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Abstract

The assessment of left ventricular (LV) diastolic function should be 
an integral part of a routine examination of hypertensive patient; in-
deed when LV diastolic function is impaired, it is possible to have 
heart failure even with preserved LV ejection fraction. Left ventricu-
lar diastolic dysfunction (LVDD) occurs frequently and is associated 
to heart disease. Doppler echocardiography is the best tool for early 
LVDD diagnosis. Hypertension affects LV relaxation and when left 
ventricular hypertrophy (LVH) occurs, it decreases compliance too, 
so it is important to calculate Doppler echocardiography parameters, 
for diastolic function evaluation, in all hypertensive patients. The 
purpose of our review was to discuss about the strong relationship 
between LVDD and hypertension, and their relationship with LV 
systolic function. Furthermore, we aimed to assess the relationship 
between the arterial stiffness and LV structure and function in hyper-
tensive patients.
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Introduction

Left ventricular diastolic dysfunction (LVDD) is an earlier 

alteration common to many cardiovascular diseases [1, 2]. 
Any kind of heart disease that leads to myocardial structural 
alteration and/or pericardial effusion may cause LVDD [1-3]. 
Sometimes this structural abnormality is evident macroscopi-
cally (i.e. hypertrophy, fibrosis, infiltrative diseases, dilated 
cardiomyopathy, myocardial infarction, constrictive pericar-
ditis, etc.). Other times, diastolic dysfunction is linked to ab-
normalities of the cellular mechanisms of myocyte relaxation 
caused by hypoxia and/or ischemia [3]. A lot of patients with 
congestive heart failure, symptomatic, have a normal left ven-
tricular ejection fraction and signs/symptoms mainly due to 
diastolic dysfunction [4, 5]. For these reasons, the assessment 
of LV diastolic function should be always performed during a 
routine echocardiographic examination, since when LV dias-
tolic function is impaired, it is possible to have heart failure 
even with preserved LV ejection fraction (HFpEF). Diastolic 
dysfunction can display a wide spectrum of different patterns, 
ranging from a simple slowing of ventricular relaxation, with-
out significant hemodynamic changes, to the development of 
pulmonary venous congestion, due to elevation of ventricular 
diastolic pressures with displacement of the pressure-volume 
loop in the upper and to the left [2, 3] (Fig. 1). However, pa-
tients affected by heart failure often presents both systolic and 
diastolic ventricular dysfunction, since the systole and diastole 
are related one to the other in a complex way. Often changes 
in diastolic function do not affect only the filling of the ven-
tricles, but also ventricular systolic function [6]. Many factors 
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can influence the ventricular diastolic filling and then the dias-
tolic pressure-volume relationship: coronary insufficiency [7], 
vasodilators and vasoconstrictors [8] (i.e. changes in preload 
and after load), geometric-mechanical interactions between 
the ventricles (e.g. reverse Bernheim effect in pulmonary em-
bolism) [9], pericardial anatomy [10] (e.g. constrictive peri-
carditis, pericardial effusion), metabolic alterations (acidosis, 
alkalosis) [11], cardiovascular drugs [12] (e.g. digital, beta-
blockers, calcium channel blockers), and hypoxia [13].

To better understand how LVDD occurs, we have to start 
from physiopathology of LV diastole. It can be divided into 
four phases, starting from aortic valve closure. The first phase 
of diastole is the isovolumic, which does not contribute to ven-
tricular filling. The second of early and rapid filling provides 
most of ventricular filling, about 60-90%. The third of slow 
filling, mentioned as diastasis, contributes to only 5% of the 
total filling. The final atrial booster phase normally accounts 
for the remaining 5-35%, according to the age, with an increas-
ing contribution in elderly [14] (Fig. 2).

“Isovolumic relaxation time” starts with the closure of 
the semilunar valves and ends with the opening of the atrio-
ventricular ones. During this phase, there is no change in in-
traventricular volume (because the valves are closed), but the 
geometric configuration of the ventricular cavity changes, fol-
lowed by a fall in ventricular pressure that becomes lower than 
atrial pressure. Then atrioventricular valve opens and it begins 
the second phase of diastole: fast ventricular filling [15]. The 
isovolumic relaxation is an energy-dependent process, where 
the calcium ions are removed from the cytoplasm against a 
concentration gradient, allowing the dissociation of the con-
tractile complex actin-myosin (active relaxation) [16]. It can 
be influenced, not only by the anatomical and functional heart 
conditions, but even from pre-load and post-load. The speed of 
relaxation also influences the speed of fall of left ventricular 
pressure. An impaired relaxation causes an increase in filling 
pressure to maintain an adequate diastolic volume of the ven-
tricle. Even the “elastic recovery” (the release of elastic energy 
“compressed” in the myocardium during the previous systole 

and then released as soon as the relaxation begins) acts on the 
isovolumic relaxation. Also this release contributes to the fall 
of left ventricular pressure at the beginning of diastole. A re-
duction in systolic function, resulting in an increase in left ven-
tricular end-systolic volume, causes a reduction of the “elastic 
return” in the subsequent early diastole. The gold standard 
measurement of relaxation rate is dP/dtmax, but it requires in-
vasive catheterization [17]. Similarly, tau, the time constant of 
relaxation, describes the rate of LV pressure decrease during 
isovolumic relaxation but it requires invasive techniques [18-
20]. On clinical practice, tau is assessed by echocardiography. 
Tau is increased as the systolic LV pressure increases. The iso-
volumic relaxation time can be measured by Doppler echo-
cardiography: it lies between aortic valve closure and mitral 
valve opening, but it suffers of an high intra- and inter-operator 
variability, so the range of normality is wide [20].

“Ventricular fast filling time” starts with the opening of 
the atrioventricular valve, proceeds with increasing speed up 
to a maximum peak, subsequently decelerates, and ends with 
the beginning of the third phase. During this phase, the blood 
which had accumulated in the atrium while the valve was 
closed is poured rapidly into the ventricle, consequently the 
atrial pressure falls while the ventricular pressure increases. 
The contribution of rapid ventricular filling to total diastolic 
one, in healthy adults, is about 65-80% [21]. “Fast ventricular 
filling time” is a mainly passive process, due to the atrioven-
tricular gradient, that is greatly influenced by ventricular com-
pliance. This phase of diastole is also influenced by the “elastic 
return” of the ventricle. In the “slow ventricular filling”, the 
flow of blood from the atrium to the ventricle is very slow, be-
cause the pressure gradient atrioventricular is virtually absent. 
The duration of this phase is greatly dependent on the heart 
rate [18-21]. “Atrial systole” is the final phase of diastole, pre-
sent only on sinus rhythm. Atrial active contraction causes an 
increase of blood flow from the atrium to the ventricle, con-
sequently an increase in pressure and volume occurs and the 
end-diastolic ventricular activation of Starling’s effect happens 
[4]. In normal subject, the contribution of atrial systole to the 

Figure 2. Diastolic phases related with changes in pressure (P) and volume (V) during a cardiac cycle. CI: isovolumic contraction; 
RI: isovolumic relaxation; RF: rapid filling. 
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total LV filling is about 20%. An increase in heart rate reduces 
the contribution of atrial systole. In arterial hypertension, LV 
filling abnormalities can be detected early and also, often, they 
precede the impairment of systolic function of the left ventri-
cle. In all phases of diastole, hypertension affects relaxation 
and when left ventricular hypertrophy (LVH) occurs, it reduces 
compliance too, so it is important to calculate Doppler echo-
cardiography parameters, for diastolic function evaluation, in 
all hypertensive patients. The goal of our paper is to assess the 
strong relationship between LVDD and hypertension, and their 
relationship with LV systolic function. We also want to inves-
tigate if there is a relation between the arterial stiffness and LV 
structure and function in hypertensive patients [22, 23].

The Assessment of LV Diastolic Function

LVDD is an important predictor of symptoms and clinical 
outcomes in patients with left ventricular systolic dysfunction 
(LVSD) [1, 2, 24]. Abnormalities of diastolic function in this 
population include an increase in LV filling pressures and LV 
volumes and impaired LV relaxation [25]. In a recent paper, 
“pre-clinical diastolic dysfunction” (PDD) has been defined 
as LVDD without congestive heart failure diagnosis and with 
normal systolic function [3]. Although invasive measures of 
LV relaxation and LV filling pressures (i.e., LV end-diastolic 
pressure) are considered to be the “gold standards” for the as-
sessment of diastolic function, they are not performed in stable 
outpatients with LVSD. Pulsed-wave Doppler (PWD)-derived 
transmitral inflow patterns are commonly used for assessment 
of LVDD [26-28].

However, patients with LVSD often have variability in 
PWD-derived indices of LVDD due to increases in LA pres-
sure, so they are preload-dependent [29, 30]. Tissue Doppler 
imaging (TDI)-derived early diastolic mitral annular velocity 

(E’) and color M-mode (CMM) imaging flow propagation ve-
locity (Vp) have been reported to be less load-dependent meth-
ods to assess LV relaxation [31-33].

In addition, the diastolic intraventricular pressure gradient 
(IVPG) can be derived from CMM imaging by mathematical 
calculations of the spatio-temporal distribution of the early di-
astolic blood flow velocities into the LV cavity [34, 35]. IVPG 
is reported to be a relatively preload-independent measurement 
of LV relaxation [36, 37]. The evaluation of diastolic function 
by TDI and CMM-derived measurements to assess diastolic 
function in patients with LVSD has not been well evaluated. 
The measurement of these myocardial parameters could be of 
great importance in patients with HFpEF because these echo-
cardiographic indices well describe the multidirectional func-
tion of whole LV myocardium, thereby allowing a detection of 
LV global function affections that is associated with a worse in 
symptomatic status of these patients.

LVDD and Prognosis

LVDD develops early in most cardiac diseases and leads to 
the elevation of LV filling pressures. Therefore, echocardio-
graphic measurements of diastolic function provide important 
prognostic information. E/A ratios (early phase of atrial filling 
phases) reflect the compensatory increase in the late (atrial) 
filling phase when hypertrophic LV fails to relax normally 
during diastole. The result is that the E/A ratio on the mitral 
Doppler pattern decreases or reverses. However, when LV 
hypertrophy increases and wall fibrosis develops, LV cham-
ber compliance decreases and the E wave again rises. Thus, it 
becomes difficult to separate E/A ratios that are truly normal 
from pseudonormal patterns of mitral inflow. Doppler tissue 
can measure the actual velocity of tissue relaxation of the mi-
tral valve annulus or the posterior wall. Clinical studies have 

Figure 3. Different patterns of LVDD by transmitral flow pattern (upper) and tissue Doppler at mitral annulus level (lower). DDT: 
diastolic deceleration time, E and e’m: early ventricular filling; A and a’m: atrial contraction. 
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shown the association of short mitral diastolic deceleration 
time (DDT) with heart failure, death and hospitalizations in 
patients with acute myocardial infarction [38-54] (Fig. 3). Di-
astolic measurements provide incremental information to wall 
motion score index, as assessed by a recent meta-analysis of 12 
post-acute myocardial infarction studies involving 1,286 pa-
tients [55]. Similar findings were reported in patients with is-
chemic or dilated cardiomyopathy, including atrial fibrillation. 
Pulmonary venous velocities [42, 56-58] and Vp [59] were 
less frequently performed but were still predictive of clinical 
events [60, 61]. Given the variability in measuring DT, Vp, 
and pulmonary venous flow velocity duration, recent studies 
have examined the prognostic value of E/E1. Several studies 
[62-74] have shown that E/E1 is highly predictive of adverse 
events after acute myocardial infarction and in hypertensive 
cardiomyopathy, severe secondary mitral regurgitation (MR), 
end-stage renal disease, atrial fibrillation, and cardiomyopath-
ic disorders. The E/E1 ratio is among the most reproducible 
echocardiographic parameter to estimate pulmonary capillary 
wedge pressure and is the preferred prognostic parameter in 
many cardiac conditions. While all Doppler parameters above-
mentioned estimate LVDD at moment of the performance, left 
atrial structural and functional remodeling parameters have 
been proposed as a barometer of diastolic burden over time 
and as predictor of common cardiovascular outcomes, such as 
atrial fibrillation, stroke, congestive heart failure, and cardio-
vascular death [75, 76].

Aortic stiffness

Aortic stiffening is increasingly recognized as an early marker 
of future cardiovascular disease and mortality among general 
population and hypertensive patients [77-80].

Classic risk scores may underestimate the risk of cardio-
vascular events in specific groups suitable for early preven-
tion, such as asymptomatic hypertensive patients, often being 
wrongly classified as at low or moderate risk. Arterial stiff-
ness is the most important determinant of increasing systolic 
and pulse pressures in ageing societies, thus giving a relevant 
contribution to incidence of stroke and myocardial infarction. 
Arterial stiffness has a predictive value for cardiovascular 
events, beyond classical cardiovascular risk  factors and gives 
direct evidence of target organ damage, being itself a “tissue 
biomarker” [81]. Increased aortic stiffness is considered to be 
involved into artery’s ageing process [79], it determinates an 
increase in systolic blood pressure (SBP) and a decrease in 
diastolic blood pressure (DBP) resulting in an augmented LV 
workload and reduced perfusion of the coronary arteries dur-
ing diastole [81]. Increased aortic stiffness, a major mechani-
cal factor predicting CV risk, has been well identified as play-
ing a role in metabolic syndrome. Its age progression seems 
to be proportional to the number of risk factors involved in 
metabolic syndrome and is responsible for increased SBP and 
decreased DBP with increasing age, the principal hallmarks 
of hypertension in the elderly [78]. Aortic stiffness is assessed 
by PWVg measured using two-dimensional (2D) echocardi-
ography. The PWVg is calculated between the aortic valve 

and right common femoral artery by dividing the straight line 
distance between the two by the transit time. The distance is 
assessed using a tape measure located at the same place as the 
ultrasound probe. The transit time was defined as the differ-
ence between two intervals of time using the Doppler method 
[82]. PWVg is a simple, accurate, noninvasive means for the 
determination of large-artery stiffness, and it does not require 
dedicated equipment because it is performable by common 
echocardiographic machine, does not need training and is not 
time consuming [80]. Aortic PWV is considered an intrinsic 
measure of arterial stiffness according to the Moens-Korteweg 
equation where PWV is proportional to the square root of the 
incremental elastic modulus, of the vessel wall given constant 
ratio of wall thickness, to vessel radius and blood density, as-
suming that the artery wall is isotropic and experiences isovol-
umetric change with pulse pressure [80]. So PWV is related to 
the pulsatile component of LV afterload and is linked to prog-
nostically adverse cardiac phenotype, including depressed LV 
systolic function [83, 84]. The strong relation between PWV 
and LV is also true because the pulse wave is generated by 
the contracting heart, and aortic PWV might be partially deter-
mined by enhanced myocardial performance, with a shortened 
LV ejection time, in young subjects [82]. If the initial speed 
of the pressure wave is mainly determined by the velocity of 
myocardial shortening [85] and LV ejection time is related 
with shortening velocity [86], we can assess that myocardial 
function and pulse pressure influence each other. The relation 
between aortic PWV and LV mass and function have been un-
derstudied until recent years. However, it may support a better 
comprehension of mechanism of HFpEF, a condition associ-
ated with high morbidity and mortality, whose prevalence is 
increasing, and is common among postmenopausal women. 
There are sex differences in aortic stiffness and its influence 
on left ventricle mass, geometry and function, postmenopausal 
women display increased arterial and LV stiffening, so LVDD 
[87, 88]. In addition, the association of increased arterial stiff-
ness with mortality is almost two-fold higher in women than 
in men [89].

Conclusions

Although LVDD  remains poorly understood, it has an impor-
tant clinical significance. LV diastolic function is influenced 
by arterial stiffness, changing the different components of its 
load, modulates LV structure and function. In patients affected 
by arterial hypertension, the pressure-volume loop shifts to the 
upper right side, therefore, pulmonary congestion is induced by 
a significant increase in LV end-diastolic pressure. To preserve 
LV ejection fraction, the pressure-volume loop shifts right due 
to a preload increase. Therefore, the LV pressure-volume loop 
operates on the ascending section of the end-diastolic pressure-
volume curve, consequently causing end-diastolic pressure to 
arise. There is a strong relationship between arterial stiffness 
and the diastolic properties of the left ventricle. With increas-
ing age, arterial stiffness becomes related to LV hypertrophy 
and to impaired LV diastolic function [77, 78, 90]. Aortic stiff-
ness is related to electrocardiographically determined LVH in 
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patients with hypertension [79]. Aortic PWVg is widely used 
to estimate arterial stiffness as elastic properties of the arterial 
tree and it is a strong predictor of cardiovascular outcomes in 
different clinical settings, including essential hypertension [91, 
92]. Large artery stiffness is related to an array of functional 
and structural changes of the left ventricle [88, 93-95]. An el-
evated aortic impedance is a major stimulus for the develop-
ment of LV unfavorable changes in diastolic function and a 
significant increase in LV mass. The more possible complete 
study of LV diastolic function and arterial stiffness leads to 
a complete detection of different mechanisms involved into 
complex functional and structural modifications of the hyper-
tensive heart.
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