species inorder to obtain at least 3 reference barcodes.

In the case of MDB, while the specificity was 100% as in the case of FDB, the overall rate of successful amplification was 93% (70 species out of 75). In fact, the DNA of the 3 species that were not amplified had been preserved in formalin or in ethanol for a long time. The DNA amplificability was 95%, 100% and 94% for fresh, cooked and ethanol-preserved tissues. In the case of cooked and ethanol-preserved samples the rates were considerably higher than with the FDB, demonstrating the great utility of MDB in case of samples containing degraded DNA.

415 *3.4 Mislabeling of commercial samples*

16

Fifty eight samples (43 from market and 15 from restaurant) have been collected throughout Italy. After submission and releasing of the reference sequences produced in this study, the 55 DNA FDB (average length 653bp) and the 58 MDB (average length 139bp) (55 extrapolated from the FDB) obtained were compared to the databases and used for the phylogenetic analysis.

3.4.1 Full-DNA barcodes (FDB) comparison with BOLD and GenBank. A maximum species 420 identity in the range of 98–100% was obtained in BOLD for 54 sequences (98%) and in GenBank 421 for 47 sequences (85%). On the basis of the identity value obtained and considering the correction 422 factors already discussed (section 3.2) for the reference sequences, 45 samples (83%) and 38 423 samples (81%) were unambiguously identified at the species level on BOLD and GenBank, 424 respectively. Only considering a top match of 100% the number of MS identify at the species level 425 rises to 50 (91%) on BOLD and to 42 (89%) on GenBank (Table 3SM). Even though, on both 426 427 databases 100% of the remaining MS not identified at the species level were identified at the genus 428 level, this did not allow to verify the traceability information on the remaining samples.

Overall, the analysis performed on both databases matched and allowed to highlight 21 mislabeled samples (38%). In particular, we found 7 (33%) mislabeled restaurants products and 14 (67%) mislabeled samples from retail food and large-scale markets distribution.

3.4.2 Mini DNA barcodes (MDB) comparison with BOLD and GenBank. A maximum species 432 identity in the range of 98–100% was obtained in BOLD for 58 sequences (100%) and in GenBank 433 for 57 sequences (98.2%). On the basis of the identity value obtained, and considering the 434 correction factors already discussed (section 3.2), 37 samples (64%) and 42 samples (74%) were 435 unambiguously identified at the species level on BOLD and GenBank, respectively. Only 436 considering a top match of 100% the number of MS identified to species level rises to 47 (81%) on 437 BOLD and to 51 (89%) on GenBank (Table 3SM). The MDB confirmed the mislabeling already 438 detected by the barcode. No additional mislabeling was found for the three MS for which only the 439 short fragment was amplified. 440

In summary, we found that FDB and MDB applied to MS were characterized by a similar discriminatory power on GenBank (89% vs 89%) while on BOLD a discrepancy was observed (91% vs 81%). Interestingly, all the MS were correctly identified with the NJ analysis using the FDB (Fig. 1SM), while using the MDB 5 MS could not be unequivocally assigned to a species (Fig. 2SM).

446 *3.4.3 Mislabeled products: what and why?*

This study confirmed that more than one third of the commercialized fish is mislabeled, accordingly with what reported by Cawthorn *et al.*, (2012) and Stiles, Lahr, Lahey, Shaftel & Bethel, (2011).

On the contrary, our data are quite different from most of the studies reporting that the mislabeling rate is usually higher in processed products (Carvalho *et al.*, 2011; Cawthorn *et al.*, 2012). In this work, 71% of the mislabeled samples were sold as whole fish while the rest were fillets. This could be explained taking into consideration the high morphological similarity among Porgies.

Some of the mislabeling, such as *S. salpa* sold as S. *auratus*, *Diplodus* spp. sold as *O. melanura*,
and *Spicara maena* sold as *S. salpa*, could be voluntary and aimed at charging higher prices on low
commercial value species.

Other cases were due to the improper use of commercial denomination, such as the utilization of a generic name for the whole genus rather than the specific commercial name stated in the Italian list: Seabream (Pagello) instead of Red Pandora (Pagello fragolino) for *P. erythrinus*, Seabream (Sarago) instead of Sharp snout seabream (Sarago pizzuto) for *D. puntazzo*, Dentex (Dentice) instead of Canary dentex (Dentice atlantico) for *D. canariensis*.

In some European countries, such as Italy, many different commercial names have been issued for the different species of Sparidae, while in the UK, all the species of the family Sparidae except *Boops boops* (Bogue), *Diplodus sargus* (White sea bream) and *Pagrus auratus* (Golden seabream) can be referred to as Porgy. The ratio among the total number of commercial denominations and the

total number of Porgies species considered in the official lists of seafood products analyzed in this 467 468 study reflects the different national approaches for the management of seafood products. In particular, the percentage of family coverage varies from more than 79% (Australia, Canada and 469 Italy) to 2% for UK (Table 3). This discrepancy is probably due to different culinary traditions and 470 to a different attention paid to the preservation of the local products (D'Amico, Armani, 471 Castigliego, Sheng & Gianfaldoni, 2014). In this light, trade names associated to single species, 472 473 which often include geographical adjectives, can clearly differentiate national products from the imported ones. 474

Unfortunately, the different approaches adopted from different countries can enormouslycomplicate the fair commerce of seafood species.

477 Conclusion

In this study, the DNA barcoding was confirmed as a reliable approach for supporting the traceability in the seafood chain and ensure the correct information of consumers, in agreement with what reported by the EU Reg. No. 1379/2013.

The analysis of MS sequences and their comparison with our dataset of reference sequences, supported by the comparison performed on BOLD and GenBank, allowed to highlight commercial frauds in the trade of Porgies' species.

Moreover, considering that targeting a shorter region would increase the likelihood of successful amplification from degraded DNA, for the first time a mini DNA barcoding approach was proposed for the identification of seafood species. In fact, considering that it is not possible to establish *a priori* the degradation level of a DNA sample, the utilization of a MDB represents a valid, and sometimes the only, approach to recover molecular information from an unknown sample.

Finally, our work highlighted that both BOLD and Genbank still lack of reference sequences and host different kind of problematic sequences. For these reasons, it would be beneficial to use both the databases, supported by a NJ analysis, and to perform a careful and aware analysis and elaboration of the raw data in order to solve ambiguous results that could create misidentification. 493

494 Acknowledgments

The Authors wish to sincerely thank all the people who kindly provided reference tissues of 495 Sparidae: Andy Bentley of Biodiversity Institute, University of Kansas (Lawrence KS, USA); Dr. 496 Barbara A. Brown and Lowell Flanders of Department of Ichthyology, American Museum of 497 Natural History (New York NY, USA); Christopher Caine and Peter Caine of Fishweights.net 498 499 (Jeffreys Bay, South Africa); Dave Catania of California Academy of Sciences (San Francisco CA, 500 USA); Dr. Prosanta Chakrabarty and Caleb McMahan of Louisiana State University, Museum of Natural Science (Baton Rouge LA, USA); Dr. Satoru Chiba of Center for Molecular Biodiversity 501 502 Research, National Museum of Nature and Science (Ibaraki, Japan); Dr. Achille De Sanctis of Scoglitti Fish Market (Ragusa, Italy); Dr. Jonathan Deeds of US FDA Center for Food Safety and 503 Applied Nutrition (College Park MD, USA); Dr. Arfang Diamanka of Laboratoire de Parasitologie 504 505 Générale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (Dakar, Sénégal); Dr. Paolo Galli of Biotechnology and Bioscience Department, University of Milan 506 507 Bicocca (Milano, Italy); Gabriela M. Hogue of the North Carolina Museum of Natural Sciences 508 (Raleigh NC, USA); Erling Holm and Margaret Zur of Department of Natural History, Royal Ontario Museum (Toronto, Canada); Dr. Seishi Kimura of Fisheries Research Laboratory, Mie 509 University (Mie, Japan); Mark Lisher of South African Institute for Aquatic Biodiversity 510 (Grahamstown, South Africa); Terry A. Lott of Florida Museum of Natural History, University of 511 Florida (Gainesville FL, USA); Dr. Ione Madinabeitia of Department of Environmental Dynamics 512 513 and Management, Hiroshima University (Hiroshima, Japan); Dr. Stefano Mariani of the School of Environment & Life Sciences, University of Salford (Salford, UK); Mark McGrouther, 514 Ichthyology, Australian Museum (Sydney, Australia); Dr. Gui M. Menezes of Departamento de 515 516 Oceanografia e Pescas, Universidade dos Açores (Horta, Portugal); Dr. Natacha Mesquita of Museu Nacional de História Natural e da Ciência (Lisbon, Portugal); Dr. Gavin Partridge of Australian 517 Centre for Applied Aquaculture Research Challenger Institute of Technology (Fremantle, 518

519	A	ustralia); Dr. Mark Sabaj Pérez of Department of Ichthyology, The Academy of Natural Sciences
520	of	Philadelphia (PA, USA); Dr. Matt E. Roberts of Mississippi Museum of Natural Science
521	(Ja	ackson MS, USA); Dr. Hiroshi Senou of Kanagawa Prefectural Museum of Natural History
522	(K	anagawa, Japan); Dr. Shao Kwang-Tsao of Biodiversity Research Center, Academia Sinica
523	(T	aipei, Taiwan); Karen Shearer and Rod Asher of Cawthron Institute (Nelson, New Zealand); Dr.
524	Ni	r Stern of Steinhardt Museum of Natural History and National Research Center at Tel Aviv
525	U	niversity (Tel Aviv, Israel); Dr. Jose Tavera of University of California, Davis (CA, USA); Dr.
526	A	fred W. Thomson and Molly Phillips of Florida Fish and Wildlife Conservation Commission,
527	Fi	sh and Wildlife Research Institute (St. Petersburg FL, USA); Dr. Nicholas Tuckey of The New
528	Ze	ealand Institute for Plant & Food Research (Nelson, New Zealand); Dr. H.J. Walker of Marine
529	V	ertebrate Collection Scripps Institution of Oceanography, University of California (La Jolla CA,
530	U	SA) and Dr. Gregory J. Watkins-Colwell of Yale Peabody Museum of Natural History (New
531	Ha	aven CT, USA)
532		
533		
534		
535		
536		
537		References
538	1.	Akazaki, M. (1962). Studies on the spariform fishes. Anatomy, phylogeny, ecology, and
539		taxonomy. Misaki Marine Biology Institute, Kyoto University, Spec. Rep. 1. Osaka: Kosugi Ltd.
540	2.	Antonucci, F., Costa, C., Aguzzi, J., & Cataudella, S. (2009). Ecomorphology of Morpho-
541		Functional Relationships in the Family of Sparidae: A Quantitative Statistic Approach. Journal
542		of Morphology, 270, 843–855.
543	3.	Armani, A., D'Amico, P., Castigliego, L., Sheng, G., Gianfaldoni, D., & Guidi, A. (2012)a.
544		Mislabeling of an "unlabelable" seafood sold on the European market: the jellyfish. Food

Control, 26(2), 247-251.

- 4. Armani, A., Castigliego, L., Tinacci, L., Gandini, G., Gianfaldoni, D., & Guidi, A. (2012)b. A
 rapid PCR–RFLP method for the identification of Lophius species. *European Food Research and Technology*, 235(2), 253-263.
- 549 5. Armani, A., Castigliego, L., & Guidi, A. (2012)c. Fish fraud: The DNA challenge. *CAB Animal*550 *Science Reviews*, 7, 227-239.
- 6. Armani, A., Castigliego, L., Tinacci, L., Gianfaldoni, D., & Guidi, A. (2012)d. Multiplex
 conventional and real-time PCR for fish species identification of Bianchetto (juvenile form of *Sardina pilchardus*), Rossetto (*Aphia minuta*), and Icefish in fresh, marinated and cooked
 products. *Food Chemistry*, 133(1), 184-192.
- 7. Armani, A., Tinacci, L., Giusti, A., Castigliego, L., Gianfaldoni, D., & Guidi, A. (2013). What is
 inside the jar? Forensically informative nucleotide sequencing (FINS) of a short mitochondrial
 COI gene fragment reveals a high percentage of mislabeling in jellyfish food products. *Food Research International*, 54(2), 1383-1393.
- 8. Armani, A., Tinacci, L., Xiong, X., Titarenko, E., Guidi, A., & Castigliego, L. (2014).
 Development of a simple and cost-effective bead-milling method for DNA extraction from fish
 muscles. *Food Analytical Methods*, 7, 946–955.
- 9. Barbuto, M., Galimberti, A., Ferri, E., Labra, M., Malandra, R., Galli, P., & Casiraghi, M.
 (2010). DNA barcoding reveals fraudulent substitutions in shark seafood products: the Italian
 case of "palombo" (Mustelus spp.). *Food Research International*, 43, 376–381.
- 10. Carvalho, D. C., Neto, D. A., Brasil, B. S., & Oliveira, D. A. (2011). DNA barcoding unveils a
 high rate of mislabeling in a commercial freshwater catfish from Brazil. *Mitochondrial DNA*,
 22(S1), 97-105.
- 11. Cawthorn, D. M., Steinman, H. A., & Witthuhn, R. C. (2012). DNA barcoding reveals a high
 incidence of fish species misrepresentation and substitution on the South African market. *Food Research International*, 46, 30–40.
- 571 12. Clarke, S., (2009). Understanding China's fish trade and traceability. TRAFFIC, East Asia,
 572 Available at www.traffic.org/fisheries-reports/traffic_pub_fisheries9.pdf Accessed 22.03.13
- 573 13. Costa, F. O., Landi, M., Martins, R., Costa, M. H., Costa, M. E., Carneiro, M., Alves, M. J.,
- 574 Steinke, D., & Carvalho, G. R. (2012). A ranking system for reference libraries of DNA 575 barcodes: application to marine fish species from Portugal. *PloSone*, 7(4), e35858.
- 576 14. D'Amico, P., Armani, A., Castigliego, L., Sheng, G., Gianfaldoni, D., & Guidi, A. (2014).
- 577 Seafood traceability issues in Chinese food business activities in the light of the European 578 provisions. *Food Control*, 35, 7-13.

- 579 15. Díaz-Cano, S. J., & Brady, S. P. (1997). DNA extraction from formalin-fixed, paraffin580 embedded tissues: Protein digestion as a limiting step for retrieval of high-quality DNA.
 581 *Diagnostic Molecular Pathology*, 6(6), 342-346.
- 16. Di Pinto, A., Di Pinto, P., Terio, V., Bozzo, G., Bonerba, E., Ceci, E., & Tantillo, G. (2013).
 DNA barcoding for detecting market substitution in salted cod fillets and battered cod chunks.
 Food Chemistry, 141, 1757–1762.
- 585 17. Environmental Justice Foundation (2012). Pirate fishing exposed: the fight against illegal fishing
 586 in West Africa and the EU. Avaiable at:
 587 http://ejfoundation.org/sites/default/files/public/Pirate%20Fishing%20Exposed.pdf
- 588 18. European Commission (EC) Council Regulation No. 104/2000 of 17 December 1999. (21st
- January 2000). On the common organization of the markets in fishery and aquaculture products.
 Official Journal of the European Union, L 17/22.
- 19. European Union (EU) Commission Implementing Regulation No. 404/2011 of 8 April 2011.

(30th April2011). Laying down detailed rules for the implementation of Council Regulation (EC)

- No 1224/2009 establishing a Community control system for ensuring compliance with the rules
 of the Common Fisheries Policy. Official Journal of the European Union, L 112/1.
- 595 20. European Union (EU) Regulation No 1379/2013 of the European Parliament and of the Council
 596 of 11 December 2013 on the common organization of the markets in fishery and aquaculture
 597 products, amending Council Regulations (EC) No 1184/2006 and (EC) No 1224/2009 and
 598 repealing Council Regulation (EC) No 104/2000.
- 59921. FDA(2014).The seafoodlist.Availableat:600http://www.accessdata.fda.gov/scripts/fdcc/?set=seafoodlist.Accessed 02 May 2014.
- 22. Hajibabaei, M., de Waard, J. R., Ivanova, N. V., Ratnasingham, S., Dooh, R. T., Kirk, S. L.,
 Mackie, P. M., & Hebert, P. D. N. (2005). Critical factors for assembling a high volume of DNA
 barcodes. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360, 1959-
- 604 1967.
- 405 23. Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007) DNA barcoding: how
 406 it complements taxonomy, molecular phylogenetics and population genetics. *Trends in Genetics*,
 407 23, 167–172.
- 608 24. Handy, S. M., Deeds, J. R., Ivanova, N. V., Hebert, P. D. N., Hanner, R. H., Ormos, A., Weigt,
- 609 L. A., Moore, M. M., & Yancy, H. F. (2011). A single-laboratory validated method for the
- generation of DNA barcodes for the identification of fish for regulatory compliance. *Journal of*
- 611 *Association of Official Analytical Chemists International*, 94, 201-210.

- 612 25. Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life:
 613 cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the*614 *Royal Society of London. Series B*, 270, 596–599.
- 26. Hsu, T. H., Guillén Madrid, A. G., Burridge, C. P., Cheng, H. Y., & Gwo, J. C. (2011).
 Resolution of the *Acanthopagrus* black seabream complex based on mitochondrial and amplified
- fragment-length polymorphism analyses. *Journal of fish biology*, 79(5), 1182-1192.
- 618 27. Keskin, E., & Atar, H. H. (2013). DNA barcoding commercially important fish species of
 619 Turkey. *Molecular Ecology Resources*, 13(5), 788-797.
- 28. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions
 through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16, 111–
 120.
- 29. Meusnier, I., Singer, G. A., Landry, J. F., Hickey, D. A., Hebert, P. D., & Hajibabaei, M. (2008).
 A universal DNA mini-barcode for biodiversity analysis. *BMC genomics*, 9(1), 214.
- 30. Nelson, J. S., (2006). *Fishes of the world*. (6th ed.). Hoboken, New Jersey: John Wiley & Sons,
 Inc.
- 31. Ratnasingham, S., & Hebert, P. D. (2007) BOLD: The Barcode of Life Data System
 (www.barcodinglife.org). *Molecular Ecology Notes*, 7, 355–364.
- 32. Ratnasingham, S., & Hebert, P. D. (2013). A DNA-based registry for all animal species: The
 Barcode Index Number (BIN) System. *PLoSOne*, 8(7), e66213.
- 631 33. Rodriguez-Ezpeleta, N., Mendibil, I., Álvarez, P., &Cotano, U. (2013). Effect of fish sampling
- and tissue storage conditions in DNA quality: considerations for genomic studies. *Revista de Investigación Marina, AZTI-Tecnalia*, 20(6), 77-87
- 34. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing
 phylogenetic trees. *Molecular Biology and Evolution*, 4, 406–425.
- 35. Smith, J. L.B. & Smith M. M. (1986). *Sparidae*. In Smith, M. M., & Heemstra P. C. (Eds.),
 Smiths' sea fishes. Berlin: Springer-Verlag.
- 638 36. Srinivasan, M., Sedmak, D., & Jewell, S. (2002). Effect of fixatives and tissue processing on the
 639 content and integrity of nucleic acids. *The American Journal of Pathology*, 161(6), 1961-1971.
- 37. Steffens, D. L., Sutter, S. L., & Roemer, S. C. (1993). An alternate universal forward primer for
 improved automated DNA sequencing of M13. *Biotechniques*, 15, 580-582.
- 642 38. Stiles, M. L., Lahr, H., Lahey, W., Shaftel, E., Bethel, D., Falls, J., & Hirshfield, M. S., (2011).
- 643 Oceana, Bait and switch: how seafood fraud hurts our Oceans, our wallets and our health. 644 http://oceana.org/sites/default/files/reports/Bait and Switch report 2011.pdf
 - 24

- 39. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular
 Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution*, 30, 2725-2729.
- 40. Ward, R. D., Holmes, B. H., & Yearsley, G. K. (2008). DNA barcoding reveals a likely second
 species of Asian sea bass (barramundi) (*Lates calcarifer*). *Journal of Fish Biology*, 72, 458–463.
- 41. Ward, R. D., Hanner, R., & Hebert, P. D. N. (2009). The campaign to DNA barcode all fishes,
 FISH-BOL. *Journal of Fish Biology*, 74, 329-356.
- 42. Wong, E.H.K., & Hanner, R.H. (2008). DNA barcoding detects market substitution in North
 American seafood. *Food Research International*, 41, 828–837.
- 43. Yancy, H. F., Zemlak, T. S., Mason, J. A., Washington, J. D., Tenge, B. J., Nguyen, N. L.,
- Barnett, J. D., Savary, W. E., Hill, W. E., Moore, M. M., Fry, F. S., Randolph, S. C., Rogers, P.
- L., & Hebert, P. D. (2008). Potential use of DNA barcodes in regulatory science: applications of
- the Regulatory Fish Encyclopedia. *Journal of Food Protection*, 71, 210-217.
- 44. Zhang, D.X., Hewitt G.M. (1996). Nuclear integrations: challenges for mitochondrial DNA
 markers. *Trends in Ecology & Evolution*, 6, 247-251.

		Full-DNA barcodes (655bp)		Mini-DNA barcodes (139bp)			
		IDs BOLD	BLAST NCBI	IDs BOLD	BLAST NCBI		
		Raw data					
Correctly identified	Sequences	134 - 59.6%	127 - 56.4%	97 - 38.6%	97 - 38%		
Correctly identified	Species	39-57.4%	37 - 54.4%	28 - 40%	26-37.1%		
Problematic*	Sequences	73 - 32.4%	59-26.2%	132 - 52.6%	112 - 44%		
Problemauc*	Species	20-29.4%	14 - 20.6%	32-45.7%	26-37.1%		
No reference cognoroog	Sequences	18 - 8%	39 - 17.3%	22-8.8%	46-18%		
No reference sequences	Species	9-13.2%	17 - 25%	10-14.3%	18-25.7%		
		After result elaboration					
Composite identified	Sequences	187 - 83%	161 - 71.5%	110-43.8%	114 - 44.7%		
Correctly identified	Species	53 - 78%	44 - 64.7%	32-45.7%	29-41.4%		
N	Sequences	18 - 8%	39 - 17.3%	22-8.8%	46-18%		
No reference sequences	Species	9-13.2%	17 - 25%	10-14.3%	18-25.7%		
Non identificable	Sequences	20-9%	25-11.2%	119-47.4%	95 - 37.2%		
Non identifiable	Species	6 - 8.8%	7 –10.3 %	28-40%	23-32.8%		

Table 1. Summary of the results of the IDs analysis on BOLD and of the BLAST analysis on GenBank using the full and the mini DNA barcodes (655bp and 139bp, respectively), before and after the elaboration of the results. * Include the sequences that were not identified due to the presence of sequences belonging to misidentified specimens in the databases or to close relationship between species.

Identification	Conflicting Taxon in BIN	Rank of Conflict	BIN	BIN Total Members	BIN Tax Variation		
Boops boops	Boops	Genus	BOLD:AAB7806	59	Boops [78], Oblada [2]		
Cheimerius nufar	Cheimerius	Genus	BOLD:AAE2592	25	Cheimerius [24], Pagrus [1]		
Evynnis cardinalis	Evynnis	Genus	BOLD:AAC2906	22	Evynnis [19], Parargyrops [3]		
Evynnis tumifrons	Evynnis	Genus	BOLD:AAD0508	11	Evynnis [11], Dentex [2]		
Pagellus acarne	Pagellus	Genus	BOLD:AAC3611	35	Pagellus [45], Oblada [2]		
Pagellus bellottii	Pagellus	Genus	BOLD:AAF8829	8	Pagellus [5], Pagrus [3]		
Pagellus erythrinus	Pagellus	Genus	BOLD:AAC8525	39	Pagellus [52], Oblada [2]		
Pagrus pagrus	Pagrus	Genus	BOLD:AAC8526	58	Pagrus [54], Oblada [4], Pagellus [2]		
Rhabdosargus haffara	Rhabdosargus	Genus	BOLD:ACG7708	3	Rhabdosargus [2], Sparus [1]		
Sarpa salpa	Sarpa	Genus	BOLD:AAE4266	41	Sarpa [41], Boops [1]		
Virididentex acromegalus	Virididentex	Genus	BOLD:ABX7583	8	Pagellus [5], Virididentex [3]		
Acanthopagrus pacificus	Acanthopagrus pacificus	Species	BOLD:ACF5415	7	Acanthopagrus pacificus [5], A. berda [2]		
Acanthopagrus schlegelii	Acanthopagrus schlegelii	Species	BOLD:AAF8876	29	Acanthopagrus schlegelii [13], A. schlegelii schlegelii [11],		
Acanthopagrus sivicolus	Acanthopagrus sivicolus	Species	BOLD.AAF8870	29	A. sivicolus [3]		
Argyrops bleekeri	Argyrops bleekeri	Species	BOLD:AAB3719	13	Argyrops bleekeri [12], A. spinifer [1]		
Calamus proridens	Calamus proridens	Species	BOLD:AAU3000	3	Calamus leucosteus [2], C. proridens [1]		
Dentex angolensis	Dentex angolensis	Species	BOLD:AAE3470	10	Dentex macrophthalmus [5], D. angolensis [3], D.		
Dentex maroccanus	Dentex maroccanus	Species	DOLD II II ILS II O	10	maroccanus [2]		
Diplodus cervinus hottentotus	Diplodus cervinus hottentotus	Species	BOLD:AAD3631	34	Diplodus cervinus [26], D. fasciatus[5], D. cervinus hottentotus [3]		
Diplodus noct	Diplodus noct	~ .		62	Diplodus sargus [42], D. capensis [11], D. noct [3], D.		
Diplodus sargus	Diplodus sargus	Species	BOLD:ACE3794		sargus helenae [2], D. sargus ascensionensis [2], D. sargus sargus [1], D. kotschyi [1]		
Diplodus vulgaris	Diplodus vulgaris	Species	BOLD:AAC2260	47	<i>Diplodus vulgaris</i> [60], <i>D. prayensis</i> [6], <i>D. sargus</i> [2], <i>D. fasciatus</i> [1]		
Pagrus major	Pagrus major	Species	BOLD:AAC0553	43	Pagrus major [21], Pagrus auratus [19]		
Pagrus auratus	Pagrus auratus	Species	DOLD . <i>I</i> I I I I I I I I I I I I I I I I I I	UT UT			
Stenotomus caprinus	Stenotomus caprinus	Species	BOLD:AAC4538	29	Stenotomus chrysops [24], S. caprinus [4]		
Stenotomus chrysops	Stenotomus chrysops						

 Table 2: BIN discordance report.

Country	N° of commercial denominations	N° of species	Percentage of coverage		
Italy	28	35	80%		
Spain	27	41	65%		
UK	3	113	2%		
France	36	47	76%		
Germany	21	49	43%		
USA	6	57	10%		
Canada	23	29	79%		
Australia	10	10	100%		

Table 3. Percentage of coverage of the commercial denominations for the Sparidae family in different Countries.

Supplementary material for online publication only Click here to download Additional Files: Tab.1_SM.doc

									FAO
Scientific Name	Europe					Extra EU			English name
	Italy	Spain	France	Germany	United Kingdom ^a	USA	Canada	Australia	
Acanthopagrus australis								Yellowfin Bream	Surf bream
Acanthopagrus berda						Seabream, Porgie		Pikey Bream	Goldsilk seabream
Acanthopagrus bifasciatus	Pagro bifasciato								Twobar seabream
Acanthopagrus butcheri								Black Bream	N.R.
Acanthopagrus latus								Western Yellowfin Bream	Yellowfin seabream
Acanthopagrus palmaris								Northwest Black Bream	N.R.
Archosargus probatocephalus			Rondeau mouton			Sheepshead	Sheepshead Porgy, Seabream, Porgy		Sheepshead
Archosargus rhomboidalis						Sea Bream			Western Atlantic seabream
Argyrops bleekeri						Bream	Taiwan Thai, Bream	FrypanBream	Taiwan tai
Argyrops filamentosus	Pagro indiano		Spare de l'Océan indien						Soldier bream
Argyrops spinifer	Pagro reale		Spare royal			Bream	Long- spinedRedBream		King soldier bream
Boops boops	Boga	Boga	Bogue	Gelbstriemen	Bogue	Bream or Bogu e	Bream		Bogue
Calamus arctifrons			Daubenet (<i>Calamus</i> spp.)			Porgy	Porgy (Calamus spp.)		Grass porgy
Calamus bajonado			Daubenet (<i>Calamus</i> spp.)			Porgy (<i>Calamus</i> spp.)	Porgy (<i>Calamus</i> spp.)		Jolthead porgy
Calamus brachysomus			Daubenet (<i>Calamus</i> spp.)			Porgy (<i>Calamus</i> spp.)	Porgy (Calamus spp.)		Pacific porgy
Calamus calamus		Pezpluma	Daubenet (<i>Calamus</i> spp.)			Porgy (<i>Calamus</i> spp.)	Porgy (Calamus spp.)		Saucereye porgy

Calamus campechanus			Daubenet (<i>Calamus</i> spp.)		Porgy (<i>Calamus</i> spp.)	Porgy (Calamus spp.)		N.R.
Calamus cervigoni			Daubenet (<i>Calamus</i> spp.)		Porgy (<i>Calamus</i> spp.)	Porgy (<i>Calamus</i> spp.)		N.R.
Calamus leucosteus			Daubenet (<i>Calamus</i> spp.)		Porgy	Porgy (<i>Calamus</i> spp.)		N.R.
Calamus mu			Daubenet (<i>Calamus</i> spp.)		Porgy (Calamus spp.)	Porgy (Calamus spp.)		N.R.
Calamus nodosus			Daubenet (<i>Calamus</i> spp.)		Porgy (Calamus spp.)	Porgy		N.R.
Calamus penna			Daubenet (<i>Calamus</i> spp.)		Porgy (Calamus spp.)	Porgy (Calamus spp.)		Sheepshead porgy
Calamus pennatula			Daubenet (<i>Calamus</i> spp.)		Porgy (Calamus spp.)	Porgy (Calamus spp.)		N.R.
Calamus proridens			Daubenet (<i>Calamus</i> spp.)		Porgy (<i>Calamus</i> spp.)	Porgy (<i>Calamus</i> spp.)		Littlehead porgy
Calamus taurinus			Daubenet (<i>Calamus</i> spp.)		Porgy (<i>Calamus</i> spp.)	Porgy (<i>Calamus</i> spp.)		N.R.
Cheimerius nufar (Dentex nufar)	Dentale indiano (Dentice rosa)	Dentón nufar						Santer seabream
Chrysoblephus gibbiceps				Stumpfnase, Rote				Red stumpnose seabream
Pagrus auratus (Chrysophrys auratus)	Pagro rosa indo pacifico				Porgy		Snapper	N.R.
Dentex abei		Dentones (Dentex spp.)		Brasse, Meer, Dorade (<i>Dentex</i> spp.)				N.R.
Dentex angolensis	Dentice atlantico	Dentones (Dentex spp.)	Denté angolais	Brasse, Meer, Dorade (Dentex spp.)				Angolan dentex
Dentex barnardi	Dentice atlantico	Dentones (Dentex spp.)		Brasse, Meer, Dorade (Dentex spp.)				Barnard dentex
Dentex	Dentice	Denton Canario	Denté des	Brasse, Meer,				Canary

canariensis	atlantico		Canaries, Denté à tâche rouge	Dorade			dentex
		Dentones	Denté	(Dentex spp.) Kongo-Zahn-			Congo
Dentex congoensis		(<i>Dentex</i> spp.)	congolais	Brasse			dentex
Dentex dentex	Dentice	Denton, Denton europeo	Denté commun, denté	Zahn-Brasse	Porgy	Dentex , Common Dentex	Common dentex
Dentex fourmanoiri		Dentones (Dentex spp.)		Brasse, Meer, Dorade (<i>Dentex</i> spp.)			N.R.
Dentex gibbosus	Dentice gibboso	Sama de pluma	Denté rose	Brasse, Dickkopfzahn	Porgy		Pink dentex
Dentex macrophthalmus	Dentice occhione	Cachucho	Denté à gros yeux	Brasse, Großaugenzahn			Large-eye dentex
Dentex maroccanus	Dentice marocchino	Sama	Denté du Maroc	Brasse, MarokkanischeZ ahn			Morocco dentex
Dentex spariformis		Dentones (Dentex spp.)		Brasse, Meer, Dorade (<i>Dentex</i> spp.)			N.R.
Diplodus annularis	Sarago sparaglione	Raspallon	Sparaillon commun, sparaillon	Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (<i>Diplodus</i> spp.)		Annular seabream
Diplodus argenteus argenteus	Sarago atlantico ^b	Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (Diplodusargen teus)		South American silver porgy
Diplodus argenteus caudimacula	Sarago atlantico ^b	Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (Diplodusargen teus)		N.R.
Diplodus bellottii		Sargos (Diplodus spp.)	Sparaillon africain, sparaillon	Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (<i>Diplodus</i> spp.)		Senegal seabream
Diplodus bermudensis		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (Diplodus spp.)		N.R.
Diplodus capensis		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (<i>Diplodus</i> spp.)		N.R.
Diplodus cervinus cervinus	Sarago ^b	Sargo breado	Sar à grosses lèvres, Sar	Bänder-Brasse	Porgy (<i>Diplodus</i> spp.)		Zebra seabream
Diplodus cervinus hottentotus	Sarago ^b	Sargos		Brasse, Meer, Dorade	Porgy (Diplodus spp.)		N.R.

		(Diplodus spp.)		(Diplodus spp.)			
Diplodus cervinus omanensis	Sarago ^b	Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (<i>Diplodus</i> spp.)		N.R.
Diplodus fasciatus		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (Diplodus spp.)		Banded seabream
Diplodus holbrookii		Sargos (<i>Diplodus</i> spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy	Salema	Spottail seabream
Diplodus noct		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (<i>Diplodus</i> spp.)		Red Sea seabream
Diplodus prayensis		Sargos (<i>Diplodus</i> spp.)	Sar à tête noire du Cap Vert	Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (<i>Diplodus</i> spp.)		Two-banded seabream
Diplodus puntazzo	Sarago pizzuto	Sargo picudo	Sar à museau pointu, sar	Spitz-Brasse	Porgy		Sharpsnout seabream
Diplodus sargus ascensionis	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (<i>Diplodus</i> spp.)		N.R.
Diplodus sargus cadenati	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (<i>Diplodus</i> spp.)		N.R.
Diplodus sargus helenae	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (<i>Diplodus</i> spp.)		N.R.
Diplodus sargus kotschyi	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (<i>Diplodus</i> spp.)		N.R.
Diplodus sargus lineatus	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (<i>Diplodus</i> spp.)		N.R.
Diplodus sargus sargus	Sarago ^b	Sargo ^b	Sarcommun, sar	Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (Diplodus spp.)		White seabream
Diplodus vulgaris	Sarago	Mojarra	Sar à tête noire, sar	Zweibinden- Brasse	Porgy (<i>Diplodus</i> spp.)		Common two-banded seabream
Evynnis tumifrons					Sea Bream		N.R.

					(Dentex tumifrons)		
Lagodon rhomboides					Porgy	Pinfish	Pinfish
Lithognathus lithognathus			Marbré d'Afrique, dorade-marbré				White steenbras
Lithognathus mormyrus	Mormora	Herrera	Marbré commun, dorade-marbré	Marmor-Brasse, Meer-Brasse, Dorade			Sand steenbras
Oblada melanura	Occhiata	Oblada	Oblade	Brand-Brasse			Saddled seabream
Pagellus acarne	Pagello	Aligote	Pageot acarné	Achselfleck- Brasse	Sea Bream (Pagellus spp.)	Sea Bream, Axillary Seabream, Axillary bream	Axillary seabream
Pagellus affinis	Pagello indiano	Besugo arabe	Pageot d'Arabie, Pageot de la mer d'Oman	Brasse, Meer, Dorade (<i>Pagellus</i> spp.)	Sea Bream (Pagellus spp.)		Arabian pandora
Pagellus bellottii	Pagello atlantico	Brecachata	Pageot à tache rouge, Dorade rouge	Brasse, Meer, Dorade (<i>Pagellus</i> spp.)	Sea Bream (Pagellus spp.)	Red Pandora, Pandora	Red Pandora
Pagellus bogaraveo	Pagello	Besugo	Pageot rose, Dorade rose	Grau-Barsch, See-Karpfen	Sea Bream (Pagellus spp.)	Seabream , Porgy	Blackspot (=red) seabream
Pagellus erythrinus	Pagello fragolino	Breca	Pageot mommun, Pageot	Rot-Brasse	Bream		Common pandora
Pagellus natalensis		Besugos (Pagellus spp.)		Brasse, Meer, Dorade (<i>Pagellus</i> spp.)	Sea Bream (Pagellus spp.)		Natal pandora
Pagrus africanus	Pagro africano			Brasse, Meer, Dorade (<i>Pagrus</i> spp.)			Southern common seabream
Pagrus auratus							Silver seabream
Pagrus auriga	Pagro	Urta	Pagre rayé	Brasse, Meer, Dorade (<i>Pagrus</i> spp.)			Redbanded seabream
Pagrus caeruleostictus	Pagro	Zapata	Pagre à points bleu, Dorade	Brasse, Meer, Dorade		Seabream, Porgy, Bluespotted	Bluespotted seabream

				(Pagrus spp.)		Seabream		
Pagrus major	Pagro del Giappone			Brasse, Meer, Dorade (Pagrus spp.)	Porgy, Sea Bream	Silver Seabream, Japanese Seabream, Genuine Porgy		Japanese seabream
Pagrus pagrus	Pagro	Pargo		Sack-Brasse	Porgy	Seabream, Red Porgy, Porgy		Red porgy
Polysteganus coeruleopunctatus			Denté à points bleu					Blueskin seabream
Pterogymnus laniarius			Panga de l'Atlantique S- E Spare panga		Porgy			Panga seabream
Rhabdosargus globiceps			Sargue de l'Atlangique SE.	Stumpfnase, Weiße				White stumpnose
Rhabdosargus sarba	Sarago dorato		Sarguedorée				Tarwhine	Goldlined seabream
Sarpa salpa	Salpa	Salema	Saupe	Goldstriemen				Salema
Sparidentex hasta							SobaityBream	Sobaity seabream
Sparus aurata	Orata	Dorada		Gold-Brasse		Gilthead Bream	Bream	Gilthead seabream
Spondyliosoma cantharus	Tanuta	Chopa	Griset, Doradegrise	Meer-Brasse Streifen-Brasse, Dorade				Black seabream
Stenotomus caprinus					Porgy	Shiner, Seabream, Porgy,Longspined Porgy		Longspine porgy
Stenotomus chrysops					Porgy, Scup	Scup,Porgy		Scup

Table 1 SM. Official Trade Names of the species of commercial interest belonging to the Sparidae family according to the lists of Italy (Ministerial Decree of the Italian Minister of Agriculture, Food and Forestry (MIPAAF) of 27th March 2002 and subsequent integrations), Spain (Resolución de 22 Marzo 2011 de la Secretaría General del Mar), France (http://www.economie.gouv.fr/dgccrf/Consommation/Etiquetage-des-produits/Produits-de-la-

mer-et-d-eau-douce/Listes-des-denominations-commerciales),

(http://www.fischinfo.de/pdf/HANDELSBEZEICHNUNGEN %28DEUTSCH%29.pdf), United Kingdom (Food Standard Agency of United Kingdom), USA (US Food and Drug Administration (USFDA), Regulatory Fish Encyclopedia (RFE), 2012), Canada (Canadian Food Inspection Agency, CFIA Fish List, 2012), Australia (Australia Government, Seafood Services Australia Ltd Fishery Research Development Corporation). Moreover, the FAO English names are reported (^aAquatic Sciences and Fisheries Information System (ASFIS) <u>http://www.fao.org/fishery/collection/asfis/en</u>). ^aFor all species of the family Sparidae except *Boops boops* the legal name is Sea bream or Porgy; ^bTrade denomination assigned to the species;

NR = Not Reported.

•

Species	Institution	Number of samples	Full-DNA barcoding region (655bp)	Mini DNA barcoding region (139bp)	Provenience (FAO Area)	
Acanthopagrus australis	Australian Museum, Sydney, NSW, Australia	1	1	-	81	
Acanthopagrus berda	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	4	4	-	61	
	Museum of Natural Science, Louisiana State University Baton Rouge, LA, USA	1	1	-	71	
Acanthopagrus bifasciatus	Department of Biotechnology and Biosciences University of Milan Bicocca Milan, Italy	3	0	0	51.1	
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	57.5.2	
Acanthopagrus butcheri	Australian Center for Applied Acquaculture Research Challenger Institute of Technology Fremantle Freemantle, WA, Australia	7	7	-	57	
	Australian Museum, Sydney, NSW, Australia	1	1	-	81	
	Fisheries Research Laboratory, Mie University Mie, Japan	2	2	-	61	
Acanthopagrus latus	Center for Molecular Biodiversity Research National Museum of Nature and Science Tsukuba, Ibaraki, Japan	3	3	-		
	This study	1	1	-		
Acanthopagrus pacificus ^a	Center for Molecular Biodiversity Research National Museum of Nature and Science Tsukuba, Ibaraki, Japan	3	2	1	61	
Acanthopagrus palmaris	Australian Museum, Sydney, NSW, Australia	1	1	-	57	
	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	4	3	1	61	
Acanthopagrus schlegelii ^a	Fisheries Research Laboratory, Mie University Mie, Japan	2	2	-		
	Kanagawa Prefectural Museum of Natural History Odawara, Kanagawa, Japan	1	0	0		
Acanthopagrus sivicolus ^a	Center for Molecular Biodiversity Research	3	3	-	61	

	National Museum of Nature and Science				
	Tsukuba, Ibaraki, Japan				
	Biodiversity Institute, University of Kansas	2	1	0	
	Lawrence, KS, USA	-	1		_
	North Carolina Museum of Natural Sciences Raleigh, NC, USA	1	1	-	
Archosargus	Fish and Wildlife Research Institute St. Petersburg, FL, USA	1	1	-	31
probatocephalus	Florida Museum of Natural History, Genetic Resources Repository, University of Florida Gainesville, FL, USA	1	1	-	
	Mississippi Museum of Natural Science Jackson, MS, USA	1	0	1	
Archosargus rhomboidalis	Biodiversity Institute, University of Kansas Lawrence, KS, USA	2	1	0	31
	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	1	1	-	
Argyrops bleekeri	Center for Molecular Biodiversity Research National Museum of Nature and Science Tsukuba, Ibaraki, Japan	2	2	_	61
	Department of Ichthyology American Museum of Natural History New York, NY, USA	1	1	-	
Argyrops filamentosus	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	2	2	-	51.8
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	61
Argyrops spinifer	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	5	3	0	51.8
	This study	2	2	-	
Argyrozona argyrozona ^a	FishWeights Cape Town, South Africa	3	3	-	51.8
Boops boops	Department of Zoology, George S. Wise Faculty of Life Science Tel Aviv University Tel Aviv, Israel	3	3	-	37.2.2
	Wholesale fish market of Scoglitti Ragusa, Italy	2	1	0	
Calamus arctifrons	Academy of Natural Sciences, Ichthyology	1	0	0	31

	Drexel University					
	Philadelphia, Pennsylvania, USA Florida Museum of Natural History, Genetic Resources Repository,				4	
	University of Florida	5	2	1		
	Gainesville, FL, USA	5	2	1		
	Fish and Wildlife Research Institute				-	
	St. Petersburg, FL, USA	1	1	-		
	Academy of Natural Sciences, Ichthyology					
	Drexel University	1	0	0		
Calamus bajonado	Philadelphia, Pennsylvania, USA	1	0	0	31	
Culumus bajonado	Fish and Wildlife Research Institute				- 51	
	St. Petersburg, FL, USA	4	3	0		
	Institution of Oceanography, University of California					
	La Jolla, CA, USA	1	1	-	77	
Calamus brachysomus	Centro de Investigaciones Biologicas del Noroeste					
	La Paz, México	1	1	-	77	
	University of Kansas - Biodiversity Institute, Dyche Hall					
		3	3	-		
	Lawrence, KS, USA					
Calamus calamus	Florida Museum of Natural History –Genetic Resources Repository,				31	
	University of Florida	1 0 0		0		
	Gainesville, FL, USA	1	0	0		
	Gamesvine, 1 E, OSA					
	US FDA Center for Food Safety and Applied Nutrition	1				
	College Park, MD, USA ^b	1		NS		
	Biodiversity Institute, University of Kansas	_		_	-	
Calamus leucosteus ^a	Lawrence, KS, USA	3	1	0	31	
	Fish and Wildlife Research Institute				-	
	St. Petersburg, FL, USA	2	2	-		
	-					
	Biodiversity Institute, University of Kansas	2	1	1		
Calamus nodosus	Lawrence, KS, USA				31	
Calantiis nouosus	Fish and Wildlife Research Institute	3	3	-		
	St. Petersburg, FL, USA					
Calamus penna	Fish and Wildlife Research Institute	2	1	1	31	
L	St. Petersburg, FL, USA					
	Academy of Natural Sciences, Ichthyology		0			
Calamus pennatula	Drexel University	1	0	0	31	
	Philadelphia, Pennsylvania, USA					

	Fish and Wildlife Research Institute	4	1	1	
Calamus proridens	St. Petersburg, FL, USA Florida Museum of Natural History, Genetic Resources Repository,				31
	University of Florida Gainesville, FL, USA	1	0	0	
Cheimerius nufar	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	5	4	1	51.6 51.8
Chrysoblephus cristiceps ^a	FishWeights Cape Town, South Africa	3	3	-	51.8
Chrysoblephus gibbiceps	FishWeights Cape Town, South Africa	1	1	-	51.8
Chrysoblephus laticeps ^a	FishWeights Cape Town, South Africa	3	3	-	51.8
Chrysoblephus puniceus ^a	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	1	-	51
Crenidens crenidens ^a	Australian Museum Sydney, NSW Australia	1	1	-	51
Dentex angolensis	California Academy of Sciences San Francisco, CA, USA	3	1	1	34.3.1 34.3.4
	This study	2	2	0	34
Dentex canariensis	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	0	0	34.3.1
	This study	1	1	0	34
Dentex congoensis	California Academy of Sciences San Francisco, CA, USA	1	0	0	34.3.1
Dentex dentex	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	37
	This study	4	3	1	37.1.3
		1	1	0	34
Dentex gibbosus	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	1	-	34.3.1
Dentex macrophthalmus	Department of Zoology, George S. Wise Faculty of Life Science Tel Aviv University Tel Aviv, Israel	3	3	-	37.3.2
Dentex maroccanus	Department of Zoology, George S. Wise Faculty of Life Science	3	2	0	37.3.2

	Tel Aviv University Tel Aviv, Israel				
Dentex spariformis	Australian Museum Sydney, NSW Australia	1	1	_	81
Diplodus annularis	Department of Zoology, George S. Wise Faculty of Life Science Tel Aviv University Tel Aviv, Israel	3	3	-	37.3.2
	This study	2	2	-	
Diplodus argenteus	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	31
Diplodus bellottii	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	0	0	34.3.1
	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	2	0	2	51.8
Diplodus cervinus	Department of Ichthyology, American Museum of Natural History New York, NY, USA	1	0	0	Unknown
Diplodus cervinus	Institution of Oceanography, University of California La Jolla, CA, USA	1	1	-	47
hottentotus	Biodiversity Institute, University of Kansas Lawrence, KS, USA	1	1	-	47.2.2
Diplodus holbrookii	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	2	0	0	31
	Fish and Wildlife Research Institute St. Petersburg, FL, USA	3	2	0	
Diplodus noct	Department of Biotechnology and Biosciences, University of Milan - Bicocca Milan, Italy	2	2	-	51.1
	Australian Museum Sydney NSW Australia	1	1	-	51
Diplodus puntazzo	This study	5	4	1	37.1.3
Diplodus sargus	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	2	1	37.3.2
	Museu Nacional de História Natural e da Ciência Lisboa, Portugal	1	0	0	27 IXa

	This study	3	2	1	37.1.3
Diplodus vulgaris	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	3	-	37.3.2
	This study	3	3	0	37.1.3
Evynnis cardinalis ^a	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	8	2	3	61
Evynnis tumifrons	Graduate School of Biosphere Science, Hiroshima University Hiroshima, Japan	2	2	-	- 61
Evynnis tunijrons	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	3	3	-	01
	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b	1		NS	
	Biodiversity Institute, University of Kansas Lawrence, KS, USA	3	3	-	
Lagodon rhomboides	Florida Museum of Natural History, Genetic Resources Repository, University of Florida Gainesville, FL, USA	1	1	-	31
	Museum of Natural Science, Louisiana State University Baton Rouge, LA,USA	1	1	-	
	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	1	-	37.1.1
Lithognathus mormyrus	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	2	0	37.3.2
	This study	3	3	-	
	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	0	1	37.1.2
Oblada melanura	This study	10	2	5	37.1.3
Pachymetopon aeneum ^a	FishWeights Cape Town, South Africa	3	3	-	51.8
Pagellus acarne	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	3	-	37.2.2
	Wholesale fish market of Scoglitti Ragusa, Italy	3	2	0	

Pagellus bellottii	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	1	-	34.3.1	
	Wholesale fish market of Scoglitti Ragusa, Italy	3	3	-	37.2.2	
Pagellus bogaraveo	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	37.1.3	
	This study	4	4	-	37.1.1	
Pagellus erythrinus	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	-	1	37.1.2	
· ·	This study	5	4	0	37.1.3	
Pagrus africanus	Departamento de Oceanografia e Pescas – Universidade dos Açores, Açores, Portugal	1	0	1	34.3.2	
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	77	
Pagrus auratus	Seafood and Marine Extracts, Plant & Food Research Nelson Nelson, New Zealand	6	6	-	- 81	
	Cawthron Institute, Nelson, New Zealand	1	1	-		
Pagrus auriga	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	1	-	34.3.1	
	This study	1	1	-	1	
	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	2	1	37.3.2	
Pagrus caeruleostictus	California Academy of Sciences San Francisco, CA, USA	2	2	-	34.3.1 34.1.3	
	This study	2	1	0	37.1.3	
December	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	4	3	1	61	
Pagrus major	Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan	2	2	-	- 61	
December	Wholesale fish market of Scoglitti Ragusa, Italy	3	2	1	37.2.2	
Pagrus pagrus	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b	1]	NS	31	

	This study	5	3	2	37.1.3
Pterogymnus laniarus	FishWeights Cape Town, South Africa	3	3	-	51.8
Rhabdosargus haffara	Department of Biotechnology and Biosciences University of Milan - Bicocca Milan, Italy	1	1	-	51.1
Rhabdosargus holubi ^a	Australian Museum Sydney, NSW Australia	1	1	-	47
	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	2	0	2	
Rhabdosargus sarba	Fisheries Research Laboratory, Mie University Mie, Japan	2	2	-	61
Knubuosargus surba	Kanagawa Prefectural Museum of Natural History Odawara, Kanagawa, Japan	1	0	0	
	Australian Museum Sydney, NSW Australia	1	1	-	81
Sarpa salpa	Mercato Ittico Scoglitti Ragusa, Italy	2	2	-	37.2.2
Surpa saipa	This study	3	3	-	37
Sparus aurata	This study	5	5	-	37.1.3
Spondyliosoma cantharus	Museu Nacional de História Natural e da Ciência Lisboa, Portugal	1	0	0	27 IXa
	This study	5	5	-	37.1.3
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	
Stenotomus caprinus	Biodiversity Institute, University of Kansas Lawrence, KS, USA	1	1	-	31
	Fish and Wildlife Research Institute St. Petersburg, FL, USA	2	2	-	
Stenotomus chrysops	Biodiversity Institute, University of Kansas Lawrence, KS, USA	4	4	-	21.6
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	21.6B
	North Carolina Museum of Natural Sciences	1	1	-	31

	Raleigh, NC, USA				
	Herpetology and Ichthyology, Division of Vertebrate Zoology Yale Peabody Museum of Natural History New Haven, CT, USA	1	1	-	21.6A
	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b	1]	NS	21
Virididentex acromegalus ^a	Departamento de Oceanografia e Pescas – Universidade dosAçores Açores, Portugal	2	1	1	34.3.2

Table 2 SM. Reference samples collected in the study, with the indications of the Institutions, the geographical origin and the number of full and mini barcode obtained. ^aSpecies not considered in the International Official Trade lists; ^bDNA samples only used for testing the amplification performance of primers; NS: Not Sequenced.

	Dlaga		Label information	on				Species identif	ication	
Code	Place of collection	Market name	International accepted name	Scientific name	Product	bp	BOLD Species Level Barcode Records	MI	GenBank	MI
MS1	Market	Dentale	Santer seabream	Cheimerius	Whole	655	C. nufar	99.54	C. nufar	99
NIS1	Ivial Ket	indiano	Samer seableam	nufar	whole	139	C. nufar	100	C. nufar	100
						655	D. angolensis D. macrophthalmus D. maroccanus	100 99.84 99.84	D. angolensis D. macrophthalmus	100 98
MS2- MS3	Market	Dentice atlantico	Angolan dentex	Dentex angolensis ^a	Fillets	139	D. angolensis D. macrophthalmus D. maroccanus D. canariensis	100 99.28 99.28 98.55	D. angolensis D. macrophthalmus	100 99
						655	D. canariensis	100	D. canariensis	100
MS4	Market	Dentice	Dentex	NR	Whole	139	D. canariensis D. macrophthalmus D. maroccanus D. angolensis	100 99.28 99.28 98.55	D. canariensis D. macrophthalmus	100 99
						655	No match		Cheimerius nufar	95
MS5	Market	Dentice	Dentex	NR	Whole	139	C. nufar D. gibbosus	98.55 98.55	Cheimerius nufar	98
MS6-	Market	Dentice rosa	Santer seabream	NR	Whole	655	C. nufar	99.08	C. nufar	99
MS7		Dentice 108a	Samer seableam			139	C. nufar	100	C. nufar	100
MS8	Market	Dentice rosa	Santer seabream	NR	Whole	139	C. nufar	100	C. nufar	100
MS9	Restaurant	Dentice	Dentex	NR	Whole	655	D. dentex	100	D. dentex	99
NIG /	Restaurant	Dentice	Dentex		Whole	139	D. dentex	100	D. dentex	99
MS10	Restaurant	Mormora	Sand steenbras	L. mormyrus	Whole	606	L. mormyrus	100	L. mormyrus	100
101010	Restaurant	Wormoru	Build Steenbrus	E. morniyrus	Whole	139	L. mormyrus	100	L. mormyrus	100
MS11	Market	Occhiata	Saddled seabream	O. melanura	Whole	139	O. melanura D. capensis D. vulgaris D. sargus D. bellottii D. puntazzo D. sargus subspecies D. noct	100 99.28 99.21 98.55 98.55 98.55 98.55 98.55 98.55	D. sargus D. argenteus D. holbrookii	99 98 98
MS12	Market	Occhiata	Saddled seabream	O. melanura	Fillets	655	D. sargus D. capensis D. sargus subspecies D. argenteus D. holbrookii	100 99.54 99.39 -98.46 98.16 98.15	D. sargus D. sargus kotschyi D. holbrookii D. argenteus	100 99 98 98

						139	D. capensis D. sargus kotschyi D. sargus D. bellottii D. sargus subspecies D. noct D. holbrookii D. argenteus D. cervinus D. fasciatus	100 100 100 100 100 99.28 99.28 99.28 99.05 98.55	D. sargus D. argenteus D. holbrookii D. cervinus	100 99 99 99
			Saddled			655	D. vulgaris D. sargus D. prayensis D. fasciatus	100 99.69 98.73 98.62	D. sargus D.vulgaris	99 99
MS13	Market	Occhiata	seabream	O. melanura	Fillets	139	D. sargus D. prayensis D. puntazzo D. fasciatus O. melanura	100 99.28 99.28 99.28 99.28 98.41	D. sargus	100
MS14	Restaurant	Occhiata	Saddled seabream	NR	Whole	655 139	O. melanura O. melanura D. vulgaris	99.69 99.21 98.41	O. melanura O. melanura D. sargus	95 97 97
MC15	Maulaat	Orața	Gilthead	S. aunata	Fillets	655	S. salpa	100	S. salpa	100
MS15	Market	Orata	seabream	S. aurata		139	S. salpa	100	S. salpa	100
MS16-	Destaurant	Orata	Gilthead	S. aurata	Fillets	655	S. aurata	100	S. aurata	100
MS17	Restaurant	Orata	seabream	S. auraia	Fillets	139	S. aurata	100	S. aurata	100
MS18-			Gilthead	G (D'11	655	S. aurata	100	S. aurata	100
MS19	Market	Orata	seabream	S. aurata	Fillets	139	S. aurata	100	S. aurata	100
MCOO	Mailar	Oracta	Gilthead	ND	XX711.	655	S. aurata	99.85	S. aurata	99
MS20	Market	Orata	seabream	NR	Whole	139	S. aurata	100	S. aurata	100
			~			655	P. acarne	100	P. acarne	99
MS21	Market	Pagello	Sea	NR	Whole		O. melanura	100	O. melanura	99
		C	Bream			139	P. acarne O. melanura	100 100	P. acarne	100
MS22	Market	Pagello atlantico	Red pandora	P. bellottii	Whole	655	P. bellotii P. pagrus (3 seq.) P. natalensis	100 99.53 99.21	P. bellotii P. natalensis	99 99
		attantico				139	<i>P. bellotii</i> <i>P. pagrus</i> (3 seq.)	100 98.55	P. bellotii P. natalensis	100 98
MS23	Market	Pagello	Common	P. erythrinus	Whole	655	P. erythrinus	100	P. erythrinus	100

		fragolino	pandora				O. melanura (2 seq.)	99.19	O. melanura	99
		_	-			139	P. erythrinus	100	P. erythrinus	100
						(= =	P. erythrinus	99.85	P. erythrinus	99
MS24	Market	Pagello	Seabream	NR	Whole	655	O. melanura (2 seq.)	99.19	O. melanura (2 seq.)	99
		U				139	P. erythrinus	100	P. erythrinus	100
MS25-						CEE	P. erythrinus	99.85	P. erythrinus	99
MS26-	Market	Pagello	Seabream	NR	Filletts	655	O. melanura (2 seq.)	99.19	O. melanura (2 seq.)	99
MS27		U				139	P. erythrinus	100	P. erythrinus	100
MCOO						655	P. erythrinus	100	P. erythrinus	100
MS28- MS29	Restaurant	Pagello	Seabream	NR	Whole	000	O. melanura (2 seq.)	99.19	O. melanura (2 seq.)	99
MS29		-				139	P. erythrinus	100	P. erythrinus	100
						655	P. pagrus	100	C. nufar	99
MS30	Restaurant	Degalle	Seabream	NR	Whole	033	C. nufar	99.23	C. nujur	99
M330	Kestaurant	Pagello	Seabream	INK	whole	139	C. nufar	100	C. marfan	100
						139	P. pagrus	100	C. nufar	100
MS31	Market	Pagro	Redbanded	P. auriga	Whole	655	P. auriga	100	P. auriga	100
WIS51	Warket	ragio	seabream	r. auriga	whole	139	P. auriga	100	P. auriga	100
MS32-	Market	Pagro	Bluespotted	Р.	Whole	655	P. caeruleostictus	100	P. caerulosticus	100
MS33		ragio	seabream	caeruleostictus	whole	139	P. caeruleostictus	100	P. caerulosticus	100
MS34-						655	P. pagrus (1seq.)	100	C. nufar	99
MS35	Market	Pagro	Seabream	NR	Whole	033	C. nufar	99.23	C. nujar	99
-		1 agro	Scabicalli	INK	whole	139	C. nufar	100	C. nufar	100
MS36							P. pagrus (1seq.)	100	C. nujur	
						655	A. spinifer	100	A. filamentosus	96
MS37-	Market	Pagro rosa	NR	NR	Whole		A. spinifer	100	A. spinifer	99
MS38	Warket	indo pacifico			whole	139	A. blekeeri	98.55	Porcostoma dentata	98
								70.55	A. filamentosus	98
						592	A. spinifer	100	A. spinifer	100
MS39	Market	Pagro reale	King soldier	A. spinifer	Whole		A. spinifer	100	A. spinifer	100
101007	Warket	I ugio icule	bream	n. spinger	whole	139	A. blekeeri	98.72	P. major	98
									E. japonica	98
			King soldier				A. spinifer	100		
MS40	Market	Pagro reale	bream	A. spinifer	Whole	139	A. bleekeri (1seq.)	98.72	A. spinifer	100
			0100				E. tumifrons	98.15		
MS41-			a 1			655	P. caeruleostictus	100	P. caeruleostictus	99
MS42-	Market	Pagro	Seabream	NR	Whole	139	P. caeruleostictus	100	P. caeruleostictus	100
MS43										
MS44	Restaurant	Salpa	Salema	NR	Whole	655	Spicara maena	100	Spicara maena	100
MC45	Destaura	-	0.1	NID	XX711.	139	Spicara maena	100	Spicara maena	100
MS45	Restaurant	Salpa	Salema	NR	Whole	655	Spicara maena	100	Spicara maena	100

							Spicara flexousa (1 seq.)	99.84		
						139	Spicara maena Spicara flexousa (1 seq.)	100 100	Spicara maena	100
MS46	Market	Salpa	Salema	S. salpa	Whole	655	S. salpa	100	S. salpa	100
M340		Saipa	Salellia	S. saipa	whole	139	S. salpa	100	S. salpa	100
MS47	Restaurant	Salpa	Salema	S. salpa	Whole	655	S. salpa	100	S. salpa	100
M347		Salpa	Salema	5. suipu	Whole	139	S. salpa	100	S. salpa	100
MS48	Market	Sarago	Annular	NR	Whole	655	D. annularis	100	D. annularis	99
W1540		sparaglione	seabream	INK	WHOLE	139	D. annularis	100	D. annularis	100
							D. vulgaris	99.67		
						655	D. sargus	99.53	D. sargus	99
						055	D. prayensis	98.75	D. vulgaris	99
							D. fasciatus	98.75		
MS49	Market	Sarago	Annular	NR	Fillets		D. sargus	100		
W1549	Warket	sparaglione	seabream	INK			D. vulgaris	100		
						139	D. prayensis	99.26	D. sargus	100
						157	D. puntazzo	99.26	D. cervinus	98
							D. fasciatus	99.26		
							O. melanura	98.52		
						655	D. puntazzo	100	D. labrax	99
						055	-		D. puntazzo	96
MS50	Market	Sarago	Sharpsnout	Diplodus	Whole		D. vulgaris	100		
11000	Whatket	pizzuto	seabream	puntazzo	whole	139	D. puntazzo	100	D. sargus	99
						157	O. melanura	99.21	D. labrax	98
							D. sargus	98.55		
							D. sargus	100		
							D. capensis	99.55	D. sargus	100
						655	D. sargus subspecies	99.39-98.46	D. holbrookii	98
						055	D. noct	99.23	D. argenteus	98
							D. holbrooki	98.16	D. algenieus	20
							D. argenteus	98.16		
							D. sargus	100		
MS51	Market	Sarago	Seabream	NR	Whole		D. capensis	100		
11001	WhatKet	Burugo	Seubreum		whole		D. bellotii	100	D. sargus	100
							D. sargus subspecies	100	D. argenteus	99
						139	D. noct	100	D. holbrookii	99
					,	D. holbrooki	100	D. cervinus	99	
						D. argenteus	99.28	2		
						D. cervinus	99.28			
							D. cervinus hottentotus	99.05		
							D. fasciatus	98.55		

								98.55		
						655	D. vulgaris D. sargus D. prayensis D. fasciatus	100 100 98.92 98.92	D. sargus D. vulgaris	100 99
MS52	Market	Sarago	Seabream	D. vulgaris	Whole	139	D. vulgaris D. sargus D. prayensis D. puntazzo D. fasciatus O. melanura	100 100 99.28 99.28 99.28 99.28 99.28 98.41	D. sargus	100
M052	Madad	Sarago	Annular	ND	XV1 1.	655	D. annularis	100	D. annularis	99
MS53	Market	sparaglione	seabream	NR	Whole	139	D. annularis	100	D. annularis	99
						655	D. puntazzo	100	D. labrax D. puntazzo	99 96
MS54	Restaurant	Sarago	Seabream	NR	Whole	139	D. vulgaris D. puntazzo D. sargus D. capensis	100 100 98.89 98.89	D. vulgaris D. sargus D. labrax	100 100 99
	MS55 Restaurant Sarago Seabream					654	D. puntazzo	99.85	D. labrax D. puntazzo	99 95
MS55		Seabream	NR	Whole	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 100 99.21 98.55	D. sargus D. labrax	99 98	
						655	D. puntazzo	100	D. labrax D. puntazzo	99 96
MS56	Restaurant	Sarago pizzuto	Sharpsnout seabream	NR	Whole	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 100 99.22 98.55	D. sargus D. labrax	99 98
						655	D. sargus D. vulgaris D. prayensis D. fasciatus	100 100 98.92 98.92	D. sargus D. vulgaris	100 99
MS57	Restaurant	Sarago	Seabream	NR	Filletts	139	D. sargus D. vulgaris D. prayensis D. puntazzo D. fasciatus O. melanura	100 100 99.28 99.28 99.28 99.28 99.28 98.41	D. sargus	100

						655	S. cantharus	99.84	S. cantharus	99
MS58	Market	Tanuta	Black seabream	S. cantharus	Whole	139	S. cantharus S. emarginatum	100 99.28	S. cantharus	99

Table 3SM. Results of the IDs analysis (BOLD) and of the BLAST analysis (GenBank) of market samples (MS), with the information reported on the label.

Mislabeled samples are highlighted with a grey background. ^a Sequences not available on both databases; ^b Sequences not available in Genbank; MI: Max Identity.

Supplementary material for online publication only Click here to download Additional Files: Tab.4_SM.doc

Primer name	Sequence code	Amp. Lenght (bp)	Ref.
LCO1490	GGTCAACAAATCATAAAGATATTGG	708	Folmer, 1994
HC02198	TAAACTTCAGGGTGACCAAAAAATCA	/08	Follilei, 1994
FishF1	TCAACCAACCACAAAGACATTGGCAC		
FishF2	TCGACTAATCATAAAGATATCGGCAC	703/706	Ward, 2005
FishR1	TAGACTTCTGGGTGGCCAAAGAATCA	/05//00	ward, 2005
FishR2	ACTTCAGGGTGACCGAAGAATCAGAA		
COIF-ALT	ACAAATCAYAARGAYATYGG	698	Million 2006
COIR-ALT	TTCAGGRTGNCCRAARAAYCA	098	Mikkelsen, 2006
FF2d	TTCTCCACCAACCACAARGAYATYGG	707	Iveneva 2007
FR1d	CACCTCAGGGTGTCCGAARAAYCARAA	/0/	Ivanova, 2007
FISH-BCL	TCAACYAATCAYAAAGATATYGGCAC	706	Daldurin 2000
FISH-BCH	TAAACTTCAGGGTGACCAAAAAATCA	/00	Baldwin, 2009
COI-Fish-F	TTCTCAACTAACCAYAAAGAYATYGG	709	Kash-ing 2010
COI-Fish-R	TAGACTTCTGGGTGGCCRAARAAYCA	/09	Kochzius, 2010
FISHCOILBC_ts	CACGACGTTGTAAAACGACTCAACYAATCAYAAAGATATYGGCAC	705	Handar 2011
FISHCOIHBC_ts	GGATAACAATTTCACACAGG ACTTCYGGGTGRCCRAARAATCA	705	Handy, 2011
SPACOIREV	GGATAACAATTTCACACAGGACTTCYGGGTGNCCRAARAATCA	705*	This study
REVshort1	GGATAACAATTTCACACAGG GGYATNACTATRAAGAAAATTATTAC	192*	This study

Table 4SM. Universal primers for the amplification of the *COI* gene from fish (Armani et al, 2012c with modification). * The length refers to the amplicon generated using the forward FISHCOILBC_ts

Q			COI fragment	5	Species identifica	tion (BLAST)	
Species name (morphological identification)	BOLD	NCBI	(bp)	BOLD Species Level Barcode Records	Max identity	GenBank	Max identity
	SDA220 14 COL 5D	G4:11 ;4;	655	A. australis	100	A. australis	100
Acanthopagrus australis	SPA239-14.COI-5P	Still waiting	139	A. australis	100	A. australis	100
	SPA202-13.COI-5P	Still waiting	655	A. berda	100	A. berda	98
	SPA003-13.COI-5P	KJ012251					
Acanthopagrus berda	SPA002-13.COI-5P	KJ012252	120	A. berda	100	4 1 1	00
	SPA004-13.COI-5P	KJ012253	139	A. pacificus	98.55	A. berda	99
	SPA203-13.COI-5P	KJ012254					
	SPA208-13.COI-5P	KJ012255	655; 653	A. butcheri	100	A. butcheri	100
	SPA207-13.COI-5P	KJ012256					
	SPA206-13.COI-5P	KJ012257					
Acanthopagrus butcheri	SPA205-13.COI-5P	KJ012258				A. butcheri	100
	SPA211-13.COI-5P	KJ012259	139	A. butcheri	100	A. schlegelii	99
	SPA210-13.COI-5P	KJ012260				A. berda	98
	SPA209-13.COI-5P	KJ012261					
	SPA240-14.COI-5P	Still waiting					
	SPA006-13.COI-5P	KJ012262	655	A. latus	100	A. latus	99-100
	SPA005-13.COI-5P	KJ012263					
A canthon acrus latus	SPA008-13.COI-5P	KJ012264					
Acanthopagrus latus	SPA007-13.COI-5P	KJ012265	139	A. latus	100	A. latus	100
	SPA009-13.COI-5P	KJ012266					
	SPA010-13.COI-5P	KJ012267					
		HG937802	139	A. pacificus	100	A. berda	99
		HU937802	139	A. berda	100	A. beruu	99
	SPA189-13.COI-5P	KJ012269	583	A. pacificus	99.83	A. berda	97
Acanthopagrus pacificus ^{b*}	SFA189-13.COI-JF	KJ012209	303	A. berda (2 seq.)	99.83	A. beraa	91
Acumnopagrus pacificus			655	A. pacificus	100	A. berda	97
	SPA022-13.COI-5P	KJ012268	055	A. berda (2 seq.)	100	A. beruu	91
	SFA022-13.COI-5F	KJ012208	139	A. pacificus	100	A. berda	99
			139	A. berda	100	A. beruu	99
			655	A. berda	98.05	A. berda	98
Acanthopagrus palmaris ^a	SPA242-14.COI-5P	Still waiting	139	A. pacificus	100	A. berda	99
			137	A. berda	99.28	A. verau	77
Acanthon acous collegality	SPA024-13.COI-5P	KJ012273	655	A. schlegelii	100	A. schlegelii	100
Acanthopagrus schlegelii*	SPA024-13.COI-5P	KJ012273	655	A. schlegelii schlegelii	99.85	A. schlegelii schlegelii	99

				A. schlegelii	100	A. schlegelii	100
			139	A. schlegelii schlegelii	99.28	A. schlegelii schlegelii	100
				A. butcheri	98.55	A. butcheri	99
		W1010070		A. schlegelii	100	A. schlegelii	100
	SPA029-13.COI-5P	KJ012270	655	A. schlegelii schlegelii	100	A. schlegelii schlegelii	100
	SPA027-13.COI-5P	KJ012271				A. schlegelii	100
	SPA025-13.COI-5P	KJ012272	139	A. schlegelii	100	A. schlegelii schlegelii	100
	SPA028-13.COI-5P	KJ012274		A. schlegelii schlegelii	100	A. butcheri	98
					100	A. schlegelii	100
		HG937803	139	A. schlegelii	100	A. schlegelii schlegelii	100
				A. schlegelii schlegelii	100	A. butcheri	98
	SDA022 12 COL 5D	K1012275	(55	A. schlegelii	99.85-100	A. schlegelii	99-100
A	SPA032-13.COI-5P SPA031-13.COI-5P	KJ012275 KJ012276	655	A. schlegelii schlegelii	99.85-100	A. schlegelii schlegelii	99-100
Acanthopagrus sivicolus ^{a*}			120	A. schlegelii	100	A. schlegelii;	100
	SPA030-13.COI-5P	KJ012277	139	A. schlegelii schlegelii	100	A. schlegelii schlegelii	100
	SPA011-13.COI-5P	KJ012278	655	A. probatocephalus	100	A. probatocephalus	99-100
	SPA012-13.COI-5P	KJ012279					
	SPA013-13.COI-5P	KJ012280	132-139	A. probatocephalus	100	A. probatocephalus	100
	SPA014-13.COI-5P	KJ012281					
		HG937804	138	A. probatocephalus	100	A. probatocephalus	100
Anabaganana uhambaidalia	SPA023-13.COI-5P	KJ012282	655	A. rhomboidalis	100	A. rhomboidalis	100
Archosargus rhomboidalis	SPA025-15.COI-5P	KJ012282	139	A. rhomboidalis	100	A. rhomboidalis	100
	SPA016-13.COI-5P	KJ012283	655	A. bleekeri	100	A	00. 100
4b	SPA018-13.COI-5P	KJ012284	055	A. spinifer	99.38-99.69	A. spinifer	99; 100
Argyrops bleekeri ^b	SPA204-13.COI-5P	KJ012285	120	A. bleekeri	100	4	00.100
	SPA017-13.COI-5P	KJ012286	139	A. spinifer	99.85-100	A. spinifer	99; 100
A	SPA019-13.COI-5P	KJ012287	655	A. filamentosus	100	A. filamentosus	100
Argyrops filamentosus	SPA020-13.COI-5P	KJ012288	139	A. filamentosus	100	A. filamentosus	100
			645-655	A. spinifer	100	A. spinifer	100
						A. spinifer	100
	SPA035-13.COI-5P	KJ012289				P. major	98
	SPA033-13.COI-5P	KJ012290	139	A. spinifer	100	E. japonica	98
	SPA034-13.COI-5P	KJ012293	139	A .blekeeri	98.72	E. cardinalis	98
Argyrops spinifer						P. edita	98
						P. auratus	98
			655	A. spinifer	99.69; 99.85	A. filamentosus	96
	SPA191-13.COI-5P	KJ012291		A	00.20	A. spinifer	99
	SPA190-13.COI-5P	KJ012292	139	A. spinifer	99.28 08.55	P. dentata	98
		0-13.COI-5P KJ012292		A. blekeeri	98.55	A. filamentosus	98

	SPA236-14.COI-5P	Still waiting	655	A. argyrozona	99.84; 100	A. argyrozona	99; 100
Argyrozona argyrozona*	SPA237-14.COI-5P SPA238-14.COI-5P	Still waiting Still waiting	139	A. argyrozona	100	A. argyrozona	100
	SPA036-13.COI-5P	KJ012294	CEA CEE	B. boops	100	B. boops	100
D 1	SPA119-13.COI-5P	KJ012295	654-655	O. melanura (2 seq.)	99.67-99.84	O. melanura (2 seq.)	99
Boops boops	SPA037-13.COI-5P	KJ012296	120	B. boops	100	D 1	100
	SPA038-13.COI-5P	KJ012297	139	O. melanura (2 seq.)	100	B. boops	100
			655	Namatak		C. brachysomus	93
	SPA041-13.COI-5P	KJ012298	033	No match		C. penna	93
	SPA039-13.COI-5P	KJ012299				C. brachysomus	96
C-1a	SPA232-13.COI-5P	KJ012300	139	No match		C. penna	96
Calamus arctifrons ^a						C. calamus	96
						C. brachysomus	96
		HG937805	139	No match		C. penna	96
						C. calamus	96
	SPA043-13.COI-5P	KJ012301	655	C. bajonado	99.54	Calamus sp.	99
Calamus bajonado ^b	SPA042-13.COI-5P	KJ012302	139	C. bajonado	99.28	<i>Calamus</i> sp.	99
	SPA044-13.COI-5P	KJ012303	159	C. bajonaao	99.28	Calamus sp.	99
			655; 654	C. brachysomus	100	C. brachysomus	100
		KJ012304		C. brachysomus	100	C. brachysomus	100
Calamus brachysomus	SPA045-13.COI-5P		139	C. nodosus	100	C. oracnysomus C. calamus	99
Calamas brachysomas	SPA243-13.COI-5P	Still waiting		C. leucosteus	99.28	C. catamus C. penna	99
				C. calamus	99.22	C. penna Calamus sp.	99
				C. penna	98.55	Cauamus sp.	
	SPA046-13.COI-5P	KJ012305	655	C. calamus	100	C. calamus	100
Calamus calamus	SPA040-13.COI-5P SPA047-13.COI-5P	KJ012305 KJ012306		C. calamus	100	C. calamus	100
Culumus culumus	SPA047-13.COI-5P SPA048-13.COI-5P	KJ012300 KJ012307	139	C. nodosus	99.28	Calamus sp.	100
	SFA046-15.COI-JF	KJ012307		C. brachysomus (1seq.)	100	C. brachysomus	99
			655	C. leucosteus	100	C. brachysomus	94
	SPA049-13.COI-5P	KJ012308		C. leucosteus	100	C. brachysomus	99
Calamus leucosteus ^{b*}	SPA050-13.COI-5P	KJ012309	139	C. brachysomus	100	C. penna	99
	SPA051-13.COI-5P	KJ012310	139	C. nodosus	99.15	C. penna C. calamus	98
				C. calamus	98.45	C. caumus	90
						Actinopterygii spp.	99
	SPA235-14.COI-5P	Still waiting	655	C. nodosus	100	Calamus spp.	98
Calamus nodosus ^b	SPA056-13.COI-5P	KJ012311				C. calamus	98
Caumus noaosus	SPA055-13.COI-5P	KJ012312		C. nodosus	100	C. calamus	99
	SPA054-13.COI-5P	KJ012313	139	C. brachysomus	100	Calamus spp.	99
	511100 + 10.001 51			C. calamus	99.28	C. brachysomus	99

				C. leucosteus	98.55	C. penna	98
				C. nodosus	100	C. calamus	99
		HG937806	139	C. brachysomus	100	Calamus spp.	99
		HG93/800	139	C. calamus	99.28	C. brachysomus	99
				C. leucosteus	98.55	C. penna	98
					C. penna	99	
		HG937807	139	C. penna	99.28	C. brachysomus	98
Calamus penna			655	C. penna	99.54	C. penna	99
-	SPA053-13.COI-5P	KJ012314				C. penna	99
			139	C. penna	99.28	C. brachysomus	98
			655	C. leucosteus	99.23	Actinopterygii spp.	97
	SPA058-13.COI-5P	KJ012315		C. leucosteus	100	Actinopterygii spp.	100
Calamus proridens ^a			139	C. pennatula	100	Calamus sp.	98
1		C laucostaus			Actinopterygii spp.	100	
		HG937808	139	C. pennatula	100	Calamus sp.	98
	SPA062-13.COI-5P	KJ012316		C. nufar	100		
	SPA060-13.COI-5P	KJ012317	655	P. pagrus (1 seq.)	98.92	C. nufar	100
	SPA064-13.COI-5P	KJ012318		C. nufar	100		
Cheimerius nufar	SPA061-13.COI-5P	KJ012319	139	P. pagrus (1 seq.)	100	C. nufar	100
				C. nufar	100		
		HG937809	139	P. pagrus (1 seq.)	100	C. nufar	100
			655	C. cristiceps	100	C. cristiceps	99
	SPA259-14.COI-5P	Still waiting	000	C. cristiceps	100	C. cristiceps	100
Chrysoblephus cristiceps*	SPA260-14.COI-5P SPA261-14.COI-5P	Still waiting Still waiting	139	P. dentata	99.26	P. dentata	99
				C. laticeps	98.89	C. laticeps	98
			655	C. gibbiceps	99.53	C. gibbiceps	98
Chrysoblephus gibbiceps	SPA244-14.COI-5P	Still waiting	139		99.55		99
		0.00	1	C. gibbiceps		C. gibbiceps	
	SPA255-14.COI-5P	Still waiting	655	C. laticeps	100	C. laticeps	100
Chrysoblephus laticeps*	SPA256-14.COI-5P	Still waiting	139	C. laticeps	100	C. laticeps	100
	SPA257-14.COI-5P	Still waiting		C. cristiceps	98.89	C. cristiceps	98
Chrysoblephus puniceus*	SPA065-13.COI-5P	KJ012320	655	C. puniceus	100	C. puniceus	99
, <u>i</u> I			139	C. puniceus	100	C. puniceus	100
Crenidens crenidens*	SPA258-14.COI-5P	Still waiting	655	C. crenidens	98.73	C. crenidens	98
		-	139	C. crenidens	100	C. crenidens	98
	SPA067-13.COI-5P	KJ012321	655	D. macrophthalmus	99.84	D. macrophthalmus	98
	SPA192-13.COI-5P	KJ012323	139	D. macrophthalmus	99.28	D. macrophthalmus	99
Dentex angolensis ^a	SPA193-13.COI-5P	KJ012324	157		77.40	D. mucroprintumus	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		HG937810	139	D. macrophthalmus	100	D. macrophthalmus	99
		110757610	137	Spicara alta	98.55	D. macrophinaimus	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Douton ognarionsis ^a	SDA 120 12 COL 5D	K1012225	655	No match		D. macrophthalmus	95	
Dentex canariensis ^a	SPA120-13.COI-5P	KJ012325	139	No match		D. macrophthalmus	99	
	SPA123-13.COI-5P	KJ012326	655	D. dentex	98.85; 100	D. dentex	99	
	SPA194-13.COI-5P	KJ012327						
Dentex dentex	SPA124-13.COI-5P	KJ012328	139	D. dentex	99.28; 100	D. dentex	99	
	SPA126-13.COI-5P	KJ012329						
		HG937811	139	D. dentex	99.22	D. dentex	99	
			655	No match		P. caerulosticus	93	
Dentex gibbosus ^a	SPA222-13.COI-5P	KJ012330	120	P. acarne	98.55			
			139	V. acromegalus	98.55	C. nufar	98	
	SPA069-13.COI-5P	KJ012331	655	D. macrophthalmus	99.69; 99.84	D. macrophthalmus	98	
Dentex macrophthalmus	SPA071-13.COI-5P	KJ012332	100				0.6	
-	SPA070-13.COI-5P	KJ012333	139	D. macrophthalmus	100	D. macrophthalmus	96	
	(DA 122 12 COL 5D	1/1010004	655	D. macrophthalmus	99.84; 100	D. macrophthalmus	98	
Dentex maroccanus ^a	SPA132-13.COI-5P	KJ012334	120	D. macrophthalmus	100		100	
	SPA131-13.COI-5P	KJ012335	139	Spicara alta	98.55	D. macrophthalmus	100	
\mathbf{D} · · · · · · · · · · · · · · · · · · ·	SDA 252 14 COL 5D	G.(11)	563	D. spariformis	100	D. tumifrons	94	
Dentex spariformis ^b	SPA253-14.COI-5P	Still waiting	139	D. spariformis	100	D. tumifrons	95	
	SPA076-13.COI-5P	KJ012336	562-655	D. annularis	99.53-100	D. annularis	99	
	SPA078-13.COI-5P	KJ012337						
Diplodus annularis	SPA196-13.COI-5P	KJ012338	139		100		00 100	
	SPA195-13.COI-5P	KJ012339		D. annularis	100	D. annularis	99; 100	
	SPA077-13.COI-5P	KJ012340						
				D. cervinus	100			
				D. cervinus hottentotus	100	Deservisions	100	
		110027912		D. fasciatus	100	D. cervinus		
Diplodus cervinus		HG937812 HG937813	139	D. sargus	99.26	D. sargus	99	
		HG957815		D. sargus subspecies	98.55-99.17	D. argenteus	98	
				D. bellottii	98.55	D. holbrookii	98	
				D. vulgaris	98.41			
				D. cervinus	100			
			655	D. fasciatus	99.54; 99.69	D. cervinus	99; 100	
Diplodus cervinus hottentotus				D. cervinus hottentotus	99.54			
	CDA 120, 12, COL 55	K1012241		D. cervinus hottentotus	100			
	SPA130-13.COI-5P	KJ012341		D. cervinus	100	D. cervinus	100	
	SPA129-13.COI-5P	KJ012342	120	D. fasciatus	100	D. sargus	99	
			139	D. sargus subspecies	98.55-99.26	D. argenteus	98	
				D. bellotti	98.5598.55	D. holbrookii	98	
				D. vulgaris	98.41			

			655	D. holbrookii Haemulon aurolineatum D. argenteus	99.02; 98.86 98.46; 98.77 98.62; 98.46	D. holbrookii D. argenteus D. sargus	99 98; 99 98
Diplodus holbrookii	SPA128-13.COI-5P SPA127-13.COI-5P	KJ012343 KJ012344	139	D. argenteus D. holbrookii Haemulon aurolineatum D. sargus subspecies D. argenteus D. bellottii	99.28 99.28 98.55-99.28 99.28 99.28 99.28 98.55	D. holbrookii D. argenteus D. sargus	99 99 99 99
			655	D. sargus subspecies D. holbrookii D. argenteus	98.62-99.69 98.46 98.16	D. sargus subspecies D. holbrookii D. argenteus	99 98 98
Diplodus noct ^a	SPA133-13.COI-5P SPA134-13.COI-5P SPA254-14.COI-5P	KJ012345 KJ012346 Still waiting	139	D. sargus subspecies D. bellottii D. holbrookii D. argenteus D. cervinus D. cervinus hottentotus D. fasciatus O. melanura	100 100 99.28 99.28 99.05 98.55 98.55 98.55	D. sargus D. holbrookii D. argenteus D. cervinus	100 99 99 99 99
	SPA108-13.COI-5P	KJ012347	655	D. puntazzo	98.52-98.92	Dicentrarchus labrax D. puntazzo	99 99
Diplodus puntazzo	SPA111-13.COI-5P SPA110-13.COI-5P SPA009-13.COI-5P	KJ012348 KJ012349 KJ012350	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 99.28 99.21 98.55	D. sargus Dicentrarchus labrax	99 98
		HG937814	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 99.28 99.21 98.55	D. sargus Dicentrarchus labrax	99 98
			655	D. sargus subspecies	98.46-100	D. sargus subspecies D. holbrookii D. argenteus	99-100 98 98
Diplodus sargus (sargus)	SPA114-13.COI-5P SPA113-13.COI-5P SPA117-13.COI-5P SPA116-13.COI-5P	KJ012351 KJ012352 KJ012353 KJ012354	139	D. sargus subspecies D. bellottii D. holbrookii D. argenteus D. cervinus D. cervinus hottentotus D. fasciatus	100 100 99.28 99.28 99.05 98.55 98.55	D. sargus D. argenteus D. holbrookii D. cervinus	100 99 99 99

				O. melanura	98.41		
				D. sargus subspecies	100		
				D. bellottii	100		
				D. holbrookii	99.28	D. sargus	100
		HG937815	139	D. argenteus	99.28	D. argenteus	99
		HG937816	139	D. cervinus	99.05	D. holbrookii	99
				D. cervinus hottentotus	98.55	D. cervinus	99
				D. fasciatus	98.55		
				O. melanura	98.41		
				D. vulgaris	99.84; 100	D. sargus	
			655	D. sargus	99.69; 100	D. vulgaris	99; 100
	(DA 120, 12 COL 5D	121010255	655	D. prayensis	98.73; 98.92	-	99
	SPA138-13.COI-5P	KJ012355		D. fasciatus	98.62; 98.92		
	SPA140-13.COI-5P	KJ012356		D. vulgaris	100	D. sargus	
	SPA135-13.COI-5P SPA136-13.COI-5P	KJ012357 KJ012358		D. sargus	100	-	
	SPA130-13.COI-5P SPA139-13.COI-5P		139	D. prayensis	99.28		100
	SPA159-15.COI-5P	KJ012360	139	D. puntazzo	99.28		
Diplodus vulgaris				D. fasciatus	99.28		
				O. melanura	98.41		
			(55	D. sargus	99.37	D. sargus	99
			655	D. vulgaris	99.23	D. vulgaris	99
				D. vulgaris	100		
	SPA137-13.COI-5P	KJ012359		D. sargus	99.28		
			139	D. prayensis	98.55	D. sargus	99
				D. puntazzo	98.55		
				D. fasciatus	98.55		
				E. cardinalis	100	E. cardinalis	100
		110027917		E. tumifrons	100	E. japonica	100
		HG937817 HG937818	120	P. edita	100	P. edita	100
			139	P. major	98.55	P. major	99
		HG937819		P. auratus	98.55	P. auratus	99
				A. spinifer	98.55	A. spinifer	98
Evynnis cardinalis*				E. cardinalis	100	E. cardinalis	100
			655	E. tumifrons	100	E. japonica (1 seq.)	99
	SDA 144 12 COL 7D	K1010261		P. edita	99.69	P. edita	99
	SPA144-13.COI-5P	KJ012361		E. cardinalis	100	E. cardinalis	100
	SPA145-13.COI-5P	KJ012362	120	E. tumifrons	100	E. japonica	100
			139	P. edita	100	P. edita	100
				P. major	98.55	P. major	99

				Pagrus auratus	98.55	P. auratus	99
				A. spinifer	98.55	A. spinifer	98
	583 E. tumifr		E. tumifrons	100	E. tumifrons	99	
	SPA146-13.COI-5P	KJ012364				E. tumifrons	100
		67 <80		<80		D. macrophthalmus	98
Evynnis tumifrons	SPA150-13.COI-5P SPA147-13.COI-5P	KJ012363 KJ012365	655	E. tumifrons	99.69; 100	Dentex tumifrons (syn. E. tumifrons)	99
	SPA148-13.COI-5P SPA149-13.COI-5P	KJ012366 KJ012367	139	E. tumifrons D. spariformis	100 98.55	E. tumifrons	100
	SPA155-13.COI-5P	KJ012368			100	L. rhomboides	100
Lagodon rhomboides	SPA152-13.COI-5P SPA153-13.COI-5P	KJ012370 KJ012371	139	L. rhomboides	100 L. rhomboides		100
0	SPA156-13.COI-5P SPA154-13.COI-5P	KJ012369 KJ012372	520; 540	L. rhomboides	100	L. rhomboides	100
	SPA221-13.COI-5P	KJ012373	655	L. mormyrus	99.65-100	L. mormyrus	99;100
Lithognathus mormyrus	SPA220-13.COI-5P SPA079-13.COI-5P SPA151-13.COI-5P SPA197-13.COI-5P SPA219-13.COI-5P	KJ012374 KJ012375 KJ012376 KJ012377 KJ012378	139	L. mormyrus	100	L. mormyrus	100
			655	O. melanura	99.52	O. melanura	95
	SPA157-13.COI-5P	KJ012379	139	O. melanura D. sargus subspecies D. vulgaris D. bellottii D. puntazzo	100 98.55-99.28 99.21 98.55 98.55	D. sargus D. argenteus D. holbrookii	99 98 98
Oblada melanura		HG937820 HG937821 HG937822 HG937823 HG937824	139	O. melanura D. sargus subspecies D. vulgaris D. bellottii D. puntazzo	100 98.55-99.28 99.21 98.55 98.55	D. sargus D. argenteus D. holbrookii	99 98 98
		HG816028	139	O. melanura D. capensis D. vulgaris	99.28 98.55 98.41	D. sargus	98
			655	O. melanura	99.69	O. melanura	95
	SPA198-13.COI-5P	KJ012380	139	O. melanura D. vulgaris	99.21 98.41	O. melanura D. sargus	97 97
Pachymetopon aeneum*	SPA250-14.COI-5P SPA251-14.COI-5P	Still waiting Still waiting	655	P. aeneum	100	Paracaesio sordida (1 seq.) P. aeneum	100 99

SPA252-14.COI-5P	Still waiting	139	P. aeneum	100	P. aeneum P. sordida (1 seq.)	100 100
			P acarno	100		<u>99</u>
SPA159-13.COI-5P	KJ012382	601; 655				99
SPA082-13.COI-5P SPA080-13.COI-5P	KJ012383 KJ012385	139	P. acarne	100 100	P. acarne	99; 100
SPA083-13.COI-5P	KJ012381	655	<i>P. acarne</i> <i>O. melanura</i> (1 seq.)	99.45; 100 99.31; 100	P. acarne	99; 100
SPA081-13.COI-5P	KJ012384	66; 69	<80 bp		P. acarne	100
SPA162-13.COI-5P	KJ012386	655	P. bellotii P. pagrus P. natalensis	99.84 99.53 99.21	P. bellotii P. natalensis	99 99
		139	P. bellotii P. pagrus	100 98.55	P. bellotii P. natalensis	100 98
SPA225-13.COI-5P	KJ012387	655	P. bogaraveo	99.85; 100	P. bogaraveo	99; 100
SPA166-13.COI-5P SPA223-13.COI-5P SPA164-13.COI-5P SPA224-13.COI-5P SPA163-13 COI-5P	KJ012388 KJ012390 KJ012391 KJ012392 KJ012393	139	P. bogaraveo	100	P. bogaraveo	100
		557	P hogaraveo	99.82	P hogaraveo	99
						100
SPA176-13.COI-5P	KJ012394					99; 100
SPA177-13.COI-5P	KJ012395	655	-		-	99
SPA174-13.COI-5P SPA175-13.COI-5P	KJ012396	139	P. erythrinus	100	P. erythrinus	100
	HG937826	139	P. edita	98.1	P. major E. japonica E. cardinalis P. edita C. auratus	98
SPA212-13.COI-5P SPA218-13.COI-5P	KJ012398 KJ012399	655	P. auratus P. major	99.85; 100 99.54	P. auratus	99; 100 99
SPA217-13.COI-5P SPA216-13.COI-5P SPA215-13.COI-5P SPA213-13.COI-5P	KJ012400 KJ012401 KJ012402 KJ012403	139	P. auratus P. major E. cardinalis E. tumifrons	100 100 98.89 98.55	P. major P. auratus E. japonica E. cardinalis	100 100 99 99 99
	SPA159-13.COI-5P SPA082-13.COI-5P SPA080-13.COI-5P SPA080-13.COI-5P SPA080-13.COI-5P SPA081-13.COI-5P SPA081-13.COI-5P SPA162-13.COI-5P SPA162-13.COI-5P SPA166-13.COI-5P SPA166-13.COI-5P SPA164-13.COI-5P SPA163-13.COI-5P SPA163-13.COI-5P SPA165-13.COI-5P SPA165-13.COI-5P SPA165-13.COI-5P SPA165-13.COI-5P SPA176-13.COI-5P SPA177-13.COI-5P SPA174-13.COI-5P SPA175-13.COI-5P SPA175-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA216-13.COI-5P SPA216-13.COI-5P	SPA159-13.COI-5P SPA082-13.COI-5P KJ012382 KJ012383 SPA080-13.COI-5P KJ012383 SPA080-13.COI-5P KJ012384 SPA081-13.COI-5P KJ012384 SPA081-13.COI-5P KJ012384 SPA081-13.COI-5P KJ012386 SPA162-13.COI-5P KJ012387 SPA166-13.COI-5P KJ012387 SPA166-13.COI-5P KJ012387 SPA164-13.COI-5P KJ012391 SPA223-13.COI-5P KJ012390 SPA164-13.COI-5P KJ012391 SPA224-13.COI-5P KJ012391 SPA164-13.COI-5P KJ012393 SPA165-13.COI-5P KJ012393 SPA165-13.COI-5P KJ012393 SPA165-13.COI-5P KJ012394 SPA176-13.COI-5P KJ012394 SPA175-13.COI-5P KJ012395 SPA175-13.COI-5P KJ012396 SPA175-13.COI-5P KJ012397 HG937826 SPA212-13.COI-5P KJ012398 SPA216-13.COI-5P KJ012398 SPA216-13.COI-5P KJ012400 SPA216-13.COI-5P KJ	Image: Spatial space Image: Space Image	Image: Second system 139 P. aeneum SPA159-13.COI-5P KJ012382 601: 655 P. acarne Oblada melanura (1 seq.) SPA080-13.COI-5P KJ012385 139 P. acarne Oblada melanura (1 seq.) SPA083-13.COI-5P KJ012381 655 P. acarne O. melanura (1 seq.) SPA083-13.COI-5P KJ012384 655 P. acarne O. melanura (1 seq.) SPA081-13.COI-5P KJ012384 655 P. bellotii P. pagrus SPA162-13.COI-5P KJ012386 655 P. bellotii P. pagrus SPA162-13.COI-5P KJ012387 655 P. bellotii P. pagrus SPA166-13.COI-5P KJ012388 655 P. bellotii P. pagrus SPA164-13.COI-5P KJ012390 139 P. bogaraveo SPA164-13.COI-5P KJ012390 139 P. bogaraveo SPA164-13.COI-5P KJ012391 139 P. bogaraveo SPA163-13.COI-5P KJ012395 557 P. bogaraveo SPA163-13.COI-5P KJ012395 557 P. bogaraveo SPA175-13.COI-5P KJ012396 139 P. erythrinus </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

				A. spinifer	98.55	P. edita	99
						A. spinifer	98
D	SPA161-13.COI-5P	KJ012405	655	P. auriga	99.85	P. auriga	99
Pagrus auriga	SPA226-13.COI-5P	KJ012406	139	P. auriga	100	P. auriga	100
	SPA167-13.COI-5P SPA171-13.COI-5P	KJ012407 KJ012408	655	P. caeruleostictus	99.82; 99.83; 99.84; 100	P. caeruleostictus	99; 100
Pagrus caeruleostictus	SPA172-13.COI-5P SPA168-13.COI-5P SPA170-13.COI-5P	KJ012409 KJ012410 KJ012411	139	P. caeruleostictus	99.07; 100	P. caeruleostictus	99; 100
		HG937827	139	P. caeruleostictus	100	P. caeruleostictus	99
			655	P. major P. auratus	100 100	P. major P. auratus	99; 100 99
Pagrus major	SPA181-13.COI-5P SPA183-13.COI-5P SPA178-13.COI-5P SPA179-13.COI-5P SPA182-13.COI-5P	KJ012412 KJ012413 KJ012414 KJ012415 KJ012416	139	P. major P. auratus E. cardinalis E. tumifrons P. edita A. spinifer	100 100 98.89 98.55 98.55 98.55	P. major P. auratus E. japonica E. cardinalis P. edita A. spinifer	100 100 99 99 99 99 98
		Still waiting	139	P. major P. auratus E. cardinalis E. tumifrons P. edita A. spinifer	100 100 98.85 98.52 98.52 98.52	P. major C. auratus E. japonica E. cardinalis P. edita A. spinifer	100 100 99 99 99 99 98
		HG937828 HG937829 HG937830	139	P. erythrinus O. melanura P. pagrus	100 100 99.28	P. pagrus P. auratus (2 seq.)	99 99
Daomia naomia	SPA101-13.COI-5P	KJ012417	655	P. pagrus O. melanura	99.84; 100 99.84; 100	O. melanura P. auratus P. pagrus	100 99 99
Pagrus pagrus	SPA102-13.COI-5P SPA103-13.COI-5P SPA104-13.COI-5P SPA106-13.COI-5P	KJ012418 KJ012419 KJ012420 KJ012421	139	P. pagrus P. erythrinus O. melanura	100 100 100	P. pagrus P. auratus E. japonica E. cardinalis P. edita A .spinifer	100 100 99 99 99 99 98
	SPA247-14.COI-5P	Still waiting	643; 655	P. lanarius	99.69-100	P. lanarius	99
Pterogymnus laniarius	SPA248-14.COI-5P SPA249-14.COI-5P	Still waiting Still waiting	139	P. lanarius	100	P. lanarius	99

			655	<i>R. haffara</i> <i>S. aurata</i> (1 seq.)	99.82 99.85	R. haffara	99
Rhabdosargus haffara	SPA227-13.COI-5P	KJ012422	139	<i>R. haffara</i> <i>S. aurata</i> (1 seq.)	2. haffara 100		96
			652 R holubi		100	R. holubi	99
Rhabdosargus holubi*	SPA246-14.COI-5P	Still waiting	139	R. holubi	99.28	R. holubi	99
		HG937831 HG937832	139	R. sarba R. haffara	100 100	R. sarba R. globiceps	100 98
			(55	R. globiceps	98.85	A. berda R. sarba	<u>98</u> 99; 100
	, SPA186-13.COI-5P		655	R. sarba	99.85; 100		/
Rhabdosargus sarba	SPA233-13.COI-5P	KJ012424	139	R. sarba R. haffara R. globiceps	100 100 98.85	R. sarba R. globiceps A. berda	100 98 98
			655	R. sarba	100	R. sarba	100
	SPA245-14.COI-5P	Still waiting	139	R. sarba	100	R. sarba	100
	SPA085-13.COI-5P KJ		655	S. salpa	99.85; 100	S. salpa	99
Sarpa salpa	SPA084-13.COI-5P SPA199-13.COI-5P SPA087-13.COI-5P SPA086-13.COI-5P	KJ012426 KJ012427 KJ012428 KJ012429	139	S. salpa	99.85; 100	S. salpa	99; 100
	SPA074-13.COI-5P	KJ012430	655	S. aurata	100	S. aurata	100
Sparus aurata	SPA200-13.COI-5P SPA072-13.COI-5P SPA075-13.COI-5P SPA073-13.COI-5P	KJ012431 KJ012432 KJ012433 KJ012434	139	S. aurata	100	S. aurata	100
	SPA099-13.COI-5P	KJ012435	569; 643; 655	S. cantharus	100	S. cantharus	99
	SPA201-13.COI-5P SPA097-13.COI-5P	KJ012436 KJ012438	139	S. cantharus S. emarginatum	100 99.28; 98.55	S. cantharus S. emarginatum	99 98; 99
Su au de li a a una a au th ann a	SPA096-13.COI-5P	KJ012439	655	S. cantharus	100	S. cantharus S. emarginatum	100 98
Spondyliosoma cantharus	SPA090-13.COI-5P	KJ012439	139	S. cantharus S. emarginatum	100 99.28	S. cantharus S. emarginatum	100 99
			547	S. cantharus	100	S. cantharus	99
	SPA098-13.COI-5P	KJ012437	69	<80 bp		S. cantharus S. emarginatum	100 99
	SPA090-13.COI-5P	KJ012440	655	S. caprinus S. chrysops	99.69- 100 99.85; 100	S. chrysops C. penna (1 seq.)	99; 100 99
Stenotomus caprinus ^b	SPA089-13.COI-5P SPA088-13.COI-5P	KJ012441 KJ012442	139	S. caprinus S. chrysops	100 100	S. chrysops C. penna (1 seq.)	100 100

	SPA095-13.COI-5P SPA234-13.COI-5P	KJ012443 KJ012444	655	S. chrysops	100 99.69	<i>C. penna</i> (1 seq.)	100 99
Stenotomus chrysops	SPA091-13.COI-5P SPA092-13.COI-5P	KJ012444 KJ012445 KJ012446		S. caprinus S. chrysops	100	S. chrysops S. chrysops	100
	SPA093-13.COI-5P SPA094-13.COI-5P	KJ012447 KJ012448	139	S. caprinus	100	C. penna (1 seq.)	100
	SDA 107, 12 COL 5D	K1012440	655	V. acromegalus P. acarne	100 100	P. auriga	92
Virididentex acromegalus ^{b*}	SPA187-13.COI-5P	KJ012449	139	V. acromegalus P. acarne	100 100	Porcostoma dentata A. spinifer	97 97
		HG937833	139	V. acromegalus P. acarne	100 100	Porcostoma dentata A. spinifer	97 97

Table 5SM: The results of the IDs analysis on BOLD and of the BLAST analysis on GenBank for the full and for the mini DNA barcode. The BOLD codes and the NCBI access number are reported when available (no code is assigned in BOLD to sequences <200bp). The species not reported in **bold type** have been considered originating from incorrectly identified or mislabeled specimens. When two or more values of MI are reported they are referred to a range (if separated by a -) or to different MI retrieved (if separated by a semicolon ;). ^a No sequences were available for this species in consulted databases; ^bNo sequences were available for this species in Genbank database;*Species not considered in the International Official Trade lists; *D. sargus* subspecies: *D. sargus* ascensionis, *D. sargus* capensis, *D. sargus* helenae; *D. sargus* kotschyi, *D. sargus* lineatus, *D. sargus* sargus.

Possible explanation	The probable misidentification of these sequences was already supposed by Keskin & Atar, (2013). However, a 7% mean	genetic distance between our sequences and those of Keskin & Atar, (2013) highlights a remarkable intraspecific variation	within the specimens of O. melanura. The reliability of our morphological identification is supported by the fact that our	sequences show a mean identity value of 99.7% with other private sequences available on BOLD. Interesting to note that,	while our specimens were collected in the Western part of the Mediterranean Sea, those analyzed by Keskin & Atar, (2013)	came from the Eastern Mediterranean. Similar values of intraspecific divergence have been reported for the most diverse	fish groups, and often attributed to cryptic species (April, Mayden, Hanner & Bernatchez, 2011; Ward, Holmes & Yearsley,	2008).	Considering the different geographical origin of the two species, it could be possible that the specimen identified as S.	aurata was a misidentified specimen of R. haffara migrated through the Suez Canal (Golani, 1992).	There have been many re-descriptions within this genus and currently 15 species and 2 subspecies are recognized (Hsu	<i>et al.</i> , 2011).	Misidentification of specimens or identification based on previous classification, considering that A. pacificus, very	similar in overall appearance to A. berda, has been recently re-described as a new species (Iwatsuki, Kume, & Yoshino,	2010).		Closely related species belonging to the "black seabream complex" (Hsu et al., 2011).		As suggested by Tabata & Taniguchi (2000) they might be two subspecies,	Close phylogenetic relationship of the genus Diplodus, which includes 13 species and 11 subspecies (Summerer, Hanel	& Sturmbauer, 2001).
Misidentified with	0. melanura								S. aurata		Acanthopagrus spp		A. berda			A. schlegelii, A.	schlegelii schlegelii, A.	sivicolus	P. auratus	D. sargus subspecies	
Problematic sequences	Boops boops, Pagellus	acarne, Pagellus	erythrinus, and Pagrus	pagrus					Rhabdosargus haffara		Acanthopagrus spp		A. pacificus			A. schlegelü, A.	schlegelii schlegelii, A.	sivicolus	Pagrus major	D. sargus subspecies	

Table 7SM. Possible explanation of the main cases of misidentification during comparison on BOLD and GenBank.

References	es
1.	April, J., Mayden, R. L., Hanner, R., & Bernatchez, L. (2011). Genetic calibration of species diversity among North America's freshwater fishes. PNAS, 108(26), 10602–10607.
5.	Golani, D. (1992). <i>Rhabdosargus haffara</i> (Forsskål, 1775) and <i>Sphyraena flavicauda</i> Rüppell, 1833—new Red Sea immigrants in the Mediterranean. <i>Journal of Fish biology</i> , 40(1), 139-140.
ю.	Hsu, T. H., Guillén Madrid, A. G., Burridge, C. P., Cheng, H. Y., & Gwo, J. C. (2011). Resolution of the <i>Acanthopagrus</i> black seabream complex based on mitochondrial and amplified fragment-length polymorphism analyses. <i>Journal of fish biology</i> , 79(5), 1182-1192.
4.	Iwatsuki, Y., Kume, M., & Yoshino, T. (2010). A new species, Acanthopagrus pacificus from the Western Pacific (Pisces, Sparidae). Bulletin of the National Science Museum, 36, 115-130.
5.	Summerer, M., Hanel, R., & Sturmbauer, C. (2001). Mitochondrial phylogeny and biogeographic affinities of sea breams of the genus <i>Diplodus</i> (Sparidae). <i>Journal of Fish Biology</i> , 59(6), 1638-1652.
9.	Tabata, K., & Taniguchi, N. (2000). Differences between <i>Pagrus major</i> and <i>Pagrus auratus</i> through mainly mtDNA control region analysis. <i>Fisheries Science</i> , 66(1), 9-18.

Supplementary material for online publication only Click here to download high resolution image

Supplementary material for online publication only Click here to download high resolution image

