Elsevier Editorial System(tm) for Food Control Manuscript Draft

Manuscript Number: FOODCONT-D-14-01538R1

Title: Fish species identification in canned pet food by BLAST and Forensically Informative Nucleotide Sequencing (FINS) analysis of short fragments of the mitochondrial 16s ribosomal RNA gene (16S rRNA).

Article Type: Research Article

Keywords: Species identification, pet food, BLAST analysis, FINS analysis, 16S ribosomal RNA gene, Mislabeling

Corresponding Author: Dr. Andrea Armani,

Corresponding Author's Institution:

First Author: Andrea Armani, Dr., PhD

Order of Authors: Andrea Armani, Dr., PhD; Lara Tinacci, Dr.; Xiong Xiong, Dr.; Lorenzo Castigliego , Dr., PhD; Daniela Gianfaldoni, Prof.; Alessandra Guidi, Prof.

Abstract: Nowadays, pet food is available on the market, claiming high-valued fish among ingredients. Unfortunately, the modifications induced by processing make difficult the species identification by visual inspection and hinder the enforcement of the legislation on traceability. In this work, after aligning 819 sequences of the Clupeidae, Engraulidae, Salangidae and Scombridae families, we developed new universal primers for the amplification and sequencing of 2 short fragments (\pm 118 and \sim 213) of the mitochondrial 16s ribosomal RNA (16srRNA) gene. Once tested on 130 DNA reference samples, these primers were used in the analysis of highly degraded DNA extracted from 43 canned cat food containing whole minnows (whitebait) (M) and tuna, or bonito and mackerel fillets (F). Three M and 2 F samples were analyzed for each can. A BLAST and a FINS analysis, the latter performed only on the 118bp fragment, were performed separately on the sequences obtained from M and F samples. All the M samples were identified at the species or genus level by both BLAST and FINS analysis. This allowed to highlight an impressive rate of mislabeling (100%). F samples, for which FINS was less performing in species identification, resulted mislabeled in 40% of the products.

Dear Editor, we revised the manuscript as suggested by the Reviewer.

Best Regards

Andrea Armani

Reviewers' comments:

It's a very interesting study in which a quick method was developed to identify the fish species by PCR based on 16s ribosomal RNA. However, the number of references seems to be to high for a regular paper and should be shorten wherever possible

The number of references has been reduced from 56 to 50.

Dear Editor,

We would like to submit the following manuscript for possible publication:

"Fish species identification in canned pet food by BLAST and Forensically Informative Nucleotide Sequencing (FINS) analysis of short fragments of the mitochondrial 16s ribosomal RNA gene (16S rRNA)"

Elite pet food products containing different kinds of boneless fish are usually sold in singleportion sterilized cans with a cost two or three times higher than the popular ones. For this reason, fish species substitution, often reported for products intended for human consumption, could be also pursued in the pet food sector to obtain a greater economic gain.

The official control, such as the visual inspection requested from the (EC) Regulation 882/2204, is often ineffective to verify the compliance of the product due to the loss of the morphological characteristics of the species that have been used for the production. Such limitations emphasize the need of "*physical checks*" that often rely on the utilization of DNA based methods.

In this work, after aligning 819 sequences of different fish family (Clupeidae, Engraulidae, Salangidae and Scombridae) we developed new universal primers for the amplification and sequencing of 2 short fragments (~118 and ~213) of the mitochondrial 16s ribosomal RNA (*16srRNA*) gene. Once tested on DNA reference samples the protocol was used to analyze degraded DNA extracted from the 43 products reporting valuable species, such as Whitebait (Minnow-M) and Tuna, Bonito and Mackerel (Fillets-F), among the ingredients. The obtained M and F sequences were then analyzed by running both a BLAST analysis on GenBank and by performing a FINS analysis, separately.

The results showed that, even though the selected DNA marker does not allow to clearly differentiate certain closely-related fish species of the Scombridae family, it was effective in discriminating the species belonging to the Clupeiformes order. Overall, the analytical approach highlighted a high rate of incorrect labelling of 100% in case of M and 40% in case of F. If considered in the light of the two main ingredients contained in the products (M and F) the results showed that the 60% of the products were 100% mislabeled, while in the remaining products (40%), the mislabeling affected only M.

1	Fish species identification in canned pet food by BLAST and Forensically Informative
2	Nucleotide Sequencing (FINS) analysis of short fragments of the mitochondrial 16s ribosomal
3	RNA gene (16S rRNA).
4	
5	Armani A.*, Tinacci L., Xiong X., Castigliego L., Gianfaldoni D., Guidi A.
6	
7	FishLab, Department of Veterinary Sciences, University of Pisa, Via delle Piagge 2, 56124, Pisa
8	(Italy).
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	*corresponding author:
22	Postal address: FishLab, (http://fishlab.vet.unipi.it), Department of Veterinary Sciences,
23	University of Pisa, Via delle Piagge 2, 56124, Pisa (Italy)
24	Tel: +390502210207
25	Fax: +390502210213
26	Email: andrea.armani@unipi.it

27 Abstract:

Nowadays, pet food is available on the market, claiming high-valued fish among ingredients. 28 29 Unfortunately, the modifications induced by processing make difficult the species identification by visual inspection and hinder the enforcement of the legislation on traceability. In this work, after 30 31 aligning 819 sequences of the Clupeidae, Engraulidae, Salangidae and Scombridae families, we developed new universal primers for the amplification and sequencing of 2 short fragments (±118 32 33 and ~ 213) of the mitochondrial 16s ribosomal RNA (*I6srRNA*) gene. Once tested on 130 DNA reference samples, these primers were used in the analysis of highly degraded DNA extracted from 34 35 43 canned cat food containing whole minnows (whitebait) (M) and tuna, or bonito and mackerel 36 fillets (F). Three M and 2 F samples were analyzed for each can. A BLAST and a FINS analysis, the 37 latter performed only on the 118bp fragment, were performed separately on the sequences obtained 38 from M and F samples. All the M samples were identified at the species or genus level by both BLAST and FINS analysis. This allowed to highlight an impressive rate of mislabeling (100%). F 39 samples, for which FINS was less performing in species identification, resulted mislabeled in 40% 40 of the products. 41

42

45

46

- 47
- 48

49

50

51

52

Keywords: Species identification, pet food, BLAST analysis, FINS analysis, 16S ribosomal
RNA gene, Mislabeling

53 **1 Introduction**

The awareness that pets can contribute to the maintenance well-being of humans has led to an increase of their number all around the world (Wells, 2009). In the US, from 1970 to 2010, the number of dogs and cats has been estimated to be increased from 67 to 164 millions (http://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html#.Up 8y0cTuImE). In the EU, in 2012, the total number of pets was 204.947.400 and 72 million of homes

59 had companion animals (FEDIAF, 2012).

In this new social contest, the relationship among pets and humans has completely changed and 60 61 the owner has assumed personal responsibility even for their proper dietary management. Pet 62 anthropomorphization and the rising of many food related pathologies (i.e obesity and food 63 intolerances) have pushed the feed sector to search for solutions to satisfy their nutritional needs (Lund, Armstrong, Kirk & Klausner, 2006). Specific food for breed, size, life stage and high quality 64 65 feed, in relation to the nutrient content (antioxidants, fibers, polyunsaturated fatty acids, etc.), are increasingly assuming greater appeal to the buyer, who is prone to pay for a higher price (Swanson 66 et al., 2013). Even though the ingredients' selection is a key element for pet food, tastiness and 67 palatability also represent an important characteristic for the owner. In particular, the initial 68 69 perception of quality and nutritional need satisfaction has evolved according to socio-cultural, environmental and ethical factors. This has brought to further increasing the variety of the offer on 70 the market, nowadays representing a significant share of the international food industry, with an 71 72 estimated value of 13.8 billion of euros in the Europe alone (FEDIAF, 2012). The pet food available 73 on the market are mainly dry, moist, semi-moist, frozen chilled, and treats. In general, they can be 74 grouped in two categories: "Popular", usually sold in grocery stores or large-format pet retailers and "Premium", typically sold in veterinary practices, and pet stores (Lund *et al.*, 2006). The latter are 75 76 elite products that often recall recipes and typical dishes of the culinary tradition, which are able to meet food trends and preferences of the owners at the same time (Swanson et al., 2013). Among 77 them, the super-premium fish-based cat food, containing different kinds of boneless fish soaked in 78

brine or jelly, are usually sold in single-portion sterilized cans. The cost for these products are on an average two or three times higher than the popular ones (author's note). Considering that the use of valuable fish species directly affects the cost of the products, it is plausible that the practice of misleading labeling, widely reported for products intended for human consumption (Pepe *et al.*, 2007; Armani *et al.*, 2013; Di Pinto *et al.*, 2013), could be also applied in the pet food sector to obtain a greater market appeal.

With regard to fish-based products, unlike the provisions for fish sold for human consumption (Regulation (EC) 1379/2013), the Regulation (EC) 767/2009 (Regulation (EC) 767/2009) does not compel the Business Operators (BOs) to indicate the scientific name of the fish used for the manufacturing. However, it specifies that labels must not mislead, confuse or deceive, directly or indirectly, the buyer "claiming" or remind fish species not included in the product.

Visual inspection is often ineffective to verify the compliance of the product to the label due to 90 91 the loss of the morphological characteristics of the species that have been used. Such limitations 92 emphasize the need of physical checks (Regulation (EC) 882/20024) that, in case of seafood, often 93 rely on the utilization of analytical methods capable to provide species identification (Armani, Castigliego & Guidi, 2012). The DNA-based techniques are routinely applied for the identification 94 95 of processed fish based products and feedstuffs, and shows greater efficiency than protein-based techniques in heat processed products (Pepe et al., 2007, Armani et al., 2012b; Armani et al., 2013; 96 97 Ardura et al., 2012). Among the several PCR-based methods, the sequencing, namely Forensically Informative Nucleotide Sequencing (FINS) and DNA Barcoding, are the most frequently applied to 98 99 fish and seafood species identification (Hellberg & Morrissey, 2011). At present, the COI gene is 100 the most targeted mtDNA gene due to a well-established molecular identification system for fish and seafood (FISH-BOL, www.fishbol.org). However, both the cytochrome b (cytb) and 16S 101 102 ribosomal RNA (16SrRNA) genes also represent useful targets for fish identification (Armani et al., 2012). This study was aimed to identify the fish species contained in 43 cat food products the label 103 of which reported the presence of valuable species, such as Whitebait, Tuna, Bonito and Mackerel, 104

in the ingredients. We first developed a PCR and a sequencing protocol designing new primers for
the amplification of *16SrRNA* gene fragments with different lengths. Then, the obtained short
sequences were analyzed running a BLAST analysis on GenBank and by performing a FINS
analysis to verify the labeling information in the light of the European provisions.

109 **2. Material and Methods**

110 2.1 Samples collection, visual inspection and DNA extraction

2.1.1 *Reference samples.* 107 reference tissue samples (RS) belonging to 22 species (from one to
 ten specimens per species) from Scombridae family were directly collected at the wholesale market
 or kindly provided by Research Institutes (Table 1SM).

114 *2.1.2 Market samples.* 43 cans of fish-based cat food belonging to 13 brands were collected from 115 the Italian market (Table 1-2). Each can was brought to the laboratory and labeled with an internal 116 code. The information reported on the label were registered and a visual inspection of the product 117 content was performed by morphological analysis (Fig. 1). When possible, 3 whole minnows (M) 118 specimens and 2 pieces of the Fillets (F) from each can were sorted randomly and washed with 119 distilled water. In case of products containing chicken together with minnows (2 cans), only M were 120 sampled and analyzed (Table 1-2).

121 2.1.3. DNA extraction. All the fish samples were stored at -20°C until total DNA extraction, which was performed according to the protocol proposed by Armani et al. (2014), starting from a 122 123 whole specimen in case of M and from 100mg of tissue in case of F or RS. The DNA concentration and purity were assessed by evaluating the absorbance at 260 nm and the ratios A260/280 and 124 125 A260/230 nm using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 126 Wilmington, DE, US). Moreover, 23 DNA samples obtained from reference specimens molecularly 127 identified at the species level in a previous work (Armani et al., 2012b) were also used to test the 128 primer amplification performances (Table 1SM).

129 2.2 Evaluation of DNA fragmentation by gel electrophoresis

One µg of total DNA extracted from M and F was electrophoresed on 1% agarose gel
(GellyPhorLE®, Euroclone, Pero, MI), stained with GelRedTM Nucleid Acid Gel Stain (Biotium,
Hayward, CA, USA) and visualized under UV light. The degradation degree was assessed by
comparison with the standard marker SharpMassTM50-DNA ladder and SharpMassTM1-DNA ladder
(Euroclone, Wetherby, UK). degree

135 2.3 Sequence collection, primer design and PCR optimization

136 2.3.1 Sequence collection and primer design. A total of 819 GenBank sequences of the 16SrRNA gene from the species belonging to the Clupeidae, Engraulidae, Salangidae and Scombridae families 137 138 were aligned using Clustal W in MEGA version 6 (Tamura et al., 2013). In particular, taking into 139 consideration the DNA degradation level, the analysis focused on a fragment of ~ 335bp belonging 140 to a sequence amplified by two universal primers (FOR16Spc- REV16Spc2 -2) developed in a previous work (Armani et al., 2012b) (Table 3). Within this fragment, the regions with the highest 141 142 identity level were identified and used to design new primers for the amplification of fragments of different length (77, 118, 213bp, length w/o primers calculated on the sequences FR849595 of 143 144 Sardina pilchardus). Primers characteristics are shown in Table 3 and Fig. 2. The discrimination power of each fragment per each species included in the alignment was assessed by running an "in 145 146 vitro" BLAST analysis on GenBank. This analysis also allowed to verify the availability of reference sequences for the 16SrRNA gene (Table 2SM). 147

2.3.2 PCR optimization. The new primers were tested for their amplification performances on all
 the RS DNA by coupling them in all the possible combinations and in different concentrations. The
 optimal annealing temperature (Ta) was then determined using the temperature gradient function on
 the PeqSTAR 96 Universal Gradient thermocycler (Euroclone, Milan, Italy).

Even though all the selected couples were able to produce a readable PCR product from each of the RS species, the best results in terms of amplification yield (evaluated by visualization in UV light), specificity (no aspecific amplification products), absence of inter-oligo reaction (no amplification in the blank) and percentage of successfully amplified RS were obtained using the 156 two forward primers For16s-1, FOR16s-2 together with the Rev16s-2. These primers allowed the 157 amplification of a 118 bp (short fragment) and 213 bp (long fragment), respectively. Thus, the 158 selected primers added with universal tails M13for(-21) M13rev(-29) were and (http://www.htseq.org/services/dna_sequencing/sanger) and tested for assess their amplification 159 160 performances (Table 3).

161 2.4 PCR amplification and DNA sequencing

162 2.4.1. Amplification of M and F DNA samples. All the PCR were performed in a final volume of 20μ l containing 1μ l of a $10\times$ PCR buffer (5 Prime, Gaithersburg, USA), 100ng of DNA, 100 μ M of 163 164 each dNTP, 100nM of each primer, 1U PerfectTag DNA Polymerase and DNase free water 165 applying a 35 cycles protocol (94°C for 30s, 53°C for 20s, 72°Cfor 30s) preceded by an initial 166 activation at 94 ° C for 3 minutes and followed by a final elongation step at 72°C for 10min. All the 167 PCR products (5µL) were checked on a 1.8% agarose gel (GellyPhorLE, Euroclone, UK) stained 168 with GelRedTM Nucleid Acid Gel Stain (Biotium, Hayward, CA, USA) and the presence of fragments of the expected length was assessed by a comparison with the standard marker 169 170 SharpMassTM50-DNA ladder (Euroclone, Wetherby, UK). The samples that presented the expected amplicon were sent to sequencing by the High-Throughput Genomics Center (Washington, USA). 171

172 2.4.2. Amplification and sequencing of DNA RS.

Part of DNA extracted from RS collected in this study were amplified using the primers proposed by Palumbi (1996) according to the protocol proposed by Armani *et al.* 2012a. In particular, we amplified the DNA from 2 to 5 samples belonging to the species *Euthynnus affinis, E. alletteratus, E. lineatus, Sarda chiliensis, S. orientalis, S. australis, T. maccoyii, Auxis rochei, A. thazard, Allothunnus fallai*, for which either only one sequence was deposited or no sequences were available. The PCR products were visualized and sequenced as reported in section 2.4.1. Totally, 28 reference sequences were obtained and deposited on GenBank via EBI (Table 2SM).

180 **2.5 BLAST and phylogenetic analysis of the sequences**

The obtained sequences were visualized, edited and aligned with Clustal W employing MEGA 181 182 6.0. Fine adjustments were manually made after visual inspection. A total of 213 sequences 183 belonging to the commercial samples with variable length in the range of 117-123 (short fragment) 184 or 213-230bp (long fragment) (Table 1-2) were produced and used to run a BLAST analysis on 185 GenBank. For distance analyses, the pairwise sequence divergences were calculated using a Kimura 186 2-parameter (K-2P) (Kimura, 1980) distance model computed on MEGA 6.0 software. The analysis 187 was performed separately for M and F commercial samples, using as reference the 28 sequences produced in this study (section 2.4.2) and 191 sequences retrieved from GenBank, using, when 188 189 available, five sequences per species (Table 2SM). In order to visualize the clustering pattern of the 190 sequences two NJ dendrogram with 1000 bootstrap re-samplings (Saitou & Nei, 1987) were 191 produced using MEGA 6.0.

192 **3. Results and Discussion**

Most of the studies on pet food were aimed to investigate the presence of harmful ingredients (Heller & Nocchetto, 2008) or microbiological contaminations (Weese, Rousseau & Arroyo, 2005) as a consequence of events of serious pets intoxication associated with the consumption of commercial feed. At present, to our knowledge, no studies exist on species identification in this kind of products aimed at verifying the labeling compliance.

At the European level, the Regulations on traceability and official controls (Regulations (EC) 178/2002, 882/2004 and Reg. 183/2005) on food and feed have been implemented with the introduction of the Regulation (EC) 767/2009 (Regulation (EC) 767/2009). This Regulation, in order to harmonize European legislation on feed, extended all the principles of Regulations 178/02 (Regulations (EC) 178/2002) also to pet food. Currently, Pet Feed Business Operators (PFBOs) become the guarantee and the solely responsible for the accuracy of all information on the label and, in particular, of the "claims" adopted to draw the attention of the final user.

In case of processed products PCR sequencing followed by a comparison with a dataset of reference sequences deposited in free accessible databases is the first choice for the fish species identification (Hellberg & Morrissey, 2011). On this regard, it is interesting to note that also US
FDA is considering to use DNA barcoding to detect mislabeling in imported pet food
(http://ibol.org/fda-using-barcoding-to-spot-fish-fraud/).

210 *3.1 Selection of the molecular target*

As reviewed in Armani *et al.* (2012) mitochondrial DNA (mtDNA) is generally chosen as target for species authentication due to the high mutation rate, multi-copy nature and maternal inheritance. The main points to consider in the choice of a molecular marker are the inter-and intraspecific variability, the presence of reference sequences on public databases and the presence of highly conserved region for the universal priming site selection (Teletchea, Maudet & Hänni, 2005; Vences *et al.* 2005).

As a result of the implementation of the Barcode of Life campaign, several primer pairs are currently available for the amplification of the mtDNA *COI* gene from fish (Armani *et al.*, 2012). Unfortunately, all these primers target a fragment of ~700bp, and are not suitable for the analysis of processed fish products because of the marked DNA degradation (Armani *et al.*, 2013; Armani *et al.*, 2014). On the other hand, the high level of sequence variation of the *cytb* gene makes difficult to locate conserved areas on which to design universal primers for the amplification of short gene fragments (Zhang & Hanner, 2012).

The *16SrRNA* gene, although characterized by a lower mutation rate with respect to the two mitochondrial genes *cytb* and *COI*, has been successfully targeted for the identification of Groupers (Trotta *et al.*, 2005), Clupeiformes (Jerome *et al.*, 2008) and many others fish species belonging to different families (Cawthorn, Steinman & Witthuhn, 2012; Ardura *et al.*, 2012). Moreover, thanks to its high conservation rate, the *16SrRNA* has been used for the designing of universal primers able to amplify different length DNA fragments from many different fish species (Palumbi, 1996; Ardura *et al.*, 2012).

All these reasons considered, the *16SrRNA* has been selected as molecular target for species identification in petfoods.

233 *3.2 Samples collection*

3.2.1. Reference samples. Initially, the choice of reference species to be used for the PCR 234 235 optimization (Table 1SM) was made on the basis of the commercial and/or the scientific denomination reported on the labels of the pet food cans (Table 1-2). Then, other species were 236 237 included, among those most commercially exploited belonging to the same genus or family, with the aim to develop universal primers capable to amplify a wide range of fish species. In case of 238 239 "tuna-like fish" the choice of the species was also made taking into consideration those mentioned in the Regulation 1536/92 (Council Regulation (EEC) n. 1536/1992) on common labeling rules for 240 241 tuna and bonito canned products. Moreover, due to the fact that Mackerel occasionally appeared 242 among the ingredients, even the species belonging to the Scomber genus were considered. As for 243 "Bianchetto" we took into consideration not only the Sardina pilchardus, but also other species 244 belonging to both the Clupeidae or Engraulidae family, currently used for sardine and sardine-like 245 canned products (Jerome, Lemaire, Verrez-Bagnis & Etienne, 2003). Finally, based on our previous study (Armani et al. 2011), also Neosalanx taihuensis, N. anderssoni, and Protosalanx chinensis, 246 247 belonging to the Salangidae family, were included in the study because imported from Asian countries and frequently substituted with the juvenile form of *S. pilchardus*. 248

3.2.2. *Market samples*. According to the labels' information, all the pet food analyzed in this study were produced and imported from two major provinces of Thailand (Bangkok and Songkhla) for 10 distinct Companies holding one or more lines of sale for a total of 13 trademarks. These samples were purchased from pet stores and large retail supermarkets at a price in between 1.50 and 2 euros per 100g.

254 3.3 Evaluation of DNA fragmentation by gel electrophoresis

The high temperatures and pressures applied on fish based feed processing are similar to that used for the standard canning procedures for fish based preserved products. On the basis of FAO standards (<u>http://www.fao.org/docrep/003/t0007e/t0007e05.htm</u>), canning procedures used for tuna and tuna like products consist of a multi- step protocol comprising a steam pre-cooking carried at 259 95°-105 °C for one to several hours, followed by a final sterilization process with a typical
260 temperature of 115°C.

Exposure to heat and other physical stressors is known to cause random breaks in DNA strands, thus reducing the DNA fragments size and determining the typical fragmentation pattern for tunalike or sardine type canned food (from 100 to 350bp) (Jerome *et al.*, 2003). As expected, the total DNA extracted from the M and F showed a marked level of fragmentation, with an electrophoretic pattern hardly visible above 500bp and, in most DNA samples, concentrated between 50 and 250bp.

266 *3.4 Primers selection, PCR amplification and DNA sequencing*

Two internal forward and 2 reverse primers were designed and tested for their amplification performances, together with other primers developed in a previous study (Armani *et al.*, 2012b) (Table 3 and Fig.2). All the primers were designed on conserved areas spanning among region characterized by many base pairs gaps. The two forward primers For16s-1, FOR16s-2 together with the Rev16s-2 for the amplification of a 118bp short fragment and 213bp long fragment, respectively, were finally selected.

3.4.1 Reference samples. Totally, 28 reference sequences of variable length have been produced
and deposited on GenBank (Table 2SM). Then, they were immediately released and used for the
identification of the sequences obtained from the market products by BLAST analysis (Table 1-2).

3.4.2 Market samples. Despite the high level of DNA fragmentation (section 3.3) all the market
samples were successfully amplified using the selected primers (section 3.4.1) and 213 *16srRNA*sequences (129 from M and 84 from F) of variable length were obtained.

In the case of M we obtained 34 long sequences (26%) with a length of ~213bp and 95 short sequences (76%) with length of ~118bp. In the case of F we obtained 84 short sequences (100%) with a variable length (from 119 of *Euthynnus* sp. to 140bp of *Trachurus novaezelandiae* sp.), due to the presence of a different number of indels. Since these sequences were not obtained from voucher specimens or expertly-identified fish specimens, they were not submitted to the databases and were only used to assess the labeling information reported on the cans.

285 *3.5 BLAST analysis*

The Basic Local Alignment Search Tool (BLAST), which is one of the most used application for calculating sequence similarity, was applied in this study for the identification of the sequences obtained from the market samples. This tool is able to return the results in the form of a ranked list on the basis of a normalized percent identity score, followed by individual sequence alignments (Quintero, Santaclara & Reihbein, 2008; Nicolé *et al.*, 2012).

291 In order to identify an unknown sample by BLAST analysis, a threshold of maximum divergence between the query and the sequences used as standard has to be defined. For the COI gene a cutoff 292 293 threshold of 2% has been established (Barbuto et al., 2010). In case of 16srRNA, even though 294 Ardura et al. (2012) suggested a sequence identity >99%, an universally accepted threshold has 295 never been proposed. Thus, given the high degree of preservation of the 16SRNA gene (Kochzius et 296 al., 2010; Cawthorn et al., 2012) and the fact that we worked on a short fragment, an identity score 297 of 100% was used as cut-off for the species identification. Overall, this identity threshold has been 298 successfully achieved for 207 sequences out of 213 (97%) undergone to the BLAST analysis.

299 3.5.1 M sequences. Overall, 84% of the sequences analyzed (108 out of 129) were identified at the species level. According to the BLAST results, 126 M samples (98%) were identified as 300 301 belonging to the genus Encrasicholina with an identity values of 99-100%. The remaining 3 samples (1.5%) were identified as Anguilla anguilla and Neosalanx sp. with identity values of 302 303 100%. As regard the *Encrasicholina* genus when a top match of 100% was obtained for one species, 304 the lower identity value was only 93-94%. In particular, 102 LF samples (81%) were identified as 305 E. heteroloba, 4 (3%) as E. punctifer, while 14 (11%) as Encrasicholina sp. On the countrary, the 306 remaining 6 sequences from M samples (5%) had a maximum identity value of 99% with sequences 307 deposited as *Encrasicholina* sp. and of 98% with *E. heteroloba* (Table 1). Therefore, the selected 308 16SrRNA gene fragment could not unequivocally discriminate the two aforementioned species probably due to shared inter-specific variations in some specimens. 309

Considering that, at present, species specific sequences are only available for 3 species of *Encrasicholina (E. heteroloba, E. punctifer,* and *E. devisi)* out of the 5 ascertained species of this genus

(http://www.fishbase.org/Nomenclature/ValidNameList.php?syng=encrasicholina&syns=&vtitle=S
cientific+Names+where+Genus+Equals+%3Ci%3EEncrasicholina%3C%2Fi%3E&crit2=CONTAI
NS&crit1=EQUAL) and that the only two available sequences of *E. devisi* relate to the initial
portion of the *16SrRNA* gene not including the fragment selected in the present study, the samples
identified as *Encrasicholina* sp. could belong to the species *E. oligobranchus*, *E. purpurea* or *E. devisi*.

319 E. heteroloba, E. punctifer and E. devisi have been recorded from the Indian Ocean to the Pacific 320 Ocean (Red Sea, Thailand, Indonesia, Australia North Island of Taiwan) Philippines, Tonga, Fiji 321 and Japan (http://www.fao.org/docrep/009/t0835e/t0835e00.htm). On the countrary, the species E. 322 purpurea has its natural habitat almost exclusively in the Pacific Ocean around the Hawaiian 323 Islands, while E. oligobranchus is distributed mostly on the west coast of the Philippines and 324 particularly in the Manila Bay. For the aforesaid reasons, and considering that the feed producers 325 are all concentrated along the coast of Thailand, is highly unlikely that the species E. purpurea and 326 E. oligobranchus were used in the products analyzed in this study. Moreover, the presence of E. devisi in a sample commercialized in Italy as S. pilchardus has already been reported (Riina et al., 327 328 2012).

Unfortunately, we did not succeed in identifying the species *E. oligobranchus*, *E. purpurea*, and *E. devisi*, due to the impossibility to collect reference specimens as a consequence of the strict regulations on exchanges for research purposes of samples coming from Asian and Indian waters (Rao & Gupta, 2003). This issue represents a significant limitation in the identification of the multitude of new exotic species continuously released on the Western market, considering that most of the fisheries are centered in the Pacific Ocean.

13

3.5.2 F sequences. A maximum identity score of 100% with at least one GenBank reference 335 sequence have been obtained for all the 84 sequences produced. In the 76 F analyzed the most 336 337 common species was Katsuwonus pelamis (62,5%), E. affinis (27,5%) and A. rochei (7,5%). Even though the analyzed fragment does not seem to possess a discriminatory power comparable to that 338 339 highlighted for M, all the aforesaid sequences were correctly identified at the species level 340 according to the selected threshold. The inter-specific variability was found to be lower than in the 341 case of Clupeiformes. In fact, the identity values towards the species, other than those that matched 342 at 100%, were 99 and 98%. However, all the F sequences belonging to one species gave the same 343 results confirming the absences of intra-specific variability in the fragment analyzed in this study 344 (Table 2). On the countrary, 22 F sequences got a 100% identity value with the reference sequences 345 of both E. affinis and E. lineatus, suggesting the existence of shared intra-specific variations. 346 However, this circumstance does not influence the calculation of the mislabeling rate (see section 3.7). 347

Two sequences (2,5%) were identified as belonging to the genus *Thunnus* sp. with a maximum identity score of 100% with all the species of this genus. The inability of the *16SrRNA* gene in clearly differentiate species within the genus *Thunnus* was already highlighted in the work of Cawthorn *et al.*, (2012).

Finally, the sequences obtained from pet food labeled as mackerel were identified (100% identity value) as *T. novaezelandiae* (Yellowtail horse mackerel) (2 sequences) and *K. pelamis* (4 sequences), while other 2 products labeled as sardine fillets (2 sequences), were identified as *Sardinella fimbriata* (Fringescale sardinella).

356 **3.6 Phylogenetic analysis**

The phylogenetic analysis was performed using the *16SRNA* gene sequence amplified by the primer pair For 16s-2 and Rev16s-2 (short fragment), due to the fact that this was the only fragment obtained from 179 out of 213 (84%) samples analyzed. Two to 5 sequences belonging to the species selected as RS were used in the phylogenetic analysis. Considering that the BLAST analysis results 361 highlighted the presence of species not taken into consideration during the first selection of the 362 reference sequences, from 2 to 5 sequences belonging to different species of the genus 363 Encrasicholina, Anguilla (Anguillidae) and Trachurus (Carangidae) were also included (Table 2SM). The distance analysis was performed separately for M and F, in order to assess the 364 365 discrimination power of the selected *16srRNA* gene fragment for different group of species. The 366 target sequence showed a variable length (from 117 to 140bp) probably owed to gaps in relation to 367 the presence of indels, which are a common finding in the ribosomal genes due to the fact that they have a minimal impact on the rRNA function (Steinke, Vences, Salzburger & Meyr, 2005). In 368 369 accordance with Doyle & Gaut (2000), all the gaps and insertions highlighted by the preliminary alignment were included in the neighbor joining (NJ) analysis, in order to maximize the overall 370 371 number of nucleotide matches.

372 3.6.1M samples. The dendrogram showed well-defined clusters with bootstrap values higher than 373 70% at both genus level and species level. In particular, 4 clades were produced according to the 374 family Engraulidae, Clupeidae, Anguillidae and Salangidae (Fig. 1SM). Inside the Engraulidae 375 clade family, all the species were clearly distinguished with bootstrap values higher than 70%, with the only exception of *E. encrasicolus* and *E. japonica* (bootstrap values 64 and 66%, respectively). 376 377 The sequences identified as E. heteroloba, E. punctifer and Encrasicholina sp. by the BLAST analysis were grouped into specie-specifics sub-clades. Also in the case of the family Clupeidae, all 378 379 the species were clustered in a well-defined family cluster with bootstrap values higher than 70%. 380 The sequences identified as belonging to *Neosalanx sp.*, were clustered within the family 381 Salangidae in the sub-clade made of the species N. taihuensis and N. brevirostris. These were 382 separated from the species N. jordani and N. oligodontis (bootstrap value 100%) and from the species P. chinensis and N. anderssoni. The 2 M sequences identified as A. anguilla by the BLAST 383 384 analysis were placed in the clade containing the genus Anguilla spp., but were not distinguished at 385 the species level.

Overall, the distance analysis confirmed the results obtained with the BLAST analysis, showing that the short fragment selected as target allowed a clear discrimination at the species level of most of M samples. In the case of Engraulidae family, we obtained comparable results to those reported by Jerome *et al.* (2008), despite a shorter target fragment (~118bp against ~259bp). This study confirms the high discrimination power of the *16sRNA* gene within the order Clupeiformes.

391 *3.6.2 F samples*

392 The dendrogram obtained for the F samples (Fig. 2SM) appeared very different from that obtained for M samples. In fact, even showing a clear separation of the Scombridae, Clupeidae and 393 394 Carangidae family (bootstrap 100%), gender specific clusters were detectable only within the 395 family Clupeidae, even though not supported by high bootstrap values (<70%). Within the family 396 Scombridae, the NJ analysis produced 3 major sub-clades: the first containing all the species 397 belonging to the Scomber genus, the second grouping the genera Thunnus, Katsuwonus, Auxis, 398 Sarda and Euthynnus and the third exclusively comprising the species A. fallai. Inside the second 399 sub-clade, all the subsequent branching at the genus level were not supported by bootstrap values 400 >70%, highlighting the low discriminating power of the 16sRNA gene for the family Scombridae.

401 In particular, the sequences identified as belonging to A. rochei by BLAST analysis were 402 grouped into the genus Auxis spp. sub-clade in which, however, a further species grouping was not 403 possible. The samples previously identified as K. pelamis and E. affinis with a BLAST top match of 404 100%, while being grouped into two distinct genus clusters, were not supported by significant 405 bootstrap values. The phylogenetic analysis was not even able to clearly distinguish among the 406 Thunnus and Sarda spp. sequences. The results are consistent with what already reported by 407 Cawthorn et al. (2012) for the genus Thunnus and by Miya et al. (2013) in an evolutionary study of the Scombridae family. In the light of these findings it seems that the sole FINS analysis cannot be 408 409 considered reliable for the species discrimination within the Scombridae family and that a BLAST analysis allow a better classification. However, the phylogenetic analysis allowed to correctly match 410 411 all the F sequence at the family level.

Similar issues in species discrimination within the genus *Thunnus* spp were obtained even when other mitochondrial genes, such as *COI*, *cytb*, and nuclear First Internal Transcribed Spacer for rDNA (*ITS -1*) Vinas & Tudela, 2009) were used. These studies agree in the fact that both the low genetic distance between species, especially those belonging to the Neo Thunnus subgenus, such as *T. albacares, T. atlanticus, T. tonggol* (Chow & Kishino 1995), and introgression, described within several tuna species, (Vinas & Tudela, 2009) can lead to misidentification according to the genetic marker chosen.

In order to overcome this limit and reach a precise species discrimination, two or three markers should be targeted in the same analysis (Vinas & Tudela, 2009), separately or pooled as concatenated sequences to maximize the discriminatory effect (Jerome *et al.* 2008). Even though useful, this approach would lead to a drastic increase of costs and working time, not always affordable for routinely analysis.

424 Alternatively, a proteomics approach have been proposed to solve this issue (Pepe *et al.*, 2010)

425 *3. 7 Labeling*

Overall, the results show that the analyzed M samples were mislabeled in 100% of cases: in 426 Italy, the name of whitebait (Bianchetto), reported on all the labels analyzed, can be used 427 428 exclusively for the juvenile form of sardine (S. pilchardus) (MIPAAF, Decree n. 31, January 2008). At the national level the juvenile form of this species has a great market appeal and is used for the 429 preparation of typical high-price products. Since 2006, in compliance with the EU policy aimed at 430 431 the conservation of fish species in the Mediterranean sea, this species has been subjected to a strict 432 fishing control (Council Regulation (EC) 1967/2006). For this reason, with the exception of 433 derogations granted annually for time-limited special fishing and experimental purposes the fishing 434 of Bianchetto is forbidden in the Mediterranean Sea.

On the other hand, no ban is imposed on the importation of the juvenile form of *S. pilchardus* or similar species (whitebaits) from Non-Mediterranean Countries, which are not subjected to fishing restrictions. Therefore, the commercial name "*Bianchetto*" reported on Asian imported products does not constitute a formal breach of the regulations in force. Nevertheless, the declaration of
juvenile forms of *S. pilchardus* in products caught and processed along the coast of Thailand
constitutes a false, since the geographical distribution of this species is limited to the Mediterranean
Sea, the Black Sea and the Northeast Atlantic Ocean (<u>http://www.fao.org/fishery/species/2910/en</u>).

442 In addition to the commercial fraud, the use of undeclared juvenile anchovies of Asian origin for the preparation of pet food poses a number of issues of sustainability for the fishing industry. In 443 444 fact, the complete replacement of species in the absence of effective traceability and labeling systems could implies a progressive depletion of fish reserves. This occurrence is even more 445 446 evident in Asian countries, where there are no stringent policies aimed to fish stocks conservation 447 and where fishing belonging to Illegal Unreported and Unregulated (IUU) catches can be recycled 448 by unscrupulous FBOs (Morgan et al., 2007, FAO document-Fishing capacity management and IUU fishing in Asia). 449

450 At the international level, the genus *Thunnus*, *Euthynnus*, *Katsuwonus* and *Auxis* are referred as 451 tuna or true-tuna group, while bonitos (*Cybiosarda*, *Gymnosarda*, *Orcynopsis* and *Sarda*) are 452 referred as tuna-like groups (FAO 2007, Global fishery resources of tuna and tuna like species).

In EU, labeling rules for tuna and bonito canned product (Regulation (EEC) n.1536/1992) attributes the trade description of preserved tuna only to those products prepared from species belonging to genus *Thunnus* spp. and *K. pelamis*. On the contrary, the trade description of bonito products must be applied to the species belonging to genus *Sarda, Euthynnus* and *Auxis*.

In this light, the comparison between the labels and the BLAST analysis results highlighted a discordance rate of 37% (28 samples on 76 labeled as tuna or tuna like products) (Table 2). Even though the BLAST analysis was not able to discriminate between 2 species belonging to the genus *Euthynnus* (100% identity value with *E. affinis* and *lineatus*) this result does not affect the mislabeling rate. In fact, the genus *Euthynnus* cannot be labeled as tuna.

18

As for misleading and deceiving aspects related to labeling and trade names, the use of invented names, such as "Pink Tuna" or "Pacific Tuna", not present in any official denomination list at both national and international level, was observed in 12% of products.

The 3 products labeled as Mackerel showed a 100% mislabeling, due to the fact that, according to the Italian regulation, this trade name can only be associated to the species belonging to the Scomber genus. This results were strongly supported by both BLAST and FINS analysis (Table 2 and Fig. 2SM). On the other hand, the samples labeled as "Sardine" were correctly labeled, since, according to the international standard (http://www.codexalimentarius.org/standards/list-ofstandards/en/), canned sardines or sardine-like products can be prepared from fresh or frozen fish belonging to several genera of the Clupeidae family, including the genus *Sardinella*.

472 Altogether, according to the BLAST analysis, this results show an overall mislabeling rate of473 40%.

If considered in the light of the two main ingredients contained in the products (minnows and fish fillets) on which we focused our analysis, the mislabeling results showed that the 60% of the products were fully mislabeled, while in the remaining 40%, the mislabeling affected only the minnows.

478 Food mislabeling and species substitution, especially for canned products, can accidentally occur because of the inadequate training of operators, who are not able to identify the species at the time 479 480 of fishing, as well as the lack of effective traceability systems of raw materials during curing and 481 filleting procedure that result in the loss of key morphological characters. In the case of F, the most 482 plausible hypothesis is that of a misdescription caused by lack of accuracy in the identification and 483 traceability system, considering that 10 out of the 28 mislabeled samples (36%) contained fish with 484 higher commercial value than those reported on the labels. Finally, it has to be taken into consideration that pet food are frequently imported from non-EU Countries (mostly Asian), where 485 the complexity of the market logistic and the lack of a traceability system make less effective the 486

efforts to control the fishery trade (Pramod, Nakamura, Pitcher & Delagran, 2014; D'Amico *et al.*,
2014).

489 CONCLUSIONS

In this work, short fragments of the 16srRNA gene were used to verify the accurate labeling of 490 491 pet food products. The presence of highly conserved regions in the chosen gene allowed to obtain 492 readable DNA sequences from all the samples using few primers even in case of highly processed 493 products. The results of the BLAST and FINS analysis showed that, even though the selected mitochondrial DNA marker does not allow to clearly differentiate certain closely-related fish 494 495 species of the Scombridae family, it was strongly effective in discriminating the species belonging 496 to the Clupeiformes order. Overall, the analytical approach was enough powerful to highlight a high rate of incorrect labelling, which could determine misrepresentation at the moment of the 497 purchasing and encourage overfishing practices. 498

In conclusion, it provides a valid tool to support the Official controls on pet foods, in the light ofthe European provisions.

501

502 Acknowledgments

The authors wish to thank for their kind provision of fish samples: Dr. Florian Borutta of Institute 503 of Metabolic Physiology, Heinrich Heine University Duesseldorf (Duesseldorf, Germany); Dr. 504 Simeon Deguara, Federation of Maltese Aquaculture Producers (Valletta, Malta); Graça Faria of 505 Direção de Serviços de Investigação e Desenvolvimento da Pesca, Direção Regional de Pescas 506 (Funchal, Portugal); Amaya Velasco and Dr. Carmen González Sotelo of Departamento de 507 Bioquímica de Alimentos, Instituto de Investigaciones Marinas CSIC (Vigo, Spain); Dr. John Hyde 508 of NOAA Fisheries, Southwest Fisheries Science Center (La Jolla CA, USA); Dr. Vinicius Tavares 509 Kütter of Departamento de Geoquimica, Universidade Federal Fluminense (Niterói, Brasil); 510 William Ludt of Museum of Natural Science, Louisiana State University (Baton Rouge LA, USA); 511 Dr. Paul Macdonald of NAFC Marine Centre, Shetland (Scalloway, UK); Julian Pepperell of 512 513 Pepperell Research, Australia (Noosaville, Australia); Dr. Hiroshi Sato of Joint Faculty of Veterinary Medicine, Yamaguchi University (Yamaguchi, Japan) Sho Shirakashi from Fisheries 514 Laboratory, Kinki University (Shirahama, Japan); Dr. John Stewart of NSW Department of Primary 515 Industries, Sydney Institute of Marine Science (Mosman, Australia); Dr. H.J. Walker of Marine 516 517 Vertebrate Collection Scripps Institution of Oceanography, University of California (La Jolla CA, USA); Dr. Nicholas C. Wegner of NOAA Fisheries, Southwest Fisheries Science Center (La Jolla 518

- 519 CA, USA); Prof. Goro Yoshizaki, Dr. Ryosuke Yazawa and Dr. Naoki Kabeya of the Department
- 520 of Marine Biosciences, Tokyo University of Marine Science and Technology (Tokyo, Japan).
- 521 Figures

Figure 1: A) Pet food can containing Minnow (M) and Fillets (F). B) Displaying of the content: M
(on the right); F (on the left).

Figure 2: Position of the new primers designed for the amplification of the *16SrRNA* gene fragments.

526 Figures SM

Figure 1SM: Neighbor-joining (NJ) tree obtained using M sequences (from 117 to 123bp) of the *I6srRNA* gene and reference sequences obtained in this study and retrieved from GenBank. Indels
were included in the analysis. Boostrap values > 50% obtained from 1000 replications using
Kimura two parameter genetic distances are reported in the tree.

Figure 2SM: Neighbor-joining (NJ) tree obtained using F sequences (from 118 to 140bp) of the *16srRNA* gene and reference sequences obtained in this study and retrieved from **GenBank.** Indels were included in the analysis. Boostrap values > 50% obtained from 1000 replications using Kimura two parameter genetic distances are reported in the tree.

535

536 **References**

- Ardura, A., Horreo, J.L., Hernandez, E., Jardon, A., Pola, I.G., Martinez, J.L., & Garcia-Vazquez, E. (2012). Forensic DNA analysis reveals use of high trophic level marine fish in commercial aquaculture fish meals. *Fisheries Research*, *115*, 115-120
- 540 2. Armani, A., Castigliego, L., & Guidi, A. (2012). Fish fraud: The DNA challenge CAB
 541 *Reviews*, 7, No 071
- Armani, A., Castigliego, L., Tinacci, L., Gandini, G., Gianfaldoni, D., & Guidi, A. (2012a).
 A rapid PCR–RFLP method for the identification of Lophius species. *Eur. Food Research Technology*, 235(2), 253-263
- 4. Armani, A., Castigliego, L., Tinacci, L., Gianfaldoni, D., & Guidi, A. (2012b). Multiplex
 conventional and real-time PCR for fish species identification of Bianchetto (juvenile form
 of Sardina pilchardus), Rossetto (Aphia minuta), and Icefish in fresh, marinated and cooked
 products. *Food Chemistry*, *133(1)*, 184-192
- 5. Armani, A., Castigliego, L., Tinacci, L., Gianfaldoni, D., & Guidi, A.(2011). Molecular
 characterization of icefish, (*Salangidae* family), using direct sequencing of mitochondrial *cytochrome b* gene. *Food Control*, 22(6), 888-895
- 6. Armani, A., Tinacci, L., Giusti, A., Castigliego, L., Gianfaldoni, D., & Guidi, A. (2013).
 What is inside the jar? Forensically informative nucleotide sequencing (FINS) of a short mitochondrial *COI* gene fragment reveals a high percentage of mislabeling in jellyfish food products. *Food Research International*, *54*(2), 1383-1393.

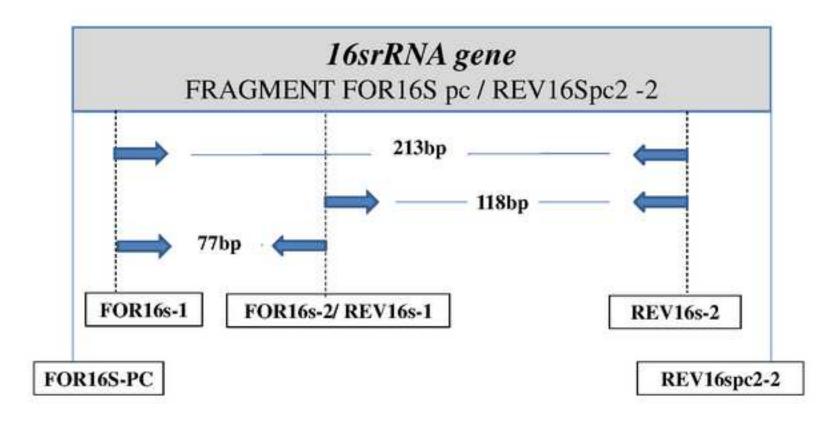
- 7. Armani, A., Tinacci, L., Titarenko, E., Xiong, X, Guidi, A., & Castigliego, L. (2014).
 Development of a simple and cost-effective bead-milling method for DNA extraction from
 fish muscles. *Food Analitical Methods*, 7, 946-955
- 8. Armani, A.; Guardone, L.; Castigliego, L.; D'Amico, P.; Messina, A.; Malandra, R.;
 Gianfaldoni, D., & Guidi, A. (2014) DNA and Mini-DNA Barcoding for the identification
 of Porgies species (family Sparidae) of commercial interest on the international market.
 Under review. *Food Control*, DOI: 10.1016/j.foodcont.2014.09.025.
- 9. Barbuto, M., Galimberti, A., Ferri, E., Labra, M., Malandra, R., Galli, P., & Casiraghi, M.
 (2010). DNA barcoding reveals fraudulent substitutions in shark seafood products: The
 Italian case of "palombo"(*Mustelus* spp.). *Food Research International*, 43(1), 376-381
- 10. Cawthorn, D.M.; Steinman, H.A.; Witthuhn, R.C. (2012). Evaluation of the 16S and 12S
 rRNA genes as universal markers for the identification of commercial fish species in South
 Africa. *Gene*, 491(1), 40-48
- 569 11. Chow, S., & Kishino, H. (1995). Phylogenetic relationships between tuna species of the
 570 genus Thunnus (Scombridae: Teleostei): inconsistent implications from morphology,
 571 nuclear and mitochondrial genomes. *Journal of Molecular Evolution*, *41*, 741–748
- 572 12. Council Regulation (EC) n. 1967/2006 of December 2006 concerning management
 573 measures for the sustainable exploitation of fishery resources in the Mediterranean Sea,
 574 amending Regulation (EEC) n.2847/93 and repealing Regulation (EC) n 1626/94. *Official*575 *Journal of European Union* L409, 11-85
- 576 13. Council Regulation (EEC) n. 1536/92 of 9 June 1992 laying down common marketing
 577 standards for preserved tuna and bonito *Official Journal of European Union* 1992, L163, 1-4
- 578 14. D'Amico, P., Armani, A., Castigliego, L., Sheng, G., Gianfaldoni, D., & Guidi, A. (2014).
 579 Seafood traceability issues in Chinese food business activities in the light of the European provisions. *Food Control*, 35(1), 7-13.
- 581 15. Di Pinto, A.; Di Pinto, P.; Terio, V.; Bozzo, G.; Bonerba, E.; Ceci, E.; Tantillo, G. (2013).
 582 DNA barcoding for detecting market substitution in salted cod fillets and battered cod chunks. *Food Chemistry*, 141(3), 1757-1762.
- 584 16. Doyle J.J; Gaut B.S. (2000). Evolution of genes and taxa: a primer. *Plant Molecular* 585 *Biology*, 42, 1–23
- 586 17. FEDIAF European Pet Food Industry Federation. Facts & Figures. (2012). Available At
 587 http://www.fediaf.org/facts-figures/
- 18. Hellberg, R. S. R., & Morrissey, M. T. (2011). Advances in DNA-based techniques for the
 detection of seafood species substitution on the commercial market. *Journal of Association for Laboratory Automation*, *16*(4), 308-321
- 19. Heller, D. N., & Nochetto, C. B. (2008). Simultaneous determination and confirmation of
 melamine and cyanuric acid in animal feed by zwitterionic hydrophilic interaction
 chromatography and tandem mass spectrometry. *Rapid Communication in Mass Spectrometry*, 22(22), 3624-3632.
- 595 20. Jérôme, M., Lemaire, C., Verrez-Bagnis, V., & Etienne, M. (2003). Direct sequencing
 596 method for species identification of canned sardine and sardine-type products. J. Agric.
 597 Food Chemistry, 51(25), 7326-7332
- 598 21. Jérôme, M., Martinsohn, J. T., Ortega, D., Carreau, P., Verrez-Bagnis, V., & Mouchel, O.
 599 (2008). Toward fish and seafood traceability: anchovy species determination in fish products

- 600by molecular markers and support through a public domain database. Journal of601Agricultural and Food Chemistry, 56 (10), 3460-3469
- Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions
 through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*,
 16,111-120.
- Kochzius, M., Seidel, C., Antoniou, A., Botla, S. K., Campo, D., Cariani, A., .. & Blohm, D.
 (2010). Identifying fishes through DNA barcodes and microarrays. *PLoS One*, 5(9), e12620.
- 24. Lund, E. M., Armstrong, P. J., Kirk, C. A., & Klausner, J. S. (2006). Prevalence and risk
 factors for obesity in adult dogs from private US veterinary practices. *International Journal of Applied Research in Veterinary Med*icine, 4(2), 177-186
- 611 25. MIPAAF, Decree n. 31, January 2008 of Italian Ministry of Agricultural, Food and Forestry.
 612 Denominazione in lingua italiana delle specie ittiche di interesse commerciale e Modifiche e
 613 integrazioni dell'elenco di cui al decreto 25 luglio 2005. Official Gazette of the Italian
 614 Republic 45, 11–32
- 615 26. Miya, M., Friedman, M., Satoh, T. P., Takeshima, H., Sado, T., Iwasaki, W., ... & Nishida,
 616 M. (2013). Evolutionary origin of the scombridae (tunas and mackerels):Members of a
 617 paleogene adaptive radiation with 14 other pelagic fish families. *PloS one*, 8(9), e73535.
- 618 27. Nicolè, S., Negrisolo, E., Eccher, G., Mantovani, R., Patarnello, T., Erickson, D.L., Kress,
 619 W.J., & Barcaccia, G. (2012). Seafood Authentication by DNA Barcoding, *Food*620 *Technology and Biotechnology*, 50 (4), 387–398
- 28. Palumbi SR.(1996) Nucleic acids II: the polymerase chain reaction. In Hillis D.M., Moritz,
 C., Mable B.K. Eds.; *Molecular Systematics* (pp. 205–247.) Sunderland Sinauer &
 Associates Inc.
- 624 29. Pepe, T., Trotta, M., Di Marco, I., Anastasio, A., Bautista, J.M., & Cortesi, M.L. (2007) Fish
 625 species identification in surimi-based products. *Journal of Agricultural and Food Chemistry*626 55(9), 3681-3685.
- 30. Pepe, T., Ceruso, M., Carpentieri, A., Ventrone, I., Amoresano, A., & A. Anastasio (2010)
 Proteomics analysis for the identification of three species of Thunnus. *Veterinary research Communications*. 34 (Suppl. 1):S153–S155.
- 31. Pramod, G., Nakamura, K., Pitcher, T. J., & Delagran, L. (2014). Estimates of illegal and
 unreported fish in seafood imports to the USA. *Marine Policy*, *48*, 102-113.
- 32. Quintero, J., Santaclara, F.J., Reihbein, H. (2008). Authenticity of canned seafood (Cap.6)
 In:, Cabado A.G., & Vieites, J. M.. Eds. *Quality Parameters in Canned Seafoods* 1st
 ed.(pp135-158) Portland, OR,. Nova Science Pub. Inc. ,
- 635 33. Rao, M. K. D., & Gupta, V. K. (2003). IPR and Sharing of Biological Research Materials in
 636 R&D. *JIPR*, 8, 112-122.
- 637 34. Regulation (EC) n.178/2002 of the European Parliament and the Council of 28 January 2002
 638 laying down the general principles and requirements of food law, establishing the European
 639 Food Safety Authority and laying down procedures in matters of food safety. *Official*640 *Journal of European Union* L31, 1-24
- 641 35. Regulation (EC) n.183/2005 of the European Parliament and of the Council of 12 January
 642 2005 laying down requirements for feed hygiene. *Official Journal of European Union* L35,
 643 1-22

- 36. Regulation (EC) n.767/2009 of the European Parliament and of the Council of 13 july 2009
 on the placing on the market and use of feed, amending European Parliament and Council
 Regulation (EC) n.1831/2003 and repealing Council Directive 79/373/EEC, Commission
 Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC,
 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC. *Official Journal of European Union*, L229/1-28.
- 37. Regulation (EC) n.882/2004 of the European Parliament and of the Council of 29 April
 2004 on official controls performed to ensure the verification of compliance with feed and
 food law, animal health and animal welfare rules. *Official Journal of European Union*, L
 165, 1-148
- 38. Regulation (EU) n.1379/2013 of the European Parliament and of the Council of 11
 December 2013 on the common organization of the markets in fishery and aquaculture
 products, amending Council Regulations (EC) n.1184/2006 and (EC) n.1224/2009 and
 repealing Council Regulation (EC) n.104/2000 *Official Journal of European Union*, L354,
 1-21
- 39. Riina, M.V., Gilli, M., Costa, R., Colussi, S., Bertuzzi, S., Trisorio, S., Gili, S., Perazzini,
 A.Z., Pezzolato, M., Richelmi, G., Bozzetta, E., & Acutis P.L. (2012). Evaluation of DNA
 marker for fish identification. *Italian Journal of Food Safety*, *1*(6), 25-29
- 40. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for
 reconstructing phylogenetic trees. *Molecular Biology and Evolution*, *4*, 406–425.
- 41. Steinke, D., Vences, M., Salzburger, W., & Meyer, A. (2005). TaxI: a software tool for
 DNA barcoding using distance methods. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360(1462), 1975-1980.
- 42. Swanson, K.S., Carter, R.A., Yount, T.P., Aretz, J., & Buff, P. R. (2013). Nutritional
 Sustainability of Pet Foods. Adv. Nutr: *International Reviews Journal*, 4(2), 141-150.
- 43. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular
 Evolutionary Genetics Analysis version 6.0. *Molecular Biology Evolution*, 30, 2725-2729.
- 44. Teletchea, F., Maudet, C., & Hänni, C. (2005). Food and forensic molecular identification:
 update and challenges. *Trends in Biotechnology*, 23(7), 359-366
- 45. Trotta, M., Schönhuth, S., Pepe, T., Cortesi, M. L., Puyet, A., & Bautista, J. M. (2005).
 Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species. *Journal of Agriultural. and Food Chemistry*, 53(6), 2039-2045
- 46. Vences, M., Thomas, M., Van der Meijden, A., Chiari, Y., & Vieites, D.R. (2005).
 Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. *Frontiers in Zoology*, 2(1), 5.
- 47. Vinas, J, & Tudela, S. (2009). A validated methodology for genetic identification of tuna
 species (genus Thunnus). *PLOS one*, 4.10, e7606.
- 48. Weese, J. S., Rousseau, J., & Arroyo, L. (2005). Bacteriological evaluation of commercial
 canine and feline raw diets. *Canadian Veterinary Journal*, 46(6), 513-516.
- 49. Wells, D. L. (2009). The Effects of Animals on Human Health and Well-Being. *Journal of Social Issues*, 65(3), 523-543.
- 50. Zhang, J., & Hanner, R. (2012). Molecular approach to the identification of fish in the South
 China Sea. *PloS one*, 7(2), e30621.

Highlights

Elite pet food with prized fish species is well regarded by pet-owners


Mislabeling may threaten fair trade and fish stock preservation

DNA-based analysis is often the only mean to verify species used as ingredients

We used new primers for PCR-sequencing analysis of the 16SrRNA gene in pet food

BLAST and FINS analysis highlighted a high rate of incorrect labelling

BRAND	PROD.	LABEL	CODE	SEQ. L.	BLAST ANALYSIS	MISLAB.
	CATF1	Whitebait	CATF1.1-CATF1.3	118	100% E. heteroloba	Y
N.1	CATF15	Whitebait	CATF15.1-CATF15.3	213	100% E. heteroloba	Y
	CATF18	Whitebait	CATF18.1-CATF18.3	118	100% E. heteroloba	Y
	CATF24	Whitebait	CATF24.1-CATF24.3	118	100% E. heteroloba	Y
	CATF2	Whitebait	CATF2.1-CATF2.3	213	100% E. heteroloba	Y
	CATF6	Whitebait	CATF6.1-CATF6.5	118-213	100% E. heteroloba	Y
.N.2	CATE 12	Whitebait	CATF13.1-CATF13.2	118	100% E. heteroloba	Y
	CATF13	Whitebait	CATF13.4	214	100% Encrasicholina sp	Y
	CATF41	Whitebait	CATF41.1-CATF41.3	118	100% E. heteroloba	Y
		Whitebait	CATF3.1-CATF3.5	118	100% Encrasicholina sp	Y
	CATF3	Whitebait	CATF3.2	119	100% E. punctifer	Y
NO	CATF4	Whitebait	CATF4.1 CATF4.2 CATF4.7	118	100% E. heteroloba	Y
N.3		Whitebait	CATF12.1	119	100% E. punctifer	Y
	CATF12	Whitebait	CATF12.2	118	100% Encrasicholina sp	Y
		Whitebait	CATF12.4	213	100% E. heteroloba	Y
	CATF5	Whitebait	CATF5.1-CATF5.2-CATF5.7	213	100% E. heteroloba	Y
N.4	CATF20	Whitebait	CATF20.1-CATF20.2-CATF20.3	213	100% E. heteroloba	Y
		Whitebait	CATF31.1-CATF31.2-CATF31.5	118-118-213	100% E. heteroloba	Y
	CATF7	Whitebait	CATF7.1-CATF7.2	213	100% E. heteroloba	Y
27.5		Whitebait	CATF7.5	214	99% Encrasicholina sp, 98%E. heteroloba	Y
N.5	CATF39	Whitebait	CATF39.1-CATF39.2-CATF39.3	118	100% E. heteroloba	Y
	CATF40	Whitebait	CATF40.1-CATF40.2-CATF40.3	118	100% E. heteroloba	Y
		Whitebait	CATF8.1	213	100% E. heteroloba	Y
	CATF8	Whitebait	CATF8.2	119	100% E. punctifer	Y
NG		Whitebait	CATF8.7	213	100%Neosalanx sp	Y
N.6		Whitebait	CATF36.1-CATF36.3	118	99% Encrasicholina sp, 98% Ê. heteroloba	Y
	CATF36	Whitebait	CATF36.2	118	100% E. heteroloba	Y
	CATF37	Whitebait	CATF37.1-CATF37.2-CATF37.3	118	100% E.heteroloba	Y
		Whitebait	CATF9.1-CATF9.2	118	100% E.heteroloba	Y
	CATF9	Whitebait	CATF9.3	214	99% Encrasicholina sp, 98%E. heteroloba	Y
N.7		Whitebait	CATF29.1-CATF29.3	118	100% E.heteroloba	Y
	CATF29	Whitebait	CATF29.2	118	100% Encrasicholina sp	Y
	CATF45	Whitebait	CATF45.1- CATF45.2- CATF45.3	118	100% E.heteroloba	Y
	CATF10	Whitebait	CATF10.1-CATF10.2-CATF10.7	118	100% Encrasicholina sp	Y
		Whitebait	CATF16.1-CAT16.2	118	100% E.heteroloba	Y
N.8	CATF16	Whitebait	CATF16.5	119	100% E. punctifer	Y
	CATF22	Whitebait	CATF22.1-CATF22.2-CATF22.3	213	100% E.heteroloba	Y
	CATF46	Whitebait	CATF46.1-CATF46.2-CATF46.3	118	100% E.heteroloba	Y
N.9	CATF11	Whitebait	CATF11.1-CATF11.2	118	100% Encrasicholina sp	Y

		Whitebait	CATF11.4	214	99% Encrasicholina sp,	Y
	CATF14	Whitebait	CATF14.1-CATF14.2-CATF14.5	213	100% E.heteroloba	Y
	CATF42	Whitebait	CATF42.1-CATF42.2-CATF42.3	118	100% E.heteroloba	Y
	CATF17	Whitebait	CATF17.1-CATF17.2-CATF17.3	118	100% Encrasicholina sp	Y
N.10	CATF32	Whitebait	CATF32.3-CATF32.9p CATF32.10p	213-118 118	100% E.heteroloba	Y
	CATF38	Whitebait	CATF38.1-CATF38.2-CATF38.3	118	100% E.heteroloba	Y
	CATF19	Whitebait	CATF19.1-CATF19.2-CATF19.3	118	100% E.heteroloba	Y
N.11	CATF25	Whitebait	CATF25.2-CATF25.3-CATF25.4	118	100% E.heteroloba	Y
IN.11	CATF35	Whitebait	CATF35.1-CATF35.5	118	100% E.heteroloba	Y
		Whitebait	CATF35.4	229	100% A. anguilla, 99%A. rostrata, 98% A. reinhardtii	Y
	CATF23	Whitebait	CATF23.1-CATF23.2-CATF23.3	118	100% E.heteroloba	Y
	CATF33	Whitebait	CATF33.1-CATF33.9	118	100% E.heteroloba	Y
N.12		Whitebait	CATF33.2	229	100% A. Anguilla, 99%A rostrata, 98% A.reinhardtii	Y
	CATF34	Whitebait	CATF34.1-CATF34.2-CATF34.3	118	100% E.heteroloba	Y
	CATF47	Whitebait	CATF47.1-CATF47.2-CATF47.3	118	100% E.heteroloba	Y
	CATF30	Whitebait	CATF30.1-CATF30.2	118	100% E.heteroloba	Y
	CAIF50	Whitebait	CATF30.3	118	100% Encrasicholina sp	Y
N.13	CATF43	Whitebait	CATF43.1-CATF43.2-CATF43.3	118	100% E. heteroloba	Y
	CATF44	Whitebait	CATF44.1-CATF44.2	118	100% E. heteroloba	Y
	CAIF44	Whitebait	CATF44.3	118	99% Encrasicholina sp, 98%E. heteroloba	Y

Table 1: List of Minnow specimens (M) analyzed in the study. Sampled cans are grouped by brand (from 1 to 13). The results of the BLAST analysis are reported up to an identity of 98%. PROD.= product; SEQ. L= Sequence Length; MISLAB: Mislabeled; Y=Yes; N=No.

BRAND	PROD.	LABEL	CODE	SEQ. L.	BLAST ANALYSIS	MISLAB
	CATF1	TUNA (E.affinis)	CATF1.4 CATF1.5	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	N
	CATF15	BONITO	CATF15.7 CATF15.8	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	N
N.1	CATF18	TUNA	CATF18.6 CATF18.7	119	100% Auxis rochei, 99%A.thazard, 98%K.pelamis	Y
	CAIFIO	SARDINE	CATF18.9s CATF18.10	120	100% S. fimbriata, 99% S. albella	Ν
	CATF24	BONITO (E.affinis)	CATF24.9 CATF24.10	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y
	CATF2	TUNA	CATF2.4 CATF2.5	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
N.2	CATF13	TUNA	CATF13.5 CATF13.6	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF41	TUNA	CATF41.9 CATF41.10	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF3	TUNA	CATF3.3 CATF3.4	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
N.3	CATF4	TUNA	CATF4.3 CATF4.4	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF12	TUNA	CATF12.5 CATF12.6	119	100% A. rochei, 99% A.thazard, 98% K. pelamis	Y
	CATF5	TUNA	CATF5.3 CATF5.4	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	N
N.4	CATF22	PINKTUNA	CATF22.6 CATF22.7	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF31	PACIFIC TUNA	CATF31.9 CATF31.10	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF7	MACKEREL	CATF7.3 CATF7.4	140	100% T. novaezelandiae, 99% D. Marusdsi	Y
N.5	CATF39	MACKEREL	CATF39.9 CATF39.10	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y
	CATF40	MACKEREL	CATF40.9 CATF40.10	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y
	CATF8	EAST BONITO	CATF8.3 CATF8.4	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y
N.6	CATF36	BONITO	CATF36.7 CATF36.8	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y
	CATF37	BONITO	CATF37.9 CATF37.10	119	100% K. pelamis, 99% S.australis, S.orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y

	CATF9	TUNA	CATF9.5 CATF9.6	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Y
N.7	CATF29	TUNA	CATF29.6 CATF29.7	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Y
	CATF45	TUNA	CATF45.6 CATF45.7	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Y
	CATF10	PINKTUNA	CATF10.9 CATF10.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
N.8	CATF16	PACIFIC TUNA	CATF16.7 CATF16.8	119	100% Thunnus sp., 99% tuna like species	Ν
	CATF46	PINKTUNA	CATF46.4 CATF46.5	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF11	BONITO	CATF11.6 CATF11.8	119	100% E. affinis, 98% K. pelamis, P. triacanthus	Ν
N.9	CATF14	BONITO	CATF14.6 CATF14.7	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y
	CATF42	BONITO	CATF42.6 CATF42.7	119	100% Auxis rochei, 99% A.thazard, 98% K.pelamis, 97% Thunnus sp.	Ν
	CATF17	TUNA	CATF17.9 CATF17.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	
N. 10	CATF32	TUNA	CATF32.9 CATF32.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF38	TUNA	CATF38.9 CATF38.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF19	BONITO (E.affinis)	CATF19.9 CATF19.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Y
N.11	CATF25	BONITO (E.affinis)	CATF25.6 CATF25.7	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Ν
	CATF35	BONITO (E.affinis)	CATF35.6 CATF35.7	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Ν
	CATF23	TUNA	CATF23.6 CATF23.7	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Y
N.12	CATF33	TUNA	CATF33.9 CATF33.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF34	TUNA	CATF34.9 CATF34.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF47	TUNA	CATF47.4 CATF47.5	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν
	CATF30	TUNA	CATF30.9 CATF30.10	119	100% K. pelamis, 99% S.australis, S. orientalis, S. chiliensis, 98% A.rochei, E.alletteratus, E.lineatus, E.affinis	Ν

N.13	CATF43	TUNA	CATF43.6 CATF43.7	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Y
	CATF44	TUNA	CATF44.6 CATF44.7	119	100% E.lineatus E. affinis, 98% E. alletteratus, K. pelamis, P. triacanthus	Y

Table 2: List of Fillets (F) analyzed in the study. The sampled cans are grouped by brand (from 1 to 13). The results of the BLAST analysis are reported up to 98% identity. The mislabeling are highlighted in grey. PROD.= product; SEQ. L= Sequence Length; MISLAB: Mislabeled; Y=Yes; N=No.

Reverse primers: code and sequence	TM(°C) PL bp	Forward primers: code and sequence	TM (°C) PL bp	AL with and (w/o) primers
REV16S-1 GGTCGCCCCAACCKAAG	58.8 / 17	FOR16S-1 5'-GACGAGAAGACCCTATGG-3'	56.0 / 18	108 (73)
REV16S-2 CTGTTATCCCTAGGGTAACT	55.3 / 20	FURIUS-1 5 -GACGAGAGAGACCCTATGG-5	50.0718	242 (207)
KEV105-2 CIGITATCCCTAGGGTAACT		FOR16S-2 5'-CTTMGGTTGGGGGCGACC-3'	58.8 / 17	152 (117)
M13Rev(-29)- CAGGAAACAGCTATGACC	- / 18	M13For(-21)- TGTAAAACGACGGCCAGT	- / 18	

Table 3: Primers designed in this study and universal tails coupled to the selected primer for the amplification of *16SrRNA* gene fragments. TM: melting temperature, PL: primer length, AL: amplicon length calculated on the sequences FR849595 of *Sardina pilchardus*.

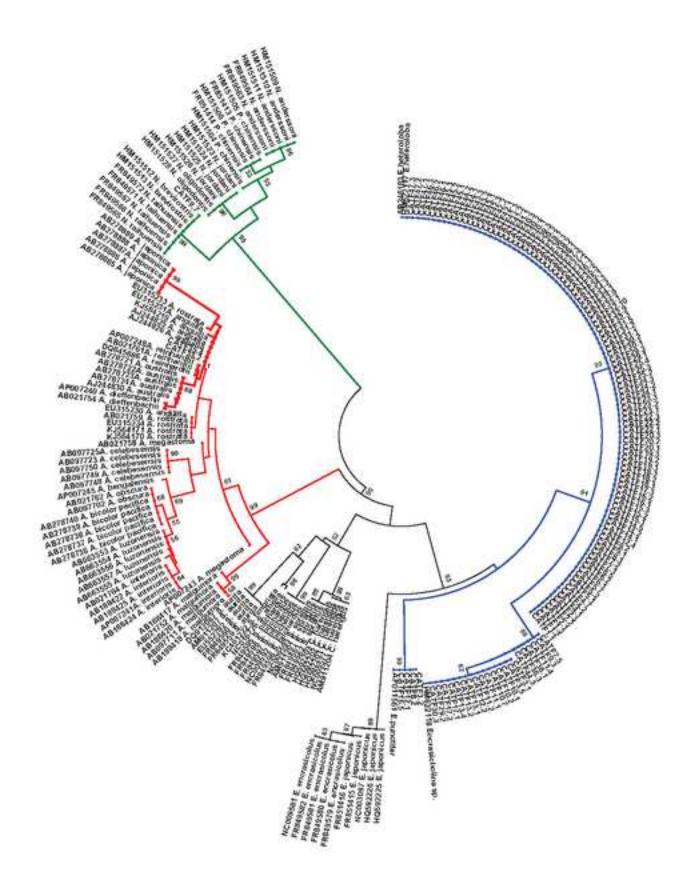
 Table

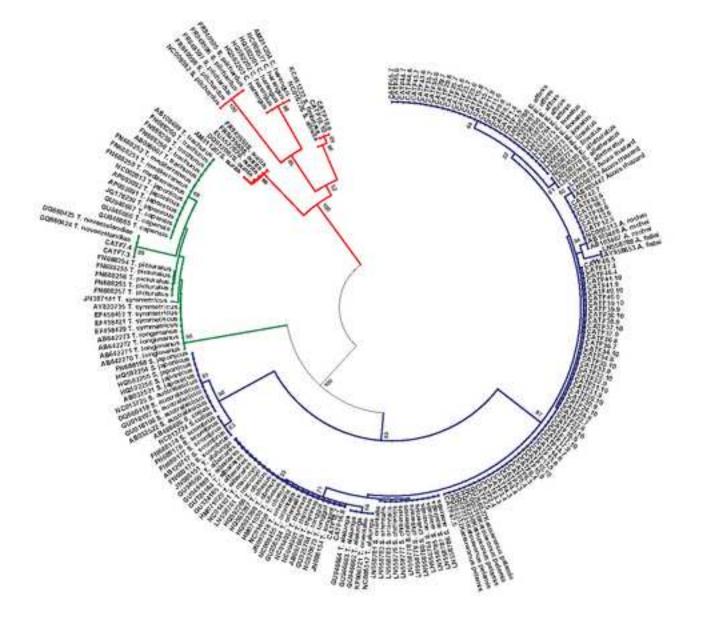
 Click here to download Additional Files: table 1SM.docx

	Additional Files: ta	ble 1SM.docx		
Family	Commercial name	Species	N. of specimens	Research Institute
	Atlantic bluefin	Thunnus thynnus	5	Metabolic Physiology, Heinrich-Heine- Universitaet Duesseldorf, Germany
	tuna		5	AquaBioTech Group, Malta
				Dept. Marine Biosciences, University of
			2	Marine Science and Technology, Tokyo, Japa
	X7 11 C		1	Fish Lab, Pisa University, Italy
	Yellowfin tuna	Thunnus albacares		Laboratory of Parasitology
			2	Joint Faculty of Veterinary Medicine Yamaguchi University, Japan
SCOMBRIDAE	Bigeye tuna	Thunnus obesus	3	Laboratory of Parasitology Joint Faculty of Veterinary Medicine Yamaguchi University, Japan
	Albacore	Thunnus alalunga	2	Laboratory of Parasitology Joint Faculty of Veterinary Medicine Yamaguchi University, Japan
			2	Fundação Universidade Federal do Rio Grande, Brazil
	Southern bluefin tuna	Thunnus maccoyii	1	Metabolic Physiology, Heinrich-Heine- Universitaet, Duesseldorf, Germany
	Longtail tuna	Thunnus tonggol	10	Dept. Marine Biosciences, University of Marine Science and Technology, Tokyo, Jap
	Pacific Bluefin tuna	Thunnus orientalis	2	Dept. Marine Biosciences, University of Marine Science and Technology, Tokyo, Japa
	Pacific Bluefin tuna		0	Japan, Hiroshi Sato
			8	Dept. Marine Biosciences University of
	Frigate Tuna	Auxis thazard	2	Marine Science and Technology, Tokio, Japa Dept. Marine Biosciences, University of
	Bullet tuna	Auxis rochei	2	Marine Science and Technology, Tokyo, Japa
	Kawakawa		1	Louisiana State University
	(mackerel tuna)	Euthynnus affinis	9	Dept. Marine Biosciences, University of Marine Science and Technology, Tokyo, Japa
	Little tunny	Euthynnus alletteratus	2	Fish Lab, Pisa University, Italy
	Black skipjack tuna	Euthynnus lineatus	1	Marine Vertebrate Collection Scripps, Institution of Oceanography University of California, USA
			8	NOAA National Marine Fisheries Service, USA
	Skipjack tuna	Katsuwonus pelamis	2	Dept. Marine Biosciences, University of Marine Science and Technology, Tokyo, Jap
	Slender tuna	Allothunnus fallai	2	Marine Vertebrate Collection Scripps, Institution of Oceanography University of California, USA
			2	Dept. Marine Biosciences, University of Marine Science and Technology, Tokyo, Jap
	Striped Bonito	Sarda orientalis	1	Marine Vertebrate Collection Scripps Institution of Oceanography University of California, USA
	Australian bonito	Sarda australis	5	NSW Department of Primary Industries, CFRC, Australia
	Pacific Bonito	Sarda chiliensis	10	NOAA Fisheries - Southwest Fisheries Scien Center
	Maakaral	Saombar sacht	1	Fish Lab, Pisa University, Italy
	Mackerel	Scomber scombrus	1	NAFC Marine Centre, UK
			1	Fish Lab, Pisa University, Italy
	Chub mackerel	Scomber japonicus	2	Instituto de Investigaciones Marinas de Vigo (CSIC), Spain

			2	Fisheries Laboratory, Kinki University
	Blue mackerel	Scomber australasicus	4	Pepperell Research & Consulting Pty Ltd
	Atlantic Chub		4	Instituto de Investigaciones Marinas de Vigo (CSIC), Spain
	Mackerel	Scomber colias	1	Direção de Serviços de Investigação e Desenvolvimento da Pesca - Direção Regional de Pescas, Madera
	Sardine	Sardina pilchardus	2	Fish Lab, Pisa University, Italy
CLUPEIDAE	Round sardinella	Sardinella aurita	2	Fish Lab, Pisa University, Italy
CLUILIDAL	European sprat	Sprattus sprattus	2	Fish Lab, Pisa University, Italy
	Atlantic herring	Clupea harengus	2	Fish Lab, Pisa University, Italy
ENGRAULIDAE	European anchovy	Engraulis encrasicolus	4	Fish Lab, Pisa University, Italy
	Japanese anchovy	Engraulis japonicus	2	Fish Lab, Pisa University, Italy
SALANGIDAE	Icefish	Neosalanx taihuensis	5	Fish Lab, Pisa University, Italy
	Icefish	Neosalanx anderssoni	2	Fish Lab, Pisa University, Italy
	Noodle fish	Protosalanx chinensis	2	Fish Lab, Pisa University, Italy

Table 1SM: Reference samples, tissue or DNA (highlighted in gray), used in the study. The DNA samples belong to reference specimens analyzed in a previous study (Armani *et al.*, 2012). The species whose *16srRNA* sequences were produced and deposited in GenBank are in bold (see Table TBLE 2SM for Accession Number).


Click here to dow	nload Additional Files	s: table 2SM.docx


Family	nload Additional Files Species	Genbank accs. number	References
	Thunnus thynnus	NC004901	Broughtoun Reneau 2006
		NC014052	Martinez Ibarra et al. Unpub (2009)
		AB097669	Manchado et al 2004
	Thunnus albacares	GU946660-61	Cawthorn et al 2012
		GU324164-65	Nicole <i>et al.</i> , 2010
		HM071029	Little et al., 2010
	Thunnus obesus	NC014059 HQ592266 to 68	Martinez Ibarra <i>et al</i> . Unpub (2009) Cawthorn et al 2012
		HM071030	Little et al. 2010
	Thunnus alalunga	GU946662-63-64,	Cawthorn et al 2012
	Thannas alalanga	NC005317	Manchado et al unpub.
		JN086151	Martinez Ibarra <i>et al</i> . Unpub (2009)
	Thunnus maccoyii	NC014101	Martinez Ibarra <i>et al.</i> Unpub (2009).
	Thunnus macco yu	LN558761	This study (Heinrich-Heine-Univ. Duesseldorf)
	Thunnus tonggol	GU325784	Hisieh et al unpub (submission 2009)
	Thunnus tonggot	NC020673,JN086154	Martinez Ibarra <i>et al.</i> Unpub (submission 2009).
	Thunnus orientalis	JN097816	Ahn et al direct sub (2011)
	Thunnus Orientatis	KF906721	Araujo et al 2013
		NC008455	Takashima et al., 2006
		GU256524	Martinez Ibarra <i>et al.</i> Unpub (Submission2009)
	Auxis thazard	AB105447	Catanese et al 2008
	Αμλις παζατά	LN558762-63	This Study (Marine Biosciences, Tokyo University)
	Auxis rochei	AB103467-68,	This Study (Marine Biosciences, Tokyo University)
	Auxis rochei	NC005313	Catanese et al 2008
	Euthynnus affinis	LN558764,66 to 68	This study (Marine Sci. and Technol, Tokyo)
		LN558765	This study(Louisiana State University)
	Euthynnus	NC004530	Manchado et al Unpub. (submission 2003)
	alletteratus	LN558769, LN558770	This study (FishLab, Pisa University)
	Euthynnus lineatus	LN558771 LN558772 to 75	This study (Mar. Vertebrate Coll. Scripps University California) This study (NOAA National Marine Fisheries Service)
SCOMBRIDAE	Katsuwonus pelamis	HQ592230 to 32	
	Ruistin onus peruntis	NC005316	Martinez Ibarra et al. Unpub (Submission2009)
		GU256527	
	Allothunnus fallai	AY958653	Byrne et al. unpubl. (submission 2005)
		LN558788	This study (Mar. Vertebrate Coll. Scripps University California)
	Sarda orientalis	LN558781-82	This study (Marine Biosciences, Tokyo University)
		LN558783	This study (Mar. Vertebrate Coll. Scripps University California)
	Sarda australis	LN558784-87	This study (NSW Department of Primary Industries, CFRC)
	Sarda chiliensis		
	Saraa chiiensis Scomber scombrus	LN558776 to 80 FN688174 to 77	This study (NOAA Fisheries - Southwest Fisheries Science Center) Kochzius <i>et al.</i> , 2010
	Scomber scombrus	AB120717	Takashima <i>et al.</i> , 2006
	Scomber japonicus	AB032521	Sezaki et al., 2001
	seemeer jupenteus	HQ592254-56	Cawthorn <i>et al.</i> , 2012
		FN688168	Kochzius <i>et al.</i> , 2010
	Scomber colias	NC013724; AB488406	Catanese <i>et al.</i> , 2010
	Scomber	NC013725	Catanese <i>et al.</i> , 2010
	australasicus	AB032522 GU018106-07	Sezaki <i>et al.</i> , 2001 Ling et al (2009 unpublished)
		DQ660418	Casper <i>et al</i> . 2007
	Trachurus capensis	GU946665 to 67	Casper et al. 2007 Cawthorn et al., 2012
	Trachurus japonicus	JQ178230	
	i nacinar as jupoincas	AP003091-92;	Kim <i>et al.</i> , Unpub (2011)
		NC002813	Mabuchi et al 2007
	Trachurus	AB642270 to 74	Yanagimoto & Hoshino un pub (2011)
TRACHURIDAE	longimanus Trachurus mediterraneus	FN688250 to 52	kochzius <i>et al.</i> , 2010
	T. novaezelandiae	DQ660424-25	Casper <i>et al.</i> , 2007
	Trachurus picturatus	FN688253 to 57	Kochzius et al., 2010
	Trachurus symmetricus	JN387141 AY820735	Venegas <i>et al.</i> , Unpub. (2011) Byrne <i>et al.</i> , unpub (2004).

		EF458420-21, EF458453	Park et al., direct sub (2007)
	Trachurus trachurus	AB096007	Takashima et al. 2006
		FN688258 to 60	Kochzius et al., 2010
		AB108498	Takashima et al. 2006
CLUPEIDAE	Sardina pilchardus	FR849595 to 98	Armani et al., 2012
CLUILIDAL		NC009592	Lavoue et al., 2007
Family	Species	Genbank accs. number	References
	Sardinella aurita	FR849559-60	Armani et al., 2012
		DQ912067	Li & Orti 2007
		EU552782 AM911207	Wilson <i>et al.</i> , 2008 Jerome <i>et al.</i> , 2008
	Sardinella albella	NC016726	Lavoué et al., 2008
	Sardinella fimbriata	KC461222	
CLUPEIDAE			De Battisti <i>et al.</i> , 2014
	Sprattus sprattus	FR849561-62 AM911201	Armani <i>et al.</i> , 2012 Jerome <i>et al.</i> , 2008
		NC009593	Lavoué et al., 2008
	Clupea harengus	HQ592201 to 03	Cawthorn <i>et al.</i> , 2012
		AM911204	Jerome <i>et al.</i> , 2008
		NC009577	Lavoué et al., 2007
	Engraulis	FR849579-82	Armani <i>et al.</i> , 2012
	encrasicolus Engraulis japonicus	NC009581 FR851415-16	Lavoue et al., 2007 Armani et al.,2012
	Engrautis japonicus	HQ592225-26	Cawthorn <i>et al</i> 2012
ENGRAULIDAE		NC_003097	Inoue <i>et al.</i> 2001
	E. heteroloba	HM622117	Yu, dir. Submission 2010
		AB246183	Akasaki et al., 2006
	E.punctifer	AP011561	Lavoue et al., 2010
	Encrasicholina sp.	HM622117	Yu, dir. Submission 2010
	Neosalanx taihuensis	FR849565-67	Armani et al., 2012
	Neosalanx	FR849571-72 FR849563-64	Armani et al., 2012
	anderssoni	HM151509 to HM151511	Guo <i>et al.</i> 2012
	Neosalanx		
SALANGIDAE	brevirostris	HM151512-13	Guo et al. 2011
	Neosalanx jordani	HM151523-26	Guo et al. 2011
	Neosalanx oligodontis	HM151527-28	Guo et al. 2011
	Protosalanx	FR851413-14	Armani et al., 2012
	chinensis	HM151504 to 06	Guo <i>et al.</i> , 2011
	Anguilla anguilla	EU315230-31	Frankowski <i>et al.</i> , 2009
		AJ244825-26 KJ564219	Bastrop <i>et al.</i> , 2000 Jacobsen <i>et al.</i> , 2014
	Anguilla australis	AJ244830	Bastrop <i>et al</i> .2000
	inguna austrans	AB278721 to 24	Minegishi <i>et al.</i> , 2014
	Anguilla bengalensis	AP007245	Minegishi et al .,2005
	Anguilla bicolor pacifica	AB278736 to 40	Minegishi et al .,2014
	Anguilla celebesensis	AB097748 -50	Aoyama et al., 2003
		AB097723-24	Noyana et al., 2005
ANGUILLIDAE	Anguilla dieffenbachii	AP007240 AB021754	Minegishi et al .,2005
	Anguilla interioris	AB021754 AB021764	Aoyama, 1998
		AB188422-24-25	Kuroki 2007
		AP007241	Minegishi et al., 2005
	Anguilla japonica	AB278885 to 89	Minegishi et al., 2014
	Anguilla luzonensis	AB663553 to 57	Kuroki et al., 2012
	Anguilla malgumora	AB021752, AB097711	Aoyama, 1998
		AB188417-18-20	Kuroki dir. Submission 2007
	Anguilla megastoma	AP007243	Minegishi et al.2005
		AB021758	Aoyama 1998

	Anguilla obscura	AB097702	Aoyama et al., 2003
		AB021762	Aoyama 1998
	Anguilla reinhardtii	DQ645686	Lopez <i>et al</i> .2007
		AP007248	Minegishi et al.2005
		AB021761	Aoyama et al 1999
	Anguilla rostrata	KJ564170 -71	Jacobsen et al 2014
		AB021759	Aoyama 1998
		EU315233-34	Frankowski et al 2009

Table 2SM: Reference sequences included into the FINS analysis. Those highlighted in gray were produced in this study.

