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J. Golak, R. Skibiński, H. Witała, K. Topolnicki, and A. E. Elmeshneb
M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland

H. Kamada
Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

A. Nogga
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The μ− + 2H → νμ + n + n, μ− + 3He → νμ + 3H, μ− + 3He → νμ + n + d , and μ− + 3He → νμ + n +
n + p capture reactions are studied with various realistic potentials under full inclusion of final-state interactions.
Our results for the two- and three-body break-up of 3He are calculated with a variety of nucleon-nucleon
potentials, among which is the AV18 potential, augmented by the Urbana IX three-nucleon potential. Most of our
results are based on the single-nucleon weak-current operator. As a first step, we tested our calculation in the case
of the μ− + 2H → νμ + n + n and μ− + 3He → νμ + 3H reactions, for which theoretical predictions obtained
in a comparable framework are available. Additionally, we have been able to obtain for the first time a realistic
estimate for the total rates of the muon capture reactions on 3He in the break-up channels: 544 s−1 and 154 s−1

for the n + d and n + n + p channels, respectively. Our results are compared with the most recent experimental
data, finding a rough agreement for the total capture rates, but failing to reproduce the differential capture rates.
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I. INTRODUCTION

Muon capture reactions on light nuclei have been studied
intensively both experimentally and theoretically for many
years. For information on earlier achievements we refer the
reader to Refs. [1–3]. More recent theoretical work, focused
on the μ− + 2H → νμ + n + n and μ− + 3He → νμ + 3H re-
actions, has been summarized in Refs. [4,5]. Here we mention
only that the calculation of Ref. [4], following the early steps
of Ref. [6], was performed both in the phenomenological and
the “hybrid” chiral effective field theory (χEFT) approach. In
the first one, Hamiltonians based on conventional two-nucleon
(2N) and three-nucleon (3N) potentials were used to calculate
the nuclear wave functions, and the weak transition operator
included, beyond the single-nucleon contribution associated
with the basic process μ− + p → νμ + n, meson-exchange
currents as well as currents arising from the excitation of
�-isobar degrees of freedom [7]. In the hybrid χEFT approach,
the weak operators were derived in χEFT, but their matrix
elements were evaluated between wave functions obtained
from conventional potentials. Typically, the potential model
and hybrid χEFT predictions are in good agreement with
each other [4]. Only very recently have the two reactions
been studied in a “nonhybrid” χEFT approach [8], where
both potentials and currents are derived consistently in χEFT
and the low-energy constants present in the 3N potential and
two-body axial-vector current are constrained to reproduce the
A = 3 binding energies and the Gamow–Teller matrix element
in tritium β decay. An overall agreement between the results

obtained within different approaches has been found, as well
as between theoretical predictions and available experimental
data.

The first theoretical study for the capture μ− + 3He →
νμ + n + d was reported in Ref. [9]. A simple single-nucleon
current operator was used without any relativistic corrections
and the initial and final 3N states were generated by using
realistic nucleon-nucleon potentials but neglecting the 3N
interactions.

Recent progress in few-nucleon calculations has prompted
us to join our expertise: from momentum-space treatment of
electromagnetic processes [10,11] and by using the potential-
model approach developed in Ref. [4]. We neglect as a first step
meson-exchange currents and perform a systematic study of
all the A = 2 and A = 3 muon capture reactions, extending the
calculations of Ref. [9] to cover also the μ− + 3He → νμ +
n + n + p channel. Therefore, the motivation behind this work
is twofold: first of all, by comparing our results obtained for the
μ− + 2H → νμ + n + n and μ− + 3He → νμ + 3H reactions
with those of Ref. [4], we will be able to establish a theoretical
framework which can be extended to all the A � 3 muon
capture reactions, including those which involve the full break-
up of the A = 3 final state. Note that the results of Ref. [4] were
obtained by using the hyperspherical harmonics formalism (for
a review, see Ref. [12]), at present not available for the A = 3
full break-up channel. Here, by using the Faddeev-equation
approach, this difficulty is overcome.

The second motivation behind this work is that we will pro-
vide, for the first time, predictions for the total and differential
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capture rates of the reactions μ− + 3He → νμ + n + d and
μ− + 3He → νμ + n + n + p, obtained with full inclusion of
final-state interactions, not only nucleon-nucleon but also 3N
forces.

This paper is organized in the following way: In Sec. II we
introduce the single-nucleon current operator, which we treat
exclusively in momentum space, and compare our expressions
with those of Ref. [4]. In the following two sections we
show selected results for the μ− + 2H → νμ + n + n (Sec. III)
and for the μ− + 3He → νμ + 3H (Sec. IV) reactions. Since
these results are obtained by retaining only the single-nucleon
current operator, a comparison with those of Ref. [4], where
meson-exchange currents were included, will inform the
reader about the theoretical error caused by neglecting all
contributions beyond the single-nucleon term.

Our main results are shown in Sec. V, where we discuss
in detail the way we calculate the total capture rates for
the two break-up reactions, μ− + 3He → νμ + n + d and
μ− + 3He → νμ + n + n + p, and show predictions obtained
with different 3N dynamics. In these calculations we employ
mainly the AV18 nucleon-nucleon potential [13] supplemented
with the Urbana IX 3N potential [14]. These results form
a solid base for our future calculations where the meson-
exchange currents will be included and provide a set of
benchmark results. Note that in Secs. V A and V B we provide
an analysis of the most recent (from Ref. [15]) and the
older (from Refs. [16,17]) experimental data on differential
capture rates for the reactions μ− + 3He → νμ + n + d and
μ− + 3He → νμ + n + n + p. Finally, Sec. VI contains some
concluding remarks.

II. THE SINGLE-NUCLEON CURRENT OPERATOR

In the muon capture process we assume that the initial state
|i〉 consists of the atomic K-shell muon wave function |ψmμ〉
with the muon spin projection mμ and the initial nucleus state
with the three-momentum Pi (and the spin projection mi):

|i〉 = |ψmμ〉|�iPimi〉. (2.1)

In the final state, |f 〉, one encounters the muon neutrino (with
the three-momentum pν and the spin projection mν), as well
as the final nuclear state with the total three-momentum Pf

and the set of spin projections mf :

|f 〉 = |νμpνmν〉|�f Pf mf 〉. (2.2)

The transition from the initial to final state is driven by the
Fermi form of the interaction Lagrangian (see for example
Ref. [18]) and leads to a contraction of the leptonic (Lλ) and
nuclear (N λ) parts in the S-matrix element, Sf i [9]:

Sf i = i(2π )4δ4(P ′ − P )
G√

2
LλN λ, (2.3)

where G = 1.149 39×10−5GeV−2 is the Fermi constant (taken
from Ref. [4]), and P (P ′) is the total initial (final) four-
momentum. The well-known leptonic matrix element

Lλ = 1

(2π )3
ū(pν,mν)γλ(1 − γ5)u(pμ,mμ) ≡ 1

(2π )3
Lλ (2.4)

is given in terms of the Dirac spinors (note that we use the
notation and spinor normalization of Bjorken and Drell [19]).

The nuclear part is the essential ingredient of the formalism
and is written as

N λ = 1

(2π )3
〈�f Pf mf |jλ

w|�iPimi〉 ≡ 1

(2π )3
Nλ. (2.5)

It is a matrix element of the nuclear weak-current operator
jλ
w between the initial and final nuclear states. The primary

form of Nλ is present already in such basic processes (from
the point of view of the Fermi theory) as the neutron beta
decay or the low-energy μ− + p → νμ + n reaction. General
considerations, taking into account symmetry requirements,
lead to the following form of the single nucleon current
operator [20], whose matrix elements depend on the nucleon
incoming (p) and outgoing momentum (p′) and nucleon spin
projections m and m′:

〈
1
2m′∣∣〈p′|jλ

w(1)|p〉∣∣ 1
2m

〉
= ū(p′,m′)

[(
gV

1 − 2MgV
2

)
γ λ + gV

2 (p + p′)λ

+ gA
1 γ λγ 5 + gA

2 (p − p′)λγ 5]τ−u(p,m), (2.6)

containing nucleon weak form factors, gV
1 , gV

2 , gA
1 , and gA

2 ,
which are functions of the four-momentum-transfer squared,
(p′ − p)2. We neglect the small difference between the proton
mass Mp and neutron mass Mn and introduce the average
“nucleon mass” M ≡ 1

2 (Mp + Mn). Working with the isospin
formalism, we introduce the isospin lowering operator as
τ− = (τx − iτy)/2. Since the wave functions are generated
by nonrelativistic equations, it is necessary to perform the
nonrelativistic reduction of Eq. (2.6). The nonrelativistic form
of the time and space components of jλ

w(1) reads

〈p′|j 0
NR(1)|p〉 =

(
gV

1 + gA
1

σ · (p + p′)
2M

)
τ− (2.7)

and

〈p′|jNR(1)|p〉 =
[
gV

1
p + p′

2M
− 1

2M

(
gV

1 − 2MgV
2

)
iσ×(p − p′)

+gA
1 σ + gA

2 (p − p′)
σ · (p − p′)

2M

]
τ−, (2.8)

where σ is a vector of Pauli spin operators. Here we have kept
only terms up to 1/M .

Very often, relativistic 1/M2 corrections are also included.
This leads then to additional terms in the current operator:

〈p′|j 0
NR+RC(1)|p〉

=
[
gV

1 − (
gV

1 − 4MgV
2

) (p′ − p)2

8M2
+ (

gV
1 − 4MgV

2

)

× i
(p′×p) · σ

4M2
+ gA

1
σ · (p + p′)

2M

+ gA
2

(p′2 − p2)

4M2
σ · (p′ − p)

]
τ− (2.9)
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and

〈p′|jNR+RC(1)|p〉

=
{
gV

1
p + p′

2M
− 1

2M

(
gV

1 − 2MgV
2

)
iσ × (p − p′)

+ gA
1

[
1 − (p + p′)2

8M2

]
σ + gA

1

4M2
[(p · σ )p′ + (p′ · σ )p

+ i(p×p′)] + gA
2 (p − p′)

σ · (p − p′)
2M

}
τ−. (2.10)

This form of the nuclear weak current operator is very close
to the one used in Ref. [4], provided that one term,

gV
2

(p′ − p)2

2M
, (2.11)

is dropped in Eq. (2.9) and we use

GV
E = gV

1 , (2.12)

GV
M = gV

1 − 2MgV
2 , (2.13)

GA = −gA
1 , (2.14)

GP = −gA
2 mμ. (2.15)

Here the form factors GV
E and GV

M are the isovector compo-
nents of the electric and magnetic Sachs form factors, while
GA and GP are the axial and pseudoscalar form factors.
Their explicit expressions and parametrization can be found
in Ref. [21]. We also verified that the extra term (2.11) gives
negligible effects in all studied observables.

It is clear that on top of the single nucleon operators, also
many-nucleon contributions appear in jλ

w. In the 3N system
one can even expect 3N current operators:

jλ
w = jλ

w(1) + jλ
w(2) + jλ

w(3) + jλ
w(1,2) + jλ

w(1,3)

+ jλ
w(2,3) + jλ

w(1,2,3). (2.16)

The role of these many-nucleon operators has been studied,
for example, in Ref. [4]. In spite of the progress made in this
direction (see the discussion in Ref. [4]), we decided to base
our first predictions on the single-nucleon current only and
concentrate on other dynamical ingredients. Since we want to
compare our results with the ones published in Ref. [4], we start
with the μ− + 2H → νμ + n + n and μ− + 3He → νμ + 3H
reactions. Although the steps leading from the general form
of Sf i to the capture-rates formula are standard, we give here
formulas for kinematics and capture rates for all the studied
reactions, expecting that they might become useful in future
benchmark calculations.

III. RESULTS FOR μ− + 2H → νμ + n + n REACTION

The kinematics of this processes can be treated without any
approximations both relativistically and nonrelativistically.
We make sure that the nonrelativistic approximation is fully
justified by comparing values of various quantities calculated
nonrelativistically and by using relativistic equations. This
is important, since our dynamics is entirely nonrelativistic.
In all cases the starting point is the energy and momentum
conservation, where we neglect the very small binding energy

of the muon atom and the neutrino mass, assuming that the
initial deuteron and muon are at rest. In the case of the
μ− + 2H → νμ + n + n reaction it reads

Mμ + Md = Eν +
√

M2
n + p2

1 +
√

M2
n + p2

2,

p1 + p2 + pν = 0, (3.1)

and the first equation in (3.1) is approximated nonrelativisti-
cally by

Mμ + Md = Eν + 2Mn + p2
1

2Mn

+ p2
2

2Mn

. (3.2)

The maximal relativistic and nonrelativistic neutrino energies
read correspondingly

(
Emax,nn

ν

)rel = 1

2

(
− 4Mn

2

Md + Mμ

+ Md + Mμ

)
(3.3)

and

(
Emax,nn

ν

)nrl = 2
√

MdMn + MμMn − Mn
2 − 2Mn. (3.4)

Assuming Mp = 938.272 MeV, Mn = 939.565 MeV, Mμ =
105.658 MeV, Md = Mp + Mn − 2.225 MeV, we obtain
(Emax,nn

ν )rel = 99.5072 MeV and (Emax,nn
ν )nrl = 99.5054 MeV,

respectively, with a difference which is clearly negligible.
Furthermore, we introduce the relative Jacobi momentum,

p = 1
2 (p1 − p2) and write the energy conservation in a

way which best corresponds to the nuclear matrix element
calculations:

Mμ + Md = Eν + 2Mn + E2
ν

4Mn

+ p2

Mn

. (3.5)

In the nuclear matrix element, 〈�f Pf mf |jλ
w|�iPimi〉, we

deal with the deuteron in the initial state and with a two-neutron
scattering state in the final state. Introducing the spin magnetic
quantum numbers, we write

〈�f Pf mf |jλ
w|�iPimi〉

=(−) 〈pPf = −pνm1m2|jλ
w|φdPi = 0md〉

= 〈pPf = −pνm1m2|
[
1 + t(Enn)Gnn

0 (Enn)
]

× jλ
w|φdPi = 0md〉. (3.6)

Thus, for a given nucleon-nucleon potential V , the scattering
state of two neutrons is generated by introducing the solution
of the Lippmann–Schwinger equation, t :

t(Enn) = V + t(Enn)Gnn
0 (Enn)V, (3.7)

where Gnn
0 (Enn) is the free 2N propagator and the relative

energy in the two-neutron system is

Enn = p2

Mn

= Mμ + Md − Eν − 2Mn − E2
ν

4Mn

. (3.8)

We generate the deuteron wave function and solve Eq. (3.7)
in momentum space. Note that here, as well as for the A = 3
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FIG. 1. Differential capture rate d�F
d /dEν for the μ− + 2H → νμ + n + n process, calculated with the Bonn B potential [23] in the

three-dimensional formalism of Ref. [22] and using the single-nucleon current operator from Eqs. (2.7) and (2.8) for (left panel) F = 1
2 and

(right panel) F = 3
2 as a function of the neutrino energy Eν . The dashed curves show the plane-wave results and the solid curves are used for

the full results. Note that the average nucleon mass is used in the kinematics and in solving the Lippmann–Schwinger equations (see text for
more details).

systems, we use the average nucleon mass in the kinematics
and in solving the Lippmann–Schwinger equation. The effect
of this approximation on the μ− + 2H → νμ + n + n reaction
will be discussed below. Taking all factors into account and
evaluating the phase-space factor in terms of the relative
momentum, we arrive at the following expression for the total
capture rate:

�d = 1

2
G2 1

(2π )2

(M ′
dα)3

π

∫ π

0
dθpν

sin θpν

∫ 2π

0
dφpν

×
∫ Emax,nn

ν

0
dEνE

2
ν

1

2
Mnp

∫ π

0
dθp sin θp

∫ 2π

0
dφp

× 1

6

∑
md,mμ

∑
m1,m2,mν

|Lλ(mν,mμ)Nλ(m1,m2,md )|2, (3.9)

where the factor (M ′
dα)3/π stems from the K-shell atomic

wave function, M ′
d = MdMμ/(Md + Mμ) and α ≈ 1/137 is

the fine structure constant. We can further simplify this
expression since, for the unpolarized case, the integrand
does not depend on the neutrino direction and the azimuthal
angle of the relative momentum, φp. Thus we set p̂ν = −ẑ,
choose φp = 0, and introduce the explicit components of
Nλ(m1,m2,md ), which yields

�d = 1

2
G2 1

(2π )2

(M ′
dα)3

π
4π

∫ Emax,nn
ν

0
dEνE

2
ν

1

2
Mp

× 2π

∫ π

0
dθp sin θp

1

3

∑
md

∑
m1,m2

(|N0(m1,m2,md )|2

+ |Nz(m1,m2,md )|2 + 2|N−1(m1,m2,md )|2

+ 2Re{N0(m1,m2,md )[Nz(m1,m2,md )]∗}). (3.10)

This form is not appropriate when we want to calculate
separately capture rates from two hyperfine states F = 1

2 or
F = 3

2 of the muon-deuteron atom. In such a case we introduce

the coupling between the deuteron and muon spin via standard
Clebsch–Gordan coefficients c( 1

2 ,1,F ; mμ,md,mF ) and obtain

�F
d = 1

2
G2 1

(2π )2

(M ′
dα)3

π
4π

∫ Emax,nn
ν

0
dEνE

2
ν

1

2
Mp 2π

×
∫ π

0
dθp sin θp

1

2F + 1

∑
mF

∑
m1,m2,mν

×
∣∣∣∣∣∣
∑

mμ,md

c

(
1

2
,1,F ; mμ,md,mF

)
Lλ(mν,mμ)

× Nλ(m1,m2,md )

∣∣∣∣∣∣
2

. (3.11)

For the sake of clarity, in Eqs. (3.9)–(3.12) we show the explicit
dependence of Nλ on the spin magnetic quantum numbers.

From Eq. (3.12) one can easily read out the differential
capture rate d�F

d /dEν . As shown in Fig. 1 this quantity soars
in the vicinity of Emax,nn

ν (especially for the full results, which
include the neutron-neutron final state interaction), which
makes the observation of dynamical effects quite difficult.
That is why the differential capture rate is usually shown
as a function of the magnitude of the relative momentum.
The transition between d�F

d /dEν and d�F
d /dp is given by

Eq. (3.8) and reads

d�F
d

dp
= d�F

d

dEν

∣∣∣∣dEν

dp

∣∣∣∣= d�F
d

dEν

∣∣∣∣ 1
dp
dEν

∣∣∣∣= 4p

Eν + 2M

d�F
d

dEν

. (3.12)

Our predictions shown in Figs. 1, 2, and 3 are obtained in
the three-dimensional formalism of Ref. [22], without any
resort to partial-wave decomposition (PWD). These results
for the Bonn B potential [23] can be used to additionally
prove the convergence of other results based on partial waves.
These figures (and the corresponding numbers given in Table I)
show clearly that the doublet rate is dominant, as has been
observed before; for example, in Ref. [4]. Although the plane
wave and full results for the total F = 1

2 and F = 3
2 rates
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FIG. 2. The same as in Fig. 1 but given in the form of d�F
d /dp and shown as a function of the magnitude of the relative neutron-neutron

momentum p.

are rather similar, the shapes of differential rates are quite
different. The 1/M2 corrections in the current operator do not
make significant contributions (see Fig. 3) and the total rate is
reduced only by about 2% for F = 1

2 and raised by about 4%
for F = 3

2 .
In Fig. 4 we see that our predictions calculated with different

nucleon-nucleon potentials lie very close to each other. We
take the older Bonn B potential [23], the AV18 potential [13],
and five different parametrizations of the chiral next-to-next-
to-leading order (NNLO) potential from the Bochum–Bonn
group [24]. The corresponding total F = 1

2 rates vary only by
about 2%, while the total F = 3

2 rates are even more stable.
It remains to be seen if the same effects can be found with a
more complicated current operator.

The doublet and quadruplet total capture rates are given in
Table I with the various nucleon-nucleon potentials indicated
above and the different approximations already discussed for
Figs. 1–4. The experimental data of Refs. [25–28] are also
shown. Since the experimental uncertainties for these data are
very large, no conclusion can be drawn from a comparison with
them. Note that, within the similar framework developed in
Ref. [4], by including the same single-nucleon current operator
mentioned above, we obtain �

F=1/2
d = 378 s−1 (235 s−1 for

the 1S0 neutron-neutron partial wave), to be compared with
the value of 392 s−1 of Table I. The difference of 14 s−1 is due
to (i) the use of the average nucleon mass in the Lippmann–
Schwinger equation for the t matrix and final-state kinematics
(≈10 s−1), (ii) j > 2 2N partial-wave contributions (≈3 s−1).
Since for the pure neutron-neutron system we can use the true
neutron mass, we performed the corresponding momentum-
space calculation with j � 2 partial-wave states and obtained
�

F=1/2
d = 380 s−1 (237 s−1 for the 1S0 neutron-neutron partial

wave), which proves a very good agreement with Ref. [4].
The above results were calculated by using PWD. In

the case of the Bonn B potential they have been compared
with the predictions obtained employing the three-dimensional
scheme and an excellent agreement has been found. The 2N
momentum-space partial-wave states carry information about
the magnitude of the relative momentum p, the relative angular
momentum l, spin s, and total angular momentum j with the
corresponding projection mj . This set of quantum numbers
is supplemented by the 2N isospin t and its projection mt .
In order to avoid the cumbersome task of PWD of the many
terms in Eqs. (2.9) and (2.10) we proceed in the same way as
for the nuclear potentials in the so-called automatized PWD
method [29,30]. In the case of the single-nucleon current
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FIG. 3. Differential capture rate d�F
d /dp of the μ− + 2H → νμ + n + n process calculated with the Bonn B potential [23] in the three-

dimensional formalism of Ref. [22] for (left panel) F = 1
2 and (right panel) F = 3

2 as a function of the relative neutron-neutron momentum
p. The dashed (solid) curves show the full results obtained with the single-nucleon current operator without (with) the relativistic corrections.
Note that the average nucleon mass is used in the kinematics and in solving the Lippmann–Schwinger equations (see text for more details).
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operator it leads to a general formula

〈p(ls)jmj tmtPf |jw(1)|φdPi = 0md〉 = δt,1δmt ,−1〈1 − 1|τ−(1)|00〉c(l,s,j ; ml,mj − ml,mj )

×
∑

ld=0,2

∑
mld

c(ld ,1,1; mld ,md−mld ,md )
∑
m1

c

(
1

2
,
1

2
,s; m1,mj − ml − m1,mj − ml

)

×
∑
m1d

c

(
1

2
,
1

2
,1; m1b

,md − mld − m1d
,md − mld

)
δmj −ml−m1,md−mld

−m1d

×
∫

dp̂Y ∗
lml

(p̂) Yldmld

(
̂

p − 1

2
Q

)
ϕld

(∣∣∣∣p − 1

2
Q

∣∣∣∣
)〈

1

2
m1

∣∣∣∣
〈
p + 1

2
Pf

∣∣∣∣j spin
w (1)

×
∣∣∣∣p − 1

2
Pf + Pi

〉∣∣∣∣1

2
m1d

〉
, (3.13)

where Q ≡ Pf − Pi and the deuteron state contains two
components

|φdmd〉 =
∑

ld=0,2

∫
dpp2|p(ld1)1md〉|00〉ϕld (p). (3.14)

Using software for symbolic algebra, for example, MATHEMAT-
ICA [31], we easily prepare momentum-dependent spin matrix
elements

〈
1
2m′∣∣〈p′

1|j spin
w (1)|p1〉

∣∣ 1
2m

〉
(3.15)

TABLE I. Doublet (F = 1/2) and quadruplet (F = 3/2) capture
rates for the μ− + 2H → νμ + n + n reaction calculated with various
nucleon-nucleon potentials and the single-nucleon current operator
without and with the relativistic corrections (RCs). Plane-wave results
(PW) and results obtained with the rescattering term in the nuclear
matrix element (full) are shown. Note that the average nucleon mass
is used in the kinematics and in solving the Lippmann–Schwinger
equations (see text for more details). The available experimental data
are from Refs. [25–28].

Capture rate �F
d in s−1

F = 1/2 F = 3/2

Nucleon-nucleon force and dynamics PW Full PW Full

Bonn B, without RC 369 403 10.0 11.7
Bonn B, with RC 363 396 10.4 12.2
AV18, with RC 361 392 10.2 12.0
Chiral NNLO potential version 1 with RC 367 399 10.5 12.2
Chiral NNLO potential version 2 with RC 364 394 10.4 12.2
Chiral NNLO potential version 3 with RC 365 397 10.5 12.2
Chiral NNLO potential version 4 with RC 367 399 10.4 12.2
Chiral NNLO potential version 5 with RC 364 396 10.4 12.2

Experimental results:

I.-T. Wang et al. [25] 365 ± 96
A. Bertin et al. [26] 445 ± 60
G. Bardin et al. [27] 470 ± 29
M. Cargnelli et al. [28] 409 ± 40

for any type of the single-nucleon operator. The calculations
were performed including all partial-wave states with j � 4.
We typically use 40 Eν points and 50 θp values to achieve fully
converged results. Note that, in Ref. [4], a standard multipole
expansion was obtained retaining all j � 2 and l � 3 neutron-
neutron partial waves, and the integration over p (θp) was
performed with 30 (∼10) integration points.

IV. RESULTS FOR μ− + 3He → νμ + 3H REACTION

In this case we deal with simple two-body kinematics and
we compare the neutrino energy calculated nonrelativistically
and using relativistic equations. The relativistic result, based
on

Mμ + M3He = Eν +
√

E2
ν + M2

3H, (4.1)

reads

(Eν)rel = (M3He + Mμ)2 − M2
3H

2(M3He + Mμ)
. (4.2)

In the nonrelativistic case, we start with

Mμ + M3He = Eν + M3H + E2
ν

2M3H
(4.3)

and arrive at

(Eν)nrl = −M3H + √
M3H[−M3H + 2(M3He + Mμ)]. (4.4)

Again the obtained numerical values, (Eν)rel = 103.231 MeV
and (Eν)nrl = 103.230 MeV, are very close to each other.

For this case we do not consider the (F = 0 and F = 1)
hyperfine states in 3He and calculate directly

�3H = 1

2
G2 1

(2π )2
R

(
2M ′

3Heα
)3

π
ρ

× 4π
1

2

∑
m3He

∑
m3H

(|N0(m3H,m3He)|2

+ |Nz(m3H,m3He)|2 + 2|N−1(m3H,m3He)|2
+ 2Re{N0(m3H,m3He)[Nz(m3H,m3He)]∗}), (4.5)
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FIG. 4. Differential capture rate d�F
d /dp of the μ− + 2H → νμ + n + n process calculated by using standard PWD with various nucleon-

nucleon potentials: the AV18 potential [13] (solid curves), the Bonn B potential [23] (dashed curves), and the set of chiral NNLO potentials
from Ref. [24] (bands) for (left panel) F = 1

2 and (right panel) F = 3
2 as a function of the relative neutron-neutron momentum p. Note that the

bands are very narrow and thus appear practically as a curve. All the partial-wave states with j � 4 have been included in the calculations with
the single-nucleon current operator containing the relativistic corrections. Note that the average nucleon mass is used in the kinematics and in
solving the Lippmann–Schwinger equations (see text for more details).

where the factor (2M ′
3Heα)3/π , like in the deuteron case,

comes from the K-shell atomic wave function and M ′
3He =

M3HeMμ/(M3He + Mμ). Also in this case one can fix the
direction of the neutrino momentum (our choice is p̂ν = −ẑ)
and the angular integration yields just 4π . The phase-space
factor ρ is

ρ = E2
ν

1 + Eν√
E2

ν+M2
3H

≈ E2
ν

(
1 − Eν

M3H

)
. (4.6)

The additional factor R accounts for the finite volume of
the 3He charge and we assume that R = 0.98 [4]. (The
corresponding factor in the deuteron case has been found to
be very close to 1 [4] and thus is omitted.) Now, of course, the
nuclear matrix elements involve the initial 3He and final 3H
states:

Nλ(m3H,m3He) ≡ 〈�3HPf = −pνm3H|jλ
w|�3HePi = 0m3He〉,

(4.7)

and many-nucleon contributions are expected in jλ
w as given

in Eq. (2.16).
Our results for this process are given in Table II. They are

based on various 3N Hamiltonians and the single nucleon
current operator. Only in the last line we show a result,
where on top of the single-nucleon contributions 2N operators
are added to the current operator jλ

w. We use the meson-
exchange currents from Ref. [7] [Eqs. (4.16)–(4.39), without
�-isobar contributions]. Among the 2N operators listed in
that reference, there are so-called nonlocal structures [like the
one in Eq. (4.37)] and their numerical implementation in our
3N calculations is quite involved. The local structures can be
treated easily as described, for example, in Refs. [10,32]. Our
two last results from Table II (1324 and 1386 s−1), should
be compared with the PS (1316 s−1) and Mesonic (1385 s−1)
predictions from Table X of Ref. [4], although not all the
details of the calculations are the same. The experimental

value for this capture rate is known with a rather good accuracy
[�expt = (1496 ± 4) s−1 [33]] so one can expect that the effects
of 2N operators exceed 11%. At least for this process, they
are more important than the 3N force effects. The latter ones
amount roughly to 2% only. This dependence on the 3N
interaction was already observed in Ref. [6], where it was
shown that the total capture rate scales approximately linearly
with the trinucleon binding energy.

In the 3N case we employ PWD and use our standard 3N
basis |pqᾱJmJ ; T mT 〉 [10], where p and q are magnitudes of
the relative Jacobi momenta and ᾱ is a set of discrete quantum
numbers. Note that the |pqᾱJmJ ; T mT 〉 states are already
antisymmetrized in the (2,3) subsystem. Also in this case we
have derived a general formula for PWD of the single nucleon

TABLE II. Total capture rate � for the μ− + 3He → νμ + 3H
reaction calculated with the single-nucleon current operator and
various nucleon-nucleon potentials. In the last two lines the rates
are obtained by employing the AV18 [13] nucleon-nucleon and the
Urbana IX 3N potentials [14] and adding, in the last line, some
selected 2N current operators to the single-nucleon current (see text
for more explanations).

Three-Nucleon Hamiltonian Capture rate � in s−1

Bonn B 1360
Chiral NNLO version 1 1379
Chiral NNLO version 2 1312
Chiral NNLO version 3 1350
Chiral NNLO version 4 1394
Chiral NNLO version 5 1332
AV18 1353
AV18 + Urbana IX 1324
AV18 + Urbana IX with MEC [7] 1386
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current operator:

〈pqᾱJmJ ; T mT Pf |jw(1)|�3HePi = 0m3He〉

=
∑
ᾱb

δl,lbδs,sb
δj,jb

δt,tb δmT ,− 1
2

〈(
t
1

2

)
T − 1

2

∣∣∣∣τ−(1)

∣∣∣∣
(

tb
1

2

)
1

2

1

2

〉∑
mj

c(j,I,J ; mj,mJ − mj,mJ )c

(
jb,Ib,

1

2
; mj,m3He − mj,m3He

)

×
∑
mλ

c

(
λ,

1

2
,I ; mλ,mJ − mj − mλ,mJ − mj

) ∑
mλb

c

(
λb,

1

2
,Ib; mλb

,m3He − mjb
− mλb

,m3He − mjb

)

×
∫

dq̂Y ∗
λmλ

(q̂)Yλbmλb

(
̂

q − 2

3
Q

)
φᾱb

(
p,

∣∣∣∣q − 2

3
Q

∣∣∣∣
)

×
〈

1

2
mJ − mj − mλ

∣∣∣∣
〈
q + 1

3
Pf

∣∣∣∣j spin
w (1)

∣∣∣∣q − 2

3
Pf + Pi

〉∣∣∣∣1

2
m3He − mjb

− mλb

〉
, (4.8)

where, as in the 2N space, Q ≡ Pf − Pi . We encounter again
the essential spin matrix element〈

1
2m′∣∣〈p′

1|j spin
w (1)|p1〉

∣∣ 1
2m

〉
(4.9)

of the single-nucleon current operator, which is calculated by
using software for symbolic algebra. The initial 3N bound state
is given as

|�3Hem3He〉

=
∑
ᾱb

∫
dpp2

∫
dqq2

∣∣∣∣pqᾱb

1

2
m3He;

1

2

1

2

〉
φᾱb

(p,q). (4.10)

In our calculations we have used 34 (20) points for integration
over p (q), and 34 partial-wave states corresponding to j � 4.

V. RESULTS FOR μ− + 3He → νμ + n + d AND
μ− + 3He → νμ + n + n + p REACTIONS

The kinematics of the μ− + 3He → νμ + n + d and μ− +
3He → νμ + n + n + p reactions is formulated in the same
way as for the μ− + 2H → νμ + n + n process in Sec. III. The
maximal neutrino energies for the two-body and three-body
captures of the muon atom are evaluated as

(
Emax,nd

ν

)rel = (M3He − Md + Mμ − Mn)(M3He + Md + Mμ + Mn)

2
(
M3He + Mμ

) , (5.1)

(
Emax,nnp

ν

)rel = M3He
2 + 2M3HeMμ + Mμ

2 − (2Mn + Mp)2

2
(
M3He + Mμ

) , (5.2)

(
Emax,nd

ν

)nrl = √
(Md + Mn)(2M3He + 2Mμ − Md − Mn) − Md − Mn, (5.3)

(
Emax,nnp

ν

)nrl = √
(Mp + 2Mn)(2M3He + 2Mμ − 2Mn − Mp) − 2Mn − Mp. (5.4)

The numerical values are the following: (Emax,nd
ν )rel =

97.1947 MeV, (Emax,nd
ν )nrl = 97.1942 MeV, (Emax,nnp

ν )rel =
95.0443 MeV, and (Emax,nnp

ν )nrl = 95.0439 MeV.
The kinematically allowed region in the Eν-Ed plane for

the two-body break-up of 3He is shown in Fig. 5. We show the
curves based on the relativistic and nonrelativistic kinematics.
They essentially overlap except for the very small neutrino
energies. The same is also true for the three-body break-up as
demonstrated in Fig. 6. Up to a certain Eν value, which we
denote by E2sol

ν , the minimal proton kinetic energy is zero. The
minimal proton kinetic energy is greater than zero for Eν >
E2sol

ν . Even this very detailed shape of the kinematical domain
can be calculated nonrelativistically with high accuracy (see
also the inset in Fig. 6). The values of E2sol

ν based on the

relativistic kinematics,(
E2sol

ν

)rel

= (M3He + Mμ)(M3He + Mμ − 2Mp) − 4Mn
2 + Mp

2

2(M3He + Mμ − Mp)
,

(5.5)

and nonrelativistic kinematics,
(
E2sol

ν

)nrl=2
(√

M3HeMn+MμMn − Mn
2 − MnMp − Mn

)
,

(5.6)

yield very similar numerical values: 94.2832 and
94.2818 MeV, respectively.
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FIG. 5. The kinematically allowed region in the Eν-Ed plane
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curve) for the μ− + 3He → νμ + n + d process.

In Ref. [9] we performed the first calculations for the
μ− + 3He → νμ + n + d reaction taking into account only
nucleon-nucleon forces but including final-state interactions.
We analyzed some experimental data [16,17] and found large
effects of final-state interactions. In the present paper we
calculate the total capture rate for the two-body and three-body
break-up reactions and analyze more complete data sets from
Refs. [16,17] and [15]. The two-body and three-body nuclear
scattering states are here obtained including a 3N force. To this
end we use the experience from our studies on electromagnetic
reactions (see, for example, Refs. [10,11]).

The crucial matrix elements

Nλ
nd (mn,md,m3He)

≡ 〈
�

(−)
nd Pf = −pνmnmd

∣∣jλ
w|�3HePi = 0m3He〉 (5.7)

and

Nλ
nnp(m1,m2,mp,m3He)

≡ 〈
�(−)

nnpPf = −pνm1m2mp

∣∣jλ
w|�3HePi = 0m3He〉 (5.8)

are calculated in two steps. First we solve a Faddeev-like
equation for the auxiliary state |Uλ〉 for each considered
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FIG. 6. The kinematically allowed region in the Eν-Ep plane
calculated relativistically (solid curve) and nonrelativistically (dashed
curve) for the μ− + 3He → νμ + n + n + p process.

neutrino energy:

|Uλ〉 = [
tG0 + 1

2 (1 + P )V (1)
4 G0(1 + tG0)

]
(1 + P )jλ

w|�3He〉
+ [

tG0P + 1
2 (1 + P )V (1)

4 G0(1 + tG0P )
]|Uλ〉, (5.9)

where V
(1)

4 is a part of the 3N force symmetrical under the
exchange of nucleons 2 and 3, G0 is the free 3N propagator, and
t is the 2N t operator acting in the (2,3) subspace. Furthermore,
P is the permutation operator built from the transpositions Pij

exchanging nucleons i and j :

P = P12P23 + P13P23. (5.10)

In the second step the nuclear matrix elements are calculated
by simple quadratures:

Nλ
nd (mn,md,m3He) = 〈φndq0mnmd |(1 + P )jλ

w|�3He〉
+〈φndq0mnmd |P |Uλ〉, (5.11)

Nλ
nnp(m1,m2,mp,m3He)

= 〈φnnppqm1m2mp|(1 + P )jλ
w|�3He〉

+ 〈φnnppqm1m2mp|tG0(1 + P )jλ
w|�3He〉

+ 〈φnnppqm1m2mp|P |Uλ〉
+ 〈φnnppqm1m2mp|tG0P |Uλ〉. (5.12)

Here, |φndq0mnmd〉 is a product state of the deuteron wave
function and a momentum eigenstate of the spectator nucleon
characterized by the relative momentum vector q0, while
|φnnppqm1m2mp〉 is a product state of two free motions in
the 3N system given by Jacobi relative momenta p and q, an-
tisymmetrized in the (2,3) subsystem. Equations (5.9), (5.11),
and (5.12) simplify significantly, when V

(1)
4 = 0 [11].

Finally, we give our formulas for the total capture rates. As
for the μ− + 3He → νμ + 3H reaction, for the two break-up
channels these quantities are also calculated directly and the
hyperfine states in 3He are not considered. In the case of the
two-body break-up it reads

�nd = 1

2
G2 1

(2π )2
R

(
2M ′

3Heα
)3

π
4π

×
∫ Emax,nd

ν

0
dEνE

2
ν

2

3
Mq0

1

3

∫ π

0
dθq0 sin θq0 2π

×1

2

∑
m3He

∑
mn,md

(∣∣N0
nd (mn,md,m3He)

∣∣2

+ |Nnd,z(mn,md,m3He)|2 + 2|Nnd,−1(mn,md,m3He)|2
+ 2Re

{
N0

nd (mn,md,m3He)[Nnd,z(mn,md,m3He)]∗
})

,

(5.13)

where we used the same arguments as before to simplify the
angular integrations. The energy conservation is expressed in
terms of the relative neutron-deuteron momentum:

q0 ≡ 2
3

(
pn − 1

2 pd

)
, (5.14)
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FIG. 7. The differential capture rates d�nd/dEν for the μ− + 3He → νμ + n + d process calculated with the AV18 potential [13] and the
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full solution of Eq. (5.9) with V

(1)
4 = 0. The curves representing results of the calculations employing all partial-wave states with j � 3 (j � 4)

in the 2N subsystem are depicted with dashed (solid) curves. The maximal total 3N angular momentum is Jmax = 9
2 .

yielding

Mμ + M3He ≈ Eν + Mn + Md + 3

4

q2
0

M
+ 1

6

E2
ν

M
, (5.15)

where we neglect the deuteron binding energy. For the μ− +
3He → νμ + n + n + p reaction we obtain in a similar way

�nnp = 1

2
G2 1

(2π )2
R (2M ′

3Heα)3

π
4π

∫ E
max,nnp
ν

0
dEνE

2
ν

2

3
Mq

1

3

×
∫ π

0
dθq sin θq2π

∫ π

0
dθp sin θp

∫ 2π

0
dφp

∫ pmax

0
dpp2

×1

2

∑
m3He

∑
m1,m2,mp

(∣∣N0
nnp(m1,m2,mp,m3He)

∣∣2

+ |Nnnp,z(m1,m2,mp,m3He)|2

+ 2|Nnnp,−1(m1,m2,mp,m3He)|2

+ 2Re
{
N0

nnp(m1,m2,mp,m3He)

× [Nnnp,z(m1,m2,mp,m3He)]∗
})

. (5.16)

The energy conservation is expressed in terms of the Jacobi
relative momenta p and q:

p ≡ 1
2 (p1 − p2),

q ≡ 2
3

(
pp − 1

2 (p1 + p2)
)
, (5.17)

which leads to

Mμ + M3He ≈ Eν + 3M + p2

M
+ 3

4

q2

M
+ 1

6

E2
ν

M
. (5.18)

We start the discussion of our predictions with Fig. 7,
where for the μ− + 3He → νμ + n + d reaction we compare
results of calculations employing all partial-wave states with
the total subsystem angular momentum j � 3 and j � 4. Both
the (symmetrized) plane-wave and full results show a very
good convergence, and in practice it is sufficient to perform
calculations with j � 3. We refer the reader to Ref. [10]
for the detailed definitions of various 3N dynamics. The
convergence with respect to the total 3N angular momentum
J will be discussed in Sec. V A. The differential capture rates
d�nd/dEνμ

rise very slowly with the neutrino energy and show

a strong maximum in the vicinity of the maximal neutrino
energy. (At the very maximal neutrino energy the phase-space
factor reduces the differential rates to zero.) This maximum
is broader for the plane-wave case. Final-state-interaction
effects are very important and in the maximum bring the
full d�nd/dEνμ

to about 1/3 of the plane-wave prediction.
The results are based on the AV18 [13] nucleon-nucleon
interaction.

In Fig. 8 we show results based on different 3N dy-
namics: plane-wave approximation, symmetrized plane-wave
approximation, with the 3N Hamiltonian containing only 2N
interactions, and finally including also a 3N force (here the
Urbana IX 3N potential [14]) both in the initial and final state.
The effect of the 3N force on d�nd/dEν is clearly visible,
since the maximum is reduced by about 20%. From this figure
one might draw the conclusion that the symmetrization in
the plane-wave matrix element is not important. We found
this agreement between the plane-wave and the symmetrized
plane-wave results rather accidental. As demonstrated in Fig. 9
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all partial-wave states with j � 3 and J � 9
2 .

for two neutrino energies, the double-differential capture
rates d2�nd/(dEνd�q0 ) receive dominant contributions from
different angular regions.

For the μ− + 3He → νμ + n + n + p reaction we show in
Fig. 10 that the convergence of the differential capture rate
d�nnp/dEν with respect to the number of partial-wave states
used in the full calculations is also very good. Comparing
the shapes of d�nd/dEν and d�nnp/dEν we see that the
latter becomes significantly different from zero at smaller
neutrino energies. The calculations are based in this case
on the AV18 [13] nucleon-nucleon potential and 3N force
effects are neglected. In Fig. 11 we show 3N force effects
by adding the Urbana IX 3N force to the Hamiltonian. The
peak reduction caused by the 3N force amounts to about 19%,
which is quite similar to the two-body break-up case. Note
that this dependence on the 3N interaction, or essentially on
the trinucleon binding energy, is presumably a consequence of
the overprediction of the A = 3 radii when 3N interaction is
not included.
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FIG. 10. The differential capture rates d�nnp/dEν for the μ− +
3He → νμ + n + n + p process calculated with the AV18 poten-
tial [13] and using a full solution of Eq. (5.9) with V

(1)
4 = 0. The curves

representing results of the calculations employing all partial-wave
states with j � 3 (j � 4) in the 2N subsystem are depicted with
dashed (solid) curves. The maximal total 3N angular momentum is
Jmax = 9

2 .

We supplement the results presented in Figs. 7–11 by
giving the corresponding values of integrated capture rates
in Table III, together with earlier theoretical predictions of
Refs. [34–36] and experimental data from Refs. [15,37–39].
From inspection of the table we can conclude, first of all, that
our results are fully at convergence. Second, we can estimate
3N force effects for the total rates. For the two break-up
reactions separately (�nd and �nnp) as well as for the total
break-up capture rate (�nd + �nnp) we see a reduction of
their values by about 10%, when the 3N force is included.
Our best numbers (obtained with the AV18 nucleon-nucleon
potential and Urbana IX 3N force and the single nucleon
current operator) are �nd = 544 s−1, �nnp = 154 s−1, and
�nd + �nnp = 698 s−1 and can be compared with the available
experimental data gathered in Table III, finding a nice overall
agreement between theory and experiment for �nd + �nnp,
except for the two results of Refs. [35,36]. The experimental
uncertainties, however, are quite large. When comparing with
the latest experimental values of Ref. [15], we find that our
results for �nnp are smaller than the experimental values and
fall within the experimental estimates for �nd and �nd + �nnp.
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FIG. 11. The differential capture rates d�nnp/dEν for the μ− +
3He → νμ + n + n + p process calculated with full solutions of
Eq. (5.9) with V

(1)
4 = 0 (dashed curve) and with V

(1)
4 �= 0 (solid

curve). The calculations are based on the AV18 nucleon-nucleon
potential [13] and the Urbana IX 3N force [14] and employ all
partial-wave states with j � 3 and J � 9

2 .
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TABLE III. Capture rates for the μ− + 3He → νμ + n + d (�nd )
and μ− + 3He → νμ + n + n + p (�nnp) processes calculated with
the AV18 [13] nucleon-nucleon potential and the Urbana IX [14]
3N force, using the single-nucleon current and describing the final
states just in plane wave (PW), symmetrized plane wave (SPW), and
including final state interaction (full). Early theoretical predictions
from Refs. [34–36] are also shown as well as experimental data are
from Refs. [15,37–39].

Capture rate � in s−1

�nd �nnp �nd + �nnp

PW SPW Full Full Full

AV18 (jmax = 3) 1917 2046 604 169 773
AV18 (jmax = 4) 1917 2046 606 170 776
AV18 + Urbana IX (jmax = 3) 1853 1956 544 154 698

Earlier theoretical predictions:

Yano [34] 510 160 670
Philips et al. [35] 414 209 623

Congleton [36] 650

Experimental results:

Zaı̆midoroga et al. [37] 660 ± 160
Auerbach et al. [38] 665+170

−430

Maev et al. [39] 720 ± 70
Bystritsky et al. [15]
Method I 491 ± 125 187 ± 11 678 ± 126
Method II 497 ± 57 190 ± 7 687 ± 60

We expect that our predictions will be changed by about
10%, when many-body current operators are included in our
framework, as in the case of μ− + 3He → νμ + 3H.

A. Analysis of most recent experimental data
for differential capture rates

Next, we embark on an analysis of experimental differ-
ential capture rates d�nd/dEd and d�nnp/dEp published in
Ref. [15]. For a number of deuteron and proton energies, these
quantities are averaged over 1-MeV-wide energy intervals and
presented in the form of tables. The tables contain experimental
results normalized to 1 in given energy regions as well as

absolute values. The data and their uncertainties have been
obtained by two different methods so that, in each case, two
data sets are available. The first method uses Monte Carlo
simulations and a χ2 minimization procedure to compare
simulated results, depending on a set of parameters, with
experimental events. In the second approach, a Bayesian
estimation is used to determine the energy distributions of
protons and deuterons emitted in the caption reactions.

One could, in principle, prepare a dedicated kinematics to
deal with this kind of energy bins, as we did in Ref. [9]. Our
approach, however, is now quite different and very simple.
We have already calculated the capture rates d�nd/dEν and
d�nnp/dEν on a dense grid (60 points) of neutrino energies,
solving for each neutrino energy the corresponding Faddeev-
like equation (5.9). These neutrino energies are distributed
uniformly in the whole kinematical region and some extra
points are calculated close to the maximal neutrino energy.
This dense grid allows us to use the formulas and codes which
calculate the total �nd (5.14) and �nnp (5.16) capture rates,
performing integrals over the whole phase spaces. The sole
difference is that, in the calculation for a given energy interval,
only contributions to the corresponding total capture rate with
a proper kinematical “signature” are summed.

This kinematical signature is easy to obtain. In the case of
the two-body break-up reaction it is given by Eq. (5.14), which
can be used to calculate the deuteron momentum and thus its
kinetic energy. Two examples showing the distributions of
“events” for two-deuteron energy intervals in the Eν-Ed plane
are given in Fig. 12. The central deuteron energies are 15.5 and
20.5 MeV. In this case the events are generated by different
(Eν , θq0 ) pairs.

For the three-body break-up reaction the proton energy
can be evaluated from Eqs. (5.17). Again we demonstrate
in Fig. 13 two examples showing the distributions of proton
events for two-proton energy intervals in the Eν -Ep plane. (The
central proton energies are 25.5 and 35.5 MeV.) We see many
more events than in the deuteron case, now generated with
60 uniformly distributed Eν points, 36 uniformly distributed
θq values of the relative momentum q, and 32 values of the
magnitude of q ≡ |q|. Compared to the deuteron case, the
events come from a much broader neutrino-energy range.

We show in Fig. 14 the capture rates 〈d�nd/dEd〉 for
the μ− + 3He → νμ + n + d process averaged over 1 MeV
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FIG. 12. The events for two selected bins corresponding to Fig. 14 with (left panel) the central deuteron energy Ed = 15.5 MeV and (right
panel) 20.5 MeV, generated with 60 uniformly distributed Eν points in the [0,Emax,nnp

ν ] interval and 72 uniformly distributed θq0 values of the
relative momentum q0 (in [0,π ]) as explained in the text. For the selected examples the number of events is approximately 130.
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FIG. 13. The events for two selected bins corresponding to Fig. 15 with (left panel) the central proton energy Ep = 25.5 MeV and (right
panel) 35.5 MeV, generated with 60 uniformly distributed Eν points, 36 uniformly distributed θq values of the relative momentum q, and 32
values of the magnitude of q (see text for a detailed explanation). For these two examples the number of events is approximately 1000.

deuteron energy bins, calculated with various 3N dynamics
and compared to the two sets of experimental data pre-
sented in Table VI of Ref. [15]. We show the results both
on logarithmic and linear scales. Our simplest plane-wave
calculations (dash-dotted curves) describe the data well only
for small neutrino energies. Predictions based on the full
solution of Eq. (5.9) without (dashed curves) and with (solid
curves) a 3N force clearly underestimate the data by nearly
a factor of 2. If the Urbana IX 3N force [14] is added to
the 3N Hamiltonian based on the AV18 potential [13], the
agreement with the data is slightly improved. The symmetrized
plane-wave approximation overshoots the data for smaller
neutrino energies and drops much faster than data at higher
neutrino energies.

The situation for the averaged capture rates 〈d�nnp/dEp〉
in the case of the μ− + 3He → νμ + n + n + p reaction is
demonstrated in Fig. 15. Here we compare our predictions
obtained with the full solution of Eq. (5.9) without (dashed
curve) and with (solid curve) the Urbana IX 3N force [14]
to the experimental data evaluated by using two methods and
shown in Table V of Ref. [15]. Both types of theoretical results
underestimate the data for smaller proton energies and lie much
higher than the data for higher proton energies. The inclusion
of the 3N force does not bring the theory closer to the data and
the 3N force effects are quite tiny.

These two comparisons raise the question whether the
calculations of the total rates �nd and �nnp (where we at
least roughly agree with the data) are consistent with the
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FIG. 14. The capture rates 〈d�nd/dEd〉 for the μ− + 3He → νμ + n + d process averaged over 1 MeV deuteron energy bins are compared
with the experimental data given in Table VI of Ref. [15]. In the left (right) panel the experimental data are evaluated using method I (method II)
of Ref. [15]. The notation for the curves is the same as that of Fig. 8.
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FIG. 15. The capture rates 〈d�nnp/dEp〉 for the μ− + 3He → νμ + n + n + p process averaged over 1 MeV proton energy bins are
compared with the experimental data shown in Table V of Ref. [15]. In the left (right) panel the experimental data are evaluated using method
I (method II) of Ref. [15]. The notation for the curves is the same of Fig. 11.

calculations of the (averaged) differential rates 〈d�nd/dEd〉
and 〈d�nnp/dEp〉 (where we disagree with the data). We
checked that this is the case, calculating �nd (Eν < 90 MeV) in
two ways. First we used the information given by d�nd/dEν .
In the second calculation we generated corresponding events
for all deuteron energies provided that Eν < 90 MeV and
later used the code for 〈d�nd/dEd〉 to sum the corresponding
contributions.

One might also worry if the extrapolation of the experi-
mental results (necessary to arrive at the total rates) made by
the authors of Ref. [15] is justified. From Figs. 5 and 6 it is
clear that the data for these two reactions do not cover the
region of neutrino energies greater than 90 MeV. From our
calculations we can see that the total capture rates receive

decisive contributions just from this region. In the two-body
break-up case this contribution amounts to nearly 70%. The
simple formula used by the authors of Ref. [15] to represent
the dependence 〈d�nd/dEd〉 on the deuteron energy might
not work well for all the deuteron energies. This means that
our agreement with experimental data for the total rates from
Ref. [15] could be more or less accidental. At the moment our
theoretical framework is not complete and this question should
be revisited when the calculations with the more complete
current operator are performed.

Finally, we would like to mention that we used these
more exclusive observables, 〈d�nd/dEd〉 and 〈d�nnp/dEp〉,
to verify the convergence of the full results with respect to the
total angular momentum of the final 3N system, J . In Fig. 16
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FIG. 16. Convergence of the full results (without a 3N force) with respect to the total angular momentum of the final 3N system corresponding
to (left panel) Figs. 14 and (right panel) 15. Curves show results of calculations with J � 1

2 (double dashed), J � 3
2 (dash-dotted), J � 5
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FIG. 17. The capture rates 〈d�nnp/dEp〉 for the μ− + 3He →
νμ + n + n + p process averaged over 5 MeV proton energy bins are
compared with the experimental data shown in Table I of Ref. [17].
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detectors. The notation for the curves is the same as for Fig. 11.

we show results of calculations performed with J � 1
2 , J � 3

2 ,
J � 5

2 , J � 7
2 , and J � 9

2 corresponding to Figs. 14 and 15.
The convergence is extremely rapid, especially in the case
of the 3N break-up reaction, and actually Jmax = 9

2 seems
unnecessarily large.

B. Analysis of older experimental data
for differential capture rates

In this section we provide an analysis of experimental
differential capture rates d�nnp/dEp and d�nd/dEd published
in Refs. [16,17]. For each reaction two data sets were obtained
with two different detectors.

The data for the d�nnp/dEp capture rate are to be found
in Table I of Ref. [17]. These data points were averaged over
5-MeV-wide energy bins and our theoretical predictions are
prepared consistently. The average procedure has been carried
out in the same way as described is Sec. V A. The fact that, in
this case, the proton energy bins are five times larger poses no
additional difficulty. We noticed that this additional average
over wider proton-energy bins does not change significantly
the representation of our calculations (at least on a logarithmic
scale). In Fig. 17 we see that our calculations are in fair
agreement with data for Ep � 32 MeV but clearly overshoot
the data for the higher proton energies.

The data set for the d�nd/dEd capture rate consists of
three points only. They are given in Table III and shown
in Fig. 9 of Ref. [17]. These data points are compared
with our theoretical predictions (based on different types
of 3N dynamics) averaged over 1-MeV-wide energy bins.
(That means that we use the same results as in the previous
section.) This bin width corresponds closely to the horizontal
errors bars of the three experimental points. In Fig. 18 the
simplest plane-wave prediction seems to be consistent with
the lower-energy datum, while the symmetrized plane-wave
result agrees with the higher-energy data. The full results
both neglecting and including 3N-force effects underestimate
also the data from Refs. [16,17], missing them by 40%–60%.
The same data were analyzed by some of the authors of the
present paper in Ref. [9] with older nucleon-nucleon forces
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FIG. 18. The capture rates 〈d�nd/dEd〉 for the μ− + 3He →
νμ + n + d process averaged over 1 MeV deuteron energy bins are
compared with the experimental data given in Table III of Ref. [17].
The notation for the curves is the same of Fig. 8.

and without 3N potentials. Here we do not confirm the results
of Ref. [9], which showed a big difference between the full
and symmetrized plane-wave predictions. This might indicate
some problems in calculations of Ref. [9] and will be further
investigated.

VI. SUMMARY AND CONCLUSIONS

A consistent framework for the calculations of all muon-
capture processes on the deuteron, 3He, and other light nuclei
should be ultimately prepared. This requires that the initial and
final nuclear states are calculated with the same Hamiltonian
and that the weak current operator is “compatible” with the
nuclear forces. If the results of such calculations can be
compared with precise experimental data, our understanding
of muon capture (and other) important weak reactions will be
definitely improved.

In the present paper we studied the μ− + 2H → νμ +
n + n, μ− + 3He → νμ + 3H, μ− + 3He → νμ + n + d, and
μ− + 3He → νμ + n + n + p reactions in the framework
close to the potential model approach of Ref. [4] but (except
for one attempt) with the single-nucleon current operator.
Contrary to Ref. [4], we work exclusively in momentum space.
In all the cases we check carefully that the nonrelativistic
kinematics can be safely used and outline the adopted
approximations. We also prove the convergence of our results
with respect to the number of partial-wave states used in our
calculations.

In the case of the μ− + 2H → νμ + n + n reaction we
employed our scheme, which totally avoids standard partial-
wave decomposition to cross-check further elements of our
framework. We supplement information given in the literature
by showing some predictions for the quadruplet differential
and total capture rates. Already in the 2N system we have
developed an easy and efficient way to deal with PWD of any
single-nucleon operator. This scheme is then employed also in
the reactions with 3He.

We give first realistic predictions for the differential
d�nd/dEνμ

and d�nnp/dEνμ
capture rates as well as for the

corresponding total capture rates �nd and �nnp. Our numbers
calculated with the AV18 nucleon-nucleon potential [13] and
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the 3N Urbana IX potential [14] are 544 s−1 (μ− + 3He →
νμ + n + d) and 154 s−1 (μ− + 3He → νμ + n + n + p).

Our analysis of the experimental data from Ref. [15]
reveals some contradictions. We agree roughly with the total
capture rates but fail to reproduce the differential capture
rates. Our results might indicate that the extrapolations and
the experimental results on the total capture rates published in
Ref. [15] should be reconsidered. Finally, we are well aware
that the full understanding of the muon-capture processes
requires the inclusion of at least 2N contributions to the nuclear
current operators. However, the work presented here is a first
step to perform a complete calculation in the near future.
Work along this line is currently underway. Nevertheless, the

presented predictions will serve as an important benchmark
for the future.
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