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Abstract

Energy dispatching in smart (micro)grids must take into
account more conflicting objectives (or criteria), such
as power reliability and quality, proper handling of the
electricity demand, and cost decrease. The choice of the
best alternative in energy dispatching decisions can be
dealt with as a multi-criteria optimization and decision
making problem. To this aim, we propose the use of lin-
ear programming to generate the possible alternatives,
and the integration of fuzzy AHP and TOPSIS to select
the best alternative. In particular, fuzzy AHP and TOP-
SIS are used, respectively, to prioritize the criteria and to
evaluate the alternatives with respect to four conflicting
criteria, namely, environmental impact, cost of the en-
ergy, distance of supply, and load level of power lines.

1. Introduction

Contrary to the traditional electricity network, which
passively carries energy from few large power plants
to several small and medium consumers, a new electric
grid, called smart grid, is getting more and more impor-
tant. A smart grid allows intelligent integration of all
connected users (namely, producers, consumers or pro-
sumers) in order to distribute energy in an efficient, sus-
tainable and secure way. The following major aspects
characterize a smart grid:

• power generation sources of any technology and
dimension can be connected to the grid. The dis-
tributed generation of electricity from many small
energy sources provides increased efficiency of en-
ergy generation and higher security of power sup-
ply. Furthermore, the greater and greater use of re-
newable energy resources, such as wind, sunlight,
biomass and geothermal heat, helps minimize car-
bon emission;

• the consumers have more information and tools
that help them participate in the electricity enter-
prise; in practice, being energy aware, customers
can consume as well as produce energy (so-called
prosumers).

Nowadays the idea of distributed energy generation
is stressed by an emerging concept: the so-called micro-
grid [6]. A microgrid is a small scale energy system con-
sisting of electricity sources, energy storage, and loads.
A microgrid can work in two different ways: in grid con-

nected mode (i.e., connected to the traditional electric-
ity network) or in islanded mode (i.e., isolated from the
larger power network so that it functions autonomously)
[3]. In a microgrid, generation and loads are typically
interconnected at low or medium voltage. The capa-
bility to island distributed generators and loads together
has the potential to improve local supply reliability and
demand stability. Yet a microgrid can still be seen as
a single entity connected to the main grid through the
transmission and distribution system: at any given time,
from the perspective of the main grid, the microgrid will
be either a consumer or a producer. This implies that
microgrids can be considered as the building blocks of
a wider power grid [5][8][13]. In other words, the smart
grid can be modeled as a hierarchical structure in which
two-way flows of electricity and information travel be-
tween the high-voltage network and smart microgrids at
different hierarchical levels.

It follows that the main goal of a smart grid (or smart
microgrid) is to optimize the integration of all the users
connected to the grid (or microgrid) from several points
of view, such as enhancement of power reliability, se-
curity and quality, proper handling of the electricity de-
mand, reduction of greenhouse gas emissions, improve-
ment of the use of renewable energy sources, and cost
decrease. This can be regarded as a multi-criteria opti-
mization and decision making problem, whose solution
requires the following two steps:

1. solution generation: in this step, as there are more
conflicting objectives to be optimized simultane-
ously, more possible solutions (or alternatives) will
be generated;

2. solution selection: in this step, the possible solu-
tions must be compared with respect to different,
typically conflicting, goals (or criteria).

In this paper we propose an approach to optimize en-
ergy dispatching in smart (micro)grids based on linear
programming for the solution generation phase, and the
integration of fuzzy AHP and TOPSIS for the solution
selection phase. In particular, fuzzy AHP and TOPSIS
are used, respectively, to prioritize the criteria and to
evaluate the alternatives.

As a preliminary step, we model the smart (micro)grid
as a directed graph (which is called graph-grid) con-
sisting of a set of nodes and arcs. For the sake of sim-
plicity, we consider a reference (micro)grid architecture
consisting of a radial electrical system with one or more
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Figure 1: A decision matrix with n alternatives and m
criteria.

feeders and a set of loads. The system is connected to
the higher-level distribution system through a separation
device. A node can be either a producer, a consumer, a
prosumer, or a dispatcher. Each type of node is charac-
terized by given attributes; in particular, producers and
consumers, respectively, produce and require electricity,
while prosumers may either produce or consume elec-
tricity; finally, a dispatcher aims to dispatch the power
produced by producers to consumers based on appro-
priate efficiency criteria. All nodes in a graph-grid are
connected to a dispatcher node. In this way, a lowest-
level microgrid is modeled as a graph-grid including one
producer node for each electricity source, one consumer
node for each load, one prosumer node for each pro-
sumer or energy storage, and one dispatcher node. On
the other hand, a higher level (micro)grid is represented
by a graph-grid that may include, besides the previous
nodes, also prosumer nodes modeling lower-level mi-
crogrids connected to the (micro)grid under analysis.

2. Multi-criteria decision making

A multi-criteria decision making (MCDM) problem is
characterized by a goal, a set of criteria and a set of al-
ternatives. Criteria and alternatives are called elements.
The goal consists in finding the best alternative with re-
spect to all the criteria.

Most MCDM methods associate a weight with each
criterion: usually weights are normalized to add up to
one. Weights can be chosen by the expert or can result
from a specific ranking technique.

An MCDM problem is usually described using a de-
cision matrix. A decision matrix P is an n × m ma-
trix, where n is the number of alternatives and m is
the number of criteria, as shown in figure 1. Each el-
ement pij of P evaluates the performance of alternative
Ai with respect to criterion Cj , where i = 1, 2, . . . , n
and j = 1, 2, . . . ,m.

2.1. Analytic Hierarchy Process (AHP)

Analythic hierarchy process (AHP) [9][10] decomposes
a complex decision making problem into sub-problems
which are simpler to solve. Since criteria might
be divided into sub-criteria and sub-criteria into sub-
subcriteria and so on, we will refer to a lowest-level
sub-criterion as a lowest sub-criterion. AHP organizes
the problem as a hierarchy whose uppermost level con-
tains the goal, intermediate levels contain criteria, sub-

criteria, etc., and the lowest level contains the alterna-
tives.

AHP ranks criteria with respect to each other, with
reference to their parent in the hierarchy. Alternatives
are ranked according to each lowest sub-criterion. AHP
generates a scale of priorities derived from pairwise
comparisons. In practice, AHP firstly gives a structure
to a complex problem and then let the decision maker
understand which criteria are more important than oth-
ers and which is the best alternative.

2.1.1. Description of the method

AHP requires to build a pairwise comparison matrix for
each level of the hierarchy, by comparing elements shar-
ing the same parent. Given two elements i and j the

Preference weight aij Explaination
1 Equally preferred
3 Moderately preferred
5 Strongly preferred
7 Very Strongly preferred
9 Extremely preferred

2, 4, 6, 8 Intermediate values (compromises)

Table 1: Saaty’s scale of preference.

result of a pairwise comparison is a coefficient mij es-
timating the preference of i over j. Coefficient values,
called preference weights, are usually expressed by us-
ing Saaty’s scale of preference which connects quali-
tative judgements to the first nine integer numbers, as
shown in Table 1. If mij is the generic element of a
comparison matrix M , then mii = 1 and mij = 1/mji

for each i, j = 1, 2, . . . , n. A local weight wlocali ex-
presses the importance of an element i (either a criterion
or an alternative) with respect to the others sharing the
same parent in the hierarchy.

A matrix A is said to be consistent if aij = aikakj ,
where aij is the generic element of A and i, j, k =
1, 2, . . . n. It has been proved [11] that the principal
eigenvector is a representation of the priorities derived
from a positive reciprocal pairwise comparison judge-
ment matrix.

In order to obtain global weights, i.e., the weight of
each element with respect to its uppermost ancestor in
the hierarchy, the local weight of each element is multi-
plied by the ones related to its ancestors in the hierarchy,
until the uppermost level is reached. The results of these
products are subsequently summed. Global weights of
the elements in the lowest level of the hierarchy, i.e, the
alternatives, represent the result of the decision making
process. The decisional problem is solved by choosing
the alternative having the greatest global weight.

2.1.2. Consistency check

Once local weights have been determined, we have to
check if they reflect the expert’s judgements, obtained
by pairwise comparisons. In other words, given an n×n
pairwise comparison matrix A we need to verify how



much the ratios wlocal
i

wlocal
j

derived from its principal eigen-

vector differ from the estimates aij with which the ex-
pert has filled the matrix A. In order to perform this
check, AHP computes a consistency index (CI) which
expresses an overall difference between the values aij
and wlocal

i

wlocal
j

, for each i, j = 1, 2, . . . , n.

Let λmax be the principal eigenvalue of A. The con-
sistency index is defined as: CI , λmax−n

n−1 . Whenever
the matrix A is consistent its principal eigenvalue λmax
is equal to n. Therefore, in the case of perfect consis-

n 3 4 5 6 7 8 9
RI 0.5245 0.8815 1.1086 1.2479 1.3417 1.4056 1.4499

Table 2: Random Index values obtained from 100000
n-order matrices.

tency CI is equal to zero. As inconsistency increases,
CI becomes greater. AHP compares CI with a random
index (RI) which is obtained by calculating the mean
of the consistency indexes of many reciprocal pairwise
comparison matrices of the same order of A, whose el-
ements are randomly generated according to a uniform
probability distribution. This comparison is performed
by computing the consistency ratio CR = CI

RI . AHP
considers a CR greater than 0.1 as unacceptable. If
CR > 0.1, the expert has to increase the coherence of
his judgements by changing the entire set of estimates
aij (or a part of it) untilCR becomes lower than or equal
to 0.1. Table 2 shows the random indexes obtained from
100000 n-order matrices.

2.2. Fuzzy AHP

2.2.1. Fuzzy sets and fuzzy numbers

Human judgements are usually affected by imprecision.
Fuzzy sets deal with these situations [12]. The main con-
cept of fuzzy set theory is that an element x has a degree
of membership µ(x) ∈ [0, 1] in a fuzzy set [7][14]. A
fuzzy number is a fuzzy set. We will use triangular fuzzy
numbers. Given l,m, u ∈ R such that l ≤ m ≤ u, a tri-
angular fuzzy number is a fuzzy set A = {(x, µ(x))},
where x ∈ R and µ : R → [0, 1]. The membership
function µ(x) is:

µ(x) =


0 if x < l ∨ x > u
x−l
m−l if l ≤ x ≤ m
u−x
u−m if m ≤ x ≤ u

.

A triangular fuzzy number is indicated with Ã =
{l,m, u}. A further representation is based on the con-
fidence level, i.e.,

Ãα = [lα, uα] = [(m− l)α+ l,−(u−m)α+ u], (1)

for each α ∈ [0, 1]. Given a fuzzy number (or, in gen-
eral, a fuzzy set) the set {x |µ(x) > 0} is called support.

2.2.2. Fuzzy AHP procedure

Fuzzy AHP substitutes the Saaty’s scale of preference
with a fuzzified version. Judgements are expressed by

triangular fuzzy numbers from 1̃ to 9̃ and the interval
arithmetic is used to solve the fuzzy eigenvector [1].

More rigorously, let α ∈ (0, 1], let Ã be an n ×
n matrix containing triangular fuzzy numbers ãαij =
[aαijl

, aαiju
] and let x̃ be a non-zero n× 1 vector contain-

ing fuzzy numbers x̃i = [xαil , x
α
iu

]. A fuzzy eigenvalue
λ̃ is a fuzzy number solution to Ãx̃ = λ̃x̃. In order to
compute the eigenvector of Ã connected with the prin-
cipal fuzzy eigenvalue λ̃, fuzzy AHP defuzzifies Ã. De-
fuzzification is a process which maps a fuzzy set into
a number. There are several ways to perform defuzzi-
fication. Fuzzy AHP defuzzifies the matrix Ã by intro-
ducing a coefficient ζ ∈ [0, 1], called index of optimism,
with which it performs a convex combination of each
element of Ã, obtaining elements

âαij = ζaαiju + (1− ζ)aαijl. (2)

After defuzzifying the elements of Ã, matrix Â = [âαij ]
is obtained. The eigenvector associated with the princi-
pal eigenvalue of Â is calculated as in classic AHP.

2.3. Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS)

2.3.1. Overview

The technique for order of preference by similarity to
ideal solution (TOPSIS) is a multi-criteria decision mak-
ing approach [2]. Consider a decisional problem char-
acterized by n alternatives and m criteria. Let A =
{1, 2, . . . , n} be the set of indexes of the alternatives and
let C = {1, 2, . . . ,m} be the set of indexes of the cri-
teria. TOPSIS needs an n×m decisional matrix whose
generic row i contains the performance the expert has
estimated for the alternativesAi with respect to each cri-
terion Cj , where i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
In addition, TOPSIS requires a vector containing the
weights the expert has assigned to the criteria. Differ-
ently from AHP, in TOPSIS the weights of the criteria
and the weights of the alternatives with respect to each
criterion are directly expressed by the expert. In order to
select the best alternative, TOPSIS computes the ideal
best and worst solutions to the problem: we will refer
to them as the ideal solution and the negative-ideal so-
lution, respectively. The ideal solution and the negative-
ideal solution are characterized, respectively, by the best
and the worst performance attainable by all the alterna-
tives with respect to each criterion. TOPSIS compares
the alternatives with each other by computing the eu-
clidean distance of each alternative from the ideal and
negative-ideal solutions. The alternative to be chosen
must have the shortest distance from the ideal solution
and the farthest distance from the negative-ideal solu-
tion.

2.3.2. Description of the method

The expert builds an n×m decision matrix P such that
n is the number of alternatives and m is the number of
criteria, as shown in figure 1, where Ai is the i-th al-
ternative, Cj is the j-th criterion, and pij is the expert’s



judgement of the performance of the i-th alternative with
respect to the j-th criterion.

Criteria are divided into cost criteria and benefit cri-
teria. With reference to the benefit criterion Cj the
higher the element pij , the greater the preference the ex-
pert assigns to alternative Ai over the others. On the
other hand, considering the cost criterion Ck, the lower
the element pik the higher the preference the expert ex-
presses for Ai. Criteria may not have the same im-
portance, so TOPSIS considers a further vector wT =
(w1, w2, . . . , wm) containing the weights of the criteria
such that

∑m
j=1 wj = 1.

By using the previous arguments, TOPSIS performs
the following steps:

Step 1: construct the normalized decision ma-
trix R.
The generic element rij ofR is: rij = pij√∑n

i=1
p2

ij

.

Step 2: construct the weighted normalized deci-
sion matrix V.
The generic element vij of V is: vij = wjrij .
Step 3: determine the ideal and the negative-
ideal solutions.
The two ideal alternatives (i.e., best and worst) A+

and A− are determined. Let J be the set of in-
dexes of the benefit criteria, and let J ′ be the set of
indexes of the cost criteria. A+ and A− are com-
posed by the elements:

v+
j =

 max
i∈A,j∈J

vij

min
i∈A,j∈J ′

vij
v−j =

 min
i∈A,j∈J

vij

max
i∈A,j∈J ′

vij .

Step 4: calculate the separation measure.
Given an alternative Ai, i = 1, 2, . . . , n, TOP-
SIS measures the separations of Ai from A+

and A−, indicated respectively with δ+
i and δ−i

by computing the euclidean distance, as fol-

lows: δ+
i =

√∑m
j=1(vij − v+

j )2 , δ−i =√∑m
j=1(vij − v−j )2

Step 5: calculate the relative closeness to the
ideal solution. For each alternative Ai, TOPSIS
computes the so-called closeness coefficient χ+

i ,

defined as: χ+
i = δ−

i

δ+
i

+δ−
i

. An alternative Ai is

closer to A+ as χ+
i approaches to 1.

Step 6: give a rank to the alternatives.
In this last step alternatives are ranked, according
to the descending order of χ+

i .

The alternative Ak such that k = arg maxi χ+
i is the

best.

3. Fundamentals of linear programming

A linear programming (LP) problem consists in mini-
mizing or maximizing a linear function, called objective
function, subject to linear constraints. A point that sat-
isfies all the constraints is called a feasible point and
the set of all feasible points forms the feasible region,

which geometrically represents a polytope described by
the constraints of the problem. The objective function
z : Rn → R of an LP problem is a linear combination
of the decision variables xj whose coefficients are cj ,
where j = 1, 2, . . . n. Therefore, the objective function
is z =

∑n
j=1 cjxj .

Since mimimizing the objective function z is equiv-
alent to maximizing −z, from now on we will discuss
minimization problems, without loss of generality.

Constraints are equations or inequalities of the form∑n
j=1 aijxj S bi, generated by linear combinations of

the decision variables, whose coefficients are expressed
by an m× n matrix A.

An LP problem can be written in different equivalent
forms through algebraic manipulations. An LP prob-
lem is said to be in standard form if all the constraints
are expressed by equations and all the variables are non-
negative. Equation

∑n
j=1 aijxj = bi is the i-th con-

straint, aij are the coefficients, and constraints xj ≥ 0
are the non-negativity constraints, one for each variable.

The fundamental theorem of LP states that if an LP
problem whose feasible region is a polytope has a solu-
tion, then it will occur in a vertex of the polytope, or on
a line segment connecting two vertices.

Many techniques have been developed for evaluating
the objective function value only in a subset of all the
vertices: one of these approaches is the simplex method
[4].

4. Efficient energy dispatching

Consider a microgrid represented by a directed graph
having n nodes and m arcs. Nodes can be active or pas-
sive. A node is active (passive) if it provides (absorbs)
energy. The sets of active and passive nodes will be in-
dicated, respectively, with O and E , where O, E ⊂ N
and O ∩ E = ∅.

A producer p is an active node with the following at-
tributes:

• distance: is the distance dp ∈ R+ from the dis-
patcher node which the producer is connected to,
expressed in kilometers;

• power: is the suppliable electrical power, measured
in kW, represented by a negative integer;

• type of source: is the way by which the producer
generates energy, e.g., fossil fuels, etc.;

• environmental impact: is the amount of pollutants
(e.g., carbon dioxide, dioxins, etc.) released into
the environment. The impact is supposed to be
πp ∈ Π, where, e.g., Π = {1, 2, 3, 4, 5} contains
increasing levels of contaminants emitted with en-
ergy production;

• cost: is the cost kp ∈ R+ per kWh of energy pro-
duced.

A consumer c is a passive node with the following
attributes:

• distance: as previously defined;



• power: is the power required by the consumer,
measured in kW. It is represented by a positive in-
teger or zero.

A prosumer s is a node which produces or consumes
electricity. At any instant, a prosumer is active if it can
supply electricity, otherwise it is passive. A prosumer
has all attributes of producers and consumers. As a pro-
sumer produces using renewable sources, we assume a
zero environmental impact.

A dispatcher is a node which neither consumes nor
produces energy. Its task is dispatching the power avail-
able in the active nodes to the passive nodes, according
to criteria of efficiency. The set containing the dispatch-
ers is indicated with D. Dispatchers are connected to
each other through a node CC which is called the central
controller. Like the dispatchers, the central controller
neither produces nor consumes energy.

Each producer or consumer is connected to a dis-
patcher Di ∈ D, i ∈ {1, 2, . . . , |D|}, through an arc. In
the case of a producer (consumer), the arc which con-
nects it to a dispatcher has its head in the dispatcher
(consumer) and its tail in the producer (dispatcher). Fur-
ther, each prosumer is connected to a dispatcher through
a pair of arcs: one directed to the dispatcher, the other
directed to the prosumer. Finally, each dispatcher is con-
nected to the central controller via a pair of arcs: one
directed from the dispatcher to the central controller, the
other directed in the opposite direction. Arcs are de-

Figure 2: An example of a microgrid.

noted by ordered pairs. Given two nodes i, j ∈ N , the
arc whose head is j and whose tail is i is (i, j). Let A1
be the set containing all the possible arcs connecting a
dispatcher to the central controller and let A2 be the set
containing all the possible arcs connecting a dispatcher
to an active or passive node. The set A containing the
arcs of the microgrid is: A ⊆ (A1 ∪ A2).

In compact notation, a microgrid is (N ,A). Given
a configuration of energy flow on the arcs of the grid,
the optimization process of dispatching energy consid-
ers the following criteria:

• environmental impact;
• cost of the energy;
• distance of supply;
• load level of the power lines.

The problem is addressed through an MCDM ap-
proach using a hybrid method based on fuzzy AHP and
TOPSIS: fuzzy AHP assigns the weights to each cri-
terion and TOPSIS selects the best alternative. In our
model, an alternative is a flow, i.e., a given configura-
tion of energy flows on the arcs of the graph.

Of course, it is important to start with a reasonable
number of good alternatives. To this aim, we use linear
programming.

5. Strategy for generating alternatives

5.1. Mathematical model

Consider a microgrid (N ,A). Given a node i ∈ N let
N+(i) = {j ∈ N | ∃(i, j) ∈ A} be the set of its suc-
cessors and N−(i) = {j ∈ N | ∃(j, i) ∈ A} the set of
its predecessors. The arcs of the graph can be described
by an n×m incidence matrixE, whose generic element
eih is:

eih =

 −1 if h is an outgoing arc from the node i
1 if h is an incoming arc to the node i
0 otherwise.

(3)
Each node i ∈ N is characterized by an energy re-

quirement bi ∈ Z measured in kW, which is the power
required (or suppliable) by the node. The central con-
troller and the dispatchers have a zero energy require-
ment.

Consider an active node i ∈ O connected to a dis-
patcher Dt, where t ∈ {1, 2, . . . , |D|}. For the sake of
simplicity, in the following we will indicate with D the
dispatcher Dt. The arc (i,D) ∈ A which connects i to
the dispatcher is characterized by a distance diD ∈ R+

from the dispatcher and an energy cost kiD ∈ R+ for
each kWh provided by i. In addition, the arc (i,D)
is associated with minimum and maximum capacities
ϕminiD and ϕmaxiD of sustainable energy flow, where ϕminiD ,
ϕmaxiD ∈ Z+. On the contrary, if i is passive, the arc
(D, i) ∈ A has no energy cost, i.e., kDi = 0, a minimum
and maximum capacities ϕminDi and ϕmaxDi of sustainable
energy flow, where ϕminDi , ϕ

max
Di ∈ Z+.

To obtain alternatives, we generate sub-optimal solu-
tions of an LP problem. Consider the objective function
aggregate cost c : R2

+ → [0, γ] to minimize, defined as

c(dij , kij) = γ

(
α
dij − dmin
dmax

+ β
kij − kmin
kmax

)
, (4)

where (i, j) ∈ A, α ∈ [0, 1], β = 1 − α and γ ∈ Z+.
kmin and kmax are, respectively, the minimum and max-
imum energy costs; dmin and dmax are, respectively, the
minimum and maximum distances of all the nodes from
the dispatcher.

For each arc (i, j) ∈ A, let xij ∈ Z+ be the en-
ergy flow on the arc, and let ϕminij and ϕmaxij be, re-
spectively, the minimum and maximum flows of the arc



(i, j). Let xT ∈ Zm+ be the vector containing a possi-
ble configuration of energy flow on the arcs of the grid,
and let ϕTmin, ϕ

T
max ∈ Zm+ be, respectively, the vector

of minimum flows and the vector of maximum sustain-
able flows of the arcs. In addition, let cT ∈ Zm+ be the
vector containing the aggregate cost of each arc of the
grid. For the sake of simplicity, we denote by cij the
aggregate cost c(dij , kij) of the arc (i, j). Finally, for
each node i ∈ N , let bi be its energy requirement and
let b ∈ Zn+ be the vector containing the requirements of
the nodes of the grid. Chosen a zero minimum energy
flow on each arc and assuming that the total energy pro-
duced by the active nodes meets the energy requirement
of all the passive nodes, the LP model of the problem is:

min
∑

(i,j)∈A

cijxij

∑
(i,j)|j∈N+(i)

xij ≤ − bi ∀i ∈ O

∑
(j,i)|j∈N−(i)

xji = bi ∀i ∈ E

∑
j∈N−(i)

xji −
∑

j∈N+(i)

xij = 0 ∀i ∈ D

xij ≤ ϕmaxij ∀(i, j) ∈ A

xij ≥ 0 ∀(i, j) ∈ A∑
i∈O
|bi| −

∑
j∈E

bj ≥ 0.

(5)

We are interested in sub-optimal solutions to the prob-
lem (5) to be evaluated on the criteria the previous model
does not take into account. We adopt a perturbation
strategy in order to obtain a family P of LP problems, so
that, once solved, each problem provides a sub-optimal
solution to (5).

5.2. Perturbation of the model

Solving the problem (5) means to provide the amount
of energy required by the passive nodes by saturating
the arcs connecting active nodes to the dispatcher and
having a low aggregate cost.

Given the optimal solution x? to (5), we are interested
in the saturated arcs connecting active nodes to the dis-
patcher, forming the set S. An arc (i,D) such that i ∈ O
is said to be saturated if the flow xij on it equals the en-
ergy requirement |bi| of the active node i.

The perturbation strategy is firstly based on desatu-
rating, one by one, the saturated arcs, obtaining every
time a new problem whose solution is a sub-optimal so-
lution to (5). In this way, the flow units no longer pro-
vided by the active nodes connected to a saturated arc,
will be provided by active nodes having no saturated
arc in S. In particular, considered an arc (i,D) ∈ S ,
the new maximum capacity of the arc is obtained as
ϕmax

′

ij = bεbic, ε ∈ [0, 1), where b c denotes the floor,
i.e., the largest previous integer. By means of this strat-
egy, at most |S| sub-optimal solutions to (5) can be ob-
tained.

Subsequently, in order to increase the number of
sub-optimal solutions to (5), we consider, in pairs, the
arcs saturated by the optimal solution x? to the prob-
lem P and simultaneously lower their maximum ca-
pacity. More rigorously, given a pair of saturated arcs
{sh, sk} ∈ S , where h 6= k, the new maximum capac-
ity of the arcs forming the pair is obtained as ϕmax

′

sh
=

bεbic, ϕmax
′

sk
= bεbic, ε ∈ [0, 1). By repeating the pro-

cedure for each pair of saturated arcs, additional sub-
optimal solutions to the original problem (5) are ob-
tained. In particular, by combining both previous ap-
proaches, it is possible to obtain at most |S|+ |S|!

2(|S|−2)!
solutions.

6. Hybrid fuzzy AHP-TOPSIS approach for
efficient energy dispatching

Once the alternatives have been generated by the per-
turbation of the model, the system has to evaluate them
in order to establish the best one, with respect to all the
criteria. We propose the use of fuzzy AHP to prioritize
the criteria. The alternatives are subsequently evaluated
by means of TOPSIS. As said in Section 4, the consid-
ered criteria are: the environmental impact; the cost of
the energy; the distance of supply; the load level of the
power lines.

First, the expert has to fill a matrix H̃ which com-
pares the criteria with each other by means of a fuzzified
Saaty’s scale of preference based on triangular fuzzy
numbers from 1̃ to 9̃, whose meaning is showed in Ta-
ble 1, with the addition of uncertainty. The expert has
also to express an index of optimism ζ about the judge-
ments as explained in Section 2.2.2. The system per-
forms a defuzzification of the matrix H̃ according to
equation (2), obtaining matrix Ĥ . Finally the system
computes the principal eigenvector w of Ĥ , which con-
tains the weights of the criteria.

For each alternative, the system computes the envi-
ronmental impact, the cost of the energy, the distance of
supply and the load level of the power lines. In particu-
lar, given an alternative x, its environmental impact πx
is defined as:

πx =
∑
i|∃(i,D)∈A πixiD∑
i|∃(i,D)∈A ϑixiD

, ϑi =
{

1 ∀i|xiD 6= 0
0 otherwise.

(6)
In addition, the cost of the energy kx of the alternative x
is:

kx =
∑

i|∃(i,D)∈A

kixiD. (7)

Further, the distance of supply dx is expressed by:

dx =
∑

(i,j)∈A

dijxij . (8)

Finally, the load level lx of the power lines is defined as:

lx = 1−
∑

(i,j)∈A ϕ
max
ij −

∑
(i,j)∈A xij∑

(i,j)∈A ϕ
max
ij

, (9)

where 0 < lx ≤ 1.



Alternative Flow
id p1D1 p2D1 p3D2 p4D3 s1D2 s2D3 s3D3 D2s1 D3s2 D3s3 D1CC D2CC D3CC CCD1 CCD2 CCD3 π k d l

1 9 14 9 13 4 0 9 0 4 0 0 4 0 2 0 2 2.9375 177 576 0.2833
2 8 14 9 14 5 0 9 0 4 0 0 4 0 3 0 1 2.9167 179 579 0.2833
3 7 14 9 15 4 0 9 0 4 0 0 4 0 4 0 0 2.8958 181 582 0.2833
4 6 14 9 16 4 0 9 0 4 0 0 4 0 5 0 0 2.8750 183 585 0.2833
5 9 13 9 14 4 0 9 0 4 0 0 4 0 3 0 1 2.9167 178 578 0.2833
6 9 13 9 14 4 0 9 0 4 0 0 4 0 3 0 1 2.9167 178 578 0.2833
7 9 11 9 16 4 0 9 0 4 0 0 5 0 5 0 0 2.8750 180 582 0.2833
8 9 10 9 17 5 0 9 0 4 0 0 4 1 6 0 0 2.8542 181 590 0.2875
9 9 9 9 18 5 0 9 0 4 0 0 5 2 7 0 0 2.8333 182 598 0.2917
10 9 14 8 14 5 0 9 0 4 0 0 3 0 2 0 1 2.8958 179 575 0.2792
11 9 14 7 15 4 0 10 0 4 0 0 3 0 2 0 0 2.8542 181 574 0.2750
12 9 14 6 16 5 0 9 0 4 0 0 2 0 2 0 0 2.8125 183 573 0.2708
13 10 14 5 17 5 0 10 0 4 0 0 1 1 2 0 0 2.7708 185 578 0.2708
14 9 14 4 18 5 0 9 0 4 0 0 0 2 2 0 0 2.7292 187 583 0.2708
15 8 13 9 15 4 0 10 0 4 0 0 4 0 4 0 0 2.8958 180 581 0.2833
16 7 12 9 17 5 0 9 0 4 0 0 4 1 6 0 0 2.8542 183 592 0.2875
17 6 11 9 19 5 0 9 0 4 0 0 5 3 8 0 0 2.8125 186 609 0.2958
18 9 13 8 15 4 0 9 0 4 0 0 3 0 3 0 0 2.8750 180 577 0.2792
19 9 12 7 17 5 0 9 0 4 0 0 3 1 4 0 0 2.8125 183 584 0.2792
20 9 14 9 17 2 0 7 0 4 0 0 2 0 2 0 0 2.8654 183 586 0.2750
21 9 14 9 19 1 0 6 0 4 0 0 2 0 2 0 0 2.8333 186 591 0.2708

Table 3: Alternative flows with their performance values with respect to the criteria.

If n alternatives are generated, the system organizes
them as rows of a matrix X , so as each row of X con-
tains the unities of flow for each arc of the grid. The
performance values of each alternative with respect to
the criteria are organized as rows of a matrix Y , there-
fore given a row i of Y , where i = 1, 2, . . . n, such row
contains, respectively, the pollution level, the cost of the
energy, the distance of supply and the load level of the
power lines related to the i-th alternative. Matrix Y is
the decision matrix the system evaluates by means of
TOPSIS, using the weights in w. At the end of the com-
putation, the system returns the best alternative with re-
spect to all the considered criteria.

7. Experiments

The system was implemented in MATLAB and was
tested on a prototype microgrid consisting of four pro-
ducers, eight consumers, three prosumers, three dis-
patchers and a central controller, having the structure
shown in figure 2.

Initially, we compared in pairs the criteria discussed
in Section 4 so as to fill the fuzzy matrix needed by fuzzy
AHP:

H̃ =


E C D L

E 1 2̃ 3̃ 5̃
C 2̃−1 1 5̃ 7̃
D 3̃−1 5̃−1 1 4̃
L 5̃−1 7̃−1 4̃−1 1

. (10)

The judgements in H̃ are used to prioritize the criteria
in relation to a particular context, therefore they should
be set by an expert. Nevertheless, we estimated the
judgements according to common sense, providing
them with an uncertainty expressed by triangular fuzzy
numbers having a support equal to an interval with

length 2. The elements of the pairwise comparison ma-
trix H̃ are taken by the function computeWeights()
as argument. The function performs a defuzzification
according to equation (2), by using a further parameter
ζ, i.e., the index of optimism we have described in
Section 2.2.2. We chose ζ = 0.5, based on heuristic
considerations. The returned consistency index was
CI = 0.093, therefore the decision matrix H̃ was
said to be consistent. In addition, the function re-
turned the vector containing the weights of the criteria
w = (0.434, 0.381, 0.132, 0.053). At this point, the
system asked the following parameters to be entered:
the incidence matrix E of the network; the vector b
of the energy requirements of the nodes; the vectors
ϕmax and ϕmin of the maximum and minimum flows;
the vector d of the distances between the connected
nodes; the vector k of the energy costs. We entered
the parameters according to a given order. Nodes were
entered in groups, and the nodes in each group were in
lexicographic order. Groups of nodes were composed,
respectively, by consumers, producers, prosumers,
dispatchers and finally the central controller. Arcs were
entered in the following order: the ones connecting
each dispatcher to the consumers, the ones connecting
each producer to a dispatcher, the ones connecting each
prosumer to a dispatcher and vice versa. Finally the
system requires the arcs connecting each dispatcher
to the central controller and the arcs connecting the
central controller to the dispatchers. The parame-
ters we inserted are summarized in the following:
b = (8, 12, 7, 2, 3, 5, 15, 7,−10,−15,−10,−20,−5, 4,
−10); c = (0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 2, 4, 2, 2, 3, 0, . . . , 0);
ϕmax = (20, . . . , 20); ϕmin = (0, . . . , 0); d = (3, 4, 2,
5, 8, 4, 4, 4, 5, 6, 3, 8, 2, 1, 3, 2, 1, 3, . . . , 3). For reasons
of space, we omit the incidence matrix of the network.
However, the incidence matrix can be easily obtained



according to equation (3), observing Figure 2.
By using the previous arguments, the system called

the function getSubObtimalSolutions() which
solved the optimization problem (5), finding the op-
timal solution x?, by means of the simplex algo-
rithm. The optimal solution of the problem was x? =
(8, 12, 7, 2, 3, 5, 15, 7, 10, 15, 10, 13, 5, 0, 10, 0, 4, 0, 0, 5
, 0, 2, 0, 3). The system then began to perturb the
model lowering the maximum capacities of the sat-
urated arcs, firstly one at a time, successively in
pairs, obtaining suboptimal solutions, i.e., the al-
ternatives to be evaluated. For each alternative,
the system calculated the values of the criteria, ac-
cording to equations (6-9), by calling the function
evaluateAlternativesOnCriteria(). In Ta-
ble 3 we have summarized the suboptimal solutions. In
the header of the table there are, from left to right, an
identifier id of the alternative, and the arcs connecting,
respectively, producers to dispatchers, prosumers to dis-
patchers, dispatchers to the central controller and central
controller to the dispatchers. Note that, for reasons of
space, arcs are represented without the arrow. For ex-
ample, the arc p1D1 represents the arc p1 → D1. The
header of the table is terminated with the symbols de-
noting the criteria, i.e., the pollution level π, the cost of
the energy k, the distance of supply d and the load level
l of the power lines. We have also omitted the first eight
columns which would contain the incoming flows of the
consumers. Such flows are the same for each alternative,
i.e., {8, 12, 7, 2, 3, 5, 15, 7}.

As last step, the system passed the alternatives shown
in Table 3 to the function rankAlternatives()
which, by means of the TOPSIS algorithm and using the
weights in w, chose the alternative 14 as the best one. In
Table 3 the best alternative is represented in bold.

8. Conclusions

In this paper we presented a new approach based on
multi-criteria optimization and decision making to opti-
mize the energy dispatching in smart (micro)grids. The
optimization method we have proposed is based on four
criteria: environmental impact, energy cost, distance of
supply, and load level of the power lines. The problem
has been modeled by means of linear programming, by
arbitrarily considering two of the four criteria, i.e., the
distance of supply and the cost of the energy. By mod-
ifying the maximum flow constraints of the problem it
has been possible to generate sub-optimal flows. Such
flows have been subsequently evaluated on the criteria
the LP model does not take into account, by means of
a hybrid multi-criteria decision making approach based
on fuzzy AHP and TOPSIS. Fuzzy AHP has been used
to associate a weight with each criterion according to
the judgements of an expert, in order to obtain a vector
of weights so as to prioritize the criteria. Subsequently,
TOPSIS has been used to select the best configuration
of flow among the available ones, with respect to all the
criteria.

We believe the proposed approach is interesting since

it is based on evaluations of the importance of the crite-
ria which can be expressed with different levels of uncer-
tainty and vagueness. In addition, an MCDM approach
allows to manage the problem quite easily thanks to the
use of pairwise comparison matrices for the prioritiza-
tion of the criteria and an evaluation of the alternatives
simply based on the performance they attain on each cri-
terion.

The proposed approach can be extended by consid-
ering further criteria and guiding the generation of the
alternatives according to different strategies of perturba-
tion, to be used even in parallel. Finally, it is also possi-
ble to extend the model to deal with larger grids, maybe
composed by a potentially high number of microgrids.
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