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Abstract

This paper is concerned with the reduction of a unitary matrix U to CMV-like shape. A Lanczos–type
algorithm is presented which carries out the reduction by computing the block tridiagonal form of the
Hermitian part of U , i.e., of the matrix U +UH . By elaborating on the Lanczos approach we also propose
an alternative algorithm using elementary matrices which is numerically stable. If U is rank–structured
then the same property holds for its Hermitian part and, therefore, the block tridiagonalization process
can be performed using the rank–structured matrix technology with reduced complexity. Our interest
in the CMV-like reduction is motivated by the unitary and almost unitary eigenvalue problem. In this
respect, finally, we discuss the application of the CMV-like reduction for the design of fast companion
eigensolvers based on the customary QR iteration.

Keywords CMV matrices, unitary matrices, rank–structured matrices, block tridiagonal reduction, QR iteration, block
Lanczos algorithm, complexity MSC 65F15

1 Introduction
In a recent paper [14], Killip and Nenciu conduct a systematic study of the properties of a class of unitary
matrices –named CMV matrices from the names of the researchers who introduced the class in [6]–. The
rationale of the paper emphasized in the title is that CMV matrices are the unitary analogue of Hermitian
tridiagonal Jacobi matrices. It is interesting to consider potential analogies from the point of view of
numerical computations since the Hermitian tridiagonal structure provides a very efficient and compressed
representation of Hermitian matrices especially for eigenvalue computation. To our knowledge the first
fundamental contribution along this line was provided in the paper [5] where some algorithms are presented
for the reduction of a unitary matrix to a CMV-like form and, moreover, the properties of this form under the
QR process are investigated. In [16] a more general framework is proposed, which includes the CMV-like
form as a particular instance.

Our interest in the CMV reduction of unitary matrices stems from the research of numerically efficient
eigenvalue algorithms for unitary and almost unitary rank–structured matrices. The structural properties of
the classical Hessenberg reduction of a unitary matrix were extensively exploited for fast eigenvalue com-
putation in some pioneering papers by Gragg and coauthors [1, 17, 18]. More recently, it has been realized
that these properties are related with the rank structures of a Hessenberg unitary matrix and, moreover,
these structures are invariant under the QR iteration thus yielding a large variety of possible fast adapta-
tions of this iterative method for eigenvalue computation of unitary and almost unitary matrices [2, 3, 8].
A common issue of all these approaches is that rank–structured matrices are generally represented in a
∗This work was partially supported by GNCS-INDAM, grant ”Equazioni e funzioni di Matrici”
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data–sparse format and the accurate update of this format under the iterative process can be logically com-
plicated and time consuming. Additionally, these difficulties are magnified for block matrices where the
size of the condensed representation typically increases. So the point of view taken in this paper is that,
for numerical and computational efficiency of eigensolvers, it would be better to replace the data-sparse
format with a sparser representation employing directly the matrix entries. The CMV reduction naturally
lead to a sparser form.

This paper is aimed to explore the mechanism underlying the reduction of a general unitary matrix
U ∈ Cn×n into some CMV-like form. It is shown that an origin of such mechanism can be found in the
property that under some mild assumption the matrices UH : = U +UH and UAH : = U −UH can be
simultaneously reduced into block tridiagonal form by a unitary congruence, i.e., UH → TH = QHUHQ
and UAH → TAH = QHUAHQ. From this it follows that the same transformation acts on the matrix U by

performing the reduction into block tridiagonal form, that is, U → TH +TAH

2
= QHUQ. A careful look at

the out-of-diagonal blocks of
TH +TAH

2
reveals that these are of rank one at most by showing the desired

CMV-like shape of the matrix. The complexity of the block tridiagonal reduction is generally O(n3).
However there are some interesting structures which can be exploited. In particular, if U is rank-structured
then U +UH is also rank-structured and Hermitian so that the fast techniques developed in [11] might be
incorporated in the algorithm by achieving a quadratic complexity.

The paper is organized as follows. In Section 2, we describe and analyze a block Lanczos procedure
for the reduction of UH and simultaneously of UAH into block tridiagonal form. It is also shown that this
procedure is at the core of our CMV–ification algorithm for unitary matrices. In Section 3 by elaborating
on the Lanczos approach we propose a different CMV reduction algorithm in Householder style using
elementary matrices and comment on the cost analysis of the algorithm in the case of rank–structured
inputs. In Section 4 we discuss the application of the CMV-like representation of a unitary matrix in the
design of fast eigensolvers for unitary and almost unitary matrices. Finally, in Section 5 the conclusion and
further developments are drawn.

2 Derivation of the Algorithm
Let U ∈ Cn×n denote a unitary matrix. In this section we consider the problem of reducing U into a sparse
form referred to as CMV–like shape.

Definition 1. We say that an n×n unitary matrix U has CMV-like shape or, for short, is a CMV-like matrix
if it is block tridiagonal, that is,

U =


U1 Ũ1

Û1
. . .

. . .
. . .

. . . Ũp−1
Ûp−1 Up

 ,

where Uk ∈ Cik×ik , 1 ≤ k ≤ p, i1 = . . . = ip−1 = 2 and ip ∈ {1,2} depending on the parity of n, and,
moreover, both the superdiagonal and the subdiagonal blocks are matrices of rank one at most.

In the generic case a CMV–like matrix U can be converted into a matrix with the CMV–shape described
in Definition 1.2 in [14] by means of a unitary diagonal congruence. However, our class is a bit more
general since it includes the direct sum of CMV shaped matrices together with some more specific matrices.
For instance, the 4×4 unitary matrix U given by

U =


0 1 0 0

cosθ 0 0 sinθ

−sinθ 0 0 cosθ

0 0 1 0

 , (θ ∈ R),
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is not CMV shaped according to the definition in [14] but it is CMV-like and it can be reduced into a pure
CMV shape by a unitary congruence.

In order to investigate the reduction of a unitary matrix U into CMV–like shape let us introduce the

Hermitian and the anti-hermitian part of U defined by UH : =
U +UH

2
and UAH =

U−UH

2
, respectively.

If U has at least three distinct eigenvalues then the minimal polyanalytic polynomial p(z) of U is p(z) =
zz̄− 1, that is, p(z) is the minimal (w.r.t. a fixed order) degree polynomial in z and z̄ such that p(U) = 0.
Observe that

zz̄−1 =
(z+ z̄)z

2
− (z− z̄)z

2
−1. (1)

A block variant of the customary Lanczos method can be used to compute a block tridiagonal reduction
of the Hermitian matrix UH . The process is defined by the choice of the initial approximating subspace
D0 =< z,w >. A simple version of the algorithm is given below.

Procedure Block Lanczos
Input: UH , D0 = [z|w];
[G,R,V ] = svd(D0); s = rank(R);
Q(: ,1:s) = G(: ,1:s); s0 = 1,s1 = s;
while s1 < n

W =UH ·Q(: ,s0:s1); T (s0:s1,s0:s1) = (Q(: ,s0:s1))H ·UH ·Q(: ,s0:s1);
if s0 = 1

W =W −Q(: ,s0:s1) ·T (s0:s1,s0:s1);
else

W =W −Q(: ,s0:s1) ·T (s0:s1,s0:s1);
W =W −Q(: , ŝ0: ŝ1) ·T (ŝ0: ŝ1,s0:s1);

end
[G,R,V ] = svd(W ); snew = rank(R);
if snew = 0

disp(’premature stop’); return;
else

R = R(1:snew,1:snew) · (V (: ,1:s))H ;
ŝ0 = s0, ŝ1 = s1,s0 = s1+1,s1 = s1+ snew;
Q(: ,s0:s1) = G(: ,1:snew), T (s0:s1, ŝ0: ŝ1) = R(1:snew,1:s);
T (ŝ0: ŝ1,s0:s1) = (T (s0:s1, ŝ0: ŝ1))H , s = snew;

end
end
T (s0:s1,s0:s1) = (Q(: ,s0:s1))H ∗UH ∗Q(: ,s0:s1);

If the procedure Block Lanczos terminates without premature stop then at the very end the unitary
matrix Q transforms UH into the Hermitian block tridiagonal matrix TH = QH ·UH ·Q, where

TH =


A1 BH

1

B1 A2
. . .

. . . . . . BH
p−1

Bp−1 Ap

 ,

with Ak ∈Cik×ik , Bk ∈Cik+1×ik , and 2≥ ik ≥ ik+1, i1+ . . .= ip = n. The sequence {ik}p
k=0 (i0 = 1) is formed

from the values attained by the variable s in the procedure Block Lanczos.
Observe that from Q ·TH =UH ·Q it follows inductively that for the subspaces

B j(UH ,Q(:,1 : i1)) = block–span{Q(:,1 : i1),UH ·Q(:,1 : i1), . . . ,U
j−1

H ·Q(:,1 : i1)}
: = {∑ j−1

k=0 Uk
HQ(:,1 : i1)Ψk, Ψk ∈ Ci1×i1}

and
Q j = block–span{Q(:,1 : i1),Q(:, i1 +1 : i1 + i2), . . . ,Q(:,∑ j−1

k=1 ik +1 : ∑
j
k=1 ik)}

: = {∑ j−1
k=0 Q(:,∑k

`=0 i`+1 : ∑
k+1
`=0 i`)Φk, Φk ∈ Cik+1×i1}
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it holds
B j(UH ,Q(:,1 : i1))⊆ Q j, j ≥ 1.

Moreover, since

U j−1
H ·Q(:,1 : i1) = Q(:,

j−1

∑
k=1

ik +1 :
j

∑
k=1

ik)B j−1 · · ·B1 +
j−2

∑
`=1

Q(:,
`−1

∑
k=1

ik +1 :
`

∑
k=1

ik)Γ`, (2)

and Bk−1 · · ·B1 ∈ Cik×i1 is of maximal rank ik since the blocks Bi are obtained with the Block Lanczos
procedure. Then we obtain

B j(UH ,Q(:,1 : i1)) = Q j, j ≥ 1.

Conversely, this relation implies that the matrix QH ·UH ·Q is block upper Hessenberg and therefore block-
tridiagonal.

Now let us consider the matrix H : = QH ·UAH ·Q. We are going to investigate the structure of this
matrix under the additional assumption that w =Uz. Differently speaking, we suppose that the initial ap-
proximating subspace block–span{Q(:,1 : i1)} satisfies block–span{Q(:,1 : i1)} = block–span{D0}, with
D0 = [z,Uz] depending on just one vector.

In the following lemma we prove that if the Block Lanczos procedure does not occur in a breakdown,
the size of the blocks Ak and Bk is 2, with the exception of the last block in the case n is odd.

Lemma 1. Let us consider the algorithm Block Lanczos applied to UH with the initial vectors D0 = [z|Uz],
z ∈ Cn and assume that the set of vectors, for j ≥ 1, U j−1

H z,U j−1
H Uz yields a basis of the whole space Cn.

Then the unitary matrix Q satisfies (7) with i1 = . . .= ip−1 = 2 and ip ∈ {1,2} depending on the parity of
n.

Proof. The proof of the lemma consists in proving that the matrices W generated in the procedure Block Lanczos
have always rank 2, except for the last block in the case n is odd.

Assume by contradiction that at step j, j < n/2 for n even, j < n/2− 1 for n odd, we have a matrix
W such that rank (W ) < 2, and that in previous steps all the corresponding matrices W had full rank.
The first 2 j columns of the unitary matrix Q returned by the procedure Block Lanczos, form an or-
thogonal basis for the space B j(UH ,Q(:,1 : i1)). Since U is unitary it is easy to see that B j(UH ,Q(:,1 :
i1)) = span{z,Uz|UHz,U2z| . . . , |(UH) j−1z,U jz}. Since rank (W )< 2 then a nonzero linear combination
of (UH) j−1z and U jz must be in B j−1(UH ,Q(:,1 : i1)). Due to the unitariness of U , this means that both
(UH) jz and U j+1z are in B j(UH ,Q(:,1 : i1)). So the dimension of B j+1(UH ,Q(:,1 : i1)) is 2 j and this
implies that rank (W ) = 0, i.e. a premature termination, which is a contradiction.

Theorem 2. Let us consider the algorithm Block Lanczos applied to UH with the initial vectors D0 =

[z|Uz], z ∈ Cn. Let us assume that the set of vectors U j−1
H z,U j−1

H Uz, j ≥ 1, yields a basis of the whole
space Cn, or, equivalently, the algorithm does not return an early termination warning. Then the unitary
matrix Q ∈ Cn×n reduces simultaneously UH and UAH into a block triangular form, that is,

TH : = QHUHQ =


A1 BH

1

B1 A2
. . .

. . .
. . . BH

p−1
Bp−1 Ap

 ,
and

TAH : = QHUAHQ =


A′1 −B′H1

B′1 A′2
. . .

. . .
. . . −B′Hp−1

B′p−1 A′p


where Ak,A′k ∈ C2×2, Bk,B′k ∈ C2×2, and in the case n is odd, Ap ∈ C1×1, Bp−1,B′p−1 ∈ C1×2.
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Proof. In order to compare the shape of H = QH · UAH · Q and TH we first introduce a commensurable
partitioning of H, i.e., H = (Hk,`),Hk,` ∈ C2×2, (possibly for odd n, Hp,`C1×2, and Hp,p ∈ C). Clearly, we
have that

B j(UAH ,Q(:,1 : i1)) = B j(UAH ,D0), j ≥ 1.

Let us begin by considering the initial step j = 1. We have

UAHz =−UHz+Uz ∈ block–span{Q(:,1 : i1),Q(:, i1 +1 : i1 + i2)}. (3)

Concerning UAHUz from (1) we obtain that

UAHUz =UHUz− z ∈ block–span{Q(:,1 : i1),Q(:, i1 +1 : i1 + i2)}. (4)

By using (3) and (4) it is found that

UAHQ(:,1 : i1) =UHQ(:,1 : i1)∆+Q(:,1 : i1)Γ, (5)

for suitable matrices ∆,Γ ∈ Ci1×i1 with ∆ of maximal rank i1. Since UAH and UH commute, from (2) and
(5) by induction it follows that

B j(UAH ,Q(:,1 : i1))⊆ Q j, j ≥ 1,

and

U j−1
AH ·Q(:,1 : i1) = Q(:,

j−1

∑
k=1

ik +1 :
j

∑
k=1

ik)B j−1 · · ·B1∆
j−1 +

j−2

∑
`=1

Q(:,
`−1

∑
k=1

ik +1 :
`

∑
k=1

ik)Γ′`, (6)

for suitable matrices Γ`, which says that

B j(UAH ,Q(:,1 : i1)) = Q j, j ≥ 1,

and, therefore, the matrix H is block upper Hessenberg, i.e., Hk,` = 0 for k− 1 > `. On the other hand,
since UAH is anti-hermitian we find that also H is anti-hermitian and, hence, H is block tridiagonal with the
same shape as TH . Finally, this implies that both QH ·U ·Q and QH ·UH ·Q are in block tridiagonal form
with the same shape as H and TH .

From this result it follows that the unitary transformation induced by the matrix Q has the same action

when performed on the unitary matrix U =
UH +UAH

2
∈ Cn×n. i.e,

T : = QHUQ =


Â1 B̃H

1

B̂1 Â2
. . .

. . . . . . B̃H
p−1

B̂p−1 Âp

 (7)

where Âk ∈C2×2, B̂k =
Bk+B′k

2 ∈C2×2, B̃H
k =

BH
k −B′Hk

2 ∈C2×2, for k = 1, . . . ,bn/2c, and in the case n is odd,
Âp ∈ C, B̂p−1, B̃p−1 ∈ C1×2. As proved in Lemma 1, blocks Bk of TH are 2×2 and have full rank.

In next step of our investigation on the shape of the matrix T we give a careful look at the rank of its
out-of-diagonal blocks.

Corollary 1. Let us consider the algorithm Block Lanczos applied to UH with the initial vectors D0 =

[z|Uz], z ∈ Cn and assume that the set of vectors U j−1
H z,U j−1

H Uz, j ≥ 1, yields a basis of the whole space
Cn. Then both the subdiagonal blocks B̂k and the superdiagonal blocks B̃H

k , 1 ≤ k ≤ p− 1, of the matrix
T = QHUQ are 2×2 rank-one matrices.
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Figure 1: Shape of the modified matrix T generated by Block Lanczos

Proof. We consider only the case n even, the case n odd is similar. From (3) and (4) it follows that the
matrix ∆ ∈ C2×2 in (5) can be represented as

∆ = Θ

[
−1

1

]
Θ
−1,

for a suitable invertible matrix Θ ∈ C2×2. This means that I2 +∆ and I2−∆ are rank-one matrices. From

UAHU j−1
H Q( : ,1 : i1) =U j−1

H UAHQ( : ,1 : i1), j ≤ 1,

by using (2), (5), (6) it is found that the matrices B′j , 1≤ j ≤ p−1, satisfy the following relations

B′j = B j ·B j−1 · · ·B1 ·∆ ·B−1
1 · · ·B

−1
j−1, 1≤ j ≤ p−1.

There follows that for the out-of-diagonal blocks of T it holds

B̂ j =
B j +B′j

2
=

1
2
(B j ·B j−1 · · ·B1 · (I2 +∆) ·B−1

1 · · ·B
−1
j−1), 1≤ j ≤ p−1,

B̃ j =
B j−B′j

2
=

1
2
(B j ·B j−1 · · ·B1 · (I2−∆) ·B−1

1 · · ·B
−1
j−1), 1≤ j ≤ p−1,

which says that B̂ j and B̃ j are matrices of rank one.

The Figure 1 illustrates the shape of the matrix T generated by the algorithm Block Lanczos applied
to the generator of order 16 of the circulant matrix algebra, that is, the companion matrix associated with
the polynomial z16− 1. The initial vector z is randomly generated and the matrix T is post-processed by
means of a sequence of Givens rotation matrices defined in order to compress the rank-one structure of the
out-of-diagonal blocks.

It is easily seen that under some genericity condition the modified matrix T can be reduced by a diagonal
unitary congruence into the CMV-shape described in Definition 1.2 in [14]. This explains why we refer
to the matrix T generated by the Block Lanczos procedure as to a CMV–like form. Further, it is worth
noticing that the computational cost of the Block Lanczos algorithm amounts to perform a matrix-by-
vector multiplication per step. Therefore, the overall cost is O(ncm), where O(cm) is the cost of multiplying

6



the matrix U +UH ∈ Cn×n by a vector. In the case of the generator of the circulant matrix algebra, since
the matrix U is sparse, we get the complexity estimate O(n2).

Some comments are however in order here. The first one is concerned with the applicability of the
Block Lanczos process devised above. Let us consider the Fourier matrix U =Fn =

1√
n Ωn of order n= 2m.

Due to the relation Ω2
n = nΠ, where Π is a suitable symmetric permutation matrix, it is found that for any

starting vector z the Block Lanczos procedure breaks down within the first three steps. In this case the
reduction scheme has to be restarted and the initial matrix can be converted into the direct sum of CMV-like
blocks.

The second comment is that the profile shown in Figure 1 does not follow immediately from the rank-
one property of the out-of-diagonal blocks. The observation is that after having performed the first two
elementary transformations T → T1 = G1T GH

1 and T1→ T2 = G2T1GH
2 determined so that B̂1 and B̃H

1 are
converted in the form displayed in Figure 1 then the subdiagonal block in position (3,2) has already the
desired shape due to the unitariness of the matrix T2. In this way the reduction of T can be completed by
a sequence of Givens rotations only acting on the superdiagonal blocks in such a way to preserve the zero
structure.

The final observation is that the reduction into the CMV–like shape has also a remarkable consequence
in terms of rank structures of the resulting matrix. The property follows from a corollary (Corollary 3 in
[12]) of a well known result in linear algebra referred to as the Nullity Theorem.

Theorem 3 (Nullity Theorem). Suppose A ∈ Cn×n is a nonsingular matrix and α and β to be nonempty
proper subsets of J : = {1, . . . ,n}. Then

rank (A−1(α;β)) = rank (A(J \β;J \α))+ |α|+ |β|−n,

where, as usual, |J| denotes the cardinality of the set J.

Now let T ∈ Cn×n, n = 2`, denote a unitary matrix given in the CMV-like form shown in Figure 1. Set
α = {1,2} and β = {5, . . . ,n}. Thus, we have

0 = rank (T (1: 2;5 : n)) = rank (T H(5: n;1 : 2)) = rank (T (3: n;1 : 4))−2,

which implies
rank (T (3: n;1 : 4)) = 2.

and, therefore,
rank (T (3: 4;2 : 3)) = 1

whenever T (5 : 6,4) is nonzero. In fact, assume by contradiction that rank (T (3: 4;2 : 3)) = 2, then since
by Corollary 1 rank (T (3: 4;1 : 2)) = 1, rank (T (5: : 6,4 : 5)) = 1 and the matrix is in CMV-like form,
we obtain that rank (T (3 : n,1 : 4)) = 3 which is a contradiction. By similar reasonings we conclude that
under the assumption that T (2k+1 : 2(k+1),2k) is nonzero for k = 2, . . . , `−1 it is obtained that

rank (T (2k+1: 2(k+1);2k : 2k+1)) = 1, 1≤ k ≤ `−2. (8)

This property plays a fundamental role in the analysis of QR–based eigensolvers performed in Section 4.

3 A Householder style reduction algorithm
In this section we derive a Householder style reduction algorithm using elementary matrices to perform
the transformation of a unitary matrix U into the block tridiagonal form T . Let us recall that from (7) the
unitary matrix U is converted into the the block tridiagonal form T by using a unitary congruence defined
by the unitary matrix Q whose first two columns are determined to generate the space < z,Uz > for a
suitable z ∈ Cn×n. The rank properties of the out-of-diagonal blocks of T stated in Corollary 1 enables the
information of T to be further compressed by using a sequence of Givens rotations in order to arrive at the
form shown in Figure 1. The pattern of this sequence does not modify the first two column of Q.

7
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Figure 2: Block CMV reduction for the Fourier matrix of size n = 32

A straightforward extension of the Implicit Q Theorem (see [13], Theorem 7.4.2) for block Hessenberg
matrices indicates that essentially the same unitary matrix should be determined in any block tridiago-
nal reduction process by means of unitary transformations applied to U +UH provided that the first two
columns of Q span the space < z,Uz >. This suggests the alternative more stable procedure using unitary
transformations outlined below. For the sake of simplicity we consider the case where n is even.

Procedure Unitary CMV Reduction
Input: U , D0 = [z|Uz];
[G,R] = qr(D0); U = GHUG; n = length(U);
for kk = 1:n/2−2

for j = n:−1:2kk+3
Us =U( j−2: j,2kk−1:2kk)+(U(2kk−1:2kk, j−2: j))H ;
[Qs,Rs] = qr(Us);
U( j−2: j, :) = QsHU( j−2: j, :);
U(: , j−2: j) =U(: , j−2: j)Qs;

end
end

The complexity of this procedure is generally O(n3). However there are some interesting structures
which can be exploited. In particular, if U is rank-structured then U +UH is also rank-structured and
Hermitian so that the fast techniques developed in [11] might be incorporated in the algorithm above by
achieving a quadratic complexity. The resulting fast version of the Unitary CMV Reduction algorithm
will be presented elsewhere.

It is also worth noticing that for certain input data the algorithm above needs to be restarted if break-
down situations are detected. For instance, in Figure 2 we report the matrix generated by the algorithm
Unitary CMV Reduction applied to the Fourier matrix of order 32. The 8× 8 block diagonal structure
of the CMV–shape corresponds with 7 restarts of the algorithm. The 2-norm of the subdiagonal blocks
corresponding to breakdowns are in the range [2.3e− 14,6.5e− 14]. The deflation criterion used in our
implementation compares the 2-norm of the considered subdiagonal block with the bound n · u· ‖ U ‖F ,
where u denotes the unit roundoff. This is justified by the fact that the Hessenberg reduction as well as QR
iterations introduce roundoff errors of the same level [15].
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4 Invariance of the CMV-like form under the QR algorithm
Our interest towards the reduction of unitary matrices into a CMV-like form stems from the unitary eigen-
value problem. In this respect it is mandatory to investigate the properties of CMV-like matrices under
the QR algorithm which yields the customary approach for eigenvalue computation. The invariance of the
CMV-like form under the QR iteration was firstly proved in the paper [5] using an algorithmic approach.
The proof presented here is based on the property (8) and it has the advantage of admitting an immediate
extension to almost unitary matrices.

Theorem 4. Let T0 = T ∈Cn×n, n = 2`, be a unitary block tridiagonal matrix given in the CMV–like form
shown in Figure 1. Moreover, let T1 denote the matrix generated from one step of the QR algorithm with
shift γ , i.e., {

T0− γIn = QR (QR factorization);
T1 = RQ+ γIn.

Assume that the subdiagonal blocks of both T0 and T1 are nonzero and that T0− γIn is nonsingular. Then
the matrix T1 is block tridiagonal with the same shape as T0.

Proof. From T1 = RT0R−1 where R is upper triangular it follows that both the shape and the rank properties
of the lower triangular portion of the matrix T0 are preserved in the matrix T1. Then by using Theorem 3
and property (8) we obtain that

rank (T1(1: 2;4 : n)) = rank (T H
1 (4: n;1 : 2)) = rank (T1(3: n;1 : 3))−1.

We have that rank (T1(3: n;1 : 3)) = rank (T0(3: n;1 : 3)) = 1 as a consequence of the CMV-like structure
of T0 and for (8). This says that T1(1: 2;4 : n) is a zero matrix. The same argument applies to any submatrix
T1(1: 2s;2(s+1) : n), 1≤ s≤ `−2, by yielding the CMV-like structure of T1.

The assumption about the invertibility of T0− γIn is just for the sake of simplicity. In the singular case
we can get the same conclusion by a careful looking at the elementary transformations involved in the
passage from T0 to T1 (compare with [7] for a general treatment of rank structures under the QR process in
the singular case).

The conclusion of Theorem (4) immediately generalizes to almost unitary matrices of the form A =
U + zwH , with U unitary, including the class of companion matrices. Indeed, if we apply the Uni-
tary CMV Reduction to the matrix U with initial vectors z,Uz, then it is shown that U is reduced to
CMV-like shape and simultaneously the rank-one correction is converted to a rank-one matrix with only
the first nonzero row. In this way, the transformed matrix B = QHAQ = T + e1vH is block upper Hessen-
berg with subdiagonal blocks of rank one. Setting T0 = T , C0 = e1vH , and applying a QR step to matrix
B0 = B, we have

B1 = T1 +C1,

where T1 = QHT0Q is unitary and C1 = QHC0Q is a rank one matrix. The following facts hold.

• Since the lower shape is maintained under the QR scheme, B1 is block upper Hessenberg with sub-
diagonal blocks of rank one.

• T1 has a rank–one structure in the lower triangular portion out of the diagonal blocks, due to the fact
that B1 is block Hessenberg with rank one subdiagonal blocks.

• rank (T1(3 : n,1 : 4)) = 3, and for the Nullity Theorem, rank (T1(1 : 2,5 : n)) = 1.

• Then, rank (B1(1 : 2,5 : n))≤ 2.

This reasoning can be repeated at each QR step obtaining that the matrix B generated at each step has a
rank–two structure in the upper triangular portion out of the block tridiagonal profile.

As an illustration of the structural properties of the CMV-like reduction under the QR process, we
consider in Figure 5 the unitary matrix T computed after 32 QR steps applied to the matrix B determined
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Figure 3: Shape of the matrix H
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Figure 4: Shape of the matrix S

Figure 5: Illustration of the upper rank-one structure of T

from a companion matrix A generated by the Matlab command compan. Specifically, we show the shape
of the matrices H and S such that T ·S = H and S can be represented as product of a linear number of 2×2
Givens rotation matrices. This factorization is an intermediate step in the computation of a QR factorization
of T [9] and clearly put in evidence the rank-one structure in the upper triangular portion of the matrix T .

5 Conclusion and future work
In this paper we have presented fast numerical methods for reducing a given unitary matrix into the direct
sum of CMV-like matrices. The occurrence of potential rank structures in the matrix U can be exploited by
improving the computational cost of the reduction. As the resulting sparse representation of U is invariant
under the QR method the proposed reduction can naturally be applied for the fast solution of the unitary
rank structured eigenvalue problems.

Some theoretical and computational issues are currently being investigated. A first interesting question
is related with the completion problem for unitary matrices whose block lower Hessenberg profile is only
known (compare with [4]). Other issues concern the numerical treatment, representation and compression
of out-of-band semiseparable unitary matrices [10]. In particular, the rank–one structure of the matrices
generated under the QR method applied to a transformed companion matrix can provide an easy, numer-
ically efficient representation to be exploited for the design of fast matrix–based polynomial rootfinding
methods. The preliminary transformation of a companion matrix into a perturbed CMV-like form can
provide alternative algorithms with better numerical and computational features.
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